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Abstract

We study a class of first order quasilinear equations on bounded domains in the L>°
framework. Using the ”semi Kruzkov entropy-flux pairs”, we define a weak-entropy
solution, state an existence and uniqueness result, and a set preserving result.
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Introduction

In this paper, 2 C R%, d > 1, is a bounded smooth domain. Let us denote by
%) the boundary of €2 and by n the outer normal vector to 9€2. We denote
Qr=(0,7) x Q and Xp = (0,7) x 0. Let us consider this set of equations:

aav;:—kv-(f(t,fB,U))—Fg(t,f,u):OOHQT (1)
u(0, ) = u’ on {2 (2)
Yy = qu on Xr (3)

where the sense of the boundary condition will be precised further. We consider
the following assumption:
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Assumption 1
(i) f and g are two functions defined on [0,T] x Q x R such that

f e (C(0,T] x T x [a,b])", g€ C(0,T] x 0 x [a,b])

(i) f, V- f and g are Lipschitz continuous w.r.t. u, uniformly in (t,x), the
constants of Lipschitz continuity being respectively denoted Ly, Liv.p, Lig)-

(iii) (u®, uP) € L°°(Q;[a, b)) x L>=(Zr; [a, b]),

(w) (V- f+g)(,-a) <0and (V- f+g)(-,b) >0 uniformly in (t,z).

From a mathematical point of view, numerous works have approached or in-
vestigated this field. On unbounded domains, existence and uniqueness of a
solution for quasilinear first order equations domains has been solved in the
pioneering work of Kruzkov [1] who introduced the concept of weak entropy
solutions and related ”Kruzkov entropy-flux pairs”

ssen(u — k)(f(t,2,u) = f(t,2,k)))

When dealing with bounded domains, under some regularity assumptions on
the data, Bardos, Le Roux and Nédélec [2] also proved existence and unique-
ness of a weak entropy solution satisfying a ”Kruzkov entropy-flux pair” for-
mulation including boundary terms; for this, they introduced an appropriate
mathematical boundary condition that must be understood in a particular
way. Nevertheless, when considering L*> data, the lack of regularity prevents
from using the result of Bardos, Le Roux and Nédélec. This difficulty was over-
come, at least in the case of autonomous scalar conservation laws on bounded
domains, by Otto [3,4] who introduced ”boundary entropy-flux pairs”

(H (u, k), Qi (u, k)

(ju—#

satisfying particular properties (to be recalled further), which enable to state
existence and uniqueness of a so-called weak entropy solution and a set pre-
serving result for this solution. Finally, using a lemma proposed by Vovelle
[5], it appears that a formulation using ”semi Kruzkov entropy-flux pairs”

((u - k>i7 Sgn:l:(u - k)(f(t,l’, u) - f(t,ZL’, k)))

is equivalent to a formulation based on "boundary entropy-flux pairs”. Here,
the functions u — (u — k) are the so-called "semi Kruzkov entropies” (see
[6,7,5]), defined by

u— kK, if u> K,
(u—k)T = / and (u—k)" =(k—u)".
0, otherwise.

The functions sgn,(u — &)(f(-,-,u) — f(-,-,K)) are the corresponding ”semi
Kruzkov fluxes”, where u — sgn, (u) is the derivative of the function u +— u*



with value 0 at point 0. This "semi Kruzkov entropy-flux pairs” formulation
is very similar to the initial one of Kruzkov, and uses simple algebraic expres-
sions. Now, let us consider the following questions:

B What is the appropriate definition of a weak entropy solution for first or-
der quasilinear equations (i.e. including non-autonomous fluxes and source
terms) on bounded domains with L> data ? Answering this question would
draw a complete parallel with the results of Bardos, Le Roux and Nédélec [2]
and those of Otto [3] and Vovelle [5]: indeed, the analysis of scalar conserva-
tion laws with L> data, initiated by Otto, would be extended to quasilinear
first order equations, studied by Bardos, Le Roux and Nédélec.

B What sufficient conditions lead to a set preserving result ? Indeed, such a
property is crucial when studying some physical problems

Thus, it is the purpose of this paper to give a general framework which is valid
for first order quasilinear equations on bounded domains with > data. Among
the difficulties, we can observe that, when dealing with non autonomous fluxes
and source terms, a formulation with ”boundary entropy-flux pairs” is not pos-
sible anymore. Fortunately, the concept of ”semi Kruzkov entropy-flux pairs”
allows to overcome difficulties. This work is organized as follows:

1. Definition, initial and boundary conditions, set preserving property
2. Existence
3. Uniqueness

Existence and uniqueness theorems are based on techniques that have been
widely used in [1-4]. But we point out the fact that these arguments have
never been gathered with the appropriate definition of a weak entropy solution
in this general framework in order to establish an existence and uniqueness
theorem along with a set preserving result: in fact, we deeply use the results
detailed in [4], up to the following modifications: proofs for existence and
uniqueness are adapted to the "semi Kruzkov entropy-flux pairs”, dealing
with additional terms induced by the source term g and the fact that the flux
f is non-autonomous.



1 Definition, initial / boundary conditions, set preserving property

Definition 1 Let us suppose that Assumption 1 holds. A functionu € L>®(Qr, |a, b))
is said to be a weak entropy solution of problem (1)-(2)-(3) if it satisfies

[ {025 + (st 0@ - f.00) T
Qr

—sgn, (u — k) (V f(tx, k) + g(t, x, u)) } dx dt

+/u — Ox)dx—l—ﬁf]/ — k) o(t,r)dy(r)dt > 0

(Psk)

Vo € D((—00,T) x RY), ¢ >0, Vk: eR

Let us explain the way the boundary / initial conditions are satisfied for this
problem. Interestingly, the concept of "boundary entropy-flux pairs” defined
by Otto is still the key point. Thus, let us recall their definition:

Definition 2 Let (H,Qp)) be in C(R?) x (C'((0,T) x Q x R2))d. The pair
(H,Qp) is said to be a "boundary entropy-fluz pair” (for the flux f) if:

1. for allw € R, s +— H(s,w) is a convex function,
0
2. Yw € R; a562[1“]('7 "y S,IU) = asH(Saw)a.f('7 '78);
s
3. Vw e R, Hw,w) =0, Qin(-,-,w,w) =0, OH(w,w) = 0.

Let us recall the lemma provided by Vovelle [5], which gives the link between
”semi Kruzkov entropy-flux pairs” and "boundary entropy-flux pairs”:

Lemma 3
(1) Let n € CY(R;R) be a convex function such that there exists w € |a, b] with
n(w) =0 and n'(w) = 0. Then n can be uniformly approzimated on [a,b] by
applications of the kind

S 3 a(s — )+ 30 By (s — )
1 1

where o; > 0, 5; >0, k; € [a,b] and K; € [a,b].
(1) Conversely, there exists a sequence of “boundary entropy-fluz pairs which
converges to the "semi Kruzkov entropy-flux pairs” (see Appendiz A).

Lemma 4 (Boundary condition) Letu € L*(Qr) satisfying (Psk). Then,



s—0t+

ess lim /Q[ﬂ (t,r,u(t,r — s n(r), v () - n(r)B(t,r) dy(r) dt >0,

for all "boundary entropy-flux pair” (H,Qys), V3 € L'(Xr), 3> 0 afd)

PROOF. We directly use the proof of Lemma 7.12 in [4], adapted to the
particular case of the ”semi Kruzkov entropy-flux pairs”. Thus, we easily state
that if u € L>(Qr) satisfies (Psk ), then, defining the quantity

ess liI(I)lJr {sgni(u(t, r—sn) —vP(t,r)) (f(t, r,u(t,r —sn))
X

() | ) ) @

exists for all 3 € L1((0,T)xR41), 8> 0 a. e., and all v € L°((0, T) x RI71).
Moreover, we have:

s—0t

ess lim {sgni(u(t, r—sn) —vP(t, r))(f(t, rou(t,r —sn))

—f(t,r, vD(t,T))))} -0 Bt r) dy(r) dt
> —Lig) [ WP () = 0P ()* Blt.r) dy(r) de

Er

for all 3 € L'((0, T)xR%1), 8 > 0 a. e., and all vP € L>®((0,T) xR%1). Then,
taking v” = u”, every "boundary flux” Q| is uniformly approximated by a
linear combination of "semi Kruzkov fluxes” (see Lemma 3), every coefficient
being non-negative, which preserves the inequality and concludes the proof.

Now let us give some comprehensive details on the way the boundary condition
is satisfied:

Remark 5 The boundary condition 4 1s nothing less than the one obtained in
[3,4], up to a generalization to non-autonomous flures and taking account of a
source-term which does not interfere in the boundary condition. It is satisfied,
although working only with the "semi Kruzkov entropy-flux pairs” formula-
tion (a “boundary entropy-flux pairs” formulation is not possible anymore).
However, the way to understand the boundary condition is given in [4,3,5]:
generally speaking, the problem should be overdetermined and the boundary
equality cannot be required to be assumed at each point of the boundary, even
if the solution is a regular function. But, with additional assumptions, the
more comprehensive "BLN” condition is recovered (see Appendiz A).



To complete the scope of boundary / initial conditions, we recall the following
result, which is proved with the same arguments than in Lemma 7.41 of [4]:

Lemma 6 (Initial condition) Let u € L>®°(Qr) satisfying (Psk). Then,

. 0 o
esstlir(%/‘u(t,x) —u (x)‘ dr =0 (6)
Q
Now we state the following property:

Theorem 7 (Set preserving property) Under Assumption 1 (we recall that,

in particular, u®, uP are functions with values in [a,b]), if a function u satisfies

(Psk), then a <u <b a.e. on Qr.

PROOF. Set k = a in (Psk). Since we have by Assumption 1 (iii) and (iv),
(w’—a)” =0, (uW”—a)” =0,

the boundary / initial terms vanish. Then if we choose a particular test-
function which only depends on time ¢, we obtain:

/ {(u —a) ¢ (t) —sgn_(u —a) (V < f(t,x,a) 4+ g(t, x, u)) gb(t)} dzdt >0
Qr

for all ¢ € D([0,T[), ¢ > 0. Now, using

(V - f(t,z,a) + g(t, x, u)) = (V - f(t,z,a) + g(t, x, a)) +g(t,x,u) — g(t,z,a)

and Assumption 1 (iv), we get

[(w=a) ¢t) = sgn_(u—a) (glt, 2,u) — glt,,0)) o(t) dwdt >0, (7)
QT

for all ¢ € D([0,T]), ¢ > 0. Furthermore, it can be easily proved that the
following property holds:

—Lig(u—a)” <sgn_(u—a)(g(t,z,u) = g(t,2,a)) < Lig(u—a)”

and Inequality (7) implies

/ (u—a)~ (¢/(t) + Ligo(t)) dadt > 0.

Qr



Introducing the function

qo(t) = e Flott /(u —a) (t,x) dx, (8)

Q

the above inequality gives

/qa(t)eﬁ[g]t <¢/(t) + ﬁ[g@(t)) dt > 0.

Denoting v(t) = eLlit¢(t), we infer that for all ¢» € D([0,T[), ¢» > 0,

T

/ Gu(t) W' () da dt > 0, 9)

0

Let 7 < T, =T — 7 and r € D([0,T]) be such that: r is non-increasing,
r=1on|[0,7],r=0on [r+,/2,T[. Choosing

T—t
wit) = T v
in Inequality (9) gives
T T
1 Tt
_— >
7 wr@d / @(t) ——r'(t)dt > 0

Since 7’ < 0, the second term of the left-hand side of the previous inequality is
negative. Since r(t) = 1, Vt € (0,7) and r > 0, the first term is upper bounded
by

1 T
_T /QQ(t) dt
0

which is consequently non-negative. But, ¢, is obviously a non-negative func-
tion, so that ¢, = 0, on (0, 7).Therefore, we deduce from the definition of ¢,
(see Equation (8)) that (v —a)” = 0 on Q x (0,7). Letting 7 — 7', we have
u > a a.e. Similarly, by choosing k = b in (Pgk) (with the "semi Kruzkov
entropy” u +— (u — b)T), we prove u < b a.e.

2 Existence

Existence is obtained from the parabolic approximation (vanishing viscosity
method). We consider the following set of equations:



ey +V (f(t,x,ue)) + g(t,x,u.) = eAu. on Qp (10)
u:(0,-) = ul on () (11)
u=u on Xp (12)

where the following assumption holds:

Assumption 2
(i) uP and u® satisfy compatibility conditions on X N Qr,

(i) u? and u® are smooth functions: for instance, uP? € C*(3r;[a,b]), u? €

C2(%; [a, b]).

Under Assumption 2, the quasilinear parabolic problem (10)-(11)-(12) admits
a unique solution u. € C?(2x]0, T'[). We study the convergence of {u.}. when
e tends to 0. As in [4], we introduce the following tools:

Definition 8 Let i be a sufficient small positive number, and let us define
the following function:

() min (dist(z, 00Q), pn), if z € Q
s(x) =

— min (dist(z, 9Q), i) , if z € R4\ Q
Let & be defined by

E[f] +eR 5
19

e(x) =1—exp (— (a:)), with R = sup |As(z)|.

0<s(z)<p

Notice that s is Lipschitz continuous in R? and smooth on the closure of the
set {z € R, |s(z)| < pu}. Moreover, it can be proved (see [4]):

Proposition 9 &, being defined in Definition 8, for all o € D(R?), p > 0,

Lip / Ve
Q

@ < €/V&Vso + (L +€R) / @ (13)
Q o0

Lemma 10 Let (u,u”,u®) satisfy equations (10)-(11)-(12), the boundary /
initial conditions satisfying Assumption 2 (subscripts are dropped for conve-
nience). Then,

(i) for all p € D(] — oo, T[xRY), for all k € R,

/ {(u — k)iaaf +sgn, (u — k) (f(t,x,u) — f(t, x, k))V(p
Qr

(14)

—sgn,, (u — l{:)(V [tz k) + g(t, x, u))gp +e (u— k)iAgp}fe dx dt



[ = k)*e(0,2) & do

> —2¢ / (u — k)*VpVedr dt — Ly + Re) / (u” = k)Fo(r) dy(r) dt,
Qr Er

(17) the following set preserving property holds:

a<u<b (15)

PROOEF. B Proof of (i): Let us define the functions:

H,(z), if zeR* ;
sy —{ P TEEE ) o) a
—H,(—2),if z € R 5

where the function H, is a classical approximation of the Heaviside graph:
H,(2) = z/mX(04](2) + X[n,+oo[(2). Obviously, the pairs

(qu(z, k),sen’l(z — k) (f(t,x, z) — f(t,x, k)))

mimick the behaviour of the ”semi Kruzkov entropy-flux pairs”. Notice that
IF(-,k) € C'(R) is piecewise convex. Then, multiplying Equation (10) by
sen’l (u — k) ¢ &, with ¢ € D(] — oo, T[xR?), we obtain (after integration by
parts):

/ {[ni(u, k)((;f + sgn’l (u — k)(f(t, z,u) — f(t,z, k))Vgo
Qr

— sgnl (u — k:)(V - f(t,x, k) + g(t, x,u))gp + e Iy (u, l{;)Agp} Edx dt

+ /sgnl(u — k:)(f(t,x,u) — f(t, x, k))g@ V& dx dt
QT

(V2
™
—
<
/N
~

H
—~
N
=z

AS)
N—
<
o
|
[\
ST
=
5
S~—
<
AN
<
o
——
IS
&
QL
~

After some computation, we state that:

[sentl(u— k) (£(t,z,u) = f(t, 2, k)| < Ly TE(u, k) + Ly n



Moreover, using Proposition 9 with I;E(u, k)p instead of ¢, we get:

Ly [ ke [Velde dt

Qr

<e / \Y (I,jf(u,k)gp) V& + (L + Re) /I,f(uD,k:)go(r) dry(r) dt
Qr by

Using these two results in the previous inequality gives:

/ {];—L(u, k)gf + sgn (u — k:)(f(t, x,u) — f(t, z, k:))Vgo
Qr

— sgn’l (u — k)(V [tz k) + g(t, x,u))gp +e Iﬁf(u, l{:)A@}ﬁe dz dt

+ / /sgni v—Fk) dv)gp((),a:) & dx
+ / (t,z,u) — (t,x,k)) -Vu sgnl’ (u — k) ¢ & do dt

> zg/li u, k)VVedr dt — Ly + Re) /F u®, k)p(r) dy(r) dt
Qr
~Lipn [ o|ve
Qr

dx dt

Now, let n tend to 0. The first and second terms of the left-hand side give:

/ {(u — k)i%f + sgn, (u — k)(f(t,:n,u) — f(t,x,k))ch

Qr
— sgny (u — k:)(V f(tx, k) + g(t, x,u))gp +e (u— k:)iAgp}fe dx dt

+/u— ©(0,z) & dx

The last term of the left-hand side tends to 0 by Lemma 2 in [2]%. Finally,
the right-hand side tends to:

—2¢ /(u — k)*VeVedr dt — (L + Re) /(uD — k) o(r) dy(r) dt
Qr Zr

2 This lemma, due to Saks [8], says that if v € C'(Q), then
lim/\Vv\ Xn =0
n—0
Q
Xn being the characteristic function of the set {z € Q; |v(z)| < n}.

10



and the proof is concluded.

B Proof of (it): Taking into account the properties of f and g (see Assumption

1) and u?, 40 (see Assumption 2), we choose in the first inequality stated in

this lemma (see (7)) the particular value of k, namely k = a, with a test-
function which only depends on time ¢t. Thus, we obtain

[ —ay® =0
Qr

for all ¢ € D(] — 00, T|), ¢ > 0. Then, similarly to the proof of Theorem 7,
we obtain that u. > a a.e. In the same way, we prove that u. < b a.e.

Now we propose the following L!-stability result:

Lemma 11 Let (uy,u? u?), (ug, ul, ul), satisfy equations (10)-(11)-(12), the
corresponding boundary / initial conditions satisfying Assumption 2. Then,
Ly denoting the constant Lipschitz continuity w.r.t. u of g, for allt € (0,T),

/‘ul — us(t )fadm<{/‘u1 uy

& dx + (Lip + Re) / ‘ul — Uy ’} L (16)

PROOF. Let us denote w = uy—ug, w? = uf —uf w® = ud—ul. Multiplying

the equation

ow
e +V. (f(t,x,ul) — f(t,x,UQ)) + (g(t,x,ul) — g(t,x,uz)) —ecAw =0
t
by s’ (w)€., where @s5(2) = (2% + 62)1/2, and integrating over (0,t) x €2, we
obtain

/905 ) & diﬂ—/% ) & dw

— f(7,,u9)) (95" (w) Vo & + o5/ (w) VE)da d

- f(7—7 z, ul)
Q
) —g(7, 907162))905/(20)55 dx dr

g(Tvxvul

+
o O
2

+ €

(
(
J vl eswe + (es(w)) V(&) dr ar =0

S—_

Now we study the behaviour of each term w.r.t : using the uniform Lipschitz
continuity of f, Young’s inequality and the fact that z%¢;”(z) = 226%(2% +

11



62)73/2 < §, we get

—(f(T xyup) — f(r, @ u2)> Vw @s"(w fg—l—E‘Vw’ ws" (w)E:
4 “i, Lfy o
> { =Lyl Vol + <[ vol'} o (w)s, > il

Moreover, observing that |z|ps'(2) < ¢s(z), we obtain

—(f(ﬂiv,ul) - f(ﬂ%uz))%’(w) V& > —Lip [wl s’ (w)] [V
—Lip) @s(w)|VE,|

Following the same idea, recalling that £}, denotes the constant of Lipschitz
continuity of g, we get

(g(r. 2 w) — g(r.2,u) )ps' (W) > —Lig) |w] 5" (w)] & = —Lig) ps(w)e

Finally, using the previous inequalities, we state that

/@5 fsdx—/w )& da
E[f”/fed:c— // 5(w)| Ve Ndo dr

—c[g]//% §€dxd7'+5//v ps(w)) V() dr dr <0

and therefore, taking ¢ = ps(w) in Inequality (13) gives

t
/% ssdx</go5 aedw.c[g//% Jé. du dr
0
t

Lo T
+ (L) + Re) //gpg Ydx dT + e /fgd:v
Q

0

Now let § tend to 0. We get

/ w(t, e do

t t
§/|wo|fa dx + (L +R5)//|wD|d:r d7‘+£[g]//|w|f6 dx dr
0 0 Q 0 Q

t
</]w0\§€ dz + (L7 + Re) /\ D|dz dT+£[g]//]w|£€ dz dr
0 Q

X7

12



Applying Gronwall’s lemma concludes the proof.

Lemma 12 Let (u,u”,u°) satisfy equations (10)-(11)-(12), the correspond-
ing boundary / initial condztzons satisfying Assumptwn 2. We suppose further-
more that uP has a smooth extension to Qr, denoted uP. Then, there exists a
constant \ which only depends on ||u°||q, ||[u®||ls,, T, Q, f and g such that

tes(l(l)% {’?j ‘+’Vu ‘} <A (17)

Here, we used the notation
el = [ aa]+ (9] 4 [u

o], —Sgp{!AuDHa“D e+l
T

+/!V2 | v+ [+ (9 5+ 7]

ot?

PROOF. In this proof, we will say that a constant ”"does not depend on &”
if it only depends on ||u°||q, [|[@”||s,, T, 2, f and g. Moreover, for the sake of
simplicity, @” will be identified to u”. The proof is organized in two steps:

ou
B Step 1: Boundedness of ‘—(t, )’
Iz

Let us still denote u? the smooth extension of u” onto Q. We introduce

v=u—u>,
0*uP of ouP of
€= o2 + V- %(77u)ﬁ + V- at(?a”))
dg ouP  dg ouP
Fout T T ey
so that we easily get
0*v 0f 87} 89 ov ov

13



Multiplying Equation (18) by

(o
2 ot )

where ¢;5(2) = (224 62)"/2, and integrating over (0,t) x 2, we obtain, by using
the property ¢s' (Ov/0t) =0 on Xr:

!@6 (g:(t)) —Q/S% <Z:(O,)> —O/KZaQC(zj’u).V (g:) (3: (%,,(
e o G) [ (3 3)

Further we have

of dv\ v, [dv v\ ,(0v
_&f“%m'v<m>e%¢5<m>+4v<aJ‘¢5<m>
1,0f 2 (ov)® , [Ov L3 0
> —— = — > —
~ 4e 8u<7’w’u)‘ <8t> 7o <8t> — 4e

Thus, letting 6 — 0 in Equation (19) gives

[0l [150) //M+£ [ /15

which obviously implies:
) ouP ) )
[ G < [l [Iz0-) //H+cm!/\ﬂ (20)

Now, let us briefly analyze each term of the right-hand side in the previous
inequality:

D
> Analysis of 8u - Obviously, it is bounded by ¢; = ||u?||s
T"

> Analysis of / ‘ ‘ We obtain from equation (10):

[12000] = [ (10.0) =ty 2t - 2.

14
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ot

(19)



So far, we have

[1=9 (51000 = [ {7000+ 10,0 9]

ﬁvf] /|u |+£[f /|Vu0] <C(1)

where ¢§" only depends on f and ||u®||q. Moreover,

/‘g U < 12| sup (‘g (t,z,8)|, (t,z,s) € Qp X |a, b]) < ch)

where c only depends on ¢ and €. Further, for € bounded (which can be
assumed, for instance ¢ < 1), we get

Q/‘&Auo - aautD(O, )‘ S!‘Auo‘ + || sgf‘agj) <Y

3
where cg

satisfies:

) only depends on [[uq, ||u”||s, and 2. Thus, the analyzed term

/‘ d:c<02

where ¢, only depends on f, g, |[u°||q, [[u”|s, and Q.
t

Analysis of / / le| - Let us recall that, from the definition of e, we get:
0 Q

= {11 0 5 ()

dg ouP dg >‘ ’€A8u}

%('7'/“)? + a(a ot
Now, we have

(1)

t
[ 15 ]< 15
0 Q QT

with, for instance, ) = |u® ||z, Moreover, one has
of ouP of ou” *f ouP
af ouP
+ %(‘, ) Vﬁ

15



Thus, each term can be controlled in the following way:

auD (2)
(7 50) oG <

/
/

02 f ouP t

)u2 VU%< )O/Q/‘Vu‘
t
[N ey 922 <ol
0 O

with, for instance
cz(),?) - nggb ’V ’ sup’ ’ T ||
c§3) — QTslxl[f;b ’8u2‘ ‘
Ly / \V
Qr

Further again,

t

[ 19 (G ), < [ 19 Gl + gt v

00 t
< 01(1,5) + C;(;)G)//’Vu‘
Q0
with, for instance,
of 0 f ouP
o = swp VoS TIQ A= w5 3| sup|——|
Q1 X[a,b] ot Qrxap  OU Or t
Finally, we have also
t
//‘ +’E(77U’)‘+‘5Aﬁ §C3

0

with

b D
g Ou” %9 ou?
o (L[g} Sqlzlf‘ ot HQEEE,b}‘@tHS&p‘A ot ) T

(2)

Taking c3 = max( ()+03 (4)

+cf (5) (M B3 4 [6)

tet eyt 3 ) and using the

16



previous inequalities together gives, we get

t

[ frazes(ie f [w)

0O
c3 being a constant only depending on f, g, Q, T and |[u]|s,.

t
> Analysis ofﬁ[g]//‘g:‘ - We have:
0O

ouP
=L 1 — QT
4 (o] max( ,sgngp‘ 5 ‘ 2] )

Thus, recalling Inequality (20) along with the previous results, we obtain

/‘?Z(t,-)‘ x<c5(1+//]Vu7'x\dxdT+//‘ dwdT)( 1)
Q

by taking, for instance, c; = Z ¢; which does not depend on €.
i=1

B Step 2: Boundedness of/ ‘Vu(t, )’

Let us state a similar inequality for Vu(t,-). This property is obtained using
a three-step method:

e Step 2-1: Recalling that v = u — v and denoting

hy = %Lt + V- (f(t,z,uP)) + g(t, 2, uP) — eAu” (22)

we have

g: + V- (f(t,r,u) — f(t,x,uD)) +g(t,z,u) — g(t,x,uD) —eAv = —hy(23)

We multiply Equation (23) by ¢s'(v) 5, where € D(R), 8 > 0, depends
only on the space variable and ¢;(2) = (2% + 02)Y/2 — §.. After integration
over (0,t) x Q, partial integration and using the fact that

s’ (v) =0, @s(v) =0, Vepsv) - n=0

17



on Y, we obtain

[ estvlt. ) 8-

We let § — 0 and thus

/rv )| 8- /\v w—a//wrw

t

_//sgn(u —uP) (f(r,z,u) — f(r,2,uP))Vp

sgn(u —u”) (g(,z,u) — g(r,z,u"))p

//sgnu—u ) hy B
0

8(z) = 4 (f))

+

o _
o O

/\

Now we choose

(24)

where s(x) is defined as before, p is a strictly positive number and v € D(R)

is a fixed non-negative function such that
7(0) =0, ~7(o)=1, foroc > 1.

Let us study the behaviour w.r.t. p of each term:
¢

> Behaviour w.r.t. p of//sgn(u— uP) (f(t,z,u) — f(t,z,u?))Vp:
0 Q

Obviously, one has

Ve =+ (S(;)> ;Vs(x)

18



and

Vs(z) =0, onQ\K,
with K, = {z € Q, dist(z,0Q) < p}. Thus, each point z € K, (for p
small enough) can be described as = r(z) — s(z) n(r), where r(x) is the
nearest boundary point to x, and n(r) is the outer vector to 92 at point
r(z). Let us notice that Vs(z) = —n(r), if + € K. From the previous
observations, we deduce the following equatlity (for the sake of simplicity,
F(u,uP)(r,2) denotes the value of the function

Sgn(“ - UD) (f(v '>u) - f(7 '7uD))

at point (7,x) € Qr):

t w/p
=~ [ [ [ Fwu?)rr = ap n(0) 7' (0) n(r) dy(r) dor dr
0 0 80
w/p
= /7 (//F u, u” —op n(r)) n(r) dy(r) dT) do
0 0 40

since F'(u,u”) =0 on %,

¢
> Behaviour w.r.t. p 0f//|v| AB:
0 Q

19



For the particular choice of 3, we have:

i 11 (1) )

f 2 2
- (9) %)

Moreover, if x € K, then

of n(r), so that

L ()£ (50 -3 (- ()

and, as a consequence,
1 1
=" <S(x>> + =9 (S(x)> As(z), on K,
A=< P P P P
0, elsewhere

Thus, since v(7,7(z)) = 0 (r(z) being a boundary point) and using the
above expression of A, we have

lo(r, ) = v(r,r(x))| AB

/
) 0/ K/ \v<7,x>—v<w<w>>!<7” <<~r>> Ly (<f’f>> Asu«))

p )P p p

Let us focus on the first right-hand side of the previous equality:

[]
0 0 00

B/p

[{]
M//pm () (j/ ‘U nroopn) —omn| dT) v

1/ S 1
‘U(T,T —sn(r)) —v(r, 7“)‘ 0% (p) e dvy(r) ds dr

‘v T, " —0p n(r)) — (T, T)‘

7' (o) dy(r) do dr

o
0 900 p

20



Now let us focus on the second right-hand side: since |[As| <R on K,,,

| / [ lotr.) = virr@y| 5 (S@)) As(x) d dr |

P

SR// ‘U(T,T’—S?’L(’F))—U(T,T’)‘; o4 <Z> ‘ dy(r) ds dr
Ot(zt/ig
<R[ [ [|otr=opn@) = virn)| o (o) &) do dr
0 0 60
nlp Lo lu(rr—opn(r)) —o(r,r
:Rp/cry'(a) (//‘( pa(p>> ( )‘dv(r)dT)da.
0 0 60

Letting p — 0 (notice that the second right-hand side tends to 0) gives

hm//HAﬁz/ (//vmr )‘dy()ch-)da

0 9Q

:—//‘VUTT’ ‘dv()d

0 00

As a consequence, Inequality (24) becomes

/|v(t,x)| dx —|—€/ ’VU(T, r) - n(r)‘ d(r) dr
Q 59

§/|U(O,x)| dx+c[g]0/t9/|u(7,x)| dr dx+0/t§[|h1(r,x)| dr da (25)

Q

e Step 2-2: Now, let us denote

Then we have

5 + V. ((,M(t,x,u) zz> —eAz; = —hy

with

o _ Pu” o (Of Ou? (9of
hy _8xi8t+v <au(t,x,u) oz +V axi(t,:z;,u)

_|_

21



Multiplying the above equation by d¢s/0&(2), with ¢s(&) = (€| + 02)Y/2,
adding the terms (i = 1,d), we have, using the usual Einstein summation

convention (i.e. whenever an index appears twice in one expression, the
summation over this index is performed):

t

[ [0 fune foe
[[5%
N I
/t/ ( > (?9(25 (z) dx dr
0 Q

// g | [ 2

.

Due to the estimate

822' 62¢5 azk 8f] 62¢5 8zk
3 z (5 u) 2 (2)=—

52 ,  Of; 0z;
_ (|Z|2+52)3/2[ elVal? — =2 u) z axﬂ
1,0 2 52|z |2 Lip o
A l(a?“)‘ 2 ’ |2 3/2 Z - L] )
4e 1 Ou (|2]% + 02) 4e
we obtain for § — 0
t
Q Q 00
: 3f s g5
+l ) 7 : - v Zi
1m§"i% o En "5 g, ) g )

Due to z = 0 on X7, we have on X
z=Vv=(Vv-n)n, Av=D?(nn)+AsVv-n

where D?v is the bilinear form of the second differential of v. Therefore, the
integrand can be rewritten as

af 8¢5 a¢5
%('7'7u>‘nzj aé()_ eV - nag()
Oy P e o
— au(, L, u) - n (Vol? 1 02)172 —eDv | n, (V|2 + 62)1/2

_(Of e Vov-n
= (&L(".’u) -Vv—e¢eD v(n,n)) Vol + 07172
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Moreover,

V- (f(t,x,u) — f(t,x,uD))
— (V) — (V- Dt a?)+ L vu— 9 gyn

ou
= (V- f)lt,z,u) — (V- f)t,z,uP) + ==(t,z,u) - Vv

— fgi(t,x,ul)) — gi(t,x,u)> -VuP.

Thus, for (¢,7) € X7, one has (we recall that u = u”):

(itaa) = St o,

and we obtain

gi(t,x,u)'Vv = V-(f(t,z,u) - f(t,x,uD>)—{(v.f)(t,x,u)—(v-f)(t,x,uD)}.

Since 2o = 0 on Yr, we have for (¢,x) € Xp

ot
05

(I;x,u) ‘Nz 5%, (2) —eVz-n {;?j (2)
v

- <8t v <f(t’$’u) B f<t7$qu)) —eAv+eAsVu - n) Vu-n

(Vo +32)17
Vo -
AT ) = V- ) o

of
ou

v-n

(Vo + 82)172

Vv -n
—_ . — . D - b
V- flt,zu) =V - f(t,z,u”) + g(t,x,u) — g(t,z,u )}(|VU|2—|—52)1/2
Vov-n

Vo2 + 62)172

= (—hy +eAsVv-n)

—g(t,z,u) — g(t,a:,uD)}(

Since (t,z) € X7, we obtain (u = uP):

of Dps 95

Ju ‘Nz, a—fj(z)—ev,zi-n o, (2) = (—h1 +€AsVuv - n)

Vv -n
(VoF+ )17

(t,z,u)

Putting this in the last inequality gives:

/‘Z(t,)‘ < /‘z((),-)‘—i—/t/|h2|+/t/{‘h1‘+5R‘Vv-n‘}

Q 0 002
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which, together with Inequality (25) (stated at step 2-1) implies

/HVMuN+R@@)H§/HvU +R[ +//Mﬂ+//bl

Q Q 0 902

and, as a consequence,

/{\vu(t, )|+ Rlu(t, )|} < /{\Vu O+ RJuP(t, )|}

) —I—/ ’Vv +R’ ’}
+//Mﬂ+i£ml (26)

e Step 2-3: Let us analyse each term of the Inequality (26).
> Analysis of/ {‘VUD(t, )’ + R‘uD(t, )’} - We easily state that
Q

(] + =) <= (s foue] e ) 7
Q

> Analysis of/ {‘VU(O, )‘ + R‘U(O, )‘} - Clearly, one has:
0

/{\vv(o,-)\+nv<o,-)\}

{ Vuo‘ + ’VUD(O, )‘ +R (‘uol + ’uD(O, )) ‘}

( VUO‘ + R‘uOD + (Sup ’VUD‘ + R sup ‘uDD =y
Qr Qr

D

j/‘hl’ :/t/\aut+v'<f(t ,u”)) + g(t,z,u”) — cAu”)|
0 Q 0 Q

a D
§<sup L+AuD‘+ sup |g|> |Q|T—|—//V f(t, x,u”
Qr ot Qr x[a,b]
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of

Since V- (f(t,z,u”)) = V- f(t.2,u”) + =

(t, z,u”)VuP, we have

t

[ [iml < e

0 Q

_ ouP
with cg = (sup {‘8‘ + ‘AUD‘ + E[f]’VuD‘} sup \g +V- f\) 1 T.
Qr t Qrx[a,b

> Analysis of / / |hs| - First, let us develop the expression of hy:

(@) 82uD ] g 8uD 827f auD
hs’ = vy ] +V au(t,al:,u) oz, +8 22(75 z,u) Vu o
8f ou of o°f
(9u<t z,u) V oz, +V. o, (t,x,u) &Uz 8u(t z,u) Vu
dg dg ou ouP
—i—a—xi(t,x,u) —|—%(t,x,u) s —eA o

From this, we get:

t

[ [z [ [9 <o ] [ 1o

0 Q Q

with the following constants

cé”z( sup ‘V f‘ sup‘Vu ‘—l— sup ‘V f’ sup ’Vg‘) Q| T

Q1 x[a,b] Q1 x[a,b] Q1 x[a,b]
o [ [Vl 4 [ [9u?),
Qr Qr
P = sup ‘8 2‘ sup‘VuD‘—i-E sup ‘V af’,
Qrx[ab] OU Qrxab]

Co = max (cgl), ch)) .

To conclude Step 2, we gather Inequality (26) with all the previous bounds:

/{‘Vu(t,')‘ + Rlu(t, )|} < e (1 +0/tg/’vu])

Q

9
where ¢jg = Z ¢; does not depend on €.
i=6
Finally, since u is a function with values in [a, b], from the above inequal-
ity, we infer that there exists c¢;; which does not depend on e such that
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/\vu | <en ( +/t/]vu] dr dg;) (27)

Now, we gather results obtained in Steps 1 and 2: using Inequalities (21) and
(27) gives

Q/{’??ZL )| + [ Vult, \} < o1 <1+0/t9/{)g;"+\w’}) (28)

where ¢15 (= ¢5+ ¢q1, for instance) does not depend on e. Applying Gronwall’s
lemma concludes the proof of Lemma 12.

Theorem 13 (Existence) Let us suppose that Assumption 1 holds. Let u.
be the unique solution of Equations (10)-(11)-(12) corresponding to initial /

0

boundary conditions (u2,u?) satisfying Assumption 2 and let

hr% uP =uP in LY(Z7), lir% ul =" in LY(Q)

where uP? € L>*(Xr;[a,b]) and u® € L>®(;[a,b]). Then, the sequence {u.}.
converges to some function u € L>(Qr;[a,b]) in C°([0,T], L' (). Moreover
u is a weak entroppy solution of problem (1)-(2)-(3).

PROOF. Before entering into technical details, let us give the sketch of this
proof. Our goal is to let € tend to 0. Nevertheless we cannot apply estimates
stated in Lemma 12 on u. because u”, u? satisfy compatibility conditions but
do not necessarily have an extension over Qp with sufficient regularity. Thus,
we introduce, by means of construction, (ugh, ugh) which both satisty com-
patibility conditions and have an extension over Q, with sufficient regularity.

Moreover, (u?, u2,) are uniformly ”close” to (u?.u%) (as h — 0, uniforml
) e,hy Ye,h ’

g €
w.r.t. €), which implies that u. is ”close” to u. (in a sense which will be
precised further). Then, we apply Arzela-Ascoli theorem on the sequence {u.}
in order to prove that it is relatively compact in C°([0,T]; L'(Q2)). Of course,
we have to verify that the sequence satisfies the hypotheses of the theorem
(equicontinuity and pointwise relative compactness): for this, we use the prop-

erties of u.; and the fact that u. is "close” to u. .
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In order to use Lemma 12, we need some extension of u” and u? to Q, with
sufficient regularity. Let us define the function u?? by

ul Ot r +sn(r)) =uP(t,r), te(0,T), redf, |s|<min(t0)
uP0(t, r) = ud(z), —§ < t < min(dist(z, 09),d), z € Q

uP0(t,x) = 0, elsewhere.

Moreover, we mollify the above function (with a usual mollifier) which provides
regularity on @

uzy (t,x) = / w0t &) ot — ',z — ') dt’ da'

Rd+1

Now we denote by u?, (resp. u? ) the restriction of uZ;’ to Sy (resp. {0} x Q).
Let u.p be the solution of Equations (10)-(11)-(12) corresponding to the
boundary and initial conditions u, and u?,. On one hand, the uniform bound-
edness of u?, u? implies the uniform boundedness of u?,, u?;, which provides
(see Inequality (15) of Lemma 10) the uniform boundedness of u., u. . Obvi-
ously, the following (strong) convergences hold:

. D _ . D 71 L0 0 a7l
}Llir[l)ue,h_ue in L'(Xr), }lg%ug’h—us in L'(Q)

uniformly w.r.t. . This and Inequality (16) (see Lemma 11) imply

limu.y = u. in CO([0, 7], L}(92)),

uniformly w.r.t. . On the other hand, it follows from the boundedness of
uP € LY(Z7) and w? € L1(Q) that

|

For fixed h > 0, it follows from Inequality (17) that the sequences

Oue
{ gl;h}v {vua,h}

are bounded in C°([0, 7], L*(€2)). Now we propose to state that {u.}. is pre-
compact in C°([0,T], L}(€)) with the Arzela-Ascoli theorem:

D

U p, 0

C
ue,h ‘

< —.
Q — h2

o S |
Shlley = p3’

(1) Equicontinuity of {u.}.: Let @ > 0. There exists some h > 0 such that

g

uen(t, ) = ue(t, )| do < a/2, V€ [0,T], Ve >0
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and, from the uniform boundedness of du. 5 /0t, there exists 6 > 0 such that

5/\8”” )| dw < a/2, Vte[0,T), Ve >0 (29)

Thus, for all € > 0 and all ¢, t5 € [0,7] such that |t; — t5] <, we have

Ue h(tly ) — Ug h(t27 )’

ou
et ) — ue(ti, )] + ‘tl—tQ sup /‘ Sh (g )
i=1¢ te(ts t]

Thus, the sequence u. is equicontinuous in C°([0, 7], L'(Q)).

(17) Pointwise relative compactness of {u.}.:
For this, we use the Kolmogorov-Fréchet-Weil theorem:

> Since {u.} is uniformly bounded in L>(Qr), {u(t,-)} is also bounded in
LY(Q) (uniformly w.r.t. ¢ € [0, 7] and ).

> Let n > 0. Let us consider K, C , defined by K, = {x € 2, dist(x,0) > n}.
Obviously, K, is compact and

sup /

o Q\Kn

ue(t < max(|al, |b]) meas(Q\ K,) = C(a,b,00) n

> Recalling the existence of 4 > 0 such that Inequality (29) holds, we get
uniformly in ¢ € [0,7] and € > 0,

/ we(t, + Ax) — st )| < 2/

QAz Q

en(t ) = ue(t, )| + |Aal / Vuent, )
which is smaller than « for |Az| < and Q% = {z € Q, z + Az € Q}.
Thus, the sequence {u.(t,-)}iejo.1), e>0 is relatively compact in L'(€2).

Thus, by the Arzela-Ascoli theorem, {u. }. is precompact in C°([0, T, L*(2)),
and since C°([0,T], L'(2)) is complete, we infer that, up to a subsequence,

lin(l)uE =u in C°([0,T], L*(Q))

Moreover, u € L®(Qr; [a, b]) (see Inequality (15)). Finally, u is a weak entropy
solution of (1)-(2)-(3): recalling that

hm/’l—f‘s

passing to the limit w.r.t. ¢ in Inequality (14) concludes the proof.

=0, hme/‘V&

7
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3 Uniqueness

Definition 14 For any k € R, let us denote:

(H*Qfy) : R*? — R?
(z,w) — (dist(z, Z(w, k), Figi (-, 2w, k) )

with Z(w, k) = [min(w, k), max(w, k)] and F5) € C(R x Q x R?) defined as:

fCw) = f(-2) for z2<w <k
0 for k<z<w
fCn2) = (k) for w<k<z
fCok) = f(2) for 2 <k <w
0 for w<z<k
fC2) = f(nw) for k<w <2

Fip(y 2w, k) =

Lemma 15 Let u € L*>(Q7) satisfy (Psk); then one has:
B for all o € D((0,T) x RY), for all k € R,

/{\u—kz[ ?;f+sgn(u—k)(f(t,9c,u)—f(t,x,k)) Vo
Qr

—sgn(u— k) (V- f(t,z, k) + g(t,x,u)) gp} dx dt

> ess lir(r)l_ {sgn(u(t, r+sn) — k)(f(t, x,u(t,r + sn))

3

S 0) - plt) o)
B forall f € L'(27), 3> 0 a.e., and for all k € R,

ess lirgli Fipnlt,roult,r 4+ sn),u” k) -n Bt,r) dy(r) dt >0
X

B for all o € D((0,T) x RY), for all k € R,

/{|u—l{:| ?;tp—I—sgn(u—k:)(f(t,x,u)—f(t,x,k)) Vo
Qr
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—sgn(u — k) (V- f(t,z, k) + g(t,z,u)) go} dx dt

> /sgn(k’ — uD)(f(t,r, k) — f(t,r, uD)) -n p(t,r) dy(r) dt (30)
—ess Sl_ig{ sgn(u(t,r 4+ sn) — k) (f(t, rou(t,r+ sn)) — f(t,r, k;)) -n @(t,r) dy(r) dt

PROOF.
> 150 inequality: - Adding the two inequalities defined by (Pgx) with each
"semi Kruzkov entropy-flux pair” gives the following inequality

/{|u—k:| gf—i—sgn(u—k)(f(t,x,u) —f(t,x,k:)) Vo
Qr

—sgn(u — k) (V- f(t,z, k) + g(t,x,u)) gp} dx dt > (31)

for any ¢ € D(Qr). Thus, since u satisfies Inequality (31) along with the ini-
tial condition (6) (see Lemma 6), the result is obtained by following the same
lines of the proof of Lemma 7.12. in [4].

> ond inequality: - The result is easily obtained by Lemma 4 applied to the
particular "boundary fluxes” Fiy (see Definition 14).

> 3rd inequality: - On the one hand, the function 2F4 (-, -, z,w, k) is equal to

sgn(z — w) (f(~,-,z) — f(-,-,w)) — sgn(k — w) (f(-,~,k) — f(‘,-,w))
+ Sgn(z - k) (f(? " Z) - f(7 E k))

On the second hand, terms of the form

ess lim [ sgn(u(t,r—sn)—v?(r)) (f(t, r,u(t,r—sn))—f(t,r, UD(T))) n B(r) dy(r) dt

s—0~
X

exists for all 3 € L'(X7), all vP € L>®(37). Indeed, this term is obtained by
using the proof of Lemma 4: it is sufficient to add the terms of (5) correspond-
ing to each "semi Kruzkov entropy-flux pair”. Therefore, from the second
inequality, each term of the following inequality exists:
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—ess lirgl_ sgn(u(t,r — sn) — k) (f(t, ryu(t,r —sn)) — f(t,r, k‘)) -n B(t,r) dy(r) dt
S

< ess lim sgn( (t,r —sn) — uD(’r))(f(t,r, u(t,r —sn)) — f(t,r, uD(r))) -n B(t,r) dy(r) dt

s—0~
— / sgn(k — u” (t r k) — f(t,r, uD(T))) -n B(t,r) dy(r) dt
and the result is straightforward.
Lemma 16 Let u € L>®(Qr) (resp. v € L®(Qr)) be a solution of (Psk) with

initial and boundary conditions (u®,uP) € L>(Q) x L>(Xr) (resp. (v°,vP) €
L>®(Q) x L*(Xr)); then

- [{la=el G + st (st~ f0:2.) 99

—sgn(u —v) (V- f(t,z,v) =V - f(t,x,u)) [
— sgn(u —v) (g(t, x,u) — g(t, z,v)) ﬂ}dm dt

< / [u(z) —°(2)| B(0,2) da + Ly / uP(r) = oP(r)| B(r) dr(r) dt

Q

for all 3 € D((—o0,T) x R?).

PROOQOF. As it was already pointed out, each term that can be written under
the form

ess lim [ sgn(u(t,r—sn)—v?(r)) (f(t, r,u(t,r—sn))—f(t,r, vD(T))) n B(r) dy(r) dt

s—0~

X

exists for all 3 € L*(X7), all vP € L°°(Xr). Thus, we infer that there exists
g, ; € L>(Xr) such that:

/ 01.1(t,7) Bt,r) dy(r) dt

=ess lim [ sgn(u(t,r —sn) — uD)(f(t,r, u(t,r —sn)) — f(t,r, uD)) -n B dy(r) dt

s—0~
S

/ 015(t,7) Bt,r) dy(r) dt

= ess lim [ sgn(u(t,r — sn) —ov”) (f(t, rou(t,r —sn)) — f(t,r, UD)) -n 3 dy(r) dt

s—0~
S
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/ Oso(t,7) B(t,r) d(r) dt

= ess h%l_ sgn(v(t,r — sn) — UD)(f(t,r,v(t,'r —sn)) — f(t,r, UD)) -n B dy(r) dt

S

/ Oo1 (t,7) B(t,r) dy(r) dt

= ess hI(I)li sgn(v(t,r — sn) — uD)<f(t, r,o(t,r —sn)) — f(t,r, uD)> -n B dy(r) dt

X

After this introduction of notations, we now apply the double variable method,
initiated by Kruzkov [1], to Inequality (30). Let p. € D(R"!) be a symmetric
regularizing sequence. For the sake of simplicity, we denote

and let
Be(p,v) = B (pj;p> pe(p—1p'),

for all p,p’ € (Qr)?, for a given 8 € D((0,T) x RY), 3 > 0. Hold p' € Qr
fixed and replace in Inequality (30) k& by v(p') and B(p) by B.(p,p’). After
integration over Q7 (w.r.t. the variable p’), and using the notation

F(p,u(p),v(®)) = sgn(u(p) —v(@)) (f (@, ulp) = fp,v(p)))),

we easily get:
L+LE+E+I0+E<IE+I7
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ff——;//\u(p)— (p') af p;p/> pe (p—p') dp dpf
Qr Qr
=y [ [ Pt o) 95 (P52 o0 )t
Qr Qr
== [ [ luto) o] e 0=y 5 (25 ) o
Qr Qr ,
If=— / /F(p,U(p),v(p’)) Vp:(p—p) B (p;][))dp dp'
Qr Qr
I5 = //{V-f(p,v(p’))+g(p U(p))}ﬁ<p;p> p-(p—p') dpdp
Qr Q
= [ [ o660 5 ("5 o6 ) @) a
Qr 37
== [ [P oo s () b6 - ) b
Qr Zr

Now changing the role of (u(p),p) and (v(p’),p’), we get similarly

TP S T JE < TS+ T

with
sz—l//]v(p’)—u < ) (p—p)dp dpf
Qr Qr
:—f//va ( ) e(p—p)dp dpf
Qr Qr
J§://ﬂv(p’)— ) a; (»—p) ﬁ<p2 )dpdp
Qr Qr
5= [ [ F o) S0 5 (5 ) do
Qr Qr
5= [ [V 10+ s} 5 (P55 .00 dp
Qr Qr
Jo = / /922 (p—l—’y(p)) pe (p —(p) dy(p') dp
Qr Xr
- [ R w8 (P pp-aw) a0 a

Qr X7

33



Adding the two inequalities, let us remark that I = Ji and I§ = —J5 so that
we have:

207 + (I + J3) + (I + J3) + (I5 + J5) < (Ig + Jg) + (I7 + J7).

We are now ready to pass to the limit on e: for convenience, proofs are omitted.
Let us mention that this method has been widely used in the works related to
hyperbolic problems [1-4] but also parabolic problems [6] or elliptic-hyperbolic
problems (in free boundary problems applied to lubrication theory, [9]). Thus,

2?_{1(1)]15— /‘u—v‘ e hm (I; + J5) =0,

hrn[6 = hm Ja =—3 / sgn(u —v) (f(t,x,u) — f(t,z,v))) Vp,

Qr
lim I¢ /{V f(txv)+g(t,x,u)} G, ii_r}r(l)f——/{v f(ta;u)—l—g(ta:v)}ﬁ
Qr Qr
ll_{% Ig = ;2/ 01,1(t7r) ﬁ(t,?“) d’y(’f‘) dt’ ll_{no ‘]65 = ; /02 2(t,’f‘> ﬁ( ) dIY( ) d
lim /5 = —;/el,g(t,r) B(t,r) dy(r) dt, lim Jg = /921 tr) B(t,r) dy(r) dt.

Finally we obtain:

—/{‘u—v‘ %f + sgn(u—v)(f(t7$7u) —f(t,x,v))Vﬁ

Qr
—sgn(u —v) (V- f(t,z,v) = V- f(t,z,u)) [

— sgn(u — ) (g(t, z,u) — g(t, z,v)) ﬁ}dm dt

/ (=011 (r) + 02,1 () — Ooa(r) + 01.5()) B(r) dry(r) dt

L\D\»—t

for all 5 € D((0,T) x RY), the terms containing 6; ;(¢,7) being defined by:
As in [4], let us introduce the following definition:

Y(t,r) € Xy, diam(f(t,'r’, )n,Z(a, b)) = sup (‘f(t,r, z1)-n— f(t,r 22) nD

z1,22€Z(a,b)

Then, if one discusses the cases, one sees that for all z1, zo, w1, ws € R, the
inequalities

‘ Z 1) sgn(z;— w])(f(t,r, zi)—f(t,r, wj))%‘ < 2diam(f(¢,r,-)n,Z(w,ws))

3,0=1
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hold and using the property

diam(f(t,r, ) - n, Z(uP(t,r),vP(t,7))) < E[f]‘uD(r) —0P(r)|, V(t,r) €I

one easily concludes that
1
5| / (=011 (t,7) + 021 (t,7) = Baa(t,7) + O12(t, 7)) Bt 7) dy(r) dt|

<L / [P (r) =P (r)|B(t, ) dy(r) dt

The initial term is obtained by slightly modifying the proof, with test-functions
in the appropriate space, namely D((—o0,T) x R?).

Theorem 17 (Uniqueness) Under Assumption 1, problem (Psk) admits a
unique weak entropy solution.

PROOF. Considering the integral inequality of Lemma 16 with v” = u”

and v° = u° and a test-function which only depends on time ¢, we get:

/ {‘u - v‘ a'(t) —sgn(u—v) (V- ft,z,0) = V- f(t,z,u)) at)

Qr

—i—(g(t, T, u) — g(t,x,v)) &(t)} de dt >0  (32)

for all & € D(—o0,T'). Then, for an interval [to, 1] C]0, T, we can use in
Inequality (32) the characteristic function of [to, 1], properly mollified, and
pass to the limit on the mollifier parameter:

/‘utl, —v(ty, ) /‘uto, — v(to, )’
—i—//sgn(u—v) (V- f(t,2,u) — V- f(t,2,0)) do dt

to Q

+//sgn(u — ) (g(t,7,v) — g(t,x,u)) dr dt

Now, since we have, for all (t,z) € (0,T) x Q:

sgn(u—v) (V- f(t,x,u) = V- f(t,z,v) + g(t,x,v) — g(t,z,u)) < £[g+v.ﬁ‘u—v‘
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where L4 v.f) is the Lipschitz constant of continuity w.r.t. u of V- f + g, we
obtain:

dt
L(9)

/‘U(tb ) —v(ty, )‘ < /‘U(to, -) — v(to, )’ + Ligyv.g / ‘u(t, ) —v(t, )

From Gronwall’s lemma, we conclude that:

eﬁ[g-&-vf](tl*to)
LY(Q)

jultr, ) = v(ts, )

LI(Q) S ‘u(t()? ) - U(t()? )
As ty tends to 0, and using the fact that v° = u° along with the initial condition
(6), the uniqueness is straightforward.
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Appendix A: Boundary conditions

The boundary condition 4 is nothing less than the one obtained in [3,4], up
to a generalization to non-autonomous fluxes and taking account of a source-
term which does not interfere in the boundary condition. But, with additional
assumptions, the more comprehensive "BLN" condition is recovered:

(¢) If u admits a trace, meaning that there exists ujy, € L>(3p) such that

ess lim / lu(t,7 — s n(r)) —ws,(1,7)] dy(r) dr =0
S

s—07t
then Equation (4) is equivalent to the following equation (see [10,3])

Q[f](? E U|ET7 uD) n Z 0, a.e. on ET'

Considering the particular boundary fluxes

H (z,1) = ((max(z — x,0))* +6%)'”* = 5, (33)
5 sz R) = /ZalHj(A,k) gi(" LA dA (34)

and
H; (2,%) = ((min(r — 2,0 +6%) " = 5, (35)
Qs 2 K) = /Zang(A,k) gi(-,-,A) dA, (36)

letting 6 — 0, we obtain the following uniform convergences:
?j:”],é(" 25 K“) - Sgni(z - /i)(f(a K Z) - f(7 K "{))
Finally taking the boundary flux
Q[f](’ 55 "LU) = sgn+(s - max(w, k))(f(a "y 8) - f(7 ) max(w, k)))
—|—sgn_(s - min(w7 k))(f(7 ) S) - f(a " min(wa k)))

yields the classical condition given by Bardos, Le Roux and Nédélec [2],
that is:

for a.e. (t,r) € Sp, Vk € [min(ujs,, u”), max(us,., u®)],
sgu(uys, (t,7) —u® (6, 7)) (f(t, 7 us, (7)) = f(t,7, k) - n(r) >(07)
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(77) Assume furthermore that for almost every (¢t,r) € Xr, s — f(t,r,s)-n(r)
is a monotone function. Then, Inequality (37) can be simplified in specific
cases: indeed, one has

uw=uP, on ¥b = {(t,?’) € X, gi(tarvu) -n(r) < O}

ou

Thus the boundary condition is ”active” only on a part of the boundary.

and nothing is imposed at X = {(t,r) € X, g(t, rou) -n(r) > O}.
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Appendix B: Applications to some physical problems

Due to the presence of a non-autonomous flux f or source term g, interest in
first order quasilinear equations on bounded domains may be related to many
problems applied to different mathematical and physical areas: oil engineering
(two-phase flows in porous media [11-14]), lubrication theory (two-phase flow
in a thin domain [15], modellig of cavitation phenomena [16]), environmental
sciences (pollutant transport in manure-like fields [17]), chemical engineer-
ing and wastewater treatment (sedimentation of flocculated suspensions in
clarifier-thickener units [18]). It is of course an important feature to analyse
the related phenomena in order to guarantee the well-posedness of the prob-
lem and also qualitative properties of the (possible) solution. Let us introduce
in details some physical problems which fall into the scope of our study:

B Lubrication theory - The flow of two miscible fluids in a thin film has been
derived in [15] and further detailed in [16]. Thus, it allows the modelling of a
multifluid flow in a one dimensional lubricated device as a slider or journal
bearing, for instance. The behaviour of the saturation s of the reference
fluid obeys the following law:

s

W) %2+ 2 (Qut) A(s) + 0 () (o)) =0 (39)
Here, h is the normalized gap between the two surfaces in relative motion,
vg is the shear velocity of the lower surface (the upper one being fixed, for
instance) and @y, (t) is the flow input. Moreover, the auxiliary flux functions
f1 and f5 have a particular shape: f1(0) = 0, fi1(1) = 1 (typically, f; is S-
shaped on [0, 1]) and f2(0) = f2(1) = 0. Equation (38) is completed with
initial and boundary conditions s and s” satisfying, for obvious physical
relevance,

[min (inf s°, inf sD) , max (Sup sY, sup SD> } C [0, 1].
Q ET (9] ET
Using an appropriate change of variables (t,z) — (7,Y), it has been proved

in [16] that the problem can be reduced to a scalar conservation law w.r.t.
the function u defined by u(7(¢),Y (z)) = s(t, ), namely

ou

0 hoY !(y)
— + @(fl(s) + Vo

Qin(T1(7)

with corresponding initial and boundary conditions «° and u” defined by
u(y) = (Y (y)) and uP(r,y) = sP(T(7),Y (y)). Equation (39) is
obviously a scalar conservation law w.r.t. a saturation function u, unlike
Equation (38). Notice that the non-autonomous property of the flux func-
tion is induced by the shear effects (vg # 0) and spatial variations of h

o fa(s)) =0, (39)
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(typically, h has a convergent-divergent profile). Moreover, the boundary
conditions may lack regularity (typically, s? € L°°(X7)), due to fast changes
of the supply regime. For physical relevance, it is an important feature to
state that Equation (38) (or, equivalently, Equation (39)), with the corre-
sponding initial and boundary conditions, admits a (unique) solution, in a
sense that has to be precised, and that it takes its values in the set [0, 1].

B Environmental sciences - The modelling of pollutant transport taking
into account a surface source during rainfall-runoff is described in [17]. It
allows to model some step of the pollution process due to the runoff from
manure spread fields, an important mode of non-point source pollution. Ac-
tually, pollutant release involves two processes, horizontal convection (which
occurs in the bottom region of the source) and vertical convective diffusion
and /or dispersion from the upper region. The pollutant transport mecha-
nisms for the bottom region and upper regions of the source are modelled
as independant processes®. The convective process is described by the fol-
lowing transport equation including a source term

dc L.

where ¢ denotes the concentration of pollutant, U the convective velocity
of the flow, h the depth of flow, i the effective rainfall intensity and .J,
the rate of solute uptake from the source into the flow. Here, for the sake of
simplicity, we suppose that h is constant and U satisfies V-U = 0. However,
this assumption may be relaxed?. Moreover, Equation (40) is completed
with some initial condition ¢® = 0 and an homogeneous boundary condition
c” = 0 on the boundary part for which U -n < 0. The analysis of this set of
equations allows to ensure the well-posedness of the physical problem and
guarantees the boundedness of the concentration (see Remark 77).

Remark 18 Let us conclude this Appendix with the results obtained in the
case of the physical problems that we have introduced.

B Lubrication theory - The generalized lubrication problem (Equation (38)
with its corresponding initial and boundary conditions s°, sP) admits a
unique weak entropy solution s € L>®(Qr) in the following sense:

3 The justification for the uncoupling of these processes lies in the assumption that
the time required to flush out contaminates from the lower region is much shorter
than the time required to flush out contaminates from the upper region

4 The more general case with spatially varying functions h and U (with ¢ = hU
and V - ¢ = 0) can be considered, leading to a conservation law w.r.t. hc. Then, as
i the lubrication problem, the equation can be reduced to a conservation law w.r.t.
a concentration function.
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b (s — K) (Qult) (h(5) ~ H(R) +wh(x) (ols) — ulh))) OF
—sgn_ (s — k) vg h'(z) fo(k) gp} dx dt
+/s - Ox)dx—l—ﬁf]/ ot r) dy(r)dt >0

V¢ € D((—00,T) xR), ¢ 20, Vk € R
Here, Lip = max(Qin) L) +vo max(h) L;
values in the set [0,1].

,]- Moreover, s is a function with

Environmental sciences - The transport problem (Equation (40) with
the corresponding homogeneous initial and boundary conditions &® = 0,
c? = 0) admits a unique weak entropy solution ¢ € L>®(Qr) in the fol-
lowing sense:

[{te-0% + - vty v
Qr
— sgn, (c — k) ;L(zc — ) cp} dx dt

+ Lip /(CD — k) o(t,r)dy(r)dt >0

X7

Vo € D((—o00,T) x R?), ¢ >0, Vk € R

with, for instance, Ly = ||U|pe. The analysis also provides a critical
(worst) value for the concentration, which satisfies 0 < ¢ < Jy/i.
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