Permutation representations of the braid group commutator subgroup

Abdelouahab Arouche

To cite this version:

Abdelouahab Arouche. Permutation representations of the braid group commutator subgroup. 2005. hal-00007972

HAL Id: hal-00007972

https://hal.science/hal-00007972

Preprint submitted on 17 Aug 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PERMUTATION REPRESENTATIONS OF THE BRAID GROUP COMMUTATOR SUBGROUP.

ABDELOUAHAB AROUCHE

Abstract

We study the representations of the commutator subgroup K_{n} of the braid group B_{n} into the symmetric group S_{r}. Motivated by some experimental results, we conjecture that every such a representation with $n>r$ must be trivial.

1. Introduction

In [SiWi1], D. Silver and S. Williams exploited the structure of the kernel subgroup K of an epimorphism $\chi: G \rightarrow \mathbb{Z}$, where G is a finitely presented group, to show that the set $\operatorname{Hom}(K, \Sigma)$ of representations of K into a finite group Σ has a structure of a subshift of finite type (SFT), a symbolic dynamical system described by a graph Γ; namely, there is a one to one correspondence between representations $\rho: K \rightarrow \Sigma$ and bi-infinite paths in Γ.

We apply this method to the group B_{n} of braids with n-strands, with χ being the abelianization homomorphism and Σ the symmetric group of degree r. The subgroup $K_{n}=\operatorname{ker} \chi$ is then the commutator subgroup of B_{n}.

It is a well known fact that for a given group K, there is a finite to one correspondence between its subgroups of index no greater than r and representations $\rho: K \rightarrow S_{r}$. This correspondence can be described by

$$
\rho \longmapsto\{g \in K: \rho(g)(1)=1\} .
$$

The pre-image of a subgroup of index exactly r consists of $(r-1)$! transitive representations ρ. (ρ is said to be transitive if $\rho(K)$ operates transitively on $\{1,2, \ldots, r\}$). This will allow us to draw some conclusions about the subgroups of finite index of K_{n}.

We give an algorithm to compute $\operatorname{Hom}\left(K_{n}, S_{r}\right)$, for $n \geq 5$ and $r \geq n$. Motivated by some experimental results, we conjecture that $\operatorname{Hom}\left(K_{n}, S_{r}\right)$ is trivial for $n \geq 5$ and $r<n$. Since every representation in $\operatorname{Hom}\left(B_{n}, S_{r}\right)$ restricts to an element of $\operatorname{Hom}\left(K_{n}, S_{r}\right)$, we enhance the given algorithm in order to compute $\operatorname{Hom}\left(B_{n}, S_{r}\right)$.

2. Generalities

Let B_{n} be the braid group given by the presentation:

$$
\left\langle\sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{cl}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} ; & \\
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} ; & |i-j| \geq 2 \\
|i-j|=1
\end{array}\right.\right\rangle,
$$

[^0](see [BuZi] for additional background). Let $\beta \in B_{n}$ be a braid. Then β can be written as :
$$
\beta=\sigma_{i_{1}}^{\varepsilon_{1}} \cdots \sigma_{i_{k}}^{\varepsilon_{k}}
$$
with $i_{1}, \cdots, i_{k} \in\{1, \cdots, n-1\}$ and $\varepsilon_{i}= \pm 1$. Define the exponent sum of β (in terms of the σ_{i} 's) denoted by $\exp (\beta)$, as:
$$
\exp (\beta)=\varepsilon_{1}+\cdots+\varepsilon_{k}
$$

Then $\exp (\beta)$ is an invariant of the braid group, that is, it doesn't depend on the writing of β. Moreover, $\exp (\beta): B_{n} \rightarrow \mathbb{Z}$ is a homomorphism. Let H_{n} denote its kernel. Then the Reidemeister-Schreier theorem [LySc] enables us to find a presentation for H_{n}. We choose the set

$$
\left\{\cdots, \sigma_{1}^{-m}, \sigma_{1}^{-m+1}, \cdots, \sigma_{1}^{-1}, 1, \sigma_{1}, \sigma_{1}^{2}, \cdots, \sigma_{1}^{m}, \cdots\right\}
$$

as a Schreier system of right coset representatives of H_{n} in B_{n}. Putting $z_{m}=$ $\sigma_{1}^{m}\left(\sigma_{2} \sigma_{1}^{-1}\right) \sigma_{1}^{-m}$ for $m \in \mathbb{Z}$, and $x_{i}=\sigma_{i} \sigma_{1}^{-1}$ for $i=3, \cdots, n-1$, we get the following presentation of H_{n} :

$$
H_{n}=\left\langle\begin{array}{c|cc}
z_{m}, & m \in \mathbb{Z} & x_{i} x_{j}=x_{j} x_{i}, \\
x_{i} x_{j} x_{i}=x_{j} x_{i} x_{j}, & |i-j| \geq 2 ; \\
z_{m} z_{m+2}=z_{m+1}, & |i-j|=1 ; \\
x_{i}, & i=3, \cdots, n-1 & m \in \mathbb{Z} ; \\
z_{m} x_{3} z_{m+2}=x_{3} z_{m+1} x_{3}, & i=4, \cdots, n-1 ; \\
z_{m} x_{i}=x_{i} z_{m+1}, & m \in \mathbb{Z}
\end{array}\right\rangle
$$

Example 1. For $n=3,4$, we have:

$$
H_{3}=\left\langle z_{m} \mid z_{m} z_{m+2}=z_{m+1} ; \forall m \in \mathbb{Z}\right\rangle
$$

is a free group on two generators $z_{0}=\sigma_{2} \sigma_{1}^{-1}$ and $z_{-1}=\sigma_{1}^{-1} \sigma_{2}$, and

$$
H_{4}=\left\langle z_{m}, t \left\lvert\, \begin{array}{c}
z_{m} z_{m+2}=z_{m+1}, \\
z_{m} t z_{m+2}=t z_{m+1} t,
\end{array} \quad m \in \mathbb{Z}\right.\right\rangle
$$

Note that $H_{2}=\{1\}$, since $B_{2}=\left\langle\sigma_{1} \mid\right\rangle \cong \mathbb{Z}$.
Now, every commutator in B_{n} has exponent sum zero. Conversely, every generator of H_{n} is a product of commutators. Hence, we have $H_{n}=K_{n}$, and \exp is the abelianization homomorphism.

Each K_{n} fits into a split exact sequence:

$$
1 \rightarrow K_{n} \rightarrow B_{n} \rightarrow \mathbb{Z} \rightarrow 0
$$

and there are "natural" inclusions $B_{n} \subset B_{n+1}$ and $K_{n} \subset K_{n+1}$.

3. The Representation Shift

Our goal is to sudy representations of K_{n} into the symmetric group S_{r}. Note that there is a natural homomorphism:

$$
\pi: B_{n} \rightarrow S_{n}
$$

for all $n \geq 2$, given by $\sigma_{i} \longmapsto(i i+1)$. This restricts to K_{n} to give a non trivial homomorphism:

$$
\begin{array}{rlc}
x_{i} & \longmapsto & (12)(i i+1)
\end{array} \quad i=3, \cdots, n-1 .\left(\begin{array}{lc}
(132), & m \text { is even } \\
(123), & m \text { is odd }
\end{array}\right.
$$

We start with $n=3$ and describe $\operatorname{Hom}\left(K_{3}, S_{r}\right)$ by means of a graph Γ that we will construct in a step by step fashion $[\mathrm{SiWi} 2]$. Note that $\operatorname{Hom}\left(K_{3}, S_{r}\right)$ contains $\left.\pi\right|_{K_{3}}$, for $r \geq 3$. Later we will see that $\operatorname{Hom}\left(K_{3}, S_{2}\right)$ is not trivial.

A representation $\rho: K_{n} \rightarrow S_{r}$ is a function ρ from the set of generators z_{m} to S_{r} such that for each $m \in \mathbb{Z}$, the relation:

$$
\rho\left(z_{m}\right) \rho\left(z_{m+2}\right)=\rho\left(z_{m+1}\right)
$$

holds in S_{r}. Any such function can be constructed as follows, beginning with step 0 and proceeding to steps $\pm 1, \pm 2, \cdots$
(step -1) Choose $\rho\left(z_{-1}\right)$ if possible such that $\rho\left(z_{-1}\right) \rho\left(z_{1}\right)=\rho\left(z_{0}\right)$. (step 0) Choose values $\rho\left(z_{0}\right)$ and $\rho\left(z_{1}\right)$.
(step 1) Choose $\rho\left(z_{2}\right)$ if possible such that $\rho\left(z_{0}\right) \rho\left(z_{2}\right)=\rho\left(z_{1}\right)$.
(step 2) Choose $\rho\left(z_{3}\right)$ if possible such that $\rho\left(z_{1}\right) \rho\left(z_{3}\right)=\rho\left(z_{2}\right)$.
.

This process leads to a bi-infinite graph whose vertices are the maps $\rho:\left\{z_{0}, z_{1}\right\} \rightarrow$ S_{r}, each of which can be regarded as an ordered pair $\left(\rho\left(z_{0}\right), \rho\left(z_{1}\right)\right)$. There is a directed edge from ρ to ρ^{\prime} if and only if $\rho\left(z_{1}\right)=\rho^{\prime}\left(z_{0}\right)$ and $\rho\left(z_{0}\right) \rho^{\prime}\left(z_{1}\right)=\rho\left(z_{1}\right)$. In such a case, we can extend $\rho:\left\{z_{0}, z_{1}\right\} \rightarrow S_{r}$ by defining $\rho\left(z_{2}\right)$ to be equal to $\rho^{\prime}\left(z_{1}\right)$. Now if there is an edge from ρ^{\prime} to $\rho^{\prime \prime}$, we can likewise extend ρ by defining $\rho\left(z_{3}\right)$ to be $\rho "\left(z_{1}\right)$. We implement this process by starting with an ordered pair $\left(a_{0}, a_{1}\right)$ of elements of S_{r}, and computing at each step a new ordered pair from the old one, so that every edge in the graph looks like:

$$
\left(a_{m}, a_{m+1}\right) \rightarrow\left(a_{m+1}, a_{m+2}\right),
$$

with

$$
a_{m+2}=a_{m}^{-1} a_{m+1}
$$

In our case, the graph Γ we obtain consists necessarily of disjoint cycles. This gives an algorithm for finding $\operatorname{Hom}\left(K_{3}, S_{r}\right)$. Observe that $\operatorname{Hom}\left(K_{3}, S_{r}\right)$ is endowed with a shift map

$$
\sigma: \rho \longmapsto \sigma(\rho)
$$

defined by

$$
\sigma(\rho): x \longmapsto \rho\left(\sigma_{1} x \sigma_{1}^{-1}\right) .
$$

If we regard ρ as a bi-infinite path in the graph Γ, then σ correspond to the shift $\operatorname{map}\left(a_{m}, a_{m+1}\right) \longmapsto\left(a_{m+1}, a_{m+2}\right)$, since $a_{m+1}=\sigma_{1} a_{m} \sigma_{1}^{-1}$. Any cycle in the graph Γ with length p corresponds to p representations having least period p. These are the iterates of some representation $\rho \in \operatorname{Hom}\left(K_{3}, S_{r}\right)$ satisfying $\rho\left(z_{m}\right)=a_{m}$ and $\sigma^{p}(\rho)=\rho$, since $a_{m+p}=a_{m}$.

In order to minimize calculations, we extract some foreseeable behaviour for various choices of the ordered pair $\left(a_{0}, a_{1}\right)$ in the previous algorithm.

First, the dynamics of ordered pairs $\left(a_{0}, a_{1}\right)$ such that $a_{0}=1$ or $a_{1}=1$ or $a_{0}=a_{1}$ is entirely known. To be precise, we get a cycle of length 6 unless $a=a^{-1}$,
in which case it is of length 3 (or 1 if and only if $a=1$).

$$
\begin{aligned}
(1, a) & \rightarrow(a, a) \rightarrow(a, 1) \rightarrow\left(1, a^{-1}\right) \\
& \rightarrow\left(a^{-1}, a^{-1}\right) \rightarrow\left(a^{-1}, 1\right) \rightarrow(1, a)
\end{aligned}
$$

Second, when we proceed to a new step, we do not need to take a pair we have already got in a previous cycle, since we would get indeed the same cycle. The following dichotomy will prove useful in the sequel:
Definition 1. If a vertex of a cycle in Γ has equal components, then the cycle is said of type I. Otherwise, it is of type II.

Note that a cycle is determined by any of its vertices. Furthermore, the type I cycles are determined by elements of S_{r}. Recall that a non trivial element $a \in S_{r}$ has order two if and only if it is a product of disjoint transpositions. Let n_{r} be the number of such elements. This gives us a means to compute the number of type I cycles to be $\frac{1}{2}\left(1+n_{r}+r!\right)$ and of representations coming from them to be $3 r!-2$.

Example 2. Since $S_{2}=\{1,(12)\}$, $\operatorname{Hom}\left(K_{3}, S_{2}\right)$ consists only of the following type I cycle:

$$
(1,(12)) \rightarrow((12),(12)) \rightarrow((12), 1) \rightarrow(1,(12))
$$

along with the trivial representation. So $\left|\operatorname{Hom}\left(K_{3}, S_{2}\right)\right|=4$. As for $\operatorname{Hom}\left(K_{3}, S_{3}\right)$, there are three type I cycles of length 3 corresponding to transpositions and one type I cycle of length 6 corresponding to the 3 -cycle (123) (and its inverse). Looking at type II cycles, we find two cycles of length 9 corresponding to the pairs ((23), (12)) and $((23),(123))$ and one cycle of length 2 corresponding to the pair ((123), (132)). This last one is exactly the orbit (under the shift map σ) of $\left.\pi\right|_{K_{3}}$. All by all, we have $\left|\operatorname{Hom}\left(K_{3}, S_{3}\right)\right|=36$.

In the last section we present, among other things, the results of computer calculations of type II cycles in the graphs of $\operatorname{Hom}\left(K_{3}, S_{4}\right)$ using Maple.

Now let us proceed to compute $\operatorname{Hom}\left(K_{4}, S_{r}\right)$. Since $K_{3} \subset K_{4}$, every representation $\rho \in \operatorname{Hom}\left(K_{4}, S_{r}\right)$ restricts to a representation $\left.\rho\right|_{K_{3}} \in \operatorname{Hom}\left(K_{3}, S_{r}\right)$, the latter being described by a cycle. All we have to do is then to check which representation in $\operatorname{Hom}\left(K_{3}, S_{r}\right)$ does extend to K_{4}. To this end, observe that K_{4} is gotten from K_{3} by adjunction of a generator x_{3} subject to the relations

$$
z_{m} x_{3} z_{m+2}=x_{3} z_{m+1} x_{3} ; m \in \mathbb{Z}
$$

Hence we may proceed as follows. Take a cycle in $\operatorname{Hom}\left(K_{3}, S_{r}\right)$ (by abuse of language, i.e. identify each representation with its orbit, since a representation in $\operatorname{Hom}\left(K_{3}, S_{r}\right)$ extends to K_{4} if and only if every element in its orbit does), and choose if possible a value $b_{3} \in S_{r}$ for $\rho\left(x_{3}\right)$. This value must satisfy the relations

$$
a_{m} b_{3} a_{m+2}=b_{3} a_{m+1} b_{3} ;
$$

for $m=0, \cdots, p-1$, where p is the cycle's length and the indexation is modp. Observe that the choice $b_{3}=1$ is convenient, so all cycles extend to K_{4}. However, this is the only possibility for type I cycles to extend, for if b_{3} commute with some a_{m}, then $b_{3}=1$. For type II cycles, we find for example that no cycle in $\operatorname{Hom}\left(K_{3}, S_{3}\right)$ extends to K_{4} with non trivial b_{3} and that out of 71 cycles in $\operatorname{Hom}\left(K_{3}, S_{4}\right)$ only ten do extend to K_{4}, each with three possibilities for b_{3} (the same for all; see the last section).

Before giving the general procedure, let us proceed one further step to show that all type I cycles will vanish for $n \geq 5$. Take a cycle in $\operatorname{Hom}\left(K_{3}, S_{r}\right), r \geq 2$ along with a convenient value b_{3} of $\rho\left(x_{3}\right)$. We look for an element $b_{4} \in S_{r}$ satisfying :

$$
\begin{aligned}
& a_{m} b_{4}=b_{4} a_{m+1}, \quad m=0, \cdots, p ; \\
& b_{3} b_{4} b_{3}=b_{4} b_{3} b_{4}
\end{aligned}
$$

Hence, if

$$
b_{3} b_{4}=b_{4} b_{3}
$$

then using

$$
a_{m} a_{m+2}=a_{m+1}
$$

and

$$
a_{m} b_{3} a_{m+2}=b_{3} a_{m+1} b_{3},
$$

we get

$$
b_{3}=b_{4}=1
$$

and

$$
a_{m}=a_{m+1}, \forall m=0, \cdots, p-1,
$$

so that the representation is trivial. So only type II cycles, with non trivial b_{3} possibly extend to K_{5} (beside the trivial one). So no (type II) cycle in $\operatorname{Hom}\left(K_{3}, S_{3}\right)$ extends to K_{5}. It turns out that no type II cycle in $\operatorname{Hom}\left(K_{3}, S_{4}\right)$ extends to K_{5}.

Algorithm 1. The general procedure for $\operatorname{Hom}\left(K_{n}, S_{r}\right), n \geq 5$ is to consider only type II cycles along with convenient non trivial values b_{3}, \cdots, b_{n-2}, which correspond to representations in $\operatorname{Hom}\left(K_{n-1}, S_{r}\right)$ and find a non trivial element $b_{n-1} \in S_{r}$ such that the following relations are satisfied:

$$
\begin{array}{rlrl}
a_{m} b_{n-1} & =b_{n-1} a_{m+1}, & m=0, \cdots, p ; \\
b_{n-1} b_{i} & =b_{i} b_{n-1} & i=3, \cdots, n-2 ; \\
b_{n-1} b_{n-2} b_{n-1} & =b_{n-2} b_{n-1} b_{n-2} &
\end{array}
$$

The element b_{n-1} has to be non trivial, otherwise the representation is trivial. Experimental results lead us to conjecture that the process will stop at step $n=r$. That is:

Conjecture 1. $\operatorname{Hom}\left(K_{n}, S_{r}\right)$ is trivial for $n \geq r+1$.
It is obvious that a cycle (of any type) can not extend to K_{n} if it doesn't extend to K_{n-1} it is enough for the conjecture to be true that $\operatorname{Hom}\left(K_{r+1}, S_{r}\right)$ be trivial. Recall that for $n \leq r, \operatorname{Hom}\left(K_{n}, S_{r}\right)$ is not trivial since it contains the homomorphism $\left.\pi\right|_{K_{n}}: K_{n} \rightarrow S_{n}$.

4. Extension to the braid group

In this section, we address the question of extending representations

$$
\rho \in \operatorname{Hom}\left(K_{n}, S_{r}\right)
$$

to representations

$$
\tilde{\rho} \in \operatorname{Hom}\left(B_{n}, S_{r}\right)
$$

Applying [SiWi1 (3.5)], the extension is possible if and only if there is an element $c \in S_{r}$ such that

$$
\begin{gathered}
a_{m} c=c a_{m+1}, \quad m=0, \cdots, p-1 \\
c b_{i}=b_{i} c \quad i=3, \cdots, n-1
\end{gathered}
$$

Observe that a necessary condition for a representation $\rho \in \operatorname{Hom}\left(K_{n}, S_{r}\right)$ to extend to $\tilde{\rho} \in \operatorname{Hom}\left(B_{n}, S_{r}\right)$ is that $\rho \in \operatorname{Hom}\left(K_{n}, A_{r}\right)$, since the alternating group A_{r} is the commutator subgroup of S_{r}. A sufficient condition is that ρ be the restriction of some representation $\hat{\rho} \in \operatorname{Hom}\left(K_{n+2}, S_{r}\right)$ for if this is the case, the choice $c=b_{n+1}$ will do. In this case, since $\hat{\rho}$ maps K_{n} into A_{r}, it also maps K_{n+2} into A_{r}, for the values b_{i} are conjugate and A_{r} is normal in S_{r}. As a result, we get the following

Proposition 1. for $n \geq 5, \operatorname{Hom}\left(K_{n}, S_{r}\right)=\operatorname{Hom}\left(K_{n}, A_{r}\right)$.
Actually we can enhance our algorithm to one which gives for fixed $n \geq 5$ and $r \geq n$ the sets $\operatorname{Hom}\left(K_{n}, S_{r}\right)$ and $\operatorname{Hom}\left(B_{n}, S_{r}\right)$.

Step one: find all cycles of both types. This gives $\operatorname{Hom}\left(K_{3}, S_{r}\right)$.
Step two: For the trivial cycle, take any c. For a type II cycle C, find $c \neq 1$ such that $a_{m} c=c a_{m+1}$, for $m=0, \cdots, p-1$. This gives $\operatorname{Hom}\left(B_{3}, S_{r}\right)$.

Step three: For a cycle of any type, take $b_{3}=1$. For a type II cycle C, find $b_{3} \neq 1$ such that $a_{m} b_{3} a_{m+2}=b_{3} a_{m+1} b_{3}$, for $m=0, \cdots, p-1$. This gives $\operatorname{Hom}\left(K_{4}, S_{r}\right)$.

Step four: take a type II cycle C, along with a convenient b_{3}. If this cycle occurs in $\operatorname{Hom}\left(B_{3}, S_{r}\right)$ with some convenient c then :
if $c b_{3}=b_{3} c$, then the representation $\left[C, b_{3}\right]$ moves up to a representation $\left[C, b_{3}, c\right]$ in $\operatorname{Hom}\left(B_{4}, S_{r}\right)$;
if $c b_{3} c=b_{3} c b_{3}$, then the representation $\left[C, b_{3}\right]$ moves up to a representation $\left[C, b_{3}, b_{4}\right]$ in $\operatorname{Hom}\left(K_{5}, S_{r}\right)$ by taking $b_{4}=c$.

Step i: take a representation ρ in $\operatorname{Hom}\left(K_{i}, S_{r}\right)$, encoded by a type II cycle C along with convenient values b_{3}, \cdots, b_{i-1}. if $\left[C, b_{3}, b_{4}, \cdots, b_{i-2}, c\right]$ occurs in $\operatorname{Hom}\left(B_{i-1}, S_{r}\right)$ with some convenient c then:
if $c b_{i-1}=b_{i-1} c$, then the representation $\left[C, b_{3}, b_{4}, \cdots, b_{i-1}\right]$ moves up to a representation $\left[C, b_{3}, b_{4}, \cdots, b_{i-1}, c\right]$ in $\operatorname{Hom}\left(B_{i}, S_{r}\right)$;
if $c b_{i-1} c=b_{i-1} c b_{i-1}$, then the representation $\left[C, b_{3}, b_{4}, \cdots, b_{i-1}\right]$ moves up to a representation $\left[C, b_{3}, b_{4}, \cdots, b_{i-1}, b_{i}\right]$ in $\operatorname{Hom}\left(K_{i+1}, S_{r}\right)$ by taking $b_{i}=c$.

Note that if the conjecture is true, then for $n \geq r+1$, every representation $\tilde{\rho}: B_{n} \rightarrow S_{r}$ factorizes through the abelianized group $\left(B_{n}\right)_{a b}$, and has a cyclic image. Hence, there are r ! possible choices for $\tilde{\rho}$.

5. Consequences

Regarding the correspondence between subgroups of finite index of a group K and its representations into symmetric groups, we investigate the subgroups of index r of K_{n} for low degrees r. The general principle is to compute the number of transitive representatations of K into S_{r} to deduce the number of subgroups of K with index exactly r. We start with K_{3} as usual. Note that since K_{3} is freely generated by z_{0} and z_{-1}, it maps onto any symmetric group, and hence, has subgroups of every index. Now, if a representation in $\operatorname{Hom}\left(K_{3}, S_{r}\right)$ is transitive, then so are the representations in its orbit. Consider a type I cycle in $\operatorname{Hom}\left(K_{3}, S_{r}\right)$. Then the representations it defines are transitive if and only if the defining element
a is (with respect to the action of S_{r} on $\{1, \cdots, r\}$). This exactly means that a is an r-cycle. If $r>2$ then $a^{2} \neq 1$ and the cycle has length 6 .
Claim 1. The number of transitive representations $\rho \in \operatorname{Hom}\left(K_{3}, S_{r}\right), r \geq 2$ coming from type I cycles is $3(r-1)$!.

For $r=2$, there are only type I cycles and there is only one 2-cycle, which has length 3 ; Hence, The number of transitive representations $\rho \in \operatorname{Hom}\left(K_{3}, S_{2}\right)$ is 3 . The kernels of these representations give rise to subgroups of K_{3} with index 2 .

Claim 2. There are three subgroups of K_{3} with index 2.
Now we compute the number of subgroups of K_{3} with index 3. Among all representations we have seen in example 2, there are six transitive representations coming from the only type I cycle and all representations coming from type II cycles are transitive. Hence:

Claim 3. The number of transitive representations in $\operatorname{Hom}\left(K_{3}, S_{3}\right)$ is 26, consequently there are thirteen subgroups of K_{3} with index 3.

We can proceed in this way for every degree r. To compute the number of transitive representations of K_{3} into S_{r}, we need only consider those coming from type II cycles, since we already know the number of those coming from type I cycles. This can be done using a computer algebra system, by taking any cycle $C=\left(a_{0}, \cdots, a_{p-1}\right)$ and checking if the subgroup $\left\langle a_{0}, \cdots, a_{p-1}\right\rangle$ of S_{r} acts transitively on $\{1, \cdots, r\}$. If so, this gives rise to p transitive representations in $\operatorname{Hom}\left(K_{3}, S_{3}\right)$. Then we divide the total number by $(r-1)$! to find the number of subgroups of K_{3} of index r.

Now let us consider $\operatorname{Hom}\left(K_{4}, S_{r}\right)$. For $r=2$ we have, as previously:
Claim 4. There are three subgroups of K_{4} with index 2.
As for transitive representations in $\operatorname{Hom}\left(K_{4}, S_{3}\right)$, since all cycles in $\operatorname{Hom}\left(K_{3}, S_{3}\right)$ extend to K_{4} with only $b_{3}=1$, we have:

Claim 5. There are twenty six transitive representations in $\operatorname{Hom}\left(K_{4}, S_{3}\right)$, hence thirteen subgroups of K_{3} with index 3.

For $r \geq 4$, we have $3(r-1)$! transitive representations coming from type I cycles, and we must check which representation coming from a type II cycle is transitive. For a cycle $C=\left(a_{0}, \cdots, a_{p-1}\right)$ such that $\left\langle a_{0}, \cdots, a_{p-1}\right\rangle$ failed to be transitive, we check if $\left\langle a_{0}, \cdots, a_{p-1}, b_{3}\right\rangle$ (with b_{3} non trivial) is transitive. Indeed, if $\left\langle a_{0}, \cdots, a_{p-1}\right\rangle$ is transitive, then so is $\left\langle a_{0}, \cdots, a_{p-1}, b_{3}\right\rangle$. Finally, we divide the total number by $(r-1)$! to find the number of subgroups of K_{3} of index r.

Now, we consider $n \geq 5$, where we get rid of type I cycles. Suppose we have found the transitive representations in $\operatorname{Hom}\left(K_{n-1}, S_{r}\right)$. We then take, for fixed r, a type II cycle $C=\left(a_{0}, \cdots, a_{p-1}\right)$ along with values b_{3}, \cdots, b_{n-1}, such that $\left\langle a_{0}, \cdots\right.$ $\left.\cdot, a_{p-1}, b_{3}, \cdots, b_{n-2}\right\rangle$ failed to be transitive and check if $\left\langle a_{0}, \cdots, a_{p-1}, b_{3}, \cdots, b_{n-1}\right\rangle$ is transitive. We may enhance algorithm 1 by checking, each time we get a new type II cycle, if it is transitive, and if not, we re-check at each time the cycle extends from K_{i} to $K_{i+1}, i=3, \cdots, n-1$, after having augmented it with b_{i}. Dividing by $(r-1)$! the number of transitive representations in $\operatorname{Hom}\left(K_{n}, S_{r}\right)$ we find the number of subgroups of K_{n} with index r. As a consequence of conjecture 1, we get the following:

Conjecture 2. For $n \geq 5$ and $2 \leq r \leq n-1$, there are no subgroups of K_{n} with index r. Moreover, every nontrivial representation ρ of K_{n} into S_{n} is transitive.

Remark 1. We can likewise investigate the number of subgroups of B_{n} with a given index r by looking at transitive representations of B_{n} into S_{r}. Namely, if conjecture 1 is true, then there is exactly one subgroup of index r in B_{n}, for $1 \leq$ $r \leq n-1$. Moreover, if $\rho: B_{n} \rightarrow S_{n}$ is a representation, then $\left.\rho\right|_{K_{n}}$ is either trivial or transitive, according to conjecture 2. In the first case, ρ has a cyclic image and we know when it is transitive. In the second case, ρ is transitive.

6. Experimental facts

In what follows, we list the type II cycles of $\operatorname{Hom}\left(K_{n}, S_{r}\right)$ for various (small) n and r. A word about the notation: each cycle $B\left[a_{0}, a_{1}\right]=\left[a_{2}, a_{3}, \cdots, a_{p-1}, a_{0}, a_{1}\right]$ is indexed by its first vertex $\left(a_{0}, a_{1}\right)$ and is followed by its length p. Elements $\tau \in S_{r}$ are ordered from 1 to r ! with repect to the lexicographic order on the vectors $(\tau(1), \cdots, \tau(r))$. It would have taken too much space to list the cycles for $r=5$. We found that there were no (type II) cycles in $\operatorname{Hom}\left(K_{5}, S_{4}\right)$ nor in $\operatorname{Hom}\left(K_{6}, S_{5}\right)$. Furthermore, $\operatorname{Hom}\left(K_{4}, S_{3}\right)$ contains no type II cycles with non trivial b_{3}. This motivated our conjecture 1 .

```
n=3;r=3:
B[2,3] = [5, 6, 2, 5, 3, 6, 5, 2, 3]
9
B[2,4] = [6, 3, 4, 2, 6, 4, 3, 2, 4]
9
B[4,5]=[4,5]
2
n=3;r=4:
B[2,3] = [5, 6, 2, 5, 3, 6, 5, 2, 3]
9
B[2,4]=[6,3,4, 2, 6, 4, 3, 2, 4]
9
B[2,7]=[8, 2, 7]
3
B[2, 8] =[7, 2, 8]
3
B[2, 9] = [11, 6, 16, 18, 3, 20, 19, 2, 9]
9
B[2,10] = [12, 3, 23, 21, 6, 14, 13, 2, 10]
9
B[2,11] = [9,6,18,16,3,19, 20, 2, 11]
9
B[2, 12] = [10, 3, 21, 23, 6, 13, 14, 2, 12]
9
B[2,13] = [19, 22, 4, 23, 15, 12, 11, 2, 13]
9
B[2, 14] = [20, 15, 18, 5, 22, 10, 9, 2, 14]
9
```

```
B[2,15] = [21, 22, 2, 21, 15, 22, 21, 2, 15]
9
B}[2,16]=[22,15,16,2,22,16,15, 2, 16]
9
B[2, 17] = [23,7, 24, 23, 2, 17]
6
B}[2,18]=[24,7,18, 17, 2, 18
6
B[2,19] = [13, 22, 23, 4, 15, 11, 12, 2, 19]
9
B}[2,20]=[14,15,5,18,22,9,10,2,20
9
B[2, 23] = [17, 7, 23, 24, 2, 23]
6
B[2, 24] = [18, 7, 17, 18, 2, 24]
6
B[3,7] = [13, 15, 3, 13, 7, 15, 13, 3, 7]
9
B[3, 8] = [14, 22, 17, 14, 3, 8]
6
B[3,9] = [15, 7, 9, 3, 15, 9, 7, 3, 9]
9
B[3, 10] = [16, 7, 11, 5, 15, 23, 20, 3, 10]
9
B[3, 11] = [17, 22, 11, 8, 3, 11]
6
B[3, 12] = [18, 15, 4, 14, 7, 21, 19, 3, 12]
9
B[3,14] = [8, 22, 14, 17, 3, 14]
6
B}[3,16]=[10,7,5,11,15, 20, 23, 3, 16]
9
B[3, 17] = [11, 22, 8, 11, 3, 17]
6
B[3, 18] = [12, 15, 14, 4, 7, 19, 21, 3, 18]
9
B[3, 22] = [24, 3, 22]
3
B[3,24] = [22,3, 24]
3
B}[4,5]=[4,5
2
B[4,8] = [20, 16, 17, 4, 13, 8, 16, 20, 17, 13, 4, 8]
12
B[4, 9] = [21, 20, 4, 9]
4
B[4, 10] = [22, 13, 18, 6, 21, 11, 7, 4, 10]
9
```

```
\(\mathrm{B}[4,11]=[23,12,19,11,13,23,19,4,11]\)
9
\(\mathrm{B}[4,12]=[24,9,16,8,12,4,24,16,9,8,4,12]\)
12
\(\mathrm{B}[4,16]=[12,9,4,16]\)
4
\(\mathrm{B}[4,17]=[9,20,24,4,21,17,20,9,24,21,4,17]\)
12
\(\mathrm{B}[4,18]=[10,13,11,18,21,10,11,4,18]\)
9
\(\mathrm{B}[4,19]=[14,21,18,19,12,14,18,4,19]\)
9
\(\mathrm{B}[4,20]=[13,16,4,20]\)
4
\(\mathrm{B}[4,22]=[18,13,6,11,21,7,10,4,22]\)
9
\(\mathrm{B}[5,7]=[14,16,6,23,9,22,19,5,7]\)
9
\(\mathrm{B}[5,8]=[13,21,24,5,20,8,21,13,24,20,5,8]\)
12
\(\mathrm{B}[5,9]=[17,12,21,8,9,5,17,21,12,8,5,9]\)
12
\(\mathrm{B}[5,10]=[18,9,14,10,20,18,14,5,10]\)
9
\(\mathrm{B}[5,12]=[16,13,5,12]\)
4
\(\mathrm{B}[5,13]=[20,21,5,13]\)
4
\(\mathrm{B}[5,14]=[19,16,23,14,9,19,23,5,14]\)
9
\(\mathrm{B}[5,16]=[24,13,12,17,16,5,24,12,13,17,5,16]\)
12
\(\mathrm{B}[5,19]=[7,16,14,6,9,23,22,5,19]\)
9
\(\mathrm{B}[5,21]=[9,12,5,21]\)
4
\(\mathrm{B}[5,23]=[11,20,10,23,16,11,10,5,23]\)
9
\(\mathrm{B}[6,7]=[20,22,6,20,7,22,20,6,7]\)
9
\(\mathrm{B}[6,8]=[19,15,24,19,6,8]\)
6
\(\mathrm{B}[6,10]=[24,15,10,8,6,10]\)
6
\(\mathrm{B}[6,12]=[22,7,12,6,22,12,7,6,12]\)
9
\(\mathrm{B}[6,15]=[17,6,15]\)
3
```

```
B[6, 17] = [15, 6, 17]
3
B[6, 19] = [8, 15, 19, 24, 6, 19]
6
B[6, 24] = [10, 15, 8, 10, 6, 24]
6
B[8, 17] = [24, 8, 17]
3
B[8,18] = [23, 8, 23, 18, 8, 18]
6
B[8, 24] = [17, 8, 24]
3
B[9, 13] = [9, 13]
2
B[9, 18] = [11, 16, 19, 18, 20, 11, 19, 9, 18]
9
B[10, 14] = [12, 23, 10, 21, 14, 23, 13, 10, 14]
9
B}[10,17]=[10,19,17, 19, 10, 17]
6
B[11, 14] = [24, 14, 11, 24, 11, 14]
6
B[12, 20] = [12, 20]
2
B[16, 21] = [16, 21]
2
n=4;r=4:
ten cycles of length 2 along with three values \(b_{3}=8,17,24\).
\([8,[4,5],[4,9],[4,16],[4,20],[5,12],[5,13],[5,21],[9,13],[12,20],[16,21]]\)
\([17,[4,5],[4,9],[4,16],[4,20],[5,12],[5,13],[5,21],[9,13],[12,20],[16,21]]\)
\([24,[4,5],[4,9],[4,16],[4,20],[5,12],[5,13],[5,21],[9,13],[12,20],[16,21]]\)
```

Acknowledgement 1. I am grateful to Susan G. Williams for many helpful email discussions. I also wish to thank the students M. Menouer and Z. Ziadi for their help in computer search.

References

[BuZi] G. Burde and H. Zieschang, Knots, De Gruyter Studies in Mathematics 5, De Gruyter, Berlin, 1985.
[LySc] R.C. Lyndon and P.E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, 1977.
[SiWi1] D.S. Silver and S.G. Williams, "Augmented group systems and shifts of finite type," Israel J. Math. 95 (1996), 213-251.
[SiWi2] D.S. Silver and S.G. Williams, "Generalized n-colorings of links," Knot theory, Banach Center Publication, vol 42, Inst. of Math., Polish Acad. of Sc., Warsaw 1998, 381-394.

USTHB, Fac. Math. P.O.Box 32 El Alia 16111 Bab Ezzouar Algiers, Algeria
E-mail address: abdarouche@hotmail.com

[^0]: Date: July 30, 2005
 2000 Mathematics Subject Classification. Primary 20F36, 20C40; Secondary 20E07.
 Key words and phrases. Braid group, commutator subgroup, representation, symmetric group.

