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Abstract

We study a class of first order quasilinear equations on bounded domains in the L>°
framework. Using the ”semi Kruzkov entropy-flux pairs”, we define a weak-entropy
solution, state an existence and uniqueness result, and a maximum principle.
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Introduction

In this paper, Q2 C R, d > 1, is a bounded smooth domain. Let us denote by
02 the boundary of €2 and by n the outer normal vector to 2. We denote
Qr =(0,7) x Q and X7 = (0,T") x 0. Let us consider this set of equations:

ou

o TV (ftaw) +gtau) =0 onQr (1)
u(0,-) = u® on {2 (2)
4y = uP” on Xp (3)

where the sense of the boundary condition will be precised further. We consider
the following assumption:
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Assumption 1
(i) f and g are two functions defined on [0,T] x Q x R such that

fe(C(o. 1) x O [a,b])", geC(0,7) x T x [a,b])

(ii) f, V- f and g are Lipschitz continuous w.r.t. u, uniformly in (t,x), the
constants of Lipschitz continuity being respectively denoted Ly, Liv.f), Lig)-

(iii) (u®,uP) € L>®(;[a,b]) x L=(Xr; [a,b]),

(w) (V- f4+g)(,-a) <0and (V- f+g)(,-,b) >0 uniformly in (t,z).

From a mathematical point of view, numerous works have approached or in-
vestigated this field. On unbounded domains, existence and uniqueness of a
solution for quasilinear first order equations domains has been solved in the
pioneering works of Oleinik [1], Volpert [2] and Kruzkov [3] who introduced the
concept of weak entropy solutions and related “Kruzkov entropy-flux pairs”

,Sgﬂ(U - k)(f@vxvu) - f(t,]}, k)))

When dealing with bounded domains, under some regularity assumptions on
the data, Bardos, Le Roux and Nédélec [4] also proved existence and unique-
ness of a weak entropy solution satisfying a “Kruzkov entropy-flux pair” for-
mulation including boundary terms; for this, they introduced an appropriate
mathematical boundary condition that must be understood in a particular
way. Nevertheless, when considering L*> data, the lack of regularity prevents
from using the result of Bardos, Le Roux and Nédélec. This difficulty was over-
come, at least in the case of autonomous scalar conservation laws on bounded
domains, by Otto [5,6] who introduced “boundary entropy-flux pairs”

(Ju—k

(H (u, k), Qi (u, k)

satisfying particular properties (to be recalled further), which enable to state
existence and uniqueness of a so-called weak entropy solution and a maximum
principle for this solution. Finally, using a lemma proposed by Vovelle [7], it
appears that a formulation using “semi Kruzkov entropy-flux pairs”

((w— k)%, seng (w— k) (f(t,2,0) = f(t2,k)))

is equivalent to a formulation based on “boundary entropy-flux pairs”. Here,
u— (u— k)T are the so-called “semi Kruzkov entropies” [8,9,7] defined by

u— K, if u> K,
(u—r)t = ! and (u—r)" = (k—u)*.
0, otherwise.

The functions sgn,(u — k)(f(-,-,u) — f(-,-,k)) are the corresponding “semi
Kruzkov fluxes”, where u — sgn, (u) is the derivative of the function u +— u*



with value 0 at point 0. Notice that the “semi Kruzkov entropy-flux pairs”
formulation is very similar to the initial one of Kruzkov. But:

B What is the appropriate definition of a weak entropy solution for first or-
der quasilinear equations (i.e. including non-autonomous fluxes and source
terms) on bounded domains with L> data ? Answering this question would
draw a complete parallel with the results of Bardos, Le Roux and Nédélec [4]
and those of Otto [5] and Vovelle [7]: indeed, the analysis of scalar conserva-
tion laws with L> data, initiated by Otto, would be extended to quasilinear
first order equations, studied by Bardos, Le Roux and Nédélec.

B What sufficient conditions lead to a maximum principle ? Indeed, such a
property is crucial when studying some physical problems.

Thus, it is the purpose of this paper to give a general framework which is valid
for first order quasilinear equations on bounded domains with L>° data. Among
the difficulties, we can observe that, when dealing with non autonomous fluxes
and source terms, a formulation with “boundary entropy-flux pairs” is not pos-
sible anymore. Fortunately, the concept of “semi Kruzkov entropy-flux pairs”
allows to overcome difficulties. This work is organized as follows: in Section 1,
we state the definitions and establish a maximum principle; in Section 2, we
prove the existence result; in Section 3, we prove the uniqueness result. Exis-
tence and uniqueness theorems are based on techniques that have been widely
used in [3-6]. But we point out the fact that these arguments have never been
gathered with the appropriate definition of a weak entropy solution in this
general framework in order to establish an existence and uniqueness theorem
along with a maximum principle: in fact, we deeply use the results detailed
in [6], up to the following modifications: proofs for existence and uniqueness
are adapted to the “semi Kruzkov entropy-flux pairs”, dealing with additional
terms induced by the source term and non-autonomous property of the flux.

1 Definition, initial / boundary conditions, maximum principle

Definition 1 Suppose that Assumption 1 holds. A functionu € L*>°(Qr, [a, b))
is said to be a weak entropy solution of problem (1)-(2)-(3) if it satisfies

[ {w= 1252 + (a7 tn0) = fle.00) T

Qr
—sgn (u — k)(V - f(t,x, k) +g(t, , u)) @} dx dt

+/u - Oz)dx+£f]/ — k)=t r)dy(r)dt > 0

(Psk)

Vo € D((—o0,T) x RY), ¢ >0, Vk; eR



Let us explain the way the boundary / initial conditions are satisfied for this
problem. Interestingly, the concept of “boundary entropy-flux pairs” defined
by Otto is still the key point. Thus, let us recall their definition:

Definition 2 Let (H, Q) be in C*(R?) x (C*((0,T) x O R?))d. The pair
(H,Qp) is said to be a “boundary entropy-fluz pair” (for the flux f) if:

1. for allw € R, s — H(s,w) is a convez function,
0
2. Vw e R, 0,Qp(-, -, s5,w) = 8SH(s,w)a—£(-, " 8),
3. Vw e R, H(w,w) =0, Qn(-,-,w,w) =0, 0:H(w,w) = 0.

Let us recall the lemma provided by Vovelle [7], which gives the link between
“semi Kruzkov entropy-flux pairs” and “boundary entropy-flux pairs”:

Lemma 3
(1) Let n € CY(R;R) be a convex function such that there exists w € |a,b] with
n(w) =0 and n'(w) = 0. Then n can be uniformly approzimated on [a,b] by
applications of the kind

S —> zp:a,(s — ki)~ + zq:ﬁ](s - K’J)+

where a; >0, 5; > 0, K; € [a,b] and &; € [a, b].
(i) Conversely, there exists a sequence of “boundary entropy-flux pairs which
converges to the “semi Kruzkov entropy-flux pairs”.

Lemma 4 (Boundary condition) Letu € L®(Qr) satisfying (Psk). Then,

ess Qlir(% / Quy(t, ryult,r — o n(r),u”(t,r)) - n(r) B(t,r) dy(r)dt > 0,(4)

PROOF. We directly use the proof of Lemma 7.12 in [6], adapted to the
particular case of the “semi Kruzkov entropy-flux pairs”. Thus, we easily state
that if u € L*>(Qr) satisfies (Psk), then, defining the quantity

ess Qlir(r)l+ {sgni(u(t,r —on(r)) —vP(t, r))(f(t, r,u(t,r — o n(r)))

() | ) Br) o) a9



exists for all 8 € L'((0,T) xR 1), 8> 0 a. e, and all v” € L>((0,T) x R™1).

Moreover, we have:

ess lim {sgni(u(t, r—on(r)) — UD(t, r))(f(t, r,u(t,r — on(r)))

0—0%F

a6 rD) ) St ()

> L / (WP (t, 1) — vP(t,1)* B(t, 7) dy(r) dt,

forall 3 € L'((0,T)xR4"1), 8> 0 a.e., and all vP € L=((0,T) x R*"). Then,
taking v” = uP, every “boundary flux” Q[ is uniformly approximated by a
linear combination of “semi Kruzkov fluxes” (see Lemma 3), every coefficient
being non-negative, which preserves the inequality and concludes the proof.

To complete the scope of boundary / initial conditions, we recall the following
result, which is proved with the same arguments as in Lemma 7.41 of [6]:

Lemma 5 (Initial condition) Let u € L>®(Qr) satisfying (Psk). Then,

t—0t

ess lim /‘u(t,x) — uo(:c)‘ dr =0 (6)

Now we give some details on the way the boundary condition is satisfied:

Remark 6 The boundary condition 4 is nothing less than the one obtained in
[5,6], up to a generalization to non-autonomous fluzes and taking account
of a source-term which does not interfere in the boundary condition. We
have proved that it is satisfied, although working only with the “semi Kruzkov
entropy-flux pairs” formulation (let us recall that a “boundary entropy-flux
pairs” formulation is not possible anymore). However the way to understand
the boundary condition is given in [5-7]: generally speaking, the problem should
be overdetermined and the boundary equality cannot be required to be assumed
at each point of the boundary, even if the solution is a regqular function. But,
with additional assumptions, the more comprehensive “BLN” condition s re-
covered: if u admits a trace, i.e. there exists ujs, € L*°(Xr) such that

0—07T

ess lim / \u(T,7 — 0 n(r)) — us,(7,7)| dy(r) dr =0
Er

then Eq. (4) is equivalent to the following equation (see [10,5])

Q[f](? ',U|ZT,UD) -n 2 O, a.e. on ZT-



Considering the particular boundary entropy / flux pairs

Hi (2, k) \/{Z—FL )*Y +62 -6, Hy(zk) \/{H—Z )1 62—

of
+ _ +
[f]ﬁ('?'aza '%) - ’[alHé ()‘7 k) %(>>)‘) d)‘a

and letting & — 0, we obtain the following uniform convergences:
.02 k) = sgna(z = 8)(f( 0 2) = (0 K))-
Finally taking the boundary flux
Q[f](’ 55, ’UJ) = Sgl’l+(8 - max(w, k))(f(v ) S) - f(v ) max(w, k)))
+Sgﬂ_(8 - min(w, k))(f(u *y 8) - f(7 Y min(w7 k)))

yields the classical condition given by Bardos, Le Rouz and Nédélec [4]:

for a.e. (t,r) € Sp, Vk € [min(us,, u”), max(ups,., u?)],
sgn(upsy (t,7) — w” () (f(trusn (7)) = f(t 1K) - n(r) 2 0. (T)
Before stating existence and uniqueness results in next sections, we prove:

Theorem 7 (Maximum principle) Under Assumption 1, if u satisfies (Psk),
then a < u <b a.e. on Qr.

PROOF. Set k =a in (Psk). Since we have by Assumption 1 (i4i) and (iv),
(u’—a)” =0, (u”—a)” =0,

the boundary / initial terms vanish. Then if we choose a particular test-
function which only depends on time ¢, we obtain:

/ {(u —a) ¢/(t) —sgn_(u—a)(V - f(t,z,a) + g(t,z,u)) gb(t)} dvdt >0

Qr

for all ¢ € D([0,T]), » > 0. Now, using
(V - f(t,z,a) + g(t, x,u)) = (V - ft,z,a) +g(t, x, a)) +g(t,z,u) —g(t,z,a)

and Assumption 1 (iv), we get

[w=a)¢(t) = sgn_(u—a) (gt, 2,u) — glt,,a)) O(t) dwdt >0, ()

Qr



for all ¢ € D([0,T), ¢ > 0. Furthermore, we can check that:

_E[Q](u - a)_ < Sgn—(u - CL) (g(tv x,u) - g(tvxv CL)) < E[Q](u - a)_

and Inequality (8) implies / (u—a)” (gb’ + £[g}¢) > 0. Defining the function
Qr

%xw::e—ﬁmt/ku-ayxua»dx, 9)

Q

the above inequality gives

/qa(t)eﬁw (¢/(t) + Ligo(t)) dt > 0.

Denoting v(t) = eLlat¢(t), we infer that for all v» € D([0,T), ¢» > 0,

T

/%@wwmmuza (10)

0

Let 7 < T,9, =T —7 and r € D([0,T]) be such that: r is non-increasing,
r=1on[0,7], =0 on [r+6,/2,T[. Choosing ¥(t) = r(t) (T —t)/T in
Inequality (10) gives

T—t
T

_%/qa(t)r(t) dt+/qa(t) Yty dt > 0

Since 1’ < 0, the second term of the left-hand side is negative. Since r(t) = 1,
Vt € (0,7) and r > 0, the first term is upper bounded by

1 T
_T /Qa(t) dt
0

which is consequently non-negative. But, ¢, is obviously a non-negative func-
tion, so that g, = 0, on (0, 7).Therefore, we deduce from the definition of ¢,
(see Eq. (9)) that (u —a)” =0 on Q x (0, 7). Letting 7 — T, we have u > a
a.e. Similarly, by choosing k = b in (Psk) (with the “semi Kruzkov entropy”
ur (u—">b)"), we prove u < b a.e.

Remark 8 Under Assumption 1 (iv), we check that only the restriction to
the set |a,b] of functions s — f(t,x,s) and s — g(t,x,s) plays an active role.
Therefore, it is sufficient to consider functions f(t,z,-) and g(t,x,-) defined
on [a,b] instead of R, as proposed in Assumption 1 (i).



2 Existence

Existence is obtained from the vanishing viscosity method. We consider the
following set of equations:

ou,

=V (f(tau) + gltzu) = b, on Qr (11)
Ue 0, ) = ug on 2 (12)
u = u? on ET (13>

where the following assumption holds:

Assumption 2
(i) u? and u® satisfy compatibility conditions on XrNQy: in particular, u? and
ul should be a restriction, on the sets {0} x Q and Y respectively, of a
smooth function 1. defined on Qp satisfying

e
ot

+ V- (f(t 2, 00)) + g, 7,9.) = eAge,  on {0} x 99

(ii) uP and v are smooth functions: u? € C?(Sr;[a, b)), u® € C?*(Q; [a, b]).

£

Under Assumption 2, the parabolic problem (11)—(13) admits a unique solu-
tion u. € C*(Qr) (see Chapter V, §6 in [11]). We study the convergence of
{u.} when € tends to 0. As in [6], we introduce the following tools:

Definition 9 Let us consider pn > 0 small enough. We define the functions:

(2) min (dist(z, 0Q), u), if z €
s(x) =

— min (dist(z,9Q), p) , if v € R\ Q
Lig+eR <

E(r) =1 —exp (— . (:)3)) , with R=sup |As(x)|.

0<s(z)<p

Notice that s is Lipschitz continuous in R? and smooth on the closure of the
set {x € RY, |s(z)| < pu}. Moreover, it can be proved (see [6]):

Proposition 10 &, being defined in Definition 9, for all ¢ € D(R?), ¢ >0,

Lip / Ve

@ < €/V§EV¢ + (L +€R) / @ (14)
Q Q o0

Lemma 11 Let (u,u?, u®) satisfy equations (11)-(13), the data satisfying As-
sumption 2 (subscripts are dropped for convenience). Then,



(i) for all p € D(] — oo, T[xRY), for all k € R,
/ {(u - k)igf + sgn (u — k) (f(t.2,u) — f(t,2,K)) Vi (15)

—sgn (u — k)(V ftx, k) + g(t, z, u))gp +e(u— k‘)iAgp} &

W = 0,6

> 92 /(u — k)EVVE — (L + Re) /(uD R

Qr Er

(13) the following maximum principle holds: a < u < b.

PROOF. B Proof of (i): Let us define the functions:
H,(z), if zeR* /
sl () = L) = [l di
—H,(—2),if z € RT 0

where the function H, is a classical approximation of the Heaviside graph:
H,(2) = 2/0X(0.4](2) + X[n,+oo[(2). Obviously, the pairs

(73 (2 k), senk (= — B)(f (8,2, 2) = f(t,2,K)))
mimick the behaviour of the “semi Kruzkov entropy-flux pairs”. Notice that

17 (-, k) € C'(R) is piecewise convex. Multiplying Eq. (11) by sgn’(u—Fk) ¢ &,
with ¢ € D(] — 0o, T[xR?), we obtain (after integration by parts):

/ {I;—L(u, k)g—f +sguk(u — B)(f(t,0.u) — f(t,2.k)) Vi

Qr
— sgn’t(u — k) (V < f(t,x k) + g(t, x,u))go +e I (u, l{:)A(p} &

+ / sl (u — K)(f(t,z,u) = f(t2.k))p VE.

v/
/

/ { k) @) V& — 213 (u, k)VsoV&}

(/ sgn’l (v — k) dv)(0,) &
(r

ft,z,u) — f(t, z, k)) -V sgnll (v — k) ¢ &



After some computation, we state that:
‘sgnl(u — k)(f(t,x, w) — f(t,, ]{7))‘ < Ly I (u k) + Ly n

Moreover, using Proposition 10 with I~ (u, k)g instead of ¢, we get:

Lo /I;E(u, k)e| Ve Se/V(Ini(u, k)e) Ve + (L +R€)/Ini(uD’k:)gp
Qr Zr

QT

Using these two results in the previous inequality gives:

/{ﬁwﬁfghwg@w—kxﬂuaw—f@wﬁﬂVw
Qr
s (u = R)(V - 0.0 + gt ) + 2 DA

w0

+ /(/sgnl(v — k) dv)go(O,-)&

Q k

+ / (f(t2,u) = f(t,2,k)) - Vusgn]'(u — k)pt.

> <22 [ [Euk)VeVe - (L + Re) [ IEWP k)p — Ly [ ¢|Ve.
Qr Xr Qr
Now, let 1 tend to 0. The first and second terms of the left-hand side give:

/ {(u - k)i%—f +sgu (u— k) (f(t,z,u) — f(t,2,k)) Ve
Qr

+ [ =B, &

Q

The last term of the left-hand side tends to 0 by Lemma 2 in [4]'. Finally,
the right-hand side tends to:
9 / (u— k)*VVE — (Lyy + Re) / (WP — k)
Qr X

and the proof is concluded.

B Proof of (ii): The result is obtained as in the proof of Theorem (7), by
working with Eq. (15) instead of (Psk).

L' This lemma, see Saks [12], says that if v € C1(2), then lin%/ IVl 1y ()< = O
n— =
Q

10



Now we propose the following L!-stability result:

Lemma 12 Let (uy,u? u?), (ug, ul’, ul), satisfy equations (11)-(13), the cor-
responding data satisfying Assumption 2. Then, for allt € (0,T),

[t ) = watt, )|

s{/}u?—u‘%

Q

&+ (L + Re) / ‘ulD — uﬂ} Lol (16)

X

PROOF. The proof follows the idea used in [6] and only needs to be adapted

to our problem: let us denote w = u; — uy, wP = uP —ul, w® = u? — u and

let us introduce @s(2) = (22 + §2)Y/2. Multiplying

88—1: + V- () = f(t2,u2)) + (gt 2, u1) = g(t, 2, u2)) — eAw =0

by s’ (w)& and integrating over (0,t) x Q, we get

[estwt. e~ [ s (17)

—//{(f(T,x,ul) - f(T,:)s,uQ)) (apg”(w) Vwé. + ¢s' (w) V&a)
00

+(g(r 2, w) = (7, 2, u9) ) oy (W)€
2
+e [\Vw\ s (w)Ee + v%(w)vq } =0
Now we study the behaviour of each term w.r.t d: using the uniform Lipschitz

continuity of f, Young’s inequality and the fact that 22¢;"(z) = 226%(2% +
62732 < 5, we get

—(f(T,x,ul) — f(T,:)s,uQ)) Vw s (w)é: + €’Vw’2g05”(w)§a
2

> _E v v 2 " > _m 2 " >
= [f]|w‘ | w| _'_5’ w‘ 2 (w)ge = Ae w-Ps (U))ge =

L0

4 € 55

Moreover, observing that |z|ps (z) < @s(z), we obtain

—(f(ﬂ%ul) - f(T,:L",U2))s05'(w) V& > Ly |w] |@s'(w)] [VE]
> —Lip os(w)|VE]

11



Following the same idea, we get

(90,2, w) — g(7,2,u) s (W) > —Lyg o] s ()] & = —Lig pa(w)e

Finally, using the previous inequalities, we state that

[ estwit, e~ / es(w)éc - M / & - Ly / / 5(w)|VE
—5[91//305 £e+6//V ps(w)) V(&) <0

0 Q

Then, putting these inequalities in Eq. (17) and using Inequality (14), we get

[t

SO(S a

ot
t t ﬁ[zf}‘ST/
0/!805 w)ée + (L) + Re) O/Q/% 1 955

Now let 4 tend to 0. We obtain

/\w(ta-)\ &S/\wo\ &+ (Lip) + Re) / |w”| +£[g1/t/|w\ ..
Q Q Yr 0 Q

Applying Gronwall’s lemma concludes the proof.

Lemma 13 Let (u, u?, u®) satisfy equations (11)-(13), the data satisfying As-
sumption 2. We suppose furthermore that u® has a smooth extension to Qr,

denoted wP. Then, there exists a constant A which only depends on ||u°||q,
7P ||ls,, T, Q, f and g such that

tes(louc)r {‘?Z ’+’Vu ‘} <A (18)

Here, we used the notation
]l = / 8| + [V 4 o)

], sup{\AuD\+\ [+ +[57]

v [ [T 7w+ [+ 95+ [

ot?

12



PROOF. In this proof, we will say that a constant “does not depend on &”
if it only depends on ||u°||q, ||@”||s,, T, Q, f and g. Moreover, for the sake of
simplicity, 7” will be identified to u”. The proof follows the idea developped
in [6] (up to the source term g and non-autonomous property of f): in par-
ticular, we may observe the influence of the derivatives 0f /ot, df /0x, Og/0t,
0g/0x and Og/0u in this statement. Indeed, this leads to the main differences
with the proof stated in [6], since additional terms have to be treated in order
to get a BV estimate. The proof is organized in two steps:

B Step 1: Boundness of / ’%(t, )‘
9)

Let us still denote u” the smooth extension of u” onto Q,. We introduce

uP of ouP ouP
— 0 _ D _ N I
vEumun o=tV 5,00 8t> B
af dg ouP g
+ V- E(”u)>+%(”u)ﬁ+§(”u)’
so that we easily get
0?v of Ov dg v v
erv- <%(,,u)a> —i-%(-,-,u) E—eA <§> = —e. (19)

Multiplying Eq. (19) by @5’ (Ov/0t), with ps(2) = V22 + §2, and integrating
over (0,t) x €, we obtain



by using the property s’ (0v/0t) = 0 on Xp. Further, we have

of ov\ Ov 8@ ov
1,0f 2 (w\® , (dv L0
- ) > Y

“Zlga ) (at> & (z%) =T 4e

Thus, letting 6 — 0 in Eq. (20) implies the following inequality
ou ouP ov / [ orov
J15 | < [ 15|+ [ 1500+ [ [lel+2a [ [|5]: 1
Q Q Q 0O 0O

Now, let us analyse each term of the right-hand side in the previous inequality:
. ouP I
» (step 1) Analysis of/‘ P t, )’ It is obviously bounded by ¢; = ||u”||s,.
Q

» (step 1) Analysis of/’ ’ We obtain from Eq. (11)

ouP

J‘%(O")‘ :Q/\—v-(f(o,-,u%)—g(o, u®) + e = (0, )]
So far, we have:
Q/] — V- (0, u")| = Q/{\(v-f) (0,-u"))| + ]%(o,wo) vuO]}

< Liv.g /|u0\ + Ly /IVUO|
Q Q

&

IN

where ¢ only depends on f and [|u°||q. Moreover,

/‘g Y < || sup (‘g (t,z,8)|, (t,z,s) € Qp X |a, b]) < cg),

where 02 only depends on g and €. Further, for ¢ bounded (which can be
assumed, for instance £ < 1), we get

/?’fﬁu T ?_/}Au!ﬂﬂl sup}w\_

14



where ¢ only depends on |[u°||q, ||u”||s, and Q. Thus, the sum satisfies:

dv NONINCIRNC
[150.)] < o=+ 4 o).
J lor

» (step 1) Analysis of// le|. Let us recall that, from the definition of e:

J o1 ] {2t (2 ) - (L)

i ’a_z(.’.,u)% i @(-,-,u)’ﬂeAag—; }

ot ot

02 D
Now, we have //‘ Y ‘_ /‘ Y ‘ < & with ¢§) = [[u”||x,. Moreover,
0 0

of ouP\  of ol O*f ouP
V'(%W‘)W)—%('H WV et Ve Ty

Thus, each term can be controlled in the following way (the last term comes
from the non-autonomous property of f):

t an o D p .

[ [15htn-wa S < ] [19 wines? =[5 7
t D D
!!\g—i(-,-,u)v%\ <= E[f}Q/T\V%

[ (1 (.9 Py v f\ \%\TIQI

[[1(750) oG] < o oo

0 Q

Further again, as f may explicitely depend on (¢, x) and g may be a nonzero
function, we state the additional estimates

t

[ 1o (el [ 19 ool + g o
ool

IA
Q/\
“a

15




with ¢{” = Q:lxllz b ‘V {‘T|Q| and ¥ = qup 8u2‘ sup‘ By ‘

t

//‘ 0u + %(',',u)‘—i—‘&A%’ <"

0

with (" = (E[ | Sup ‘%‘ + sup ‘ ‘ + sup ‘A%D T'|Q|. Taking
! Qr ot Q1 x[a,b] ot Qr ot

(1) 2)

es = max (cf + e + e+ + 7, o) + oY)

and using the previous inequalities gives:

O/tQ/|e|§c3(1+Q/0/t}vuy>.

t
» (step 1) Analysis of Lig // ’%‘ We have, obviously, the property:
0O
t t t t
ov ou ouP ou
e [ = ([ [0 ] [1501) <o (10 ] 11501,
0O 00 0 Q 0 Q

ouP
=L 1 — Q| T.
C4 [g]maX< ’ng‘ T 19l )
Thus, recalling Inequality (21) along with the previous results, we obtain

/}%(t <c5( /t/|Vu|+0/t!]g—?]> (22)

Q 0

4
by taking, for instance, c5 = Z ¢; which does not depend on &.
i=1

B Step 2: Boundness of / ‘Vu(t, )‘

For this, we proceed in two steps, namely Steps 2(* and 2®), which will be
gathered in order to conclude Step 2. Let us first proceed to Step 2(®. Re-
calling that v = u — u” and denoting

h = % + V- (f(t2,u”)) + g(t 2, u”) — eAu”, (23)

16



% + V- (f(t,z,u) — f(t,2,uP)) + g(t, z,u) — g(t, z,u”) — eAv = —hy.(24)

We multiply Eq. (24) by s/ (v) 3, where 5 € D(R), 8 > 0, depends only
on the space variable and s(z) = ( + §2)1/2 — 5., After integration over
(0,%) x €2, and since @s'(v) = 0, @s5(v) =0, Vs(v) - n =0 on X, we obtain

[ st ) 8= [esw©0,) - [ [st)a
905/(U>(f(77 ZL’,U) - f(Tv x?“’D))Vﬂ - (f(Tvxv u) - f(Tvxv uD>>vv 905”(1)) 6

_l_

o L O—
O D

25/ (v) (g(r. 2, ) = glr,,uP)B + el Vol o (0) B = = [ [/ () .
0 Q

We let 6 — 0 and thus

[1ott,)15 - /w W—e//MAﬂ
_/t/sgn(u — uD)(f(T,x,u) — f(T,x,uD))Vﬁ (25)

_l_

o— .

sgn(u — u?)(g(1, z,u) — g(1,2,u"))3 < — sgn(u — u?) hy .
/ /1

Now we choose

o) = (2],

where s(x) is defined as before, p is a strictly positive number and v € D(R)
is a fixed non-negative function such that v(0) = 0 and y(¢) = 1, for o > 1.
Let us study the behaviour with respect to p of each term.

» (step 2(%)) Behaviour w.r.t. p of//sgn(u—uD) (f(t,z,u)—f(t,z,uP))Vp:
0 Q

Obviously, one has

—’ﬂlsx an s(z) =0, on
vi= () 1o wa s =0 o\,

17



with K, = {z € Q, dist(z,09) < pu}. Thus, each point € K, (for p small
enough) can be described as = = r(x) — s(x) n(r), where r(x) is the nearest
boundary point to z, and n(r) is the outer vector to 092 at point r(x). Let us
notice that Vs(z) = —n(r), if # € K,. From the previous observations, we
deduce the following equality (for the sake of simplicity, F'(u, u”)(7, z) denotes
the value of the function

Sgn(u - uD) (f(7 '7u) - f(7 '7uD))

at point (7,x) € Qr):

zo/to/ﬂaéF(u,u )7 — sn(r)) 7' <Z> %( () dy(r) ds dr
t u/p

- // F(u,uP)(r,r —opn(r)) v (o) n(r) dy(r) do dr
0 0 80
w/p
/7 (//Fuu (1,7 —op n(r ))n(’/‘)d”}/(’f‘)dT) do.
0 0 40

Thus, letting p — 0, we obtain (recalling that F'(u,u”) =0 on ¥7):

hm//F u, uP) (7, 2)VB(x) dv dr

/7 (//Fuu T,T) (r)dv(r)ah)da

0 092

0/ ) do (//Fuu T,7) (r)dw(r)dT)zo.

0 40
t
» (step 2¥)) Behaviour with respect to p of// lv| AB:
0 0

1
The particular choice of 3 gives AG(z) =V - <;7/ <%> Vs(x)) and thus:

w35 () (5 1 () %)
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0
Now, if x € K, then ;(x) = —n;(r), n; being the ith component of n, so that
£y

1 ()£ (50 - (2 ()

and, as a consequence,

Loy L (s@) s(x), on
Ag) = | 27 ( ; >+pv< p)A(), Ky,

0, elsewhere.

Thus, since v(7,7(z)) = 0 (r(z) being a boundary point) and using the previ-
ous expression of AJ, we have

O/:M Aﬁzo/! (r.r(@))] AB
_ O/tK/ o(7,7(2)) (v” (%) % + %v’ (%) As(m)) :

Let us focus on the first right-hand side term of the previous equality:
t p 1
s
// "U(T,T —sn(r)) —o(r, 7“)’ v (—) — dr ds dr
00

50 P) P

:/t”// r—apnr))—v(T,r)’ V(o) dr do dr
:“/p (/t/‘UTT op nlr )) o(r, )‘ deT)dU.
0 0 99

Now let us focus on the second right-hand side: since |[As| <R on K,

1] [ tr) - st Xt (%) As(a) da dr |
’ (Z) | dr ds dr
= R/ | [l =op n)) = v(r.n)| v/ (0) dr do dr

Ry /07’(0) (/t/‘U(T’T_Up n(r)) — vl ) dr dT) do.

op

< R/t/u ‘U(T,T’ —sn(r)) —v(r, 7“)’ %

19



Letting p — 0 (notice that the second right-hand side term tends to 0) gives

hm//HAﬁz/ (//]vmr ’drdf)da

0 02

:—//‘VUTT ‘d?”dT

0 9Q

As a consequence, Inequality (25) becomes

/|v |+e/]wn]</|v N+ Ly /t/|v|+/t/|h1|. (26)
[¢) 0 Q 0 Q

Now, we proceed to Step 2. Let us denote

ov

oz, z = V.

Zi =

Then we have

0z +V. <a—f(t,x,u) zi> —elAz; = —hg),

ot Ju
3}
V- (a—i(t,x,u)>

+ 8(?61- (g(t,x,u)) —eA

with

N 0Pl of ouP
6 _ (o
he = oma TV (au(t’z’“) ax,-> *

ouP

8@- '

Multiplying the previous equation by d¢s/0(2), with ¢5(&) = (|€]? + 62)1/2,
adding the terms (i = 1,d), we have, using the usual Einstein summation
convention (i.e. whenever an index appears twice in one expression, the sum-
mation over this index is performed):

[580 [t fote

/1
[ [t ] 2 2 2 //S;; =
/

t _ 9
=] [t s gt | [ Geton G

20



Due to the estimate (obtained exactly as in [6])

8zi aqug (%k 8f] aqug (%k
2 ) el CRN) (2) 5
5 . Of; 0z
=G VA gt s g
_ Lo i %P Lo
2elou Yl R+ o232 = T 4e

we obtain for § — 0

=] = [20.)
Q

t | 09 0¢
SO/SZ|h2|+hm§E%//’ 2 855( z2) —eVz-n 85(2/)’.

Due to z = 0 on X7, we have on X

z=Vv=(Vv-n)n, Av=D?v(n,n)+ AsVv-n,

where D?v is the bilinear form of the second differential of v. Therefore, the
integrand can be rewritten as

%(-,-,u)-n z g%‘f(z) —eVzon ‘?5( )
:%(""“) " (|vv||2vi|f52 7z D ( Vo |2+52 1/2>
:@—i( u)- Vo — <Du(n. )) e
Moreover,
V- (f(t ) = £t 7,uP))
= (VD) ~ (V- Pt u?) + 2 u = gy

:(V-f)(t,:l?,u)—(V-f)(t,x,uD)jL%(t,x,u)-Vv
of . 'L of N
—<%(t,x,u )—%(t,x,u)> -Vu”.

of p Of B :
Thus, for (t,z) € X7, (a(t,x,u ) %(t,x,u)> = 0, and we obtain
of
%(t, Z, U) - Vo

=9 (ftt) = .007) = (Ve = (V- it |,
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in which a non classical contribution appears, due to the fact that f may
depend on . Since dv/0t = 0 on Xr, we have for (t,z) € Xp

9
E%@xu)n%égu—-vlnégm

(g§+sv (f(t,,u) = f(t,2,uP D-—&&v+eAsvv.n> Vo

(9ol + 52)17
Vo -
_{V (o) -V f<t,ru“D>} OBt

Vov-n
= (—hy +cAsVv - n) Vol £ 0172

Vou-n
-V f(t,!)ﬁ',U) -V f(t,x,uD) +g(t,x,u) - g(t,x,uD)} (|V'U|2 +52)1/2

Vov-n
ot = gt n0n) T

Since (t,z) € X, we obtain (u = uP):

of
ou

0¢s dps , . _ Vo -n
(t,z,u)n z; 0—@(2) eVzin 7, (2) = (=l +eAsVv - n) (Vo2 + 82)172°

Putting this in the last inequality gives:

!Muﬂgzpm //Mﬂ+//“meMVvﬂ}

0 092

which, together with Inequality (26) implies

[ {190t Rlote. )y < [ {900, 4 R0} + [ [l + [ [ o
Q Q 0 Q 0 00
and, as a consequence,

/ﬂvmuﬂ+R@( /\Vu )|+ RluP(,)]}

+/\vv )|+ RJo(0,-)]}
+//mﬂ+//hl (27)
0 90

Let us analyse each term of Inequality (27).
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» (step 2)) Analysis of/ {’VUD(T,, )‘ + R‘uD(t, )‘} We easily state that
0

/{’VU ’+R‘ ’} < g <sup ’VuD’ +Rsup’uDD Q| T.
Q QT Qr

» (step 2() Analysis of/ {}Vv ’—I—R’ ’} Clearly, one has:
Q

/{]vv(o, |+ R0}

< [{I9]+ [9uP @)+ R (] +[u710.) |

<= / (‘Vuo‘ + R‘UOD + (Sqlzlp ’VUD‘ + qul;p ‘uDD )

Q

t
» (step 20)) Analysis of// |h1]. Recalling the expression of hy,

/t/'f“' =//\a;‘—f+v-<f<t,x,u0>>+g<t ruP) — cAu”)
0 Q 0 Q

O D
S(SUp’L—G—AuD’+ sup |g|> |Q|T—|—//V ft,z,u?
Qr ot QT X [a,b]

. u® D D
with cg = <sup{}ﬁ}+}Au }+£m‘VU }}4— sup \9+V-f|> 1 T.
Qr Q1 x[a,b]
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t
» (step 2)) Analysis of / / |ho|. First, let us develop the expression of hy:

N 0%uP of ouP  0*f ouP
(6 _ 2L
hy’ = 9r.07 ) +V au(t,x,u) oz —I—a Z(t z,u) Vu e
of ou of o f
—l—a(t,x,u) \Y o +V 8—95,-(t’x’u) +8zi a%(t,z,u) Vu
dg dg ou ou
—I—8—xi(t,x,u) —I—%(t,x,u) oz, —cA o

in which non classical contributions appear (in comparison with [6]), due to the
fact that f (resp. g) depends on (t,x) (resp. (t,x) and ). From this equality,
we deduce the following estimate:

t

[l <d? e [ [ 9] < (1 J/w)
0 Q 0 Q

0 Q

with ¢y = max (cél), 05(92)) and the following constants:

cé”z( sup ’V 8£’ sup’Vu ‘+ sup ‘V f’ sup ‘Vg‘) Q| T

Qrx|a,b] Qrx|a,b] Qrxab]
+£[f}/‘v2uD‘+/’V3uD,
QT Qr
@ _ of

cy = ‘sup‘Vu ‘+£[g]+ sup ‘V

Qr Xab]‘au2

To conclude Step 2, we gather Inequality (27) with all the previous bounds:

/{’Vu(t, )‘ —I—R’u(t, )‘} < ¢ (1 + /t/ ’Vu‘)

Q

where ¢1g = ¢g+ c7+ cg + 9 does not depend on e. Finally, since u is a function
with values in [a, b], from the previous inequality, we infer that there exists ¢y
which does not depend on ¢ such that

9t o] < (H / /;vu\) )

Now, we gather results obtained in Step 1 and Step 2: using Inequalities
(22) and (28) gives

Q/{’?: )|+ |Vt }<012( +0/t/{}g—1:}+wu]}> (29)
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where c15 (= ¢5+ ¢11, for instance) does not depend on e. Applying Gronwall’s
lemma concludes the proof of Lemma 13.

Theorem 14 (Existence) Let us suppose that Assumption 1 holds. Let u.
be the unique solution of Eq. (11)-(13) corresponding to the data (u?,ul)
satisfying Assumption 2 and let

lin%uf =u? in L'(Z7), lin(l)ug =% in L}(Q)
where uP? € L>®(Xr;[a,b]) and u® € L*(;[a,b]). Then, the sequence {u.}.
converges to some function u € L®(Qr;[a,b]) in C°([0,T), L*(Q)). Moreover
u is a weak entropy solution of Eq. (1)—(3).

PROOF. Before entering into technical details, let us give the sketch of this
proof. Our goal is to let € tend to 0. Nevertheless, we cannot apply estimates
stated in Lemma 13 on u. because u”, u? satisfy compatibility conditions but
do not necessarily have an extension over Qr with sufficient regularity. Thus,
we introduce, by means of construction, (u?),,u?,) which both satisfy com-
patibility conditions and have an extension over Q, with sufficient regularity.
Moreover, (u,,u?,) are uniformly “close” to (u?,u?) (as h — 0, uniformly
w.r.t. €), which implies that wu.; is “close” to u. (in a sense which will be
precised further). Then, we apply Arzela-Ascoli theorem on the sequence {u.}
in order to prove that it is relatively compact in C°([0, T; L'(2)). Of course,
we have to verify that the sequence satisfies the hypotheses of the theorem
(equicontinuity and pointwise relative compactness): for this, we use the prop-
erties of u. » and the fact that u. is “close” to u. ;. In order to use Lemma 13,
we need some extension of u? and u? to Qr, with sufficient regularity. Let us
define the function v by

ul Ot r+sn(r)) =ul(t,r), te(0,T), red, |s|<min(t0)
uPO(t, r) = u¥(z), —§ < t < min(dist(x, 9Q), ), = € Q
uPO(t,x) = 0, elsewhere.

Moreover, we mollify the above function (with a usual mollifier) which provides
regularity on Qr:

gy (ta) = / ul(t',2") gt — ¢,z — ') dt’ do’

Rd+1

Now we denote by ul, (resp. u ) the restriction of ug,’LO to Xr (resp. {0} x Q).
Let u. p, be the solution of Eq. (11)-(13) corresponding to the boundary and
initial conditions u2, and u?,. On one hand, the uniform boundedness of u?,
u? implies the uniform boundedness of v}, u? , which provides (see Lemma 11)
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the uniform boundedness of u., u. . Obviously, the following (strong) conver-
gences hold:

lim uly =u? in LY(Zr), lim uly =u? in LY(Q)

—

uniformly w.r.t. e. This and Inequality (16) (see Lemma 12) imply

}llirré u.p, = u. in C°([0,T], L*(2)),
uniformly w.r.t. e. On the other hand, it follows from the boundedness of
ul € LY(Xr) and w0 € LY(Q) that

C

_h37

0

C
‘<—.
Q — h2

For fixed h > 0, it follows from Inequality (18) that the sequences

Oue
{ gtﬁ}a {vue,h}

are bounded in C°([0, 7], L*(€2)). Now we propose to state that {u.}. is pre-
compact in C°([0,T], L*(2)) with the Arzela-Ascoli theorem:

(1) Equicontinuity of {u.}.: Let a > 0. There exists some h > 0 such that
2
o)

and, from the uniform boundedness of du. 5, /0t, there exists ¢ > 0 such that

uep(t ) = ue(t, )| do < a/2, V€ [0,T], Ve >0

5/\8“” | do < af2, W], Ve >0 (30)

Thus, for all € > 0 and all ¢, t5 € [0, 7] such that |t; — t3] < 0, we have

Uen(t1,+) = tep(ta, ')‘

uen(ti, ) — ue(ts, )| + \tl—m sup /‘mfh (t,)

te(t1,t2]
Thus, the sequence u. is equicontinuous in C°([0, 7], L*(Q)).

(17) Pointwise relative compactness of {u.}.:
For this, we use the Kolmogorov-Fréchet-Weil theorem:

> Since {u.} is uniformly bounded in L>(Qr), {u(t,-)} is also bounded in
LY(Q2) (uniformly w.r.t. ¢ € [0, 7] and ).
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> Let n > 0. Let us consider K, C €, defined by K,, = {x € 2, dist(x,0Q) > n}.
Obviously, K, is compact and

sup /
ue(t,)

Q\Ky

ue(t, )} < max(|al, |b]) meas(Q2\ K,) = C(a,b,0) n.

> Recalling the existence of § > 0 such that Inequality (30) holds, we get
uniformly in ¢t € [0,7] and € > 0,

/ ws(t, -+ Ar) —u(t, )] < 2/

OAzx Q

wenlt,) = uelt, )| + \Am\/‘Vue,h(t,~)‘
Q
which is smaller than « for |Az| < § and Q% = {x € Q, »+ Az € Q}.
Thus, the sequence {u.(t,-)}ieo1, e>o is relatively compact in L(€2).

Thus, by the Arzela-Ascoli theorem, {u.}. is precompact in C°([0, T], L'(£2)),
and since C°([0,T], L'(2)) is complete, we infer that, up to a subsequence,

limu. = in CO([0, 7], L}(%2))

Moreover, u € L*(Qr;[a,b]) (by passing to the limit on w.). Finally, u is a
weak entropy solution of Eq. (1)—(3): recalling that

=0, lime f|v¢,

Q

lny /1 - & =0,
Q

passing to the limit w.r.t. € in Inequality (15) concludes the proof.

3 Uniqueness

Definition 15 For any k € R, let us denote:

(ﬁk, Nf“ﬂ): R? — R?
(z,w) — (dist(z, Z(w, k), Fip (- 2w, k)

27



with Z(w, k) = [min(w, k), max(w, k)] and Fipy € C(R x Q x R*) defined as:

fCw) = f(-2) for 2 <w <k
0 for k<z<w
fQ,2)—f(, k) for w<k<z
fGk) = f(2) for z2<k<w
0 for w<z<k

f(-,-,z)—f(~,~,w) for k<w<z

Fipl, - z,w, k) =

Lemma 16 Let u € L>®(Qr) satisfy (Psk); then one has:

B for all p € D((0,T) x RY), for all k € R,

/ {|u Y %—f +sgu(u— k) (f(t,z,u) - f(t,2,k)) Ve
Qr

—sgn(u — k) (V- f(t,z, k) + g(t, z,u)) @} dx dt

> ess Qlir(r)1+ {sgn(u(t, r—on(r))— k‘)(f(tﬂ’ —on(r),u(t,r—on(r)))

Stor = o n(r). ) L ntr) pler) v
B forall 3 € L'(Xr), B3>0 ae., and for all k € R,

ess lim /f[f} (t,r,ult,r — o n(r)), uP(t,r), k) - n(r) B(t,r) dy(r) dt >0,
Er

0—07F

B for all p € D((0,T) x RY), for all k € R,

/ {|u Y %—f +sgu(u— k) (f(t,z,u) - f(t,2,k)) Vo
Qr

—sgn(u — k) (V- f(t,z, k) + g(t, z,u)) @} dx dt

> [ sgn(k = uP) (£t 0) = f(tr ) - n(r) gltr) dy(r) di

—ess Qli,%h {sgn(u(t, r—on(r)) — l{:)(f(t,r, u(t,r — o n(r)))

—f(t,r, k))} n(r) o(t,r) dy(r) dt.
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PROOF.
> 1st inequality - Adding the two inequalities defined by (Pgy ) with each “semi
Kruzkov entropy-flux pair” gives the following inequality

/ {\u — k| 88—3: +sgn(u— k) (f(t,2,u) — f(t,2,k)) Voo
Qr

—sgn(u — k) (V- f(t,x, k) + g(t, z,u)) go} dx dt > (B1)

for any ¢ € D(Qr). Thus, since u satisfies Inequality (31) along with the ini-
tial condition (6) (see Lemma 5), the result is obtained by following the same
lines of the proof of Lemma 7.12. in [6].

> 2nd inequality - The result is easily obtained by Lemma 4 applied to the
particular “boundary fluxes” Fj; (see Definition 15).

> 3rd inequality - On the one hand, the function 2F (-, -, 2, w, k) is equal to

sgn(z —w) (f(-,+2) = f(,w)) = sgn(k —w) (k) = f(-,-,w))
=+ SgIl(Z - k) (f(7 K Z) - f(v "y k))

On the second hand, terms of the form

€ss li)%lﬁ Sgn(U(t, r—o n) - 'UD(ta T)){f(ta T, U(t, r—o0 n))

Er

—f(t, 0P (7))} Bt ) dy(r) dt

exist for all 3 € LY(Z7), all vP € L>*(X7). Indeed, this term is obtained by
using the proof of Lemma 4: it is sufficient to add the terms of (5) corre-
sponding to each “semi Kruzkov entropy-flux pair”. Therefore, each term of
the following inequality exists. Thus, from the 2nd inequality;,

—ess lilrgl+ F(t,r,u(t,r —on(r)),k)-n(r) B(t,r) dy(r) dt
o— <
< ess 1i:r(1)1+ F(t,r,u(t,r —on(r)),u”(t,r)) -n(r) B(t,r) dy(r) dt
o— 9

- / F(t,r ka2 (t, 7)) - n(r) Blt,r) dy(r) di
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with the notation F'(t,r,u,k) = sgn(u — k:)(f(t,r, u) — f(t,r, k:)), and the
result is straightforward.

Lemma 17 Letu € L*(Qr) (resp. v € L>(Qr)) be a solution of (Psk) with
data (u®,uP) € L®(Q) x L®(X7) (resp. (v°,vP) € L=(Q) x L>®(Xr)); then

—/{‘u—v‘ % + sgn(u—v)(f(t,x,u)—f(t,:)s,v))vﬁ

Qr
— sgn(u —v) (g(t, x,u) — g(t, z,v)) 6}dm dt

g/‘uo(x)—vo(:c)‘ 3(0, z) dx+£m/}uD(t,r)—vD(t,r)\ B(t,r) dy(r) dt

Q

for all 3 € D((—o00,T) x RY).

PROOF. As already pointed out, any term written under the form

ess lim {sgn(u(t, r—on(r)) —vP(t, r))(f(t, r,u(t,r — o n(r)))

—f(t, 0 (¢, 7‘)))} n(r) B(t,r) dy(r) dt

exists for all 3 € L'(3r), all vP € L°(3r). Thus, we infer that there exists
97;7]' € LOO(ZT) such that:

/ 011 (t,r)B(t, 1) dy(r) dt =
ess lim+ sgn(u(t,r —on) — uD)(f(t, r,u(t,r —on)) — f(t,r, UD)) -n B dy(r)dt,

0—0

S

[ 012(t.7) Bt 1) dy(r) it =

ess lim+ sgn(u(t,r — o n) —vP) (f(t,r, u(t,r —on)) — f(t,r, vD)) -n Bdy(r)dt,

0—0
S

[ aaltr) Bt ) dr(r) dt =

ess lim [ sgn(v(t,r —on) — UD)(f(t,r, v(t,r—on))— f(t,r, UD)) -n [ dy(r) dt,

0—0
X

[ aaltr) Bt ) dr(r) dt =

ess liI(I)l sgn(v(t,r — o n) — u”) (f(t,T, v(t,r —on)) — f(t,r, UD)) -n Bdy(r)dt.

S
After this introduction of notations, we now apply the double variable method,
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initiated by Kruzkov [3], to the 3rd inequality stated in Lemma 16. Let
pe € D(R41) be a symmetric regularizing sequence. We will denote

p = (t,x) € Qr, p =, 2)eQr,
v(p) = (t,r) € Xr, () = (,1) € X,

and let

/

Be(p,p') =1 <p;p ) pe(p—1"),

for all p,p’ € (Qr)?, for a given 8 € D((0,T) x RY), 8 > 0. Hold p’ € Qr
fixed and replace, in the 3rd inequality of Lemma 16, k by v(p') and B(p) b
B:(p,p'). After integration over Q7 (with respect to the variable p’), and using
the notation

F(p,u(p),v(p') = sgn(u(p) —v(@)) (f(p,ulp) — f(p,v(p))),

we easily get It + I5 + I5 + I + I5 < Ig + I7, with

=73 / / [utv) | % (Z%p/> pe(p—p') dpdyf
QT Qr
//Fp’ () VB <p+p> p= (p—p) dpdp/
QT Qr
//‘“ —u(p O (p—1) ﬂ(p;p,> dp dp'
QT QT ,
//Fp, (') Vo (p— p)ﬁ<p—;p>dpdp'
QT QT /
F‘/ [ sena >>{Vf<p, a8 (50 ) oo i) o
Qr Qr
i= | [out ( Y . 0) ) o)
Qr X7
- [ [ Fwat) oo s (22555 60 = s

Now changing the role of (u(p),p) and (v(p'),p’), we get in a similar way, the
inequality Ji + J5 + J5 + J; + J5 < Jg + J;, with

J€=——//\ gf (z%p’) pe (p—p')dpdy
QTQT
//Fp v(p ))Vﬁ<p;p> pe (p— 1) dpdp’
QTQT
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5= [ [ Fwt) ) Voo 5 (V5 ) dvar
Qr Qr )
5= [ [ st -utn{ 921 6out ot o6 | 5 (P52 .05 o
Qr Qr
= [ [ 0008 (“32) 0= 20 a6 o
Qr Xr
5= [ [Fwan. 6w 08 (P50 -0 e
Qr X7

Adding the two inequalities, and noticing that I = Ji and I = —J5, we get
2IF + (15 + J5) + (L5 + J5) + (L5 + J5) < (I§ + J§) + (15 + J3).

We are now ready to let € tend to 0. Note that this method has been widely
used in the works related to hyperbolic problems [3-6] but also parabolic prob-
lems [8] or elliptic-hyperbolic problems [13-16]. Thus, due to the convolution
effect of p., we obviously obtain

L 1 op
= o2
Qr

1
1in(1)[§ = liII(l) Jy = ~3 sgn(u —v) (f(t,z,u) — f(t,z,v))) VB,
Qr

N | |
ll_I)I(l)IG = 2 /91,1 s, }:1_{%% = 2 /92,2 B,

ZT ZT
. 1 N 1
lg)%@ = —5/91,2 g, ll_T)%J = —5/92,1 B

ZT 2T

Now, let us focus on Ij + J§ + I 4+ J¢ which contains all the non classical
contributions of the source term ¢ and the non-autonomous property of the
flux f. Interestingly, we will see that only the source term plays a role when
passing to the limit on e: this is because of the conservative form of the scalar
conservation law. Let us reorganize the sum by rewriting it in the following
form:

G+ E+a=I =KD - KV — (K - k) + K§Y — K
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/

K= [ R0 5 (25 9o ) dpa

2

QrxQr

K= [ Pt o008 ("5 ) Voo o) doa
QrxQr

K= [ st = o)) V)8 (5 ) oo ) dp
QrxQr

K= [ st = o) Vo) (75 ) oo f)
QrxQr

K= [ sntao) = o0 0 8 (P57 ) . 001 dpa
QrxQr

K = / sgn(u(p) —v(p) 9(¥', v(p') B (p;p ) pe (p— 1) dpdp/
QrxQr

)

Passing to the limit in K. él - K. 352) obviously gives:

lim K5 — K5 = / sgn(u —v) (g(t,z,u) — g(t, ,v)) 8
Qr

Moreover, the limit of Kfl) — Kf) — (Kél) — K2(2)) may be analysed ezactly in
the same manner as in the paper of Kruzkov (see p. 227 in [3]) and we have:

lim K1Y — K{? — (K3 — K§P) = 0.

e—0

lin (15 + 5 4+ 15+ 5) = [ senu—v) (g(t.2.0) = g(t..0)) B
Qr
Finally we obtain:

-/ {‘u_v\ %_f + sgau —v)(f(t, 2, u) - f(t,2,0)) V3

QT
~ sgn(u —v) (g(t, 2, u) — glt,2,v)) ﬁ}

< / (=611 + 621 — b0+ 612) 5,
Er

N —

for all B € D((0,T) x RY). As in [6], let us introduce the following definition:

Y(t,r) € Xy, diam(f(t,r, )n,Z(a, b)) = sup ) (‘f(t,r, z1)-n— f(t,r 2) nD

z1,22€Z(a,b
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Then, when discussing the cases, one sees that for all zy, z5, wy, wo,

’ Z 1) Hsgn(z;— w])(f(t,r, zi)—f(t,r, wj))-n’ < 2diam(f(t,r,-)n,Z(w,ws))

i,j=1

holds and using the property

diam(f(t,7,-)-n, Z(uP(t,r),v"(t,7))) < E[f]‘uD(t,r)—vD(t, ),

V(t, 7”) € ET,

one easily concludes that

%‘ / (—6171 —|—¢92’1 — 9272 + 91,2) 6‘ < E[f] / ‘uD - UD‘ ﬁ
Y

The initial term is obtained by slightly modifying the proof, with test functions
in the appropriate space, namely D((—oo,T) x R9).

Theorem 18 (Uniqueness) Under Assumption 1, problem (Psk) admits a
unique weak entropy solution.

PROOF. Considering the integral inequality of Lemma 17 with v? = u”

and v° = u° and a test function which only depends on time ¢, we get:

/ {\u — o] &/(t) — sgn(u — ) (g(t. 2, u) - g(t, z,0)) a(t)} dzdt > 0,(32)

Qr

for all @« € D(—o0,T). Then, for an interval [to,t1] C|]0,T[, we can use in
Inequality (32) the characteristic function of [to,?;], properly mollified, and
pass to the limit on the mollifier parameter:

/‘u t1,+) —v(ty,-) /‘u to,-) — v(to, )’

+ / [ sent =) (gt . 0) = glt.2.) do dt.

to Q

Now, since we have, for all (t,z) € (0,T) x Q:

sgn(u —v) (g(t,z,v) — g(t,z,u)) < £[g}’u — |,

we obtain:

/‘u(tl, v(ty,-) /‘u (to,-) — v(to, )‘ + Ligrv.g /‘U —u(t,)
Q
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From Gronwall’s lemma, we conclude that:

}u(tlv ) - U(tla ) < }U(to, ) — ’U(T,O, -)}Ll(ﬂ)eﬁ[g](tl_to)_

L)

As to tends to 0, and using the fact that v° = u° along with the initial
condition (6), the uniqueness is straightforward.
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