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Abstract

We present in this paper differential approximation results for min set cover and min

weighted set cover. We first show that the differential approximation ratio of the natural

greedy algorithm for min set cover is bounded below by 1.365/∆ and above by 4/(∆+1),
where ∆ is the maximum set-cardinality in the min set cover-instance. Next we study

another approximation algorithm for min set cover that computes 2-optimal solutions,

i.e., solutions that cannot be improved by removing two sets belonging to them and adding

another set not belonging to them. We prove that the differential approximation ratio of

this second algorithm is bounded below by 2/(∆ + 1) and that this bound is tight. Finally,

we study an approximation algorithm for min weighted set cover and provide a tight

lower bound of 1/∆. Our results identically hold for max hypergraph independent set

in both the standard and the differential approximation paradigms.

1 Introduction

Given a family S = {S1, S2, . . . , Sm} of subsets of a ground set C = {c1, c2, . . . , cn} (we assume
that ∪Si∈SSi = C), a set-cover of C is a sub-family S ′ ⊆ S such that ∪Si∈S′Si = C; min set

cover is the problem of determining a minimum-size set-cover of C. min weighted set cover

consists of considering that sets of S are weighted by positive weights; the objective becomes
then to determine a minimum total-weight cover of C.

Given I = (S, C) and a cover Ŝ, the sub-instance Î of I induced by Ŝ is the instance (Ŝ, C).
For simplicity, we identify in what follows a feasible (resp., optimal) cover S ′ (resp., S∗) by
the set of indices N ′ (resp., N∗) of the sets of the cover, i.e., S ′ = {Si : i ∈ N ′} (resp.,
S∗ = {Si : i ∈ N∗}). So, for the i-th set of S, we use the term i ∈ N ′ (resp., i ∈ N∗) when
dealing with the set itself, and the term Si to denote the set of elements contained in this set.

Definition 1 . Given an instance (S, C) of min set cover, its characteristic graph B =
(L, R; E) is a bipartite graph B with color-classes L = {1, . . . , m}, corresponding to the members
of the family S and R = {c1, . . . , cn}, corresponding to the elements of the ground set C; the
edge-set E of B is defined as E = {(i, cj) : cj ∈ Si}.

A cover S ′ of C is said to be minimal (or minimal for the inclusion) if removal of any set S ∈ S ′

results in a family that is not anymore a cover for C.

∗An extended abstract of Section 2 (the analysis of the greedy algorithm) has been accepted for presentation
in SOFSEM’05.
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Remark 1. Consider an instance (S, C) of min set cover and a minimal set-cover S ′ for it.
Then, for any Si ∈ S ′, there exists cj ∈ C such that Si is the only set in S ′ covering cj . Such
a cj will be called non-redundant with respect to Si ∈ S ′; furthermore, Si itself will be called
non-redundant for S ′. With respect to the characteristic bipartite graph B′ corresponding to the
sub-instance I ′ of I induced by S ′ (it is the subgraph B′ of B induced by L′∪R where L′ = N ′),
for any i ∈ L′, there exists a cj ∈ R such that d(cj) = 1, where, for a vertex v of a graph G, d(v)
denotes the degree of v. In particular, there exists at least |N ′| non-redundant elements, one for
each set.

As previously, we simplify notations considering only one non-redundant element with respect
to Si ∈ S ′. Moreover, we assume that this element is ci for the set i ∈ N ′. Thus, the set of
non-redundant elements with respect to S ′ considered here is C1 = {ci, i ∈ N ′}.

In this paper we study differential approximability for min set cover in both unweighted
and weighted versions. Differential approximability is analyzed using the so-called differential
approximation ratio defined, for an instance I of an NPO problem Π (an optimization problem
is in NPO if its decision version is in NP) and an approximation algorithm A computing a
solution S for Π in I, as δA(I, S) = |ω(I) − mA(I, S)|/|ω(I) − opt(I)|, where ω(I) is the value
of the worst Π-solution for I, mA(I, S) is the value of S and opt(I) is the value of an optimal
Π-solution for I. For an instance I = (S, C) of min set cover, ω(I) = m, the size of the
family S. Obviously, this is the maximum-size cover of I. Finally, standard approximability is
analyzed using the standard approximation ratio defined as mA(I, S)/ opt(I).

Surprisingly enough, differential approximation, although introduced in [3] since 1977, has
not been systematically used until the 90’s ([4, 1, 5, 16] are, to our knowledge, the most notable
uses of it) when a formal framework for it and a more systematic use started to be drawn ([7, 8]).
In general, no apparent links exist between standard and differential approximations in the case
of minimization problems, in the sense that there is no evident transfer of a positive, or negative,
result from one paradigm to the other. Hence a “good” differential approximation result does not
signify anything for the behavior of the approximation algorithm studied when dealing with the
standard framework and vice-versa. As already mentioned, the differential approximation ratio
measures the quality of the computed feasible solution according to both optimal value and the
value of a worst feasible solution. The motivation for this measure is that it gives the position of
the computed feasible solution in the interval between an optimal solution and a worst-case one.
Even if differential approximation ratio is not as popular as the standard one, it is interesting
enough to be investigated for some fundamental problems as min set cover, in order to observe
how they behave under several approximation criteria. Such joint investigations can significantly
contribute to a deeper apprehension of the approximation mechanisms for the problems dealt. A
further motivation for the study of differential approximation is the stability of the differential
approximation ratio under affine transformations of the objective function. This stability often
serves in order to derive differential approximation results for minimization (resp., maximization)
problems by analyzing approximability of their maximization (resp., minimization) equivalents
under affine transformations. We will apply such transformation in Sections 3 and 4.

We first study in this paper the performance of two approximation algorithms for (un-
weighted) min set cover. The first one is the classical greedy algorithm studied, for the
unweighted case and for the standard approximation ratio, in [13, 14] and, more recently, in [15].
For this algorithm, we provide a differential approximation ratio bounded below by 1.365/∆,
when ∆ = maxSi∈S{|Si|} is sufficiently large, and an upper bound of 4/(∆ + 1). The second
approximation algorithm studied for min set cover, called 2_OPT in the sequel, computes a
2-optimal set-cover for C. A set-cover is 2-optimal if and only if it cannot be reduced by remov-
ing two sets from it and by adding one new set to it. We prove that algorithm 2_OPT achieves
differential approximation ratio 2/(∆ + 1). Finally, we deal with min weighted set cover
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and analyze the differential approximation performance of a simple greedy algorithm that starts
from the whole S considering it as solution for min weighted set cover and then it reduces
it by removing the heaviest of the remaining sets of S per time until the cover becomes minimal.
We show that this algorithm achieves differential approximation ratio 1/∆.

Differential approximability for both min set cover and min weighted set cover have
already been studied in [6] and discussed in [11]. The differential approximation ratios provided
there are 1/∆, for the former, and 1/(∆+1), for the latter. Our current work improves (quite sig-
nificantly for the unweighted case), these old results. Note also that an approximation algorithm
for min set cover has been analyzed also in [8] under the assumption m > n, the size of the
ground set C. It has been shown that, under this assumption, min set cover is approximable
within differential approximation ratio 1/2. Under the same assumption (i.e., m > n), analyses
for min weighted set cover and for min set cover have been recently performed in [12] (for
the former) and in [11] (for the latter). In the cost model of [12], any element ci ∈ C has some
non-negative weight wi and the weight w(Sj) of a set Sj is some convex function of the weights
of its elements (for example, maxci∈Sj

{wi}, or minci∈Sj
{wi}, or

∑

ci∈Sj
wi/|Sj |, . . . ). In [11] min

set cover has been proved approximable within differential approximation ratio 289/360.
The following inapproximability result, proved in [8], holds for min set cover and shows that

approximation ratios of the same type as in standard approximation (for example, O(1/ ln∆),
or O(1/ log n)) are extremely unlikely for min set cover in differential approximation. Con-
sequently, differential approximation results for min set cover cannot be trivially achieved by
simply transposing the existing standard approximation results to the differential framework.
This is a further motivation of our work.

Proposition 1. ([8]) If P 6= NP, then inapproximability bounds for standard (and differential)
approximation for max independent set hold as differential inapproximability bounds for min

set cover. Consequently, unless P = NP, min set cover is not differentially approximable
within O(nǫ−(1/2)), for any ǫ > 0.

Observe first that, for max independent set, standard and differential approximation ratios
coincide1. What can be deduced from the proof of Proposition 1 in [8] is that, in differential
paradigm, any approximation ratio for min set cover can be immediately shifted to max

independent set. In particular, any differential ratio, function of ∆, for the former, would
be transformed into a ratio of the same form and function of the maximum degree ∆(G) of the
input graph for the latter. The best known ratio, expressed only in terms of ∆(G), for max

independent set in general graphs, is asymptotically (i.e., when ∆(G) → ∞) bounded above
by k/∆(G), for any k ∈ N ([9]). Consequently, the only one can reasonably hope for differential
approximation ratio of min set cover, is to increase factor 1 in the expression 1/∆.

Another interesting conclusion of our paper is that contrary to what is observed in standard
paradigm, the greedy algorithm does not seem to guarantee the best differential approximation
ratio for min set cover. However, we present its analysis both for its own mathematical interest
and because this algorithm is the most known one for our problem.

In what follows, we deal with non-trivial instances of (unweighted) min set cover. An
instance I is non-trivial for unweighted min set cover if the two following conditions hold
simultaneously:

• no set Si ∈ S is a proper subset of a set Sj ∈ S;

• no element in C is contained in I by only one subset of S (i.e., there is no non-redundant
set for S).

1The worst independent set in a graph is the empty set.
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2 The natural greedy algorithm for min set cover

Let us first note that a lower bound of 1/∆ can be easily proved for the differential ratio of any
algorithm computing a minimal set cover. We analyze in this section the differential approxi-
mation performance of the following very classical greedy algorithm for min set cover, called
SCGREEDY in the sequel, computing a minimal set-covering in O(nm) steps:

1. set N ′′ = ∅;

2. compute Si ∈ argmaxS∈S{|S|};

3. set N ′′ := N ′′ ∪ {i};

4. update I setting: S = S \ {Si}, C = C \ Si and, for any Sj ∈ S, Sj := Sj \ Si;

5. repeat Steps 2 to 4 until C = ∅;

6. range N ′′ in the order sets have been chosen and assume N ′′ = {i1, i2, . . . , ik};

7. Set N ′ = N ′′; for j = k downto 1: if N ′ \ {ij} is a cover then N ′ := N ′ \ {ij};

8. output N ′ the minimal cover computed in Step 7.

Consider N ′′ and the sets S ′′ = {S′
i1

, S′
i2

. . . , S′
ik
}, computed in Step 6 with their residual car-

dinalities, i.e., as they have been chosen during Steps 2 and 4; remark that, so-considered, the
set S ′′ forms a partition on C. On the other hand, consider solution N ′ output by the algorithm
SCGREEDY and remark that family {S′

i : i ∈ N ′} does not necessarily cover C.

c1 c7 c5 c6 c3 c4 c2

1 2 3 4

Figure 1: An example of application of Step 7 of SCGREEDY.

For example, assume some min set cover-instance (S, C) with C = {c1, . . . , c7} and sup-
pose that execution of Steps 2 to 6 has produced a cover N ′′ = {1, 2, 3, 4} (given by the sets
{S1, S2, S3, S4}). Figure 1 illustrates characteristic graph B′, i.e., the subgraph of B = (L, R; E)
(see Definition 1) induced by L′ ∪ R where L′ and R correspond to the sets N ′′ and C, respec-
tively. It is easy to see that N ′′ is not minimal and application of Step 7 of SCGREEDY drops the
set S1 out of N ′′; hence, N ′ = {2, 3, 4}. The residual parts of S2, S3 and S4 are S′

2 = {c2, c6},
S′

3 = {c3} and S′
4 = {c4}, respectively. Note that Step 7 of SCGREEDY is important for the

solution returned in Step 8, since solution N ′′ computed in Step 6 may be a worst solution (see
the previous example) and then, δ(I, N ′′) = (ω(I) − |N ′′|)/(ω(I) − opt(I)) = 0.

Theorem 1. For ∆ sufficiently large, algorithm SCGREEDY achieves differential approximation
ratio 1.365/∆.
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Proof. The proof that follows is quite technical. For legibility, we will first sketch its basic idea.
Fix an optimal sub-family S∗ of S covering C, and denote by N∗ the indices of its sets. Let C ′

1

be the set of the non-redundant elements with respect to N ′ \N∗. Let N∗
1 ⊂ N∗ \N ′ be the set

of the indices of the sets of S∗ that cover C ′
1. Finally, denote by N̄ , the set of the indices that

are neither in N∗, nor in N ′ (in other words, N̄ corresponds to sets of S that are taken neither
in the fixed optimal solution nor in the one constructed by SCGREEDY. The proof can be split into
three consecutive parts.

1. We first prove that the differential approximation ratio of SCGREEDY can be expressed as:

δ
(

I, N ′
)

=
|N∗

1 | + |N∗ \ (N ′ ∪ N∗
1 )| +

∣

∣N̄
∣

∣

|N ′ \ N∗| +
∣

∣N̄
∣

∣

(1)

2. We then prove that the greedy rule of SCGREEDY assures that there exists a set C ′
2 ⊆ C \C ′

1

covered (with respect to S∗) by a set of indices N∗
2 ⊆ N∗ \ N∗

1 , such that |N∗
2 | > |C ′

2|/∆.

3. Suppose that a portion of N∗
2 belongs to N∗ \ N ′ (indeed, in N∗ \ (N ′ ∪ N∗

1 )), the rest
of N∗

2 belonging to N∗ ∩ N ′.

(a) We prove that the former portion contributes to the value of the ratio given in (1).

(b) Dealing with the latter part of N∗
2 , i.e., the one in N∗ ∩ N ′, we show that this part

entails the existence of a subset C ′
3 ⊆ C, distinct from both C ′

1 and C ′
2, the elements

of which are not covered by N∗
1 and are contained in at least |C ′

3|/∆ sets whose indices
are either in N∗ \ N∗

1 , or in N̄ .

4. We finally prove that in both of the cases of Item (3b) these sets of indices contribute to
the value of the ratio.

Figure 2 illustrates Items 1 through 4. Lines between an upper rectangle and a lower ellipsis
show that elements of the corresponding subset of C (C ′

i, i = 1, 2, 3) are contained, or covered,
by sets the indices of which belong to the corresponding thick rectangle.

We are ready now to undertake the formal proof of the theorem. Let C ′
1 = {ci : i ∈ N ′ \N∗}

be a set of non-redundant elements; obviously, by construction |C ′
1| = |N ′ \ N∗|. Moreover,

consider an optimal solution N∗ given by the sets Si, i ∈ N∗ and denote by {S∗
i }, S∗

i ⊆ Si,
i ∈ N∗, an arbitrary partition of C (if an element c is covered by more than one sets Si, i ∈ N∗,
then c is arbitrarily assigned to one of them). Let N∗

1 = {j ∈ N∗ : ∃c ∈ C ′
1, c ∈ S∗

j }. We deduce
N∗

1 ⊆ N∗ \ N ′, since any element c ∈ C ′
1 is non-redundant for N ′ (otherwise, there would exist

at least a c ∈ C ′
1 covered twice: one time by a set in N ′ \ N∗ and one time by a set in N ′ ∩ N∗,

absurd by the construction of C ′
1). Finally, set N̄ = {1, . . . , m} \ (N ′ ∪N∗). Observe that, using

the notations just introduced, we have:
Consider the bipartite graph B′′ = (L′′, R′′; E′′) with L′′ = N∗

1 ∪ (N ′ \ N∗), R′′ = C ′
1 and

(i, cj) ∈ E′′ if and only if cj ∈ S∗
i or i = j. This graph is a partial graph of the characteristic

bipartite graph B′ induced by L′ = N∗
1 ∪ (N ′ \ N∗) and R′ = C ′

1. By construction, B′′ is
not necessarily connected and, furthermore, any of its connected components is of the form of
Figure 3.

For i = 1, . . . ,∆, denote by xi the number of connected components of B′′ corresponding to
sets S∗

l of cardinality i. Then, by construction of this sub-instance, we have:

|N∗
1 | =

∆
∑

i=1

xi (2)

∣

∣N ′ \ N∗
∣

∣ =
∣

∣C ′
1

∣

∣ =
∆

∑

i=1

ixi (3)
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N∗
1

N∗ \ N∗
1

N ′

N∗
2 ∩ (N∗ \ N ′) N∗ ∩ N ′ N ′ \ N∗

N∗
2

N∗

N̄

C ′
1 C ′

2 C ′
3

Figure 2: A rough illustration of the proof of Theorem 1.

Consider z ∈ [1, ∆] such that |C ′
1| = i0|N∗

1 | where i0 = ∆/z. One can easily see that i0 is
the average cardinality of sets in N∗

1 (when we consider the sets S∗
i , i ∈ N∗

1 , that form, by
construction, a partition on C ′

1). Indeed,

i0 =
1

|N∗
1 |

∑

i∈N∗

1

|S∗
i | =

∆
∑

i=1
ixi

∆
∑

i=1
xi

(4)

We have immediately from (1), (2) and (3):

δ
(

I, N ′
)

>
|N∗

1 |
|N ′ \ N∗| =

|N∗
1 |

|C ′
1|

=
1

i0
=

z

∆
(5)

i j k l

N ′ \ N∗ N∗
1

ci cj ck

Figure 3: A connected component of B′′.
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Consider once more the component of Figure 3, suppose that the set S∗
ℓ has cardinality i and

denote it by S∗
ℓ = {cℓ1 , . . . , cℓi

} with ℓ1 < . . . < ℓi. By the greedy rule of SCGREEDY, we deduce
that the sets S′

ℓ1
, . . . , S′

ℓi
(recall that we only consider the residual part of the set) have been

chosen in this order (cf. Steps 6 and 7 of SCGREEDY) and verify |S′
ℓp
| > i + 1− p for p = 1, . . . , i.

Indeed, by the greedy rule, when SCGREEDY takes the set S′
ℓp

in the solution under construction,
the residual part of this set is greater than, or equal to, the residual part of S∗

ℓ that is at least
i+1−p. Consequently, there exist (i−1)+(i−2)+. . .+1 = i(i−1)/2 elements of C not included
in C ′

1. Iterating this observation for any connected component of B′′ we can conclude that there
exists a set C2 ⊆ C, outside set C ′

1 (i.e., C ′
2 ⊆ C \ C ′

1), of size at least |C2| >
∑∆

i=1 i(i − 1)xi/2.
Elements of C2 are obviously covered, with respect to N∗, by sets either from N∗

1 , or from N∗\N∗
1 .

Suppose that sets of N∗
1 of cardinality i (there exist xi such sets), i = 1, . . . ,∆, cover a total

of kixi elements of C2. Therefore, there exists a subset C ′
2 ⊆ C2 of size at least:

∣

∣C ′
2

∣

∣ >

∆
∑

i=1

(

i(i − 1)

2
− ki

)

xi (6)

The elements of C ′
2 are covered in N∗ by sets in N∗ \ N∗

1 . Using (6), one can see that in order
that C ′

2 is covered, a family N∗
2 ⊆ N∗ \ N∗

1 of size

|N∗
2 | >

1

∆

∆
∑

i=1

(

i(i − 1)

2
− ki

)

xi (7)

is needed. Dealing with N∗
2 , suppose that for a y ∈ [0, 1]:

1. (1 − y)|N∗
2 | sets of N∗

2 belong to N∗ \ N ′ (indeed, they belong to N∗ \ (N ′ ∪ N∗
1 )) and

2. y|N∗
2 | sets of N∗

2 belong to N∗ ∩ N ′;

We study the following two cases: y 6 (∆ − 1)/∆ and y > (∆ − 1)/∆.

y 6 (∆ − 1)/∆

This case is equivalent to (1−y) > 1/∆ and then, taking into account that ki 6 ∆−i, we obtain:

(1 − y) |N∗
2 | >

|N∗
2 |

∆
>

∆
∑

i=1

(

i(i − 1)

2∆2
+

i

∆
− 1

)

xi (8)

Using (1), (2), (3), (7) and (8), we deduce:

δ
(

I, N ′
)

>
|N∗

1 | +
|N∗

2 |
∆

|N ′ \ N∗| >

∆
∑

i=1

(

i(i−1)
2∆2 + i

∆

)

xi

∆
∑

i=1
ixi

=
1

∆
+

∆
∑

i=1
f(i)xi

∆
∑

i=1
ixi

(9)

where f(x) = x(x − 1)/(2∆2), with 1 6 x 6 ∆. We will now show the following inequality
(recall that, from (4), i0 =

∑∆
i=1 ixi/

∑∆
i=1 xi):

∆
∑

i=1
f(i)xi

∆
∑

i=1
ixi

>
f (i0)

i0
(10)
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Remark that (10) is equivalent to
∑∆

i=1(f(i)xi)/
∑∆

i=1 xi > f(i0). On the other hand, since f is

convex, we have by Jensen’s theorem
∑∆

i=1 zif(i) > f(
∑∆

i=1 izi), where zi ∈ [0, 1],
∑∆

i=1 zi = 1.

Setting zi = xi/
∑∆

i=1 xi, (10) follows.
Thus, since i0 = ∆/z and we study an asymptotic ratio in ∆, (9) becomes

δ
(

I, N ′
)

>
1

∆
+

1

2∆2

(

∆

z
− 1

)

≈ 1

∆
+

1

2∆z
(11)

Expression (11) is decreasing with z, while (5) is increasing with z. Equality of both ratios is
reached when 2z2 − 2z − 1 = 0, i.e., for z = (2 +

√
12)/4 ≈ 1.365

y > (∆ − 1)/∆

Sub-family N∗
2 ∩ N ′ (of size y|N∗

2 |) is, by hypothesis, common to both N ′ (the cover computed
by SCGREEDY) and N∗. Minimality of N ′ implies that, for any set i ∈ N∗

2 ∩ N ′, there exists at
least one element of C non-redundant with respect to Si. So, there exist at least |C3| = |N∗

2 ∩N ′|
elements of C outside C ′

1 and C2.
Some elements of C3 can be covered by sets in N∗

1 . In any case, for the sets {j1, . . . , jxi
} of N∗

1

of cardinality i with respect to the partition S∗
ℓ , there exist at most (∆ − (i + ki))xi elements

of C3 that can belong to them (so, these elements are covered by the residual set Sjp \ S∗
jp

for
p = 1, . . . , xi). Thus, there exist at least

∣

∣C ′
3

∣

∣ = |C3| −
∆

∑

i=1

(∆ − (i + ki)) xi = y |N∗
2 | −

∆
∑

i=1

(∆ − (i + ki)) xi (12)

elements of C3 not covered by sets in N∗
1 . Since initial instance (S, C) is non-trivial, elements

of C ′
3 are also contained in sets N3 either from N∗ \ N∗

1 , or from N̄ . So, the family N3 has size
at least |C ′

3|/∆. Moreover, using (7), (12) and y 6 1, we get:

|N3| >
y |N∗

2 |
∆

−
∆

∑

i=1

(∆ − (i + ki)) xi

∆
> y

∆
∑

i=1

i(i − 1)

2∆2
xi +

∆
∑

i=1

(

i

∆
− 1

)

xi (13)

We so deduce:

δ
(

I, N ′
)

>
|N∗

1 | +
∣

∣N3 \ N̄
∣

∣ +
∣

∣N̄
∣

∣

|N ′ \ N∗| +
∣

∣N̄
∣

∣

|N̄|>|N̄∩N3|
>

|N∗
1 | + |N3|

|N ′ \ N∗| +
∣

∣N̄ ∩ N3

∣

∣

>
|N∗

1 | + |N3|
|N ′ \ N∗| + |N3|

(14)

Note, furthermore, that function (a + x)/(b + x) is increasing with x, for a 6 b and x > −b.
Therefore, using (2), (3), (13) and y > (∆ − 1)/∆, (14) becomes:

δ
(

I, N ′
)

>

∆
∑

i=1

(

(∆−1)i(i−1)
2∆3 + i

∆

)

xi

∆
∑

i=1

(

i + (∆−1)i(i−1)
2∆3 + i

∆ − 1
)

xi

(15)

Set now f(x) = (∆ − 1)(x(x − 1)/2∆3) + (x/∆). Then, (15) can be expressed as:

δ
(

I, N ′
)

>

∆
∑

i=1
f(i)xi

∆
∑

i=1
(f(i) + i − 1)xi

(16)
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Using the same arguments as previously about the convexity of f , we deduce from (16):

δ
(

I, N ′
)

>
f (i0)

f (i0) + i0 − 1
=

(∆−1)i0(i0−1)
2∆3 + i0

∆

i0 + (∆−1)i0(i0−1)
∆3 + i0

∆ − 1
(17)

Recall that we have fixed i0 = ∆/z. If one assumes that ∆ is arbitrarily large, one can simplify
calculations by replacing i0 − 1 by i0. Then, (17) becomes:

δ
(

I, N ′
)

>

i2
0

2∆2 + i0
∆

i2
0

2∆2 + i0
∆ + i0

>

1
2z2 + 1

z
1

2z2 + 1
z + ∆

z

≈ 1

2z∆
+

1

∆
(18)

Ratio given by (5) is increasing with z, while the one of (18) is decreasing with z. Equality of
both ratios is reached when 2z2 − 2z − 1 = 0, i.e., for z ≈ 1.365.

So, in any of the cases studied above, the differential approximation ratio achieved by
SCGREEDY is greater than, or equal to, 1.365/∆ and the proof of the theorem is now complete.

Proposition 2. There exist min set cover-instances where the differential approximation
ratio of SCGREEDY is 4/(∆ + 2) for any ∆ > 3.

Proof. Assume a fixed t > 1, a ground set C = {cij : i = 1, . . . , t − 1, j = 2, . . . , t, j > i} and
a system S = {S1, . . . , St}, where Si = {cji : j < i} ∪ {cij : j > i}, for i = 1, . . . , t. Denote by
It = (S, C) the instance of min set cover defined on C and S.

Remark that the smallest cover for C includes at least t − 1 sets of S. Indeed, consider a
family S ′ ⊆ S of size less than t − 1. Then, there exists i0 < j0 such that neither Si0 , nor Sj0

belong to S ′. In this case element ci0j0 ∈ C is not covered by N ′. Note finally that, for It, the
maximum size of the subsets of S is ∆ = t− 1. Indeed, for any i = 1, . . . , t, |{cji : j < i}| = i− 1
and |{cij : j < i}| = t − i; so, |Si| = t − 1.

s1
1 s2

1 s1
2 s2

2

s3
1 s3

2 s3
3

a12 a′12 b11
b12 b13 b14 b21

b22 b23 b24 b31
b32 b33 b34

Figure 4: The characteristic graph of instance Î for ∆ = 4.

Fix now an even ∆ and construct the following instance Î = (S, C) for min set cover:

C =

{

aij , a
′
ij : i = 1, . . . ,

∆

2
, j = 1, . . . ,

∆

2
, j > i

}

∪
{

bij : i = 1, . . . ,
∆ + 2

2
, j = 1, . . . ,∆

}

S1
i = {aji : j < i} ∪ {aij : j > i} ∪

{

bji : j = 1, . . . ,
∆ + 2

2

}

i = 1, . . . ,
∆

2

9



S2
i =

{

a′ji : j < i
}

∪
{

a′ij : j > i
}

∪
{

bjk : j = 1, . . . ,
∆ + 2

2
, k = i +

∆

2

}

i = 1, . . . ,
∆

2

S3
i = {bij : j = 1, . . . ,∆} i = 1, . . . ,

∆ + 2

2

Sj =

{

Sj
i : i = 1, . . . ,

∆

2

}

j = 1, 2

S3 =

{

S3
i : i = 1, . . . ,

∆ + 2

2

}

S = S1 ∪ S2 ∪ S3

For example, the following instance Î = (S, C) can be constructed, according to above schema,
with ∆ = 4 (its characteristic graph is illustrated in Figure 4):

C =
{

a12, a
′
12, b11, b12, b13, b14, b21, b22, b23, b24, b31, b32, b33, b34

}

S1
1 = {a12, b11, b21, b31}

S2
1 =

{

a′12, b13, b23, b33

}

S3
1 = {b11, b12, b13, b14}

S1
2 = {a12, b12, b22, b32}

S2
2 =

{

a′12, b14, b24, b34

}

S3
2 = {b21, b22, b23, b24}

S3
3 = {b31, b32, b33, b34}

S1 =
{

S1
1 , S1

2

}

S2 =
{

S2
1 , S2

2

}

S3 =
{

S3
1 , S3

2 , S3
3

}

S =
{

S1
1 , S1

2 , S2
1 , S2

2 , S3
1 , S3

2 , S3
3

}

It is easy to see that, ∀Si ∈ S, |Si| = ∆. Hence, during its first iteration, SCGREEDY can choose
a set in S3. Such a choice does not reduce cardinalities of the remaining sets in this sub-family;
so, during its first (∆ + 2)/2 iterations, SCGREEDY can exclusively choose all sets in S3. Remark
that such choices entail that the surviving instance is the union of two disjoint instances I∆/2

(i.e., instances of type It, as the ones defined at the beginning of this section, with t = ∆/2),
induced by the sub-systems (S1, {aij}) and (S2, {a′ij}). According to what has been discussed
at the beginning of the section, any cover for such instances uses at least (∆/2) − 1 sets. We so
have, for a set-cover N ′ computed by SCGREEDY (remark that N ′ is minimal):

m
(

Î , N ′
)

>
∆ + 2

2
+ 2

(

∆

2
− 1

)

=
3∆

2
− 1 (19)

Furthermore, given that sub-family S1 ∪ S2 is a cover for C, we have:

opt
(

Î
)

= ∆ (20)

ω
(

Î
)

=
3∆

2
+ 1 (21)

Combination of (19), (20) and (21) concludes δ(Î , N ′) = 4/(∆ + 2).
Assume now that ∆ is odd and consider the following instance (S, C) for min set cover:

C =

{

aij : i = 1, . . . ,
∆ − 1

2
, j = 2, . . . ,

∆ − 1

2
, j > i

}
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∪
{

a′ij : i = 1, . . . ,
∆ + 1

2
, j = 2, . . . ,

∆ + 1

2
, j > i

}

∪
{

bij : i = 1, . . . ,
∆ + 1

2
, j ∈ 1, . . . ,∆

}

S1
i = {aji : j < i} ∪ {aij : j > i} ∪

{

bji : j = 1, . . . ,
∆ + 1

2

}

i = 1, . . . ,
∆ − 1

2

S2
i =

{

a′ji : j < i
}

∪ {aij : j > i}

∪
{

bjk : j = 1, . . . ,
∆ + 1

2
, k = i +

∆ − 1

2

}

i = 1, . . . ,
∆ + 1

2

S3
i = {bij : j = 1, . . . ,∆} i = 1, . . . ,

∆ + 1

2

The same arguments conclude an upper bound of 4/(∆ + 1), for odd values of ∆.

3 Local optimality and min set cover

Given a solution N ′ ⊆ {1, . . . , m} of an instance I = (S, C) of min set cover (corresponding
to the family S ′ = {Si : i ∈ N ′}, a solution N ′′ is a feasible 2-improvement of N ′ if there exist
j, k ∈ N ′ and i ∈ {1, . . . , m} such that N ′′ = (N ′ \ {j, k})∪{i} is a feasible solution for min set

cover in I. When i ∈ N ′, the 2-improvement can be viewed as two (or one, if i = j or i = k)
consecutive 1-improvements. A proper 2-improvement is the one for which i ∈ {1, . . . , m} \ N ′.
A set-cover N ′ is 2-optimal for min set cover if no 2-improvement is possible upon it. Remark
that a 2-optimal set cover N ′ is 1-optimal (minimal for the inclusion).

The following algorithm, called 2_OPT in the sequel, polynomially computes 2-local optima
for min set cover:

1. set N ′ = {1, . . . , m};

2. while a 2-improvement of N ′ is possible do it;

3. output the 2-optimal set-cover N ′ computed in Step 2.

Theorem 2. Algorithm 2_OPT achieves differential approximation ratio bounded below by 2/(∆+
1). This bound is tight.

Proof. Fix an optimal solution N∗ for min set cover. Note that, by construction, N ′ and N∗

are minimal for the inclusion. Denote by C ′ the subset of C, the elements of which are not covered
by N ′∩N∗. We can assume C ′ 6= ∅; otherwise, |N ′| = |N∗|. We set: N̂ ′ = {i ∈ N ′ : Si ∩C ′ 6= ∅}
and N̂∗ = {i ∈ N∗ : Si ∩ C ′ 6= ∅}.

Fact 1. Both N̂∗ \ N̂ ′ and N̂ ′ \ N̂∗ cover C ′.

Fact 2. N∗ \ (N∗ ∩ N ′) ⊆ N̂∗ and N ′ \ (N∗ ∩ N ′) ⊆ N̂ ′.

Indeed, if i ∈ N ′ \ (N∗ ∩ N ′) and i /∈ N̂ ′, then algorithm 2_OPT should delete i to N ′, i.e., N ′

would not be minimal. Analogously, if i ∈ N∗ \ (N∗ ∩ N ′) and i /∈ N̂∗, then i should delete
of N∗, i.e., N∗ would not be minimal.

Immediate consequences of Fact 2 are the following equalities:

∣

∣N ′
∣

∣ =
∣

∣

∣
N̂ ′

∣

∣

∣
+

∣

∣N∗ ∩ N ′
∣

∣ (22)

|N∗| =
∣

∣

∣
N̂∗

∣

∣

∣
+

∣

∣N∗ ∩ N ′
∣

∣ (23)
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Transform arbitrarily the sets of the family associated to N̂ ′ \ N̂∗ into a partition of C ′, and
denote by N ′

1 the resulting sets of size 1. Moreover, assume that Ŝ′
i = {ci} for i ∈ N ′

1. Then,
∣

∣N ′
1

∣

∣ 6

∣

∣

∣
N̂∗ \ N̂ ′

∣

∣

∣
(24)

Otherwise, there would exist j, k ∈ N ′
1 and i ∈ N̂∗\N̂ ′ such that Si covers cj and ck. In this case,

algorithm 2_OPT, would have dropped j and k out of N ′ and would have introduced i into N ′.
Using Fact 1 and (24), we get:

∣

∣

∣
N̂ ′ \ N̂∗

∣

∣

∣
6

∣

∣N ′
1

∣

∣ +
|C ′| − |N ′

1|
2

6
∆ + 1

2

∣

∣

∣
N̂∗ \ N̂ ′

∣

∣

∣
(25)

Moreover, we have:

ω(I) = m >
∣

∣N ′
∣

∣ + |N∗| −
∣

∣N ′ ∩ N∗
∣

∣ >

∣

∣

∣
N̂ ′

∣

∣

∣
+

∣

∣

∣
N̂∗

∣

∣

∣
−

∣

∣N ′ ∩ N∗
∣

∣ (26)

Then, using (22), (23), (25) and (26), we get:

δ2_OPT

(

I, N ′
)

=
m − |N ′|
m − |N∗| >

∣

∣

∣
N̂∗

∣

∣

∣

∣

∣

∣
N̂ ′

∣

∣

∣

>

∣

∣

∣
N̂∗ \ N̂ ′

∣

∣

∣

∣

∣

∣
N̂ ′ \ N̂∗

∣

∣

∣

>
2

∆ + 1

For tightness, fix a ∆ ∈ N and consider the following instance of min set cover:

C = {xi, yi : i = 1, . . . ,∆}
S1 = {xi : i = 1, . . . ,∆}
S2 = {yi : i = 1, . . . ,∆}

Si+2 = {xi, yi} i = 1, . . . ,∆ − 1

S∆+2 = {x∆}
S∆+3 = {y∆}

N = {Si : i = 1, . . . ,∆ + 3}
Then, N ′ = {3, . . . ,∆+1} and N∗ = {1, 2}. The approximation ratio achieved by 2_OPT on this
instance is equal to 2/(∆ + 1), and the proof of the theorem is complete.

Remark that the result of Theorem 2, identically applies to max set saving defined as
follows: given a family S = {S1, S2, . . . , Sm} of subsets of a ground set C = {c1, c2, . . . , cn} such
that S is a cover for C, determine the maximum-size sub-family S∗ such that S \ S∗ is a cover
for C.

max set saving is clearly equivalent to min set cover for the differential approximation,
since the objective function of the one is an affine transformation of the objective function
of the other and differential ratio is stable under such transformations ([8]). Moreover, for
max set saving, standard and differential approximation ratios coincide since empty set is a
feasible solution for it. Equivalence of max set saving and min set cover for the differential
approximation implies that if one runs 2_OPT, in order to return N ′, the set {1, . . . , m} \ N ′ is
a solution for max set saving that achieves (standard and differential) approximation ratio
2/(∆ + 1). Hence, the following corollary immediately holds from Theorem 2.

Corollary 1. Algorithm 2_OPT with complementation of its output (with respect to S) approxi-
mately solves max set saving within both standard and differential approximation ratio bounded
below by 2/(∆ + 1). This ratio is tight.
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4 Differential approximation for min weighted set cover

Consider an instance I = (S, C, ~w) of min weighted set cover, where ~w denotes the vector
of the weights on the subsets of S and the following algorithm, denoted by WSC in what follows:

• order sets in S in decreasing weight-order (i.e., w1 > . . . > wm); let N = {1, . . . , m} be the
set of indices in the (so-ordered) S;

• set N ′ = N ;

• for i = 1 to m: if N ′ \ {i} covers C, then set N ′ = N ′ \ {i};

• output N ′.

Proposition 3. Algorithm WSC achieves differential approximation ratio bounded below by 1/∆.
This bound is asymptotically tight.

Proof. We use in what follows notations introduced in Section 2. Observe that N \ N ′ =
N̄ ∪ (N∗ \N ′) and N \N∗ = N̄ ∪ (N ′ \N∗) where we recall that N̄ = N \ (N∗ ∪N ′). Denoting,
for any i ∈ N , by wi the weight of Si, and, for any subset X ⊆ N , by wX the total weight of
the sets with indices in X , i.e., the quantity

∑

i∈X wi, the differential approximation ratio of WSC
becomes

δ
(

I, N ′
)

=
wN\N ′

wN\N∗

(27)

Let Cc = {cj : ∃i ∈ N ′ ∩ N∗, cj ∈ Si} be the set of elements covered by N ′ ∩ N∗ and let
C̄c = C \ Cc be the complement of Cc with respect to C. It is easy to see that both N ′ \ N∗

and N∗ \ N ′ cover C̄c. Obviously, C ′
1 ⊆ C̄c (recall that C ′

1 = {ci : i ∈ N ′ \ N∗} is a set of
non-redundant elements with respect to sets of N ′ \ N∗ and that any element of C ′

1 is covered
by sets in N∗ \ N ′).

Consider the sub-instance of I induced by (N ′ \N∗ ∪N∗ \N ′, C ′
1). Fix an index i ∈ N∗ \N ′

and denote by S∗
i = {ci1 , . . . , cik} the restriction of Si to C ′

1, i.e., S∗
i = Si ∩ C ′

1. Assume that
S∗

i 6= ∅; as it will be understood just below, if this is not the case, then the approximation
ratio of WSC will be even better. Obviously, since sets i1, . . . , ik have been chosen by WSC (i.e.,
{i1, . . . , ik} ⊆ N ′), wij 6 wi and, k 6 ∆, we get:

k
∑

j=1

wij 6 ∆wi (28)

Summing (28) for all i ∈ N∗ \ N ′, we obtain wN ′\N∗ 6 ∆wN∗\N ′ and then, wN\N∗ 6 ∆wN∗\N .
Expression (27) suffices now to conclude the proof of the ratio.

For tightness, fix ∆ ∈ N, w ∈ R
+ and consider the following instance (S, C, ~w) for min

weighted set cover:

C = {1, . . . ,∆}
S0 = C

Si = {i} i = 1, . . . ,∆

S = {S0, S1, . . . , S∆}
w0 = w + 1

wi = w i = 1, . . . ,∆

Application of WSC in the instance above gives: wS̄′ = w + 1, while wS̄∗ = ∆w. Hence the
differential approximation ratio achieved is (w + 1)/w∆→ 1/∆ with w→∞.
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5 Concluding remarks and open problems

As we have already mentioned, Proposition 1 implies that, unless P = NP, min set cover is
not polynomially approximable within differential ratios of O(log−1 n). Consequently, differential
approximation bounds, even trivial, cannot be directly derived from the standard ones. The
results of Theorem 1 and of Proposition 2 exhibit an important gap between lower and upper
bounds for SCGREEDY. It seems very interesting to reduce this gap by improving both of them.

Other interesting questions about differential approximability of min set cover are, for
instance:

• can min set cover be as “well differentially approximable” as max independent set, i.e,
is min set cover differentially approximable within O(log2 n/n) ([10]) or (asymptotically)
within k/∆, ∀k ∈ N ([9])? (recall that standard and differential approximation ratios
coincide for max independent set);

• does there exist for min set cover an upper bound tighter than the one for max inde-

pendent set?

The result of Proposition 3, even if it slightly improves the approximation ratio of [6], is, to
our opinion, far from being optimal for min weighted set cover. It would be interesting to
improve it. Also, questions mentioned above hold for the unweighted case too. Another question
that seem to us very interesting to handle, is the investigation of structural links between min

set cover and min weighted set cover with respect to the differential approximation. Are
these problems approximate equivalent or not?

An instance (S, C) of min set cover can also be seen as a hypergraph H where C is the set
of its vertices and S is the set of its hyper-edges. Then min set cover consists of determining
the smallest set of hyper-edges covering C. The “dual” of this problem is the well-known min

hitting set problem, where, on (S, C), one wishes to determine the smallest subset of C hitting
any set in S. min hitting set and min set cover are approximate equivalent in both standard
and differential paradigms (see, for example, [2]; the former is the same as the latter modulo
the inter-change of the roles of S and C). On the other hand another well-known combinatorial
problem is max hypergraph independent set where given (S, C), one wishes to determine
the largest subset C ′ of C such that no Si ∈ S is a proper subset of C ′. It is easy to see
that for max hypergraph independent set and min hitting set, the objective function
of the one is an affine transformation of the objective function of the other, since a hitting
set is the complement with respect to C of a hypergraph independent set. Consequently, the
differential approximation ratios of these two problems coincide, and coincide also (as we have
seen just above) with the differential approximation ratio of min set cover. Hence, our results
identically apply for max hypergraph independent set and hold in both the standard and
the differential approximation paradigms.

Acknowledgment. The pertinent remarks and suggestions of two anonymous referees are
gratefully acknowledged.
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