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A simple approximation algorithm for WIS
based on the approximability in k-partite graphs

JEROME MONNOT *

Abstract

In this note, simple approximation algorithms for the weighted independent set prob-
lem are presented with a performance ratio depending on A(G). These algorithms do not
improve the best approximation algorithm known so far for this problem but they are of
interest because of their simplicity. Precisely, we show how an optimum weighted indepen-

dent set in bipartite graphs and a p-approximation of WIS in k-partite graphs respectively
allows to obtain a ﬁ—approximation and a ﬁ p-approximation in general graphs. Note

that the ratio ﬁ is the best bound known for the particular cases A(G) = 3 or A(G) = 4.

Keywords: Graph algorithms; approximation algorithms; combinatorial optimization; Col-
oring; Weighted Independent Set; k-partite graphs.

1 Introduction

In the Mazimum Weighted Independent Set problem (WIS, for short), we are given a simple,
connected, undirected and loop-free graph G = (V, E) on n vertices, with maximum degree
A(G). Each vertex v in V has a positive weight w(v) > 0. For a subset S C V of vertices, we
denote by w(S) = > ,cgw(v) the sum of the weights of the elements in S. The goal of WIS
is to find an independent set S (that is a subset of pairwise non-adjacent vertices) in G that
maximizes w(S). When the weight of each vertex is equal to one, this problem is usually called
Mazximum Independent Set problem (IS, for short).

WIS is known to be NP-hard in general graphs when A(G) > 3, but also for certain classes
of graphs (see Garey and Johnson [5]). On the other hand, for a variety of graphs from both
practical and theoretical frameworks, this problem is polynomial, see Gondran and Minoux
[6]. For instance, this is the case of bipartite graphs. Very recently Alekseev and Lozin, [1]
provided a complete characterization of the (p, g)-colorable graphs for which WIS is polynomial.
We recall that a graph is (p, ¢)-colorable if it can be partitioned into at most p cliques and ¢
independent sets.

Because WIS is one of the most important problems in combinatorial optimization from both
a practical and a theoretical point of view, many approximation results have been obtained by
several authors (see, for instance Hochbaum [8], and Demange and Paschos [4]). Very recently,
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Sakai et al. [12] studied the behavior of several greedy strategies on WIS. In particular, they
proved that one of these greedy algorithms is a ﬁ—approximation and that this ratio is tight.
This algorithm selects, as long as the current graph G; is not empty, a vertex v maximizing
% (where dg,(v) is the degree of v in the current graph G;), and then deletes v and its
neighborhood from the current graph.

We shall show how a maximum weight independent set in bipartite graphs and a p-

approximation of WIS in k-partite graphs respectively allows to obtain a ﬁ—approximation

and a ﬁ p-approximation in general graphs. In order to build a k-partite graph from a given
graph, we use the notion of coloring, that is a partition of the vertices into independent sets
(see, Paschos [11], for a survey on the approximability of the coloring problem and de Werra
and Hansen [3], for some relations between independent set and coloring). Hochbaum [8], has
exploited this notion of coloring to obtain a ﬁ—approximation of WIS, but in a complete
different way. The algorithm of [8] is based on a preprocessing due to Nemhauser and Trotter
[10] which provides two disjoint subgraphs, with an independent set is one of them; then it
computes on the other subgraph a coloring from which it selects the best independent set which
is finally added to the first subgraph. Observe that, when A(G) is small (i.e., A(G) = 3,4),
the approximation ratio ﬁ is the best known result until today. More recently, Halldérsson

and Lau [7], proposed an algorithm which consists in partitioning G into at most (%1

subgraphs G; of degree at most 2; then, for each G;, an optimum weighted independent set in
G, is computed and finally, the best of these solutions is returned. The performance ratio of
this algorithm is 1/[(A(G) + 1)/3].

Our algorithm computes, for every k-partite graph built on the coloring, an optimum or an
approximate solution; then it returns the best one as a solution of the initial problem.

2 The Algorithm

Algorithm 1
1 Find a coloring & = (S1, ..., S¢) by using a polynomial-time algorithm A;

2 Forany 1 <i; <...<1p </{do

2.1 Find an approximate independent set S;, . ; of the k-partite graph induced by
Si, U...US;, using an approximation algorithm B;

3 Return S = argmazx{w(S;,,. ;. ): 1 <11 < ... <ip < L};

This algorithm is polynomial as soon as the algorithm B runs in polynomial time (k being
a constant not depending on the instance size). Remark that we cannot modify the step 2.1 by
finding an optimal independent set \S;, . ;, on the k-partite graph induced by S;, U...U.S;, for
each i1 < ... < i since such an algorithm does not run in polynomial time even for k = 3 (see
the characterization of the complexity of WIS in (p, ¢)-colorable graphs in [1]).



Theorem 2.1 If algorithm B is a p-approximation of WIS in k-partite graphs, then Algorithm
1145 an %p—approximatz’on for WIS in general graphs.

Proof. Let I = (G,w) be an instance of WIS and let S* be an optimal solution with value
opt(I) = w(S*). We set Sf = S*NS; for i < ¢ where S = (51,...,S5) is the coloring provided
by algorithm A. Let B be an algorithm which yields a p-approximation of WIS in k-partite
graphs.

For any iy, ... 4, with i > ... > i1, the following key result holds:

k
w(S) = pY w(Sy) (1)
j=1
In order to see that, just remark that S; U...US; is an independent set in the k-partite

graph induced by S;, U...US;, (we denoted by G’, this graph); since S, .. ;, is a p-approximation
on G', we get w(S;,,..i.) > p opt(G') > p(w(S;) +...+ w(S;‘k))

Summing up inequalities (1) for all i1, ..., such that 1 <y < ... < < ¥, we obtain:
—1)...(t—k+1) -1 —k+1) .,

> 4 2

Kk —1)...2 “’(S)—”; D R 2)

Actually, when summing the inequalities (1), the term w(S) appears exactly as many times as
the number of choices of k elements among ¢, and each w(S}) appears as many times as the
number of choices of k — 1 elements among £ — 1. Finally, since >¢_; w(S}) = w(S*), the result
follows. m

Since, we can always assume that each connected component of G is not a K41 (WIS
is polynomial on such a component), we can easily obtain a coloring using at most A(G) colors
by using Brooks theorem, [2] and the constructive proof of Lovasz [9]. Moreover, there exists
an exact algorithm for WIS in bipartite graphs, [1]. Thus, using Theorem 2.1 with k =2,p =1
and the inequality ¢ < A(G), we deduce:

Corollary 2.2 Algorithm 1 is a ﬁ—appmximation for WIS.

This theorem becomes interesting when having some good bounds of the approximability
of WIS in k-partite graphs. For instance, using Corollary 2.2, we obtain the bound p = % for

tripartite graphs; unfortunately, this does not allow to improve the bound ﬁ (since k = 3

and p = %) Thus, one should improve the bound of % in order to improve the best performance

ratio of ﬁ.
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