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ON RESTRICTION PROPERTIES OF EQUIVARIANT

K-THEORY RINGS.

ABDELOUAHAB AROUCHE

Abstract. An important ingredient in the completion theorem of equivari-
ant K-theory given by S. Jackowski is that the representation ring R(Γ) of a
compact Lie group satisfies two restriction properties called (N) and (RF ).

We give in this note sufficient conditions on a (compact) Γ-space Z such that
these properties hold with K∗

Γ
(Z) instead of R(Γ). As an example, we consider

the space Z(Γ; G) of the so called “elementary cocycles with coefficients in G”
invented by H. Ibisch in his construction of a universal (Γ; G)-bundle.

1. Introduction

In what follows, let Γ be a compact Lie group and Z a compact Γ-space. Con-
sider, for every subgroup Λ ≤ Γ, the ring MΛ = K∗

Λ(Z). We have a restriction
morphism res : MΓ → MΛ whose kernel is denoted by IΓ

Λ or IΛ for short. If F is
a family of (closed) subgroups of Γ (stable under subconjugation), then the F -adic
topology on MΓ is defined by the set of ideals

I(F) = {IΛ1
.IΛ2

...IΛn
, Λi ∈ F , i = 1, ..., n} .

If Λ ≤ Γ, then F ∩ Λ = {Ω ∈ F : Ω ≤ Λ} is a family of subgroups of Λ.

Let X be a compact Γ-space with a Γ-map σ : X → Z. Define the two pro-rings

K∗
Γ [F ] (X) = {K∗

Γ (X × K) : K compact ⊆ EF} ,

and

(K∗
Γ/I (F)) (X) = {K∗

Γ (X) /I.K∗
Γ (X) : I ∈ I (F)}

Here EF denotes the classifying space of T. tom Dieck [7]. The completion
theorem asserts that the pro-homomorphism

pX(F) : K∗
Γ [F ] (X) → (K∗

Γ/I (F)) (X)

induced by the projection X × EF → X , is actually an isomorphism, provided
MΛ satisfies the conditions (N) and (RF ), and KΛ(X) is finitely generated over
MΛ (via σ), for all Λ ≤ Γ.

In order to prove his completion theorem [4], S. Jackowski required the following
two conditions, and showed they are satisfied when Z = ∗ is a point :

(N) : MΓ is noetherian and MΛ is a finitely generated MΓ-module, ∀Λ ≤ Γ.
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(RF ) : For every family F of subgroups of Γ, and every subgroup Λ ≤ Γ, the
F -adic topology on MΛ defined by the restriction res : MΓ → MΛ coincides with
the (F ∩ Λ)-adic topology.

2. Some nilpotent elements in K∗
Γ(Z).

Let z ∈ Z, and Γz be its isotropy subgroup. Then an element ζ ∈ MΓ belongs

to ker
{

K∗
Γ(Z)

ϕz
→ R(Γz)

}
if and only if its restriction to the orbit Γ.z is zero. It is

well known that the elements of ker

{
K∗

Γ(Z) →
∏

z∈Z

R(Γz)

}
are nilpotent [6](5.1).

We have the following :

Lemma 1. Let z ∈ Z and ζ ∈ ker {K∗
Γ(Z) → R(Γz)}. Then there exists a relatively

compact open Γ-neighbourhood V (ζ) of z such that the restriction of ζ to V (ζ) is
nilpotent.

Proof. If ζ = E − T ∈ ker {K∗
Γ(Z) → R(Γz)}, then Ez − T = 0 ∈ R(Γz), where T

is seen as a Γz-module. Therefore, there exists a Γz-module R such that Ez ⊕R ∼=
T ⊕ R. Consider the isomorphism between Γz- vector bundles :

E ⊕ R |{z}
∼= T ⊕ R |{z}.

According to [6](1.2), there is a Γz-neighbourhood U of z and a Γz- isomorphism

E ⊕ R |U
∼= T ⊕ R |U .

Let S be a slice at z ([2] II.4.1). Then Γ. (S ∩ U) is an open Γ-neighbourhood of
z such that ζ ∈ ker {K∗

Γ(Z) → R(Γy)}, ∀y ∈ Γ. (S ∩ U). Now let V (ζ) be any open
Γ-neighbourhood of z satisfying

z ∈ V (ζ) ⊆ V (ζ) ⊆ Γ. (S ∩ U) .

�

Proposition 1. Assume K∗
Γ(Z) is noetherian. Then there exists a finite subset

Y ⊆ Z such that the ideal ker

{
K∗

Γ(Z) →
∏

y∈Y

R(Γy)

}
consists of nilpotent elements.

Proof. For each z ∈ Z, let ker {K∗
Γ(Z) → R(Γz)} be generated by ζ1, ..., ζnz

, and
for j = 1, ..., nz, let V (ζj) be as in lemma (2.1). Put

Vz = ∩
j=1,...,nz

V (ζj).

Since Z is compact, it can be covered by a finite number of such open subsets :

Z = ∪
i=1,...,n

Vzi
.

It is easy to show that the ideal ker

{
K∗

Γ(Z) →
∏

i=1,...,n

R(Γzi
)

}
consists of nilpo-

tent elements. �
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3. Supports of primes

In [4], G. Segal defined the support suppy of a prime y ∈ SpecR (Γ) to be a
minimal subgroup from which y comes. We have shown in [1] that such a notion
does exist for primes in MΓ. Indeed, if p : Z → ∗ is the projection of a Γ-space Z
on a fixed point and p∗ : R (Γ) → MΓ is the induced homomorphism, we have the
following :

Proposition 2. Let Λ ≤ Γ be a (closed) subgroup. Assume MΓ is noetherian and
let x ∈ SpecMΓ. Then the following properties are equivalent :

(1) x come from MΛ, i.e. ∃y ∈ SpecMΛ : x = res−1 (y).
(2) x contains IΛ.
(3) supp

(
p∗−1 (x)

)
is subconjugate to Λ.

In order to prove proposition (3.1), we need the following lemma :

Lemma 2. Let x ∈ SpecMΓ and z ∈ Z be such that there exists a prime t ∈
SpecR (Γz), with support Σ, satisfying x = ϕ−1

z (t) , ϕz : MΓ → R (Γz) . Let γ ∈ Γ
and z′=γ.z. Then there exists a prime t′ ∈ SpecR (Γz′), with support Σ′ = γΣγ−1,
satisfying x = ϕ−1

z′ (t′) , ϕz′ : MΓ → R (Γz′) .

Proof. Let Γ.z
i
→֒ Z be the inclusion of the orbit of z. We have the following

commutative diagram :

R (Γz)
ϕz

ր
χz

տ

K∗
Γ (Z)

i∗

→ K∗
Γ (Γ.z)

ց
ϕγ.z

ւ
χγ.z

R (Γγ.z)

It is clear that both χz and χγ.z are isomorphisms. Put h = χ−1
z ◦ χγ.z. Then

h admits a restriction h̃ : R (Σ) → R
(
γΣγ−1

)
, which makes the following diagram

commute and ends the proof :

R (Γz)
res
→ R (Σ)

χz

ր

K∗
Γ (Z)

i∗

→ K∗
Γ (Γ.z) ∼=↓ h ∼=↓ h̃

ց
χγ.z

R (Γγ.z)
res
→ R

(
γΣγ−1

)

�

Proof. Now we proceed to prove proposition (3.1) (see [1]). 1) =⇒ 2) and 2) =⇒ 3)
are obvious. Let us prove 3) =⇒ 1). To this end, let z1, ..., zn be elements of Z such

that ker

{
ϕ : K∗

Γ(Z) →
∏

i=1,...,n

R(Γzi
)

}
consists of nilpotent elements. Since every

R(Γzi
) is finitely generated over MΓ (it i even finitely generated over R (Γ) [5]),

the induced map on spectra ϕ∗ :
∐

i=1,...,n

SpecR(Γzi
) → SpecMΓ is onto. So there
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is an element z ∈ Z and a prime t ∈ SpecR(Γz) such that x = ϕ−1
z (t). Following

[5] (3.7), we have supp(p∗−1(x))=supp(t). Let Σ = supp(p∗−1(x)). By assumption,
the exists γ ∈ Γ such that γΣγ−1 ≤ Λ. Put z′ = γ.z. According to lemma (3.2),
there exists a prime t′ ∈ SpecR(Γz′), with support Σ′ = γΣγ−1, and satisfying

x = ϕ−1
z′ (t′) , ϕz′ : MΓ → R (Γγz) .

Therefore, x ∈ SpecMΓ comes from Λ, as shown by the commutative diagram :

MΓ → MΛ

↓ ↓
R(Γγ.z) → R (Λγ.z)

ց ւ
R (Σ′)

�

Hence, supp
(
p∗−1 (x)

)
is, up to conjugation, the minimal subgroup of Γ from

which x comes. We denote it by supp(x). Consequently, if (x, y) ∈ SpecMΓ ×
SpecMΛ is such that x = res−1 (y), then supp(x) =supp(y).

4. The restriction properties

Let us first consider the condition (RF ). We have the following :

Theorem 1. Assume MΛ is noetherian ∀Λ ≤ Γ. Then, for every family F of
subgroups of Γ , the condition (RF ) is satisfied.

Proof. For each Ω ∈ F we have IΛ
Ω ⊇ IΓ

Ω.MΛ. So it remains only to show that
for any ideal I.MΛ, where I ∈ I (F), there is an ideal J ∈ I (F ∩ Λ) such that
J ⊆ r (I.MΛ), since MΛ is noetherian. It is enough to do that for I = IΓ

Ω. So let
p1, ..., pn be minimal prime ideals in MΛ containing I.MΛ, and let Σ1, ..., Σn be their
supports. Put J = IΣ1

...IΣn
. Since pi comes from Σi, we have J ⊆ IΣ1

∩ ...∩ IΣn
⊆

p1 ∩ ... ∩ pn = r (I). Now, if we put qi = res−1 (pi), then Σi =supp(qi). But qi

comes from Ω because it contains IΓ
Ω. Hence, Σi is subconjugate to Ω. Since Ω ∈ F ,

so doe Σi, for i = 1, ..., n, that is, J ∈ I (F ∩ Λ).

Corollary 1. If the condition (N) is satisfied, then so is the condition (RF).

�

It is easy to see that the condition (N) is fulfilled if Z is a (compact) differentiable
Γ-manifold, and more generally, for any finite Γ-CW-complex, for MΛ is a finitely
generated module over R (Λ), ∀Λ ≤ Γ. This can be shown by induction and use of
Mayer-Vietoris sequence.

Corollary 2. Assume MΛ is finitely generated over R (Γ), ∀ Λ ≤ Γ. Then the
conditions (N) and (RF ) are satisfied for every family F of subgroups of Γ.
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5. An example

For a topological group G and a family F of subgroups of a compact Lie group
Γ, H.Ibisch has constructed in [2] a universal (Γ;G)-bundle E (F ; G) whose “com-
ponents” are the spaces

Z (Λ; G) = {f : Λ × Λ → G : f (λ1.λ2, λ3) = f (λ1, λ2.λ3) , ∀λ1, λ2, λ3 ∈ Λ} , Λ ≤ Γ.

The crucial fact is that for a Γ-space X , trivial (Γ;G)-bundles over X correpond
to Γ-maps σ : X → Z (Γ; G). We then take Z = Z (Γ; G). Actually, the Γ-space
Z (Γ; G) turns to be Γ-homeomorphic to the space of maps Γ → G sending 1Γ to 1G.

Moreover, Z (Γ; G)
Γ

is the space of (continuous) homomorphisms Γ → G. When Γ
is finite, the space Z (Γ; G) has a further description. For instance, if Γ = Zn is the
cyclic group of order n, then Z (Γ; G) is the product Gn−1 × {1G} with the action
γi. (g1, ..., gn = 1G) =

(
g1+ig

−1
i , ..., gn+ig

−1
i

)
, where γ is a generator of Zn and the

indexation is mod [n], hence Z(Z2; G) is no but G with involution g 7→ g−1. If G is
moreover a compact Lie group, then Z (Γ; G) is a compact Γ-manifold. Accordingly,
the conditions (N) and R (F) are satisfied.
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