
HAL Id: hal-00007743
https://hal.science/hal-00007743v1

Preprint submitted on 1 Aug 2005 (v1), last revised 5 Apr 2006 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Metamimetic Games : Modeling Metadynamics in Social
Cognition

David Chavalarias

To cite this version:
David Chavalarias. Metamimetic Games : Modeling Metadynamics in Social Cognition. 2005. �hal-
00007743v1�

https://hal.science/hal-00007743v1
https://hal.archives-ouvertes.fr


 1

 Metamimetic games 

Modeling metadynamics in social cognition 

 

David Chavalarias1,  
Center for Research in Applied Epistemology (CREA),  

Ecole Polytechnique, Paris, France,  
www.polytechnique.edu 

 
 

Abstract :  

Imitation is fundamental in the understanding of social system dynamics but the diversity of 

imitation rules employed by modelers proves that the modeling of mimetic processes cannot avoid 

the traditional problem of endogenization of all the choices, including the one of the mimetic rules. 

Starting from the remark that human reflexive capacities are the ground for a new class of mimetic 

rules, I propose a formal framework, metamimetic games, that enable to endogenize the 

distribution of imitation rules while being human specific. The corresponding concepts of 

equilibrium - counterfactually stable state - and attractor are introduced. Finally, I give an 

interpretation of social differentiation in terms of cultural co-evolution among a set of possible 

motivations that departs from the traditional view of optimization indexed to criteria that exist prior 

to the activity of agents. 
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I. Social system modeling and the grounding problem 

����������	
���������
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Recent years have seen a burgeoning of interest in the phenomenon of imitation on the 

part of researchers in many fields. After the seminal work of Tarde (1890) in sociology 

and Baldwin (1897) in developmental psychology,  Girard (1961) takes imitation as the 

first foundation stone of his theory of the origin of primitive societies, and Donald (1991) 

considers that the sophistication of human mimetic skill could have been one of the 

major evolutionary transitions in hominization.   

 

After three of the finest economists of all time, Smith, Keynes and Hayek gave imitation a 

central role (Dupuy 2004), imitation is now more and more often taken into account in the 

study of micro-economic behaviors as information and communication technologies 

spawn a proliferation and speed-up of feedback loops in business and finance (Orléan 

1998 ; Frank 2003 ; Selten & Ostmann 2001). Today, the study of imitation is a dynamic 

field of research in developmental psychology (Meltzoff 2002 ; Gergely et al. 2002 ; 

Zelazo & Lourenco 2003) with bridges toward neurology (Arbib 2000 ; Chaminade et al. 

2002) and theory of mind (Meltzoff & Gopnik 1993 ; Pacherie 1998). Finally, in artificial 

intelligence and robotic, imitation is now seriously considered as a means of constructing 

socially intelligent artificial agents (Brezeal et al. 2005 ; Jansen et al. 2003 ; Zlatev 2000). 

Evidence that stems from ethology (Tomasello 1999) about the incapacity of animals to 

imitate in a human way will certainly not weaken this interest for imitation in the study of 

human behavior. 

 

This convergence of interests has had some consequences in the literature of socio-

economic modeling where modelers, to account for the extremely rich structures 

observed in human societies, more and more often incorporate mimetic processes into 

formal approaches. But the diversity of imitation rules employed by modelers proves that 

the introduction of mimetic processes into formal models cannot avoid the traditional 

problem of the endogenization of all  choices, including the choice of the imitation rules. 

����������
��	���
	���	����������	����

In the literature of social systems modeling, the most frequent types of rules are these : 

(1) payoffs-biased imitation, i.e. imitation of the most successful agents in one’s 

neighborhood (Nowak and May 1992) and (2) conformism (Axelrod 1997 ; Galam 1998 ; 
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Orléan 1985, 1998, Rogers 1988). Here, conformism is the propensity of individuals to 

adopt some behavior when it has already been adopted by some of their neighbors, the 

propensity being relative to the frequency of that behavior in the neighborhood. To a 

lesser extent, other imitation processes have been studied, among which we can 

mention (3): non-conformist, the propensity of an individual to adopt the behavior of the 

minority (Arthur 1994 ; Edmonds 1999) and (4) prestige (Henrich & Gil-White 2001). This 

list of imitation rules is far from exhaustive, and we should note that even for conformism 

or payoffs-biased imitation, several technical definitions have been proposed both 

deterministic and probabilistic (Nowak et al. 1994). Moreover, it is also possible to 

propose models that include several imitation rules, as some authors already did (Boyd & 

Richerson 1985 ; Henrich & Boyd 1998 ; Janssen & Jager 1999 ; Kaniovski et al. 2000 ; 

Vriend 2002).  

 

This raises an epistemological question for modelers. Which rule(s) for imitation should 

be considered given the situation under study?  

Let’s try be a little more precise. If we represent schematically the models cited above we 

can remark that all can be described in terms of hierarchies of rules governing a behavior 

(cf. table 1. for some examples). The proportion of the rules at a given level is 

determined by the metarules of the level above. In this representation, rules can be 

interpreted as a dynamics principles acting at the population level (like the replicator 

dynamics) or as a decision-making rule used at the individual level. The emergence of 

patterns at the collective level is thus understood as a selection of a particular distribution 

on the set of possible rules and meta-rules. Now the question is: How are these 

distributions are selected ? 

 

Some scholars have addressed this question from an evolutionary perspective, 

assuming that the distribution of imitation rules is shaped by natural selection (see for 

example Henrich & Boyd 1998 : Table 1-d). On this model, there is a unique selection 

rule, indexed to fitness, that drives the entire system from the top.  

But the slow dynamics of genetic processes seems to be incompatible with the fast 

evolution observed in human socio-economic systems (Feldman & Laland 1996, Frank 

2003, Gould 1987, Gintis 2003) that varies on the scale of a lifespan. The challenge is 

thus to identify an evolutionary process that could lead individuals (or firms in the case of 

economic systems) to choose between several possible imitation rules while interacting 

with their environment. Rather than considering agents whose imitation rule exists prior 

to their socio-economic activities, we have to imagine agents who’s way of being 
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influenced by others is the result of a historical process, their interactions with their social 

network.  

 

Table 1 : Schematic representation of models 

 

Here a strange loop appears: the distribution of imitation rules in a population is the 

consequence of interactions among agents ; the consequences of interactions among 

agents are defined in terms of their imitation rules. We face a grounding problem 

concerning the dynamics of imitation rules in the true sense of the term. If we define 

social cognition in terms of a collective process of information distributed over all the 

individuals of a society (Bourgine 2004), themselves processing information using their 

rules for decision making processes, we have to study the dynamics of this information 

processing which is a metadynamics relative to the agents’ rules. Can dynamics and 

metadynamics coincide ? This leads us to reformulate our question in terms close to the 

notion of operational closure (Varela 1983) : Is it possible to endogenize the distribution 

of metarules of decision-making such that this distribution becomes the outcome of the 

dynamics it defines ?  

 

The point of this article is to demonstrate that there exists at least one class of models 

that allow us to give a yes answer to this question. We will show on the way that 

     
a. : Nowak et May 

1992.) 

b. : Kaniovski et al. 

2000. 

c. : Orléan 1998. d : Henrich et Boyd 

1998. 
e : Modelers in the social 
sciences generally 
represent agents as a 
hierarchy of rules, where 
rules at each level evolve 
under the dynamics 
defined by their meta-
rules. 
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considering the specificity of human imitation,  an imitation rule can be its own metarule 

in formal models.  

������	���	������������������������ 

Another way to address the question of the endogenization of imitation rules will perhaps 

come from a recent concern in social systems modeling. The complexity of human social 

systems has no counterpart in other species. For example, considering group 

coordination, only insect societies, composed of very simple entities, have social 

structures involving several thousand members. This feature disappears as soon as the 

repertoire of behavioral possibilities of a species gets wider, and reappears only when it 

comes to humans (Bourgine 2004, Wilson 1975).  

This remark is noteworthy because it is precisely the modeling of self-organized systems 

in ethology that has been a precursor for multi-agent modeling in the social sciences. It is 

clear that the goal for social systems modeling is not to consider humans as cloned 

insects. What is at stake is rather to find differences between humans and others 

mammals which make possible the emergence of highly structured social groups while 

keeping inter-individual heterogeneity. This has led recently some modelers to propose, 

as a heuristic for social systems modeling, prioritizing models that could be human 

specific (Alvard 2003, Bowles & Gintis 2003, Fehr & Fischbacher 2003). In the social 

sciences, a similar heuristic that particularly focuses on imitation, was formulated few 

decades ago by René Girardi (1978): 

 

 In order to develop a science of man, we must compare human 

imitation with animal mimetism and separate the modalities specific to 

humans, if they exist, from mimetic behaviors. 

 
Following this heuristic, I will quickly evoke some differences between animal and human 

cognitive capacities that could have a qualitative impact on imitation processes. From 

numerous studies in psychology, philosophy, neurology and ethology, two elements 

appear to play a crucial role in human behavior while being apparently out of the reach of 

non-human cognition.  

  

First, humans are reflexive beings. To give a low level definition of reflexivity, it is the 

ability to take as an object of cognitive treatment the cognitive treatments themselves by 

creating new levels of cognitive processing.  Emergence of reflexive capacities can be 

traced through ontogeny through the study of the development of infant cognitive 

capacities (Zelazo et al. 1996) and the self-triggered loop that should be the elementary 
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component of reflexive processes is closely linked with the constitution of the self 

(Damasio 1999, Donald 1991, Mounoud 1995). Reflexivity allows us to think of others as 

we think  of ourselves and ourselves from other’s point of view and thus develop our 

social skills. From the point of view of imitation processes, reflexivity makes all the 

difference since, as Eric Gans (1995) says, “prehuman imitation is non-reflexive; the 

subject has no knowledge of itself as a self imitating another”. 

 

The second difference between animal and human cognitive capacities, closely related 

to reflexivity, is metacognition (Jacob 1998 ; Sperber 2000, Tomasello 2000), defined 

here as cognition about cognition.  Whether animals have metacognitive capacities is still 

in debate in the scientific community. Some experiments seem to indicate that great 

apes and dolphins may have some rudimentary metacognitive capacities (Smith et al. 

2003, Rendell and Whitehead 2001), but those are very limited. In particular, there is no 

evidence that animals can consider learning or imitation processes as object of cognition, 

and the fact that they do not teach tends to prove the contrary. Moreover, to our 

knowledge, there is no evidence that animals could voluntarily add a metacognitive level 

to solve a given problem, although some primates seem to be able to deal with chains of 

hierarchically organized behaviors (Byrne 1998). This means that animal metacognition, 

if it exists, is most probably constituted of rigid chains of process monitoring that could as 

well be hardwired, without requiring reflexivity to monitor their structure.  

 

There is no space here to give more details about these two differences. But I will try to 

show that taking them into account makes it possible to build a new class of models that 

may offer an answer to the problem of the endogenization of the distribution imitation 

rules. 

II Reflexivity of imitation rules  
 

To see what metacognition and reflexivity could change in the modeling of mimetic 

behavior, a more precise definition of an imitation rule is needed. Before this, we have to 

give a framework for the representation of agents. 

��������	����

We will refer to an agent by the pronoun “it.” In evolutionary games or in multi-agent 

modeling, agents are usually defined by a n-tuple τ of traits (age, color, opinion, 

behavior, rules of behavior, etc.) taken from a multi-dimensional set of traits T. In the 

following, we will place these traits into two categories : modifiable traits and other traits. 
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- Modifiable traits are those an agent can change voluntarily like for example a 

cooperative vs. defective behavior, the colors of clothes it wears, the political 

party an agent decides to vote for, the learning rules adopted for a given task, the 

chair where it wants to sit, etc. Most of the time, these kinds of changes take 

place on small time scales (within a day). The set of modifiable traits of a given 

agent A will be called its strategy and can be represented by an ordered n-tuple 

sA=(τ1,…, τn)∈S. 

- Other traits are those that do not entirely depend on agent’s will or are 

immutable. They depend on global dynamics and change generally on large time 

scales (months, years, lifetime), like social positions, payoffs, reputation, prestige, 

age, color of eyes, etc.  

 

Agents are usually embedded in a social network and can learn some of the traits of the 

agents they interact with. For a given agent A, the neighborhood ΓA will be defined as the 

set of all agents from which A can learn some traits.  

Agents can then categorize their neighborhood into sub-neighborhoods on the basis of 

the learnable traits. For example, Boyd and Richerson (1985) consider different types of 

cultural transmission processes within sub-neighborhoods indexed to age and kinship: 

vertical transmission from parents to offspring, oblique from elders to younger, and 

horizontal among peers.  

����������������
��	��

Roughly speaking, imitation occurs when an agent decides to adopt a trait observed in 

one of its neighbors. For example, A may want to behave like B, wear the same clothes, 

adopt its opinion or sit where B is sitting. The most general definition for an imitation rule 

is thus a process that takes as input an agent A and its neighborhood and gives as 

output a modifiable trait A will try to copy from some of its neighbors. 

 

From this broad definition, two distinct conceptions of imitation can be derived. Following 

René Girard (1961), A may want to be like B in some respect because A reads the 

values of things and actions in the eyes of others. In that case, imitation precedes desire, 

and, from a formal point of view, it can be represented by some kind of conformist rule 

that governs desires (see Orlean 1985 for an example). The second conception of 

imitation is teleological and widely used in economics (Frank 2003) and multi-agent 

modeling (Conte & Paolucci 2001): A may want to be like B to a certain extent because 

from A’s point of view, B is a good model, i.e. B is most successful than A according 

some criteria that A has adopted independently of knowing B. What I will propose now is 
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in-between and requires us to refine the above definition of “imitation rule” in a formal 

perspective. 

 

Definition: Imitation rule 

Given an agent A and its neighborhood ΓA, an imitation rule is a process that  :  

1. Assigns a value ν(B, ΓA ) in an ordered set (the set of real numbers for 

example) to each agent B in ΓA. ν will be called a valuation function. 

2. Selects some traits to be copied from the best agents (according to the values 

given in 1) and defines the copying process. 

  

For example, in payoff-biased imitation, the value assigned to each neighbor is its 

payoffs. The agent has then to infer which of the traits of the most successful neighbor is 

responsible for this success and try to copy it. In the case of a conformist rule, the value 

assigned to a neighbor is the size of the group it belongs to, and the traits to be copied 

are those of the largest group.   

The valuation function here is subjective and dynamic, and it plays a role analogous to 

the utility function in game theory. Two agents can have a different valuation function and 

can evolve in this respect. The diversity of valuation functions in a population expresses 

the diversity of points of view. 

 

The goal here is not to be exhaustive, and this definition leaves a lot of things in the 

shadows, like for example the problem of inferring of the relevant traits. Nevertheless, it 

is sufficient for our purpose which is to propose a framework for thinking about an 

endogenous distribution of all kinds of decision-making rules evolving at the cultural time 

scale.  

������ ��	������������!�	��
�����

The fact that human beings have reflexive and metacognitive abilities has some 

important qualitative consequences when it comes to modeling: agents know in some 

extent that they are using rules for decision-making. This applies to imitation rules and 

therefore imitation rules can be viewed as part of the strategy of the agent. They become 

modifiable traits. We should consequently study systems where  imitation rules are 

modifiable traits by way of applying meta-rules. 

 

This leads us to model agents as hierarchies of rules. A quick argument will convince us 

of the legitimacy of this representation. Considering the set of all rules an agent A is 

currently using, we can define a relation ℜ in the following way. Let r1 and r2 be two rules 
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used by A in its decision-making process, we will say that r2ℜ r1 if the use of r2 can 

change the way A uses r1, which is equivalent to saying that r2 acts upon r1. For example, 

in the model of Orléan (1998, Table 1-c), the top level rule r2 (a kind of replicator 

dynamics) can change the rule r1 used at level one (conformist rule or individual 

learning). We thus have r2ℜ r1. On any set of rules, ℜ defines a partial order that enable 

us to define a hierarchy of rules acting one on another.  

 

For sake of clarity, we will consider in the following discussion agents such that ℜ 

defines a total order on their set of rules. Moreover, as in most models already 

mentioned, agents will be defined by a unique type of behavior at the lower level 

controlled by a hierarchy of rules with a unique rule at each level. We will call such a 

hierarchy a metamimetic chain. As for models presented in table 1, we can associate a 

given modifiable trait with a chain of imitation rules that controls its evolution.  

 

Since our aim is to approach some aspects of human collective behaviors, we have to 

respect what are currently accepted as modeling constraints. In particular, agents must 

have a bounded rationality.  The consequence is that metamimetic chains have to be 

finite. This leads us to define the maximum length for such chains : the cognitive bound 

of the agents (cB). Agents can modify the composition and the length of their 

metamimetic chain as long as the latter is inferior to cB. 

 

As for the top-level rule, we face two possibilities. Either we postulate a fixed exogenous 

rule, which is the option taken by game theory and evolutionary game theory. In that 

case, top-level rules are interpreted as genetic determinants or fixed preferences (that 

have to come from somewhere).  

The other possibility is to consider that top-level rules are also modifiable traits, agents 

can act upon them. From our definition of ℜ, this is possible only if we assume that rℜ r 

when r is in a top-level position. We will now show that the above definition of imitation 

rule allows to illustrate this view and more precisely, that we can give some sense to the 

fact that ℜ is a reflexive relation i.e. rkℜ rk for all k.  

III. Metamimetic dynamics and endogenization of meta-choices 

��������	��������	�����	���������

In this section, I will explore some possible dynamics in a population of agents described 

in terms of chains of imitation rules, the relation ℜ being reflexive. For reasons of clarity 

and because they have been extensively studied, we will not evoke other characteristics 
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of the decision-making  process like anticipation, learning or memory, although they 

plays an important part and should be taken into account in future work. What I am trying 

to catch are the remarkable properties of metamimetic dynamics.  

 

Consider a population of agents defined by metamimetic chains that can deal with a 

maximum of cB meta-levels (bounded rationality). Consider that agents have to choose a 

behavior r0 among several possibilities (like C or D). This behavior has some impact in 

their environment, like, for example, an influence on their material payoffs or on the 

densities of the different behaviors in their neighborhood. Assume that agents can 

change their behavior with metamimetic chains composed of rules taken in a set R. 

Agents will then be defined by a set of modifiable traitsii (r0,r1,.. rn) with the constraint 

n≤cB, where r0 is a behavior and rj∈R for j>0 (figure 1).   

 

Figure 1 : Schematic representation of a metamimetic chain. 

 

With this representation, the activity of an agent will consist in the ongoing verification of 

the coherence of its hierarchy of decision-making processes, focusing its attention on 

different levels at different moments. For example, if the agent focuses its attention to 

level k, since for j≤k rkℜ rj  (ℜ is reflexive) the question it will ask itself will be : “Is the 

strategy  (r0,r1,.. rk) the best one from the point of view of rk ?”. If this is not the case, the 

agent will try to change its strategy for a better one. Except for the status quo case we 

can identify two categories of possible outcomes in the revising of (r0,r1,.. rk) : 

- 1) Some elements in (r0,r1,.. rk-1) are modified but the initial rule rk is still part of the 

strategy. 

- 2) rk has been modified. 

 

We will now examine these two possibilities. To fix ideas, in our examples, we will 

consider agents with two different opportunities for action C and D that have two different 

material consequences (monetary payoffs for example). As for the set of rules R, we will 
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take the most common rules in the modeling literature: imitation of the most successful 

agent in terms of material consequences (payoffs-biased or maxi rule for short) and 

imitation of the most common traits (conformist rule) : R={maxi, conf.}. It should be 

emphasized that payoffs here should not be interpreted as a direct mapping of what 

could be the utility function of agents. The analog to utility functions is the hierarchical set 

of valuation functions of a metamimetic chain. 

�������"����	�������
�����������	���������	�����	���������

The standard way of activating a rule at level n is to change the trait of the level below. 

For example in Orléan 1998, an agent A with sA=(r0,r1,r2)  (can decide to change its 

behavior r0 from H to L when it takes the point of view of its rule r1 (for example the 

conformist rule) (cf. figure 2). But it can also change its rule r1 when focusing its attention 

on the rule r2, i.e. maxi if it happens that r1 is not the most successful rule in its 

neighborhood (in this article, a random sample in the population).   

 

 

 
Figure 2: Update of an intermediary modifiable trait. A conformist Agent A observes that the 
majority of agents are playing C, and decides to update its behavior to C (modifiable trait of level 
0). 

 

When we consider agents that can monitor the complexity of their strategy by adapting 

the composition and the length of their metamimetic chains, this standard way of using 

rules should be generalized. Let’s begin with a simple example. 

Assume that after the observation of a conformist agent B, A with sA=(D, maxi) comes to 

the conclusion that to maximize its payoffs, the best thing is to do like B. In that case, if 

its cognitive bound is large enough, the most rational behavior is to adopt the strategy 

sA’=(D, conformist, maxi), and act as a conformist as long as this rule is adaptive from 



 12

the point of view of the maxi-rule  (cf. figure 3) and can eventually come back to its initial 

strategy ( * , Maxi) in a subsequent imitation. 

 

 
Figure 3: Endogenous variation in the length of the metamimetic chain. At time t, a Maxi 
agent A has a conformist neighbor that is more successful than all agents in ΓA. A will then adopt 
the conformist rule at its first meta-level, keeping in mind that it is only a means for maximizing its 
payoffs (second meta-level). Thereafter, it might be that according to this rule, the current 
behavior is not the best one and has to be changed. 
 

In that case, the  complexity of B’s strategy and the cognitive bound of A enable A to 

keep in mind its initial rule r1. B’s strategy is a temporary means for achieving the goals 

defined by r1. This kind of transition enables the agent to change endogenously the 

length of its metamimetic chain. We do this kind of mental operation every day every 

time we decide that the realization of a goal G’ is the best way to achieve a goal G. 

More generally, the activity of an agent consists in the ongoing verification of the 

coherence of its hierarchy of decision-making processes given its environment, focusing 

its attention on different levels at different moments.  

Thus, an agent A=(r0,r1,.. rn) can focus its attention on level k, and ask itself: “Is the 

strategy  (r0,r1,.. rk) the best one from the point of view of rk ?” Then it might happen that A 

is not the best agent in ΓA according to νk. In that case, A will try to copy one of its best 

neighbor and this can lead A to modify the length of its metamimetic chain by changing 

its sub-chain (r0,r1,.. rk-1). Thus we have an endogenous variation in the length of 

metamimetic chains. 

������� 	��	#��	������	������	������������	��������	�!���� 

The metacognitive skill that enables agents to change the structure of their strategy for a 

more adaptive one has its counterpart also. Take for example an agent A=(D, maxi) with 

a cognitive bound of 1 that finds out that one of its conformist neighbors has higher 
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payoffs than any other neighbor, A included. To try to be as successful as B, A will have 

no other solution than to become conformist (figure 4).  

 

 
Figure 4: Reflexive update at the limit of the cognitive bound. At time t, a Maxi agent A has a 
conformist neighbor that is strictly more successful than all other neighbors. Consequently, A adopts 
the conformist rule. Thereafter, it might be that according to this rule, the current behavior is not the 
best one, and has to be changed. 

 

A metamimetic agent will encounter this kind of situation each time the strategy of its 

model is too complex to manage both new goals and old ones. In that case, r will act like 

its own metarule. In that case, an agent A changes reflexively its rule r because, from 

the point of view of  r, r  is not the most adaptive rule. We can say that r is not self-

coherent in A’s environment: it prescribes actions that are in conflict with the continued 

possession of r. 

 In such cases, and when the rule r is the top-level one, A will have to change its top-

level rule. This is possible thanks to our definition of an imitation rule: since imitation 

rules are modifiable traits, it might happen that the trait to be modified in an imitation 

process defined by a rule r is the rule r itself. In this sense, top-level rules are their own 

metarule. We will say that an imitation rule can update reflexively by acting on itself as a 

modifiable trait.  

 

We can now comment on reflexive updates. People certainly don’t have a wired cognitive 

bound that obliges them to do such clear cut transitions in their decision processes. 

Nevertheless, it often happens that an activity that was first considered as a means 

becomes an end in itself. For example it might come to finally take up all our time ; we 

might forget its primary purpose or we might simply come to like the new activity more 

than any other. In these examples, the important feature is that the new goals do not 

come from nowhere but are related to the old ones to some extent. The reflexive mimetic 

update presented above is a stylized representation of these kinds of transitions when 

they are triggered by the observation of others.  
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Viewed at the population level, these kinds of updates define an endogenous dynamics 

on top-level rules the characteristics of which should be studied. 

IV The metamimetic game  

�$���%	���������

The characteristics of imitation rules introduced in the preceding section (figure 5) 

suggest a new class of models for the modeling of mimetic dynamics��

 

 
  

 

a) A Modifiable trait Ti b) An imitation rule can 
act upon a modifiable 
trait Ti 

c) An imitation rule rj is 
itself a modifiable trait 
upon which can act a 
rule ri 

d) An imitation rule ri 
can act reflexively. It is 
a modifiable trait for 
itself. 

Figure 5 : When imitation rules are modifiable traits, they can be modified by other rules (c) and 
can be modifiable trait for themselves (d). 
 

Definition: Metamimetic game 

Let B be a set of behaviors and R a set of imitation rules, a  metamimetic game 

G={N,Γ,R,B,CB} is an N-player game where each agent A is characterized by a 

metamimetic chain sA=(r0,r1,.. rk,) with r0∈B and rj∈R for j>0.  

Moreover, the three following conditions should be satisfied: 

 

C-I  - Bounded rationality: the number of meta-levels in a metamimetic chains is 

finite and bounded for each agent by its cognitive bound cB (k≤cB). 

C-II  - Metacognition: at all levels in a metamimetic chain, imitation rules are 

modifiable traits.  

C-III – Reflexivity: imitation rules can update reflexively changing the length of 

the metamimetic chain in the limit of the cognitive bound of agents. When the 

cognitive bound is reached, imitation rules may update themselves.     
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The study of metamimetic games will thus consist in the study of the evolution in the 

length and composition of these chains, leading to the emergence of structures at the 

intra and inter-individual levels.  

The main difference with other kinds of games from game theory and evolutionary game 

theory is that in metamimetic games, there is an endogenous dynamics on the 

distribution of rules and metarule whatever the dimension of the rule space (even the top 

level is not a singleton). There is not enough space here, but by writing the master 

equation of this kind of games, we can demonstrate that contrary to  other games of 

imitation like replication by imitation (Weibull 1995) metamimetic games are not in 

general reducible to some standard dynamics like the replicator dynamics. In fact, the 

discrete replicator dynamics (Hofbauer & Sigmund 1988) is reducible to a particular case 

of metamimetic dynamics where the set of possible top-level rules is a singleton.  

We will now make intuitive these differences on a minimal example. This will allow us to 

introduce the main concepts related to these games. 

�$���������������	�����	������	�

 Consider the following metamimetic game :  

- Two agents A and B with a cognitive bound of 1 and no memory. 

- Each agent is in the other’s neighborhood. 

- Two possible actions C and D. 

- Two possible imitation rules : maxi and conformist 

- The game is symmetric. When C plays against D, D gives always higher payoffs 

than C (think of a prisoner dilemma for example). 

- The game is repeated and at each period, agents change their strategy 

simultaneously according to their rule. 

 

The definition of the rules are the following :  

- Maxi : if  your neighbor has higher payoffs than you, copy its rule and use it to 

update your behavior. 

- Conformist : If your neighbor has a strategy different from you, copy its rule and 

then use it to update your behavior. 

 

The state of the game is thus given by the behavior and the imitation rule of each agent 

like for example : s=[sA:(C, maxi) ; sB: (D, conf.)].  

There are only 16 possible states and the metamimetic dynamics defines a Markov chain 

on this set (figure 6).  
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For example if the initial state is s=[(C, maxi) ; (D, conf.)], after one period, A will become 

conformist because B is the most successful agent, and will change its behavior from C 

to D to adopt B’s behavior. B will become maxi to be like A and will keep on playing D 

because it is the most successful action. In the second period, both agents will have the 

same behavior and consequently will have the same payoffs. Then only A will change its 

strategy to be like B and both will end (D, maxi). The final state of the game will be 

s”=[(D, maxi) ; (D, maxi)]. 

We will say that s” is reachable from both states s=[(C, maxi) ; (D, conf.)] and s’=[(D, 

conf) ; (D, maxi.)]. More generally, we will say that a state s’ is reachable from a state s if 

and only if a system starting in state s can reach the state s’ after a finite number of 

mimetic transitions. 

 

Figure 6 : The dynamics in a minimal metamimetic game. Each arrow represents the mimetic transition 
that the current state requires (here with a probability 1 everywhere). 

�$����&	�����	���	'����!
���

Two types of remarkable subsets of states in figure 6 should be highlighted, equilibria 

and attractors. They are the remarkable subsets of the underlying Markov chain. 

 

Definitions :  

Let G={N,Γ,R,B,CB} be a metamimetic game with CB=1 and Ω the set of all 

possible states of the game.  

 

- A set of states Σ=(s1,…, sm) is a metamimetic attractor if and only if  

∀(s,s’)∈ Ω×Σ ; s’ is reachable from s ⇔ s’∈Σ 
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- A state s=(s1,…,sn) is a metamimetic equilibrium if and only if  

∀i∈{1,…,N}, ∀k∈Γi, si=(r0
i
, r1

i)≠s j=(r0
j
, r1

j) � ν i(j, Γi )≤ ν i(i, Γi ) 
“no agent can find itself better when it imagines itself in the place of one of its neighbors” 

 

where ν i is the valuation function associated with the imitation rule r1
i. A 

metamimetic equilibrium is a particular case of metamimetic attractor. Here the 

value νi(j, Γi ) can be understood as a counterfactual, it is the well-being that i can 

imagine feeling while being put at the place of j. In this sense, a metamimetic 

equilibrium will also be called a counterfactually stable state.  This definition can 

be extended to any value of CB.  

 

This very simple example has the advantage of making clearly visible the main property 

of metamimetic games as illustrated in figure 6: the Markov chain that defines the 

dynamics is a property of the set of strategies considered, not a dynamics that would be 

given apart from this set, like for example a maxi rule or a replicator dynamics applied to 

a set of strategies. We will further discuss the choice of this set in paragraph III.3. This 

property is independent of the size of the set of rules and is the key for the expression of 

a multiplicity of agents’ viewpoints. At this stage, we can clearly see the link with the 

notion of operational closure : the dynamics on imitation rules for a given state of the 

game is the product of the distribution of imitation rules. 

  

Moreover, the goals of an agent at a given moment, defined here as the valuation 

function of its unique imitation rule, are the outcome of a historical process, its 

interactions with its environment. We shifted from a perspective where goals are an 

unchanging property of agents (like the standard maximization of predetermined payoffs 

in economy) to a perspective were goals are in some extent chosen by an agent during 

its life. The distribution of goals in a population should then be understood as the 

expression of the self-coherence of these goals in the social network and not the 

expression of the fitness of these goals relatively to pre-given criteria.  

 

To return to the comparison with replicator dynamics, for the latter, the meaning of a 

transition from a global state s to a global state s’ should be interpreted in terms of a 

semantics that is external to the system, the fitness function (what is good, what is bad). 

The different states of the system have no meaning other than the one assigned from the 

outside. On the contrary in metamimetic games, the meaning of a transition from s to s’ 

has to be found in s itself, it is the expression of the content of imitation rules.  
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We can sum up these remarks with the following proposition :   

 

Proposition : Every metamimetic game G={N,Γ,R,B,CB} can be associated with a 

unique matrix P0 that defines the Markov process representing the internal dynamics of 

the game. P0
 defines de metadynamics of the social cognition process. 

 

The proof of this proposition is straightforward since for each configuration of the social 

network, an agent’s imitation rules define locally the possible transitions (I remark in 

passing that transitions do not have to be deterministic since for a given agent there 

could be several models with distinct strategies).  

 

The internal dynamics of a metamimetic game defines some particular distributions 

corresponding to eigenvectors of P0. This is a first spontaneous selection among all 

possible states. In our example, from the sixteen possible states, only six are attractors. 

As we will see, this selection is sharpened in presence of perturbations. 

IV.4.���	�
��	�����	
��
!������ 

In the preceding section, agents were supposed to be mind-readers: they knew perfectly 

well the strategies of their neighbors. This of course does not pretend to reflect reality 

since in real setting, people have to infer rules, behaviors and other cognitive 

components of the decision making process of their neighbors. These inferences about 

what others think and do are noisy. Moreover agent do not always do what they intend to 

do. Consequently, there are errors all along the decision-making process due to false 

perceptions, misunderstanding and mistakes. Following Young (1993, 2001), a more 

realistic approach would be to suppose that there are some mistakes that constantly 

perturb the social dynamics. We have then to study metamimetic dynamics in the 

framework of stochastic game theory (Foster & Young 1990).  
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Figure 7: Minimal example of a noisy metamimetic game. An error of one of the 
agents can lead the system toward a new metamimetic attractor. When the system is 
constantly perturbated, the only state in the SCSS is the state where all agents are 
(D,maxi). The proportion of this state in the limit distribution when (εr, εa) tends to zero 
quickly converges to 1 (right). Here the proportions have been plotted for 0,01<εi<0,2. (it 
should be noticed that since all states are taken with an equal probability in case of 
mistake, here half of errors are corrected. The real level of noise is then εi/2) 
 

For example, as a first approximation we can assume that all mistakes in  copying 

neighbor’s strategies are possible and are time-independent and consider that with a 

probability 1-εr (resp. 1-εa) the agents choose the correct imitation rule (resp. behavior) 

but with a probability εr (resp. εa) choose a rule (resp. the behavior) at random in the set 

R (resp. B). We obtain a pertubated Markov process Pε that has a unique stationary 

distribution (figure 7). When the perturbation is small (||Pε-P0||∞<<1) this stationary 

distribution is concentrated around a particular subset of attractors of the process defined 

by P0 : the stochastically stable set (Foster & Young 1990). To highlight the fact that this 

Markov process P0 represents endogenous mimetic dynamics, we will call this set the 

stochastically counterfactually stable set (SCSS). In our example, it is straightforward to 

show that the only state in the SCSS is the state [(D,maxi) ; (D,maxi)] (figure 8).  
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Figure 8: Frequency of the SCSS at the attractor. In our minimal example, the 
proportion of the SCSS in the limit distribution when (εr, εa) tends to zero quickly 
converges to 1. Here the proportions have been plotted for 0,01<εi<0,2. (it should be 
noticed that since all states are taken with an equal probability in case of mistake, here 
half of errors are corrected. The real level of noise is then εi/2) 
 
 

The simplicity of our example do not allow us to show all the characteristics of these 

games in noisy settings. The most important feature here is that the coupling between 

the internal dynamics and the perturbations operates a second selection on the states 

privileged by the internal dynamics, the limit distribution being independent of the initial 

conditions. 

 

 

Although the role of perturbations would be too long to be exposed in detail here, I will 

only mention that usually, the SCSS does depend on the structure of the perturbation 

which here is given by the relation between εa and εr. Formalizing this dependence is 

perhaps one of the principal contributions of this approach. In those systems, we have 

two sources of information : the internal dynamics and the structure of noise in the 

environment. The relation between these two is an example of structural coupling (Varela 

1979).  

 

But the main aspect this simple example highlights is that dynamics of metamimetic 

games are not optimization of criteria that are arbitrarily assigned to agents and exist 

prior to their activity. The question here is not to find the “best” strategy, which would first 

require that the modeler ask herself which definition of best is the best. The question is to 

find the states such that each agent, through its interactions with its social networks, has 
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found an identity and a strategy that is self-coherent given its social environment. The 

question is then to find the social configurations that are maximally stochastically 

counterfactually stable. This suggests us to study social systems as autonomous 

systems evolving under phenomena of differentiation among a multiplicity of possible 

criteria along a process of cultural co-evolution.  

V.  How to choose the set of imitation rules ? 

$����(	
	�����������������������

Before concluding, I would like to highlight the shift of perspective about social systems 

modeling that the current approach could bring about. Contrary to standard games where 

the modeler has first to choose a set of strategies and then a dynamics on this set, in 

metamimetic games, the set of strategies is sufficient to define the dynamics. For this 

reason, we must pay a particular attention to this set.  

 

Following Baldwin (1897), who wrote that imitation is a means of selecting stimuli in the 

environment, it is interesting to think of imitation rules in terms of selective attention: an 

agent is particularly sensitive to one dimension of its perceptive space and builds from 

the stimuli detected along this dimension a function that it will use to select the 

appropriate trait to copy. This suggests that we should not define the set of imitation 

rules as a list, as is usually done, but as a set generated by some cognitive operators : 

operators for the selection of a particular dimension in the stimuli space and operators for 

computation on this space (figure 8). 

 

To choose the appropriate set the modeler then must ask herself, “What can an agent 

perceive in the situation considered?“ and “What kind of operations can an agent do on 

these perceptions?”. For example, the fact that an agent is able to act as a conformist 

means that it can focus its attention on frequencies of traits in a population and find the 

most frequent trait. The fact that an agent is able to act like a payoffs-maximizor means 

that it can focus its attention on payoffs and can at least compute the maximum of two 

scores.  

$��� 	����
���	�������	��	�����
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This approach suggests that an important part of the work is to find some regularities of 

such sets of rules according to what is known in cognitive sciences, in order to built them 

in a generative way. The first one we can propose as a first approach has been evoked 

by Gabriel Tarde (1890) in the forewords of the second edition of his “Laws of Imitation” : 
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we can reasonably think that there is no social system were an imitation rule is present 

without its counterpart, the one that prescribes exactly the contrary. If an agent can 

imagine a rule, it can imagine its contrary. From the formal point of view this means that 

if an agent can find the maximum between two numerical values, it can also find the 

minimum, which is formally equivalent to saying that there is a cognitive operator that 

multiplies numerical values by –1.  

 

If we accept this property, the minimal set of rules that contains the maxi rule and the 

conformist rule (figure 9) would be in fact a set with four rules {maxi, mini, conformist, 

anti-conformist}, where the basic percepts are densities of traits and payoffs, and the 

operators inverse (that multiply by –1 numerical values) and  max (that find the max 

between two numerical values). This means that if one of these rules plays a minor role 

in the model considered, it should be because the internal dynamics of the system has 

eliminated it and not because the modeler has decided against this rule a priori. This is 

possible precisely because the distribution of imitation rules is endogenous once you 

choose a set.   

    

Figure 9: Our approach suggests to define the set of imitation rules in a generative way.  
Agents are embedded in their environment from which they infer some traits like colors and 
payoffs.  Then, they do some computations on the inferred distributions of these traits : 
computation of the densities, computation of the maximum, computation of the minimum, etc. 
These computations are used as a basis for building imitation rules, that are themselves traits 
agents can try to infer. 

 

$����)�����������	�����	����	��

These remarks raise a fundamental question: How new categories of traits, new 

dimensions in the perceptive space that will bring the metamimetic dynamics from a 

Markov chain defined by P0 to an other defined by P’ 0 emerge?. For example, in a very 
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schematic way is it possible to imagine how a population of mimetic agents can become 

sensitive to the number of persons that imitate a given agent so that they begin to 

imagine rules like prestige ? Is it possible to imagine how a population of conformist/anti-

conformist agents who care only about densities of traits can invent such a thing as 

money that brings about couples of rules like maxi/mini ? Such transitions reflect the shift 

in the phase space of the whole systems and their study is highly relevant to the study of 

social systems dynamics. Indeed, it is highly probable that social systems are constantly 

shifting from phase space in that way as a consequence of innovations. Understanding 

these kinds of shifts in the phase space is certainly one of the challenges of social 

systems modeling. 

VI Conclusions 

As a heuristic for the modeling of human social systems, several scientists have 

proposed focusing on models that include human specific cognitive capacities. The 

justification for this is that only such models should be able to explain the huge gap in the 

complexity of social structures between animal and human societies. Following this 

heuristic, we proposed including some consequences of reflexivity and metacognition in 

social systems modeling, i.e. the fact that human beings know to some extent that they 

are using rules for decision-making and can monitor their use.  

 

When associated with reflections about human imitation, this remark led us to propose a 

formal framework for the modeling of social systems: metamimetic games. In those 

games, agents imitate in accordance with their preferences, as in most models that deal 

with imitation, but also form their preferences through imitation. Those games have two 

remarkable properties:  

1) imitation rules can be their own meta-rules. Thus, we escape the regress 

problem that threatens as soon as the question of grounding the choice 

strategies is evoked;  

2) there is an endogenous metadynamics on imitation rules: the distribution on 

imitation rules is the product of the dynamics it defines.  

With a very elementary example of such a game, I introduced the corresponding 

concepts of attractors and equilibria: counterfactually stable states. In a noisy setting, we 

worked in the framework of stochastic game theory (Foster & Young 1990) and proposed 

to concept of stochastically counterfactually stable states.  
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Unlike other games, the main question in the study of metamimetic games is not to find 

the “best” strategy. This would require indeed that the modeler knows which definition of 

“best” is the best. Rather, at issue the study of a phenomenon of differentiation in a 

population along a process of cultural co-evolution among a set of possible motivations 

in order to identify the (stochastically) counterfactually stable states that are the states 

toward which the dynamics converges. Those are states such that the social positions of 

agents are maximally coherentiii from their own point of view given what they can do.  

This is only the first outline of metamimetic games. As already mentioned, future work 

will have to develop models adapted to more specific situations and also study the link 

between metamimetic dynamics and other components of human cognition like 

perception, inference or learning. An interesting issue to study will be the interactions 

between mimetic dynamics and other kinds of social dynamics. There always exist some 

prerequisites for participation in a social activity. For example, to participate in an 

economic activity, one must be creditworthy. These kinds of prerequisites induce a 

dynamics in the population – often modeled as a replicator dynamics - that is 

superimposed on the metamimetic dynamics. We can expect that the understanding of 

the mutual influence between these different dynamics will be very instructive in 

understanding the complexity of human social systems.   
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i « Pour élaborer une science de l'homme, il faut comparer l'imitation humaine avec le mimétisme 

animal, préciser les modalités proprement humaines des comportements mimétiques si elles 

existent » Girard, 1978  
ii Also it could be interesting to consider different sets of rules depending on the agents – as in Selten 

& Ostmann 2001 - and the cognitive level, but this would be superfluous given the present purpose. 
iii The term coherent should be understood before all from the modeler’s perspective. Agents 

themselves are not looking for coherence but are simply applying their rules. A rule is coherent if its 

application does not tend to change the rule itself.  


