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ON THE CLASSIFICATION OF VECTOR BUNDLES WITH

PERIODIC MAPS

ABDELOUAHAB AROUCHE

Abstract. We give an explicit decription for univeral principal U(r)-bundles
with periodic map by means of equivariant Stiefel manifolds. We then show
that the associated equivariant vector bundle is equivalent to the canonical
one given by G. Segal. Finally, we investigate some ideals involved in the
equivariant K-theory of this classifying space.

1. Introduction

For a compact Lie group Γ and a topological group G, we call a (Γ; G)-bundle
any principal G-bundle on which Γ acts by bundle maps [D], [L]. It has been shown
in [D] and [L] that a universal (Γ;G)-bundle is given by E(Γ; G) = ∗

H∈F

Γ×G
H

, where

F = F (Γ; G) is the family of subgroups H ≤ Γ × G such that H ∩ G = 1 (see also
[AHJM]). This space is characte rized by the fact that the fixed points set E(Γ; G)H

is contractible if H ∈ F and empty otherwise [J].

2. Two lemmas

In the sequel, we shall need the following

Lemma 1. if G = G1 × G2, then there is a (Γ × G)-homotopy equivalence :

E(Γ; G) ≃ E(Γ; G1) × E(Γ; G2).

Lemma 2. If Γ1 ≤ Γ2 and G1 ≤ G2, then there exists a (Γ1 × G1)-homotopy

equivalence :

E(Γ1; G1) ≃ res(Γ1×G1)E(Γ2; G2).

3. The main theorem

In what follows, we restrict our study to the case Γ = Zn, the cyclic group of
order n. Recall that the Stiefel manifolds are defined by

Vr,s = {(v1, ..., vr), vi ∈ Cs, vi.vj = δij , i, j = 1, ..., r}

and
Vr,∞ = lim

s
→

Vr,s.

Let Zn × U(r) act on the Stiefel manifold Vr,∞ by :

(γ, a).(v1, ..., vr) = (w1, ..., wr)
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such that

wk
j = γk.

r
∑

i=1

ajiv
k
i , j = 1, ..., r, k = 1, ...,∞

where γ is a generator of Zn, a ∈ U(r), and (v1, ..., vr) ∈ Vr,∞.
We then have :

Theorem 1. There is a (Zn × U (r))-homotopy equivalence :

E (Zn; U (r)) ≃ Vr,∞

Proof. It is enough to show that Vr,∞ endowed with the so defined (Zn × U (r))-
action satisfies the fixed points set characterization of E (Zn; U (r)). Now, up to
conjugation, we have :

F (Zn; U (r)) =

{

Hd,s : d | n; s = (s1, ..., sd); 0 ≤ si ≤ r, i = 1, ..., d;

d
∑

i=1

si = r

}

with :

Hd,s = 〈λ, ρ (λ) =









































λ
. . .

λ
λ2

. . .

λ2

. . .

λd = 1
. . .

λd = 1









































〉.

The matrix ρ (λ) contain si diagonal coefficients equal to λi (λ is a primitive d-th
root of unity), all the other coefficient being zero. It i obvious that if

(1, a) . (v1, ..., vr) = (v1, ..., vr) ,

then a = Ir. Hence, E (Zn; U (r))H = ∅ when H /∈ F (Zn; U (r)), on one hand. On

the other hand, (v1, ..., vr) ∈ E (Zn; U (r))
Hd,s iff

∀j = 1, ..., r : ∀k = 1, ...,∞ : vk
j = λk−mj .vk

j ; mj = ρ (λ)jj .

Hence, ∀j = 1, ..., r : vk
j = 0 unless k = mjmodd]. It i not difficult to ssee that

E (Zn; U (r))
Hd,s is contractible (see sec.6. for an explicit example).

Example 1. Consider the case r = 1. We have E
(

Zn;S1
)

≃ S∞. Using lemma

2.1, we get :

E (Zn;Tr) ≃
r
∏

i=1

S∞.

If we suppose that G is a compact Lie group, we can embed it in a U(r), for some

suitable r. Then, by use of lemma 2.2, there is a (Zn × G)-action on Vr,∞ and a

(Zn × G)-homotopy equivalence :

E (Zn; G) ≃ Vr,∞.
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4. The associated Zn-vector bundle.

Let M be the Zn-module defined by : M = C∞ and

γ. (z1, z2, ....) =
(

γ.z1, γ
2.z2, ....

)

. Let Gr,∞ be the Grassmannian manifold of r-dimensional subspaces of M. Then
the right U(r)-action on Vr,∞ defined by

(v1, ..., vr) .a =
(

1, a−1
)

. (v1, ..., vr)

has as a quotient space Vr,∞/U(r) = Gr,∞. There is a canonical Zn-vector bundle
on Gr,∞ whose totalspace is

EM = {(N, z) : z ∈ N} ⊆ Gr,∞ × M

and which is universal [S].

Theorem 2. The Zn-vector bundle associated with the principal (Zn; U(r))-bundle

Vr,∞ → Gr,∞ is equivalent to EM → Gr,∞

Proof. The total space of the asociated Zn-vector bundle is Vr,∞ ×U(r) Cr, with
the Zn-action :

γ. [(v1, ..., vr) , y] = [(γ, Ir) . (v1, ..., vr) , y] .

Following [H, ch. 7, (7.1)], we define a map

f : Vr,∞ ×U(r) Cr → EM,

by

f [(v1, ..., vr) , y] =

(

〈v1, ..., vr〉,
r
∑

i=1

yivi

)

. According to [H], f is a vector bundle isomorphism. It is easy to check its
Zn-equivariance. �

5. Characteristic classes

Let Γ be a compact Lie group and G a topological group. Then E (Γ; G) is a right
G-space by e.g = (1, g) .e; we denote by B (Γ; G) the quotient space E (Γ; G) /G.
According to [AHJM], the equivariant K-theory ring K∗

Γ (B (Γ; G)) is isomorphic to

the completion R (Γ × G)
ˆ
F of the complex representation ring with respect to the

F -adic topology. Recall that the F -adic topology is defined on R (Γ × G) by the
set of ideals IH = ker {R (Γ × G) → R (H)}, for H ∈ F . In the case of Γ = Z2 and
G = Tr, we have :

F = Hk : k = −1, 0, ..., r,

where
H−1 = 1,

H0 = {1, (−1, Ir)} , Hr = {1, (−1,−Ir)}

and for k = 1, ..., r − 1 :

Hk =

{

1,

(

−1,

(

−Ik 0
0 Ir−k

))}

.

Putting
Ik = ker {R (Z2 × Tr) → R (Hk)} ,
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the F -adic topology is defined on R (Z2 × Tr) by the ideal :

I =

r
⋂

k=−1

Ik.

Proposition 1. The the F -adic topology is defined on R (Z2 × Tr) by the ideal :

I = I0
∼= R (Z2) ⊗ ITr ,

where ITr denotes the augmentation ideal, and that on R (Z2 × U (r)) is defined by

:

J = I ∩ R (Z2 × U (r)) .

In general, the F -adic topology on R (Zn × U (r)) is defined by the ideals Id,j coming

from the subgroups :

Kd,j = 〈λ,











λj

1
. . .

1











〉; d | n; j = 1, ..., d;
(

λd = 1
)

.

Proof. Easy. The general case follows from the description of F (Z2; U (r)) given
in thm (3.1).

Example 2. Kd,d
∼= Zd, Id,d

∼= R (Zd)⊗IU(r) and Id,d−1
∼= I(Zd×Tr)∩R (Zd × U (r)).

�

6. Homotopies in Stiefel manifolds

Let C∞ be the telescope
⋃

n≥1 Cn, and let

(C∞)
even

= {v ∈ C∞ : v2n+1 = 0; ∀n = 1, ...,∞.} ,

(C∞)
odd

= {v ∈ C∞ : v2n = 0; ∀n = 1, ...,∞.} .

Two maps :
geven, godd : Cn × I → C2n

are defined in the following way :

geven
t (v1, ..., vn) = (1 − t) (v1, ..., vn) + t (0, v1, ..., 0, vn)

and
godd

t (v1, ..., vn) = (1 − t) (v1, ..., vn) + t (v1, 0, ..., vn, 0) .

These maps extend to :

geven, godd : C∞ × I → C∞,

and satisfy :
geven
0 = godd

0 = IdC∞ ;

geven
1 (C∞) ⊆ (C∞)even ; godd

1 (C∞) ⊆ (C∞)odd .

[H, ch. 3, (6.1)].
Similarly, we define

(Vr,∞)
even

=
{

(v1, ..., vr) ∈ Vr,∞ : v2n+1
j = 0, ∀j = 1, ..., r; ∀n = 1, ...,∞

}

,

and

(Vr,∞)
odd

=
{

(v1, ..., vr) ∈ Vr,∞ : v2n
j = 0, ∀j = 1, ..., r; ∀n = 1, ...,∞

}

.
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Proposition 2. Ther are maps :

Geven, Godd : Vr,∞ × I → Vr,∞,

such that

Geven
0 = Godd

0 = IdVr,∞
;

Geven
1 (Vr,∞) ⊆ (Vr,∞)even ; Godd

1 (Vr,∞) ⊆ (Vr,∞)odd .

Proof. we start by the case r = 1. It is easy to see that geven
t (v) (resp. godd

t (v)) is
not zero if v is not. We define the desired maps :

Geven, Godd : S∞ × I → S∞.

by :

G∗
t (v) =

g∗t (v)

‖g∗t (v)‖
,

for ∗ = even, odd. In general, let v ∈ Cn, and denote by w the firt projection of
g∗t (v) on Cn. The corresponding matrix is :






































1
1 − t

t 1 − t
0 1 − t
t 0 1 − t

0 0 1 − t
t 0 0 1 − t

. . .

1 − t
t 0 · · · 0 1 − t

1 − t







































.

We may delete the first or the last row and column according to the parity of n and
∗. We can prove by induction that this matrix determinant is (1 − t)n. We define
the desired map by use of the Gram-Schmidt map GS :

G∗
t (v1, ..., vr) = GS (g∗t (v1) , ..., g∗t (vr)) .

�

References

[AHJM] J.F. Adams, J.-P. Haeberly, S. Jackowski and J.P. May, A generalization of the Atiyah-
Segal completion theorem, Topology 27 (1988), 1-6.

[D] T. tom Dieck, Faserbundel mit gruppenoperation, Arch. Math. 20 (1969), 136-143.
[H] D. Husemoller, Fibre bundles, McGraw Hill 1966.
[J] S. Jackowski, Families of subgroups and completion, J. Pure Appl. Algebra 37 (1985),

167-179.
[L] R.K. Lashof, Equivariant bundles, Illinois J. Math. 26 (1982), 257-271.
[S] G.B. Segal, Equivariant K-theory, Publ. Math. IHES 34 (1968).

USTHB MATH. BP 32 EL ALIA 16111 BAB EZZOUAR ALGER ALGERIE.

E-mail address: abdarouche@hotmail.com.


