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The Labeled perfect matching in bipartite graphs

Jérôme Monnot
∗

July 4, 2005

Abstract

In this paper, we deal with both the complexity and the approximability of the
labeled perfect matching problem in bipartite graphs. Given a simple graph G = (V,E)
with |V | = 2n vertices such that E contains a perfect matching (of size n), together with
a color (or label) function L : E → {c1, . . . , cq}, the labeled perfect matching problem
consists in finding a perfect matching on G that uses a minimum or a maximum number
of colors.

Keywords: labeled matching; bipartite graphs; NP-complete; approximate algorithms.

1 Introduction

Let Π be a NPO problem accepting simple graphs G = (V, E) as instances, edge-subsets
E′ ⊆ E verifying a given polynomial-time decidable property Pred as solutions, and the
solutions cardinality as objective function; the labeled problem associated to Π, denoted
by Labeled Π, seeks, given an instance I = (G, L) where G = (V, E) is a simple graph
and L is a mapping from E to {c1, . . . , cq}, in finding a subset E′ verifying Pred that
optimizes the size of the set L(E′) = {L(e) : e ∈ E′}. Note that two versions of Labeled

Π may be considered according to the optimization goal: Labeled Min Π that consists
in minimizing |L(E′)| and Labeled Max Π that consists in maximizing |L(E′)|. Roughly
speaking, the mapping L corresponds to assigning a color (or a label) to each edge and the
goal of Labeled Min Π (resp., Max Π) is to find an edge subset using the fewest (resp., the
most) number of colors. If a given NPO problem Π is NP-hard, then the associated labeled
problem Labeled Π is clearly NP-hard (consider a distinct color per edge). For instance,
the Labeled Longest path problem or the Labeled maximum induced matching problem
are both NP-hard. Moreover, if the decision problem associated to Π is NP-complete, (the
decision problem aims at deciding if a graph G contains an edge subset verifying Pred),
then Labeled Min Π can not be approximated within performance ratio better than 2−ε
for all ε > 0 unless P=NP, even if the graph is complete. Indeed, if we color the edges from
G = (V, E) with a lonely color and then we complete the graph, adding a new color per
edge, then it is NP-complete to decide between opt(I) = 1 and opt(I) ≥ 2, where opt(I) is
the value of an optimal solution. Notably, it is the case of the Labeled traveling salesman
problem or the Labeled minimum partition problem into paths of length k for any k ≥ 2.

Thus, labeled problems have been mainly studied, from a complexity and an approx-
imability point of view, when Π is polynomial, [5, 6, 7, 10, 16, 20, 21]. For example,
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the first labeled problem introduced in the literature is the Labeled minimum spanning
tree problem, which has several applications in communication network design. This prob-
lem is NP-hard and many complexity and approximability results have been proposed in
[5, 7, 10, 16, 20, 21]. On the other hand, the Labeled maximum spanning tree problem
has been shown polynomial in [5]. Very recently, the Labeled path and the Labeled

cycle problems have been studied in [6]; in particular, the authors prove that the Labeled

minimum path problem is NP-hard and give some exact and approximation algorithms.
Note that the NP-completeness also appears in [9] since the Labeled path problem is a
special case of the red-blue set cover problem.

In this paper, we go thoroughly into the investigation of the complexity and the ap-
proximability of labeled problems, with the analysis of the matching problem in bipartite
graphs. The maximum matching problem is one of the most known combinatorial optimiza-
tion problem and arises in several applications such as images analysis, artificial intelligence
or scheduling. It turns out that a problem very closed to it has been studied in the liter-
ature, which is called in [14] the restricted perfect matching problem. This latter aims at
determining, given a graph G = (V, E), a partition E1, . . . , Ek of E and k positive integers
r1, . . . , rk, wether there exists a perfect matching M on G satisfying for all j = 1, . . . , k the
restrictions |M ∩ Ej | ≤ rj . This problem has some relationship with the timetable prob-
lem, since a solution may be seen as a matching between classes and teachers that satisfies
additional restrictions (for instance, no more that r labs at the same time). The restricted
perfect matching problem is proved to be NP-complete in [14], even if (i) |Ej | ≤ 2, (ii)
rj = 1, and (iii) G is a bipartite graph. On the other hand, it is shown in [22] that the
restricted perfect matching problem is polynomial when G is a complete bipartite graph
and k = 2; some others results of this problem can be found in [11]. A perfect matching
M only verifying condition (ii) (that is to say |M ∩ Ei| ≤ 1) is called good in [8]. Thus,
we deduce that the Labeled maximum perfect matching problem is NP-hard in bipartite
graph since opt(I) = n iff G contains a good matching.

In section 2, we analyze both the complexity and the approximability of the Labeled

minimum perfect matching problem and the Labeled maximum perfect matching problem
in 2-regular bipartite graphs. Finally, section 3 focuses on the case of complete bipartite
graphs.

Now, we introduce some terminology and notations that will be used in the paper. A
matching M on a graph G = (V, E) is a subset of edges that are pairwise non adjacent;
M is said perfect if it covers the vertex set of G. In the labeled perfect matching problem
(Labeled PM in short), we are given a simple graph G = (V, E) on |V | = 2n vertices which
contains a perfect matching together with a color (or label) function L : E → {c1, . . . , cq}
on the edge set of G. For i = 1, . . . , q, we denote by L−1({ci}) ⊆ E the set of edges of
color ci. The goal of Labeled Min PM (resp., Max PM) is to find a perfect matching
on G using a minimum (resp., a maximum) number of colors. An equivalent formulation
of Labeled Min PM could be the following: if G[C] denotes the subgraph induced by
the edges of colors C ⊆ {c1, . . . , cq}, then Labeled Min PM aims at finding a subset C
of minimum size such that G[C] contains a perfect matching. The restriction of Labeled

PM to the case where each color occurs at most r times in I = (G, L) (i.e., |L−1({ci})| ≤ r
for i = 1, . . . , q) will be denoted by Labeled PMr.

We denote by opt(I) and apx(I) the value of an optimal and an approximate solution,
respectively. We say that an algorithm A is an ε-approximation of Labeled Min PM
with ε ≥ 1 (resp., Max PM with ε ≤ 1) if apx(I) ≤ ε× opt(I) (resp., apx(I) ≥ ε× opt(I))
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for any instance I = (G, L).

2 The 2-regular bipartite case

In this section, we deal with a particular class of graphs that consist in a collection of
pairwise disjoints cycles of even length; note that such graphs are 2-regular bipartite graphs.

Theorem 2.1 Labeled Min PMr is APX-complete in 2-regular bipartite graphs for any

r ≥ 2 .

Proof: Observe that any solution of Labeled Min PMr is an r-approximation. The rest
of the proof will be done via an approximation preserving reduction from the minimum
balanced satisfiability problem with clauses of size at most r, Min balanced r-Sat for
short. An instance I = (C, X) of Min balanced r-Sat consists in a collection C =
(C1, . . . , Cm) of clauses over the set X = {x1, . . . , xn} of boolean variables, such that
each clause Cj has at most r literals and each variable appears positively as many time
as negatively; let Bi denotes this number for any i = 1, . . . , n. The goal is to find a
truth assignment f satisfying a minimum number of clauses. Min balanced 2-Sat where
2 ≤ Bi ≤ 3 has been shown APX-complete by the way of an L-reduction from Max

balanced 2-Sat where Bi = 3, [4, 15].

We only prove the case r = 2. Let I = (C, X) be an instance of Min balanced 2-Sat

on m clauses C = {C1, . . . , Cm} and n variables X = {x1, . . . , xn} such that each variable xi

has either 2 occurrences positive and 2 occurrences negative, or 3 occurrences positive and
3 occurrences negative. We build the instance I ′ = (H, L) of Labeled Min PM2 where
H is a collection of pairwise disjoints cycles {H(x1), . . . , H(xn)} and L colors edges of H
with colors c1, . . . , cj , . . . , cm, by applying the following process:

• For each variable xi, create 2Bi-long cycle H(xi) = {ei,1, . . . , ei,k, . . . , ei,2Bi
}.

• Color the edges of H(xi) as follows: if xi appears positively in clauses Cj1 , . . . , CjBi

and negatively in clauses Cj′1
, . . . , Cj′

Bi

, then set L(ei,2k) = cjk
and L(ei,2k−1) = cj′

k

for k = 1, . . . , Bi.

Figure 1 provides an illustration of the gadget H(xi). Clearly, H is made of n disjoint
cycles and is painted with m colors. Moreover, each color appears at most twice.

Let f∗ be an optimal truth assignment on I satisfying m∗ clauses and consider the
perfect matching M = ∪n

i=1Mi where Mi = {ei,2k|k = 1, . . . , Bi} if f(xi) = true, Mi =
{ei,2k−1|k = 1, . . . , Bi} otherwise; M uses exactly m∗ colors and thus:

opt(I) ≤ m∗ (1)

Conversely, let M ′ be a perfect matching on H using apx(I) = m′ colors; if one sets
f ′(xi) = true if ei,2 ∈ M ′, f ′(xi) = false otherwise, we can easily observe that the truth
assignment f ′ satisfies m′ clauses.

apx(I) = val(f ′) (2)

Hence, using inequalities (1) and (2) the result follows.
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L(ei,2Bi−1) = c
j′
Bi

ei,2

ei,2Bi

ei,2Bi−1 ei,1

L(ei,1) = c
j′1

L(ei,2Bi
) = cjBi

L(ei,2) = cj1

L(ei,3) = c
j′2

ei,3

Figure 1: The gadget H(xi) and the color of its edges.

Trivially, the problem becomes obvious when each color is used exactly once. We now
show that we have a 2-approximation in 2-regular bipartite graphs, showing that the re-
striction of Labeled Min PM to 2-regular bipartite graphs is as hard as approximate as
MinSat.

Theorem 2.2 There exists an approximation preserving reduction from Labeled Min PM
in 2-regular bipartite graphs to MinSat of expansion c(ε) = ε.

Proof: The result comes from the reciprocal of the previous transformation. Let I = (G, L)
be an instance of Labeled Min PM where G = (V, E) is a collection {H1, . . . , Hn} of
disjoint cycles of even length and L(E) = {c1, . . . , cm} defines the label set, we describe
every cycle Hi as the union of two matchings Mi and Mi. We construct an instance
I ′ = (C, X) of MinSat where C = {C1, . . . , Cm} is a set of m clauses and X = {x1, . . . , xn}
is a set of n variables, as follows. The clause set C is in one to one correspondence with the
color set L(E) and the variable set X is in one to one correspondence with the connected
components of G; a literal xi (resp., xi) appears in Cj iff cj ∈ L(Mi) (resp., cj ∈ L(Mi)).
We easily deduce that any truth assignment f on I ′ that satisfies k clauses can be converted
into a perfect matching Mf on I that uses k colors.

Using the 2-approximation of MinSat [17] and the Theorem 2.2, we deduce:

Corollary 2.3 Labeled Min PM in 2-regular bipartite graphs is 2-approximable.

Dealing with Labeled Max PMr, the result of [14] shows that computing a good

matching is NP-hard even if the graph is bipartite and each color appears at most twice; a
good matching M is a perfect matching using |M | colors. Thus, we deduce from this result
that Labeled Max PMr is NP-hard for any r ≥ 2. We strengthen this result using a
reduction from Max balanced 2-Sat.

Theorem 2.4 Labeled Max PMr is APX-complete in 2-regular bipartite graphs for any

r ≥ 2 .

In the same way, using the approximate result for MaxSat [2] , we obtain

Corollary 2.5 Labeled Max PM in 2-regular bipartite graphs is 0.7846-approximable.
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s1,j,f(2)

v1,j

s1,j,f(p)

s1,j,f(p−1)

s1,j,f(1) s2,j,f(1)

v2,j

s2,j,f(p)

Figure 2: The gadget H(xj).

3 The complete bipartite case

When considering complete bipartite graphs, we obtain several results:

Theorem 3.1 Labeled Min PMr is APX-complete in bipartite complete graphs Kn,n

for any r ≥ 6.

Proof: We give an approximation preserving L-reduction (cf. Papadimitriou & Yannakakis
[18]) from the set cover problem, MinSC for short. Given a family S = {S1, . . . , Sn0} of
subsets and a ground set X = {x1, . . . , xm0} (we assume that ∪n0

i=1Si = X), a set cover of X
is a sub-family S ′ = {Sf(1), . . . , Sf(p)} ⊆ S such that ∪p

i=1Sf(i) = X; MinSC is the problem
of determining a minimum-size set cover S∗ = {Sf∗(1), . . . , Sf∗(q)} of X. Its restriction
MinSC3 to instances where each set is of size at most 3 and each element xj appears in at
most 3 and at least 2 different sets has been proved APX-complete in [18].

Given an instance I0 = (S, X) of MinSC, its characteristic graph GI0 = (L0, R0; EI0)
is a bipartite graph with a left set L0 = {l1, . . . , ln0} that represents the members of the
family S and a right set R0 = {r1, . . . , rm0} that represents the elements of the ground
set X; the edge-set EI0 of the characteristic graph is defined by EI0 = {[li, rj ] : xj ∈ Si}.
Note that GI0 is of maximum degree 3 iff I0 is an instance of MinSC3. From I0, we construct
the instance I = (Kn,n, L) of Labeled Min PM6. First, we start from a bipartite graph
having m0 connected components H(xj) and n0 + m0 colors {c1, . . . , cn0+m0}, described as
follows:

• For each element xj ∈ X, we build a gadget H(xj) that consists in a bipartite graph
of 2(dGI0

(rj) + 1) vertices and 3dGI0
(rj) edges, where dGI0

(rj) denotes the degree of
vertex rj ∈ R in GI0 . The graph H(xj) is illustrated in Figure 2.

• Assume that vertices {lf(1), . . . , lf(p)} are the neighbors of rj in GI0 , then color
H(xj) as follows: for any k = 1, . . . , p, L(v1,j , s1,j,f(k)) = L(v2,j , s2,j,f(k)) = cf(k)

and L(s1,j,f(k), s2,j,f(k)) = cn0+j .

• We complete H = ∪xj∈XH(xj) into Kn,n, by adding a new color per edge.

Clearly, Kn,n is complete bipartite and has 2n = 2
∑

rj∈R(dGI0
(rj) + 1) = 2|EI0 |+ 2m0

vertices. Moreover, each color is used at most 6 times.
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Let S∗ be an optimal set cover on I0. From S∗, we can easily construct a perfect
matching M∗ on I using exactly |S∗| + m0 colors (since we assume that each element
appears in at least 2 sets) and thus:

optLabeled Min PM6(I) ≤ optMinSC3(I0) + m0 (3)

Conversely, we show that any perfect matching M may be transformed into a perfect
matching M” using the edges of H and verifying: |L(M”)| ≤ |L(M)|. Let M be a perfect
matching on I and consider M1 the subset of edges from M that link two different gadgets
H(xj); we denote by G the multi-graph of vertex set ∪jVH(xj) (each vertex vj of G corre-
sponds to the gadget H(xj)) and of edge set M1. So, G is obtained from Kn,n where the
vertices in each gadget H(xj) is shrunk into a vertex of G. Remark that each connected
component of G is eulerian. Each cycle C on G may be completed into a 2|C|-long cycle
C ′ on K2n in such a way that the two endpoints of each edge from C ′ \ C do belong to
the same gadget H(xj). Here, for purely formal reasons of the proof, we assume that each
gadget H(xj) is a complete graph by adding a new color per missing edge. Thus, there
are edges linking two any vertices s1,j,f(k) and s1,j,f(k′) (or s2,j,f(k) and s2,j,f(k′)). If one
swaps the edges from each cycle C by the edges from C ′ \ C, we obtain a new perfect
matching M ′ of which every edge has its two endpoints in a same gadget H(xj) and that
verifies |L(M ′)| = |L(M)|. For the moment, note that as indicated previously, the perfect
matching M ′ is not necessarily a matching of Kn,n since some edges linking 2 vertices of
the same part of gadget H(xj) may exist. Now consider for any j the set M ′

j of edges from
M ′ ∩ H(xj), we set M”j = {[v1,j , s1,j,f(k)], [v2,j , s2,j,f(k)]} ∪ {[s1,j,f(i), s2,j,f(i)]|i = 1, . . . , p}
for some k such that [v1,j , s1,j,f(k)] ∈ M ′

j or [v2,j , s2,j,f(k)] ∈ M ′
j (if such a k does not exist,

set k = 1). In any case, M” = (M ′ \M ′
j) ∪M”j is a perfect matching of Kn,n that uses

no more colors than M ′ does. Applying this procedure for any j = 1, . . . , m0, we obtain
the expected matching M” with value apx(I). From such a matching, we may obtain a set
cover S” = {Sk|ck ∈ L(M”)} on I0 verifying:

|S”| = apx(I)−m0 (4)

Using (3) and (4), we deduce optLabeled Min PM6(I) = optMinSC3(I0) + m0 and |S”| −
optMinSC3(I0) ≤ |L(M))| − optLabeled Min PM6(I). Finally, since optMinSC3(I0) ≥

m0
3 the

result follows.

Applying the same kind of proof to the vertex cover problem in cubic graphs [1], we
obtain that Labeled Min PMr in Kn,n is APX-complete for any r ≥ 3. In order to
establish this fact and starting from a cubic graph G = (V, E), we associate to each edge e =
[x, y] ∈ E a 4-long cycle {a1,e, a2,e, a3,e, a4,e} together with a coloration L given by: L(a1,e) =
cx, L(a2,e) = cy and L(a3,e) = L(a4,e) = ce. We complete this graph into a complete
bipartite graph, adding a new color per edge. Each color cx (∀x ∈ V ) appears 3 times, ce

(∀e ∈ E) twice and any other color, once. Hence, the application of the proof that was
made in Theorem 3.1 leads to the announced result. Unfortunately, we can not apply the
proof of Theorem 2.2 since in this latter, on the one hand, we have some cycles of size 6 and,
on the other hand, a color may occurs in different gadgets. One open question concerns the
complexity of Labeled Min PM2 in bipartite complete graphs. Moreover, from Theorem
3.1, we can also obtain a stronger inapproximability result concerning the general problem
Labeled Min PM : one can not compute in polynomial-time an approximate solution
of Labeled Min PM that uses less than (1/2 − ε)ln(optLabeled Max PM (I)) colors in
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complete bipartite graphs where optLabeled Max PM (I) is the value of an optimal solution
of Labeled Max PM , i.e., the maximum number of colors used by a perfect matching.

Corollary 3.2 For any ε > 0, Labeled Min PM is not (1
2 − ε)× ln(n) approximable in

complete bipartite graphs Kn,n, unless NP⊂DTIME(nloglogn).

Proof: First, we apply the construction made in Theorem 3.1, except that I0 = (S, X)
is an instance of MinSC such that the number of elements m0 is strictly larger than the
number of sets n0. From I0, we construct n0 instances I ′1, . . . , I

′
n0

of Labeled Min PM
where I ′i = (H, Li). The colors Li(E) are the same as L(E), except that we replace colors
cn0+1, . . . , cn0+m0 by ci. Finally, as previously, we complete each instance I ′i into a complete
bipartite graph Kn,n by adding a new color by edge.

Let S∗ be an optimal set cover on I0 and assume that Si ∈ S
∗, we consider the instance

Ii of Labeled Min PM . From S∗, we can easily construct a perfect matching M∗
i of Ii that

uses exactly |S∗| colors. Conversely, let Mi be a perfect matching on Ii; by construction,
the subset S ′ = {Sk : ck ∈ L(Mi)} of S is a set cover of X using |L(Mi)| sets. Finally, let
A be an approximate algorithm for Labeled Min PM , we compute n0 perfect matchings
Mi, applying A on instances Ii. Thus, if we pick the matching that uses the minimum
number of colors, then we can polynomially construct a set cover on I0 of cardinality this
number of colors.

Since n0 ≤ m0 − 1, the size n of a perfect matching of Kn,n verifies: n = |EI0 |+ m0 ≤
n0 ×m0 + m0 ≤ m0(m0 − 1) + m0 = m2

0. Hence, from any algorithm A solving Labeled

Min PM within a performance ratio ρA(I) ≤ 1
2 × ln(n), we can deduce an algorithm

for MinSC that guarantees the performance ratio 1
2 ln(n) ≤ 1

2 ln(m2
0) = ln(m0). Since

the negative result of [12] holds when n0 ≤ m0 − 1, i.e., MinSC is not (1 − ε) × ln(m0)
approximable for any ε > 0, unless NP⊂DTIME(nloglogn), we obtain a contradiction.

On the other hand, dealing with Labeled Max PMr in Kn,n, the result of [8] shows
that the case r = 2 is polynomial, whereas it becomes NP-hard when r = Ω(n2). Indeed,
it is proved in [8] that, on the one hand, we can compute a good matching in Kn,n within
polynomial-time when each color appears at most twice and, on the other hand, there always
exists a good matching in such a graph if n ≥ 3. An interesting question is to decide the
complexity and the approximability of Labeled Max PMr when r is a constant greater
than 2.

3.1 Approximation algorithm for Labeled Min PMr

Let us consider the greedy algorithm for Labeled Min PMr in complete bipartite graphs
that iteratively picks the color that induces the maximum-size matching in the current
graph and delete the corresponding vertices. Formally, if L(G′) denotes the colors that are
still available in the graph G′ at a given iteration and if G′[c] (resp., G′[V ′]) denotes the
subgraph of G′ that is induced by the edges of color c (resp., by the vertices V ′), then the
greedy algorithm consists in the following process:

Greedy

1 Set C′ = ∅, V ′ = V and G′ = G;

2 While V ′ 6= ∅ do

7



2.1 For any c ∈ L(G′), compute a maximum matching Mc in G′[c];

2.2 Select a color c∗ maximizing |Mc|;

2.3 C′ ← C′ ∪ {c∗}, V ′ ← V ′ \ V (Mc∗) and G′ = G[V ′];

3 output C′;

Theorem 3.3 Greedy is an Hr+r
2 -approximation of Labeled Min PMr in complete bi-

partite graphs where Hr is the r-th harmonic number Hr =
∑r

i=1
1
i
, and this ratio is tight.

Proof: Let I = (G, L) be an instance of Labeled Min PMr. We denote by C′i for
i = 1, . . . , r be the set of colors of the approximate solution which appears exactly i times
in C′ and by pi its cardinality (thus, ∀c ∈ C′i we have |Mc| = i in G′[c]); finally, let Mi

denote the matching with colors C′i. If apx(I) = |C′|, then we have:

apx(I) =

r
∑

i=1

pi (5)

Let C∗ be an optimal solution corresponding to the perfect matching M∗ of size opt(I) =
|C∗|; we denote by Ei the set of edges of M∗ that belong to G[∪i

k=1V (Mk)], the subgraph
induced by ∪i

k=1V (Mk) and we set qi = |Ei \ Ei−1| (where we assume that E0 = ∅). For
any i = 1, . . . , r − 1, we get:

opt(I) ≥
1

i

i
∑

k=1

qk (6)

Indeed,
∑i

k=1 qk = |Ei| and by construction, each color appears at most i times in
G[∪i

k=1V (Mk)].

We also have the following inequality for any i = 1, . . . , r − 1:

opt(I) ≥
1

r

(

2
i
∑

k=1

k × pk −
i
∑

k=1

qk

)

(7)

Since M∗ is a perfect matching, the quantity 2
∑i

k=1 k × pk −
∑i

k=1 qk counts the edges of
M∗ of which at least one endpoint belongs to G[∪i

k=1V (Mk)]. Because each color appears
on at most r edges, the result follows.

Finally, since
∑r

k=1 k×pk is the size of a perfect matching of G, the following inequality
holds:

opt(I) ≥
1

r

r
∑

k=1

k × pk (8)

Using equality (5) and adding inequalities (6) with coefficient αi = 1
2(i+1) for i =

1, . . . , r − 1, inequalities (7) with coefficient βi = r
2i(i+1) for i = 1, . . . , r − 1 and inequality

(8), we obtain:

apx(I) ≤

(

Hr + r

2

)

opt(I) (9)
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apx(I) = 7

a1,5

a1,6

a1,4
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b1,6
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b2,1
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a1,6
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a1,2
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b2,2

b2,1

c1,6

c1,5

c1,4

c1,3
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c1,1
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c2,1

c∗1,2

c∗2,2

c∗1,1

c∗2,1

c∗1,2

c∗1,1

c∗2,1

c∗2,2

opt(I) = 4

Figure 3: The instance I when r = 2.

Indeed,
∑r−1

i=1 αi = 1
2Hr −

1
2 and

∑r−1
i=1 βi = r

2 −
1
2 . Thus,

∑r−1
i=1 (αi + βi) + 1 = Hr+r

2 .

The quantity pj appears in inequality (8) and inequality (7) for i = j, . . . , r−1. Its total

contribution is: 1
r
j × pj + 2

r

(

∑r−1
i=j βi

)

j × pj = pj . The quantity qj appears in inequality

(6) for i = j, . . . , r − 1 and inequality (7) for i = j, . . . , r − 1. We have:
(

∑r−1
i=j

αi

i

)

−

1
r

(

∑r−1
i=j βi

)

qj = 0. Thus, using equality (5), the inequality (9) holds.

In order to show the tightness of this bound, consider the instance I = (Kn,n, L) where
the left set A and the right set B of vertices of the complete bipartite graph are given by
A = {ai,j : i = 1, . . . , r, j = 1, . . . , ni} and B = {bi,j : i = 1, . . . , r, j = 1, . . . , ni}, with
n1 = (r + 1)! and ni = r! for i = 2, . . . , r. Moreover, the edge coloration verifies:

• For any i = 1, . . . , r and for any j = 1, . . . , ni, L(ai,j , bi,j) = c
i,⌈ j

i
⌉.

• For any i = 2, . . . , r and for any j = 1, . . . , r!, L(ai,j , b1,i−1+(r−1)(j−1)) = c∗1,j

and L(bi,j , a1,i−1+(r−1)(j−1)) = c∗2,j .

• For any j = 1, . . . , r!, L(b1,j+(r−1)×r!, a1,(r+1)!−j+1) = c∗1,j

and L(a1,j+(r−1)×r!, b1,(r+1)!−j+1) = c∗2,j .

• We associate a new color to each missing edge.

I is clearly an instance of Labeled Min PMr. The set of colors C′ = {c
i,⌈ j

i
⌉ : i =

1, . . . , r, j = 1, . . . , ni} is the approximate solution outputted by Greedy and it uses
apx(I) = (Hr + r) × r! colors, whereas C∗ = {c∗i,j : i = 1, 2, j = 1, . . . , r!} is the set of
colors that are used by an optimal solution; this latter verifies opt(I) = 2× r!. The Figure
3 describes the instance I for r = 2.

9



We conjecture that Labeled Min PM is not O(nε)-approximable in complete bipartite
graphs. Thus, a challenge will be to give better approximate algorithms or to improve the
lower bound.
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