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Minimax exact constant in sup-norm for nonparametric
regression with random design

KARINE BERTIN*

Abstract: We consider the nonparametric regression model with random design. We study the
estimation of a regression function f in the uniform norm assuming that f belongs to a Holder
class. We determine the minimax exact constant and an asymptotically exact estimator. They
depend on the minimum value of the design density.

Key Words: nonparametric regression, minimax risk, minimax exact constant, uniform norm.

AMS subject classification: 62G07, 62G20

1 Introduction

We study the problem of estimating a nonparametric regression function f defined on [0, 1] from
observations

for n > 1 where the X; are independent random variables in [0, 1] and the &; are independent
zero-mean gaussian random variables with known variance o2 and independent of the X;. We
suppose that f belongs to the Holder smoothness class (3, L) with § and L positive constants
defined by:

28, L) = {f: 1F™ @) = f )| < Llr =yl 2,y R}, @)

where m = | 3] is an integer such that 0 < @ < 1 and o = # — m. Moreover, we suppose that f
is bounded by a fixed constant ) > 0, so that f belongs to ¥q(3, L) where

2B, L) =28, L) n{f : [flle < @},

and || fllec = supyeoqy[f(x)]. We suppose that the X; have a density u w.r.t. the Lebesgue
measure, 4 belongs to a Holder class ¥(I,C') with 0 < I < 1 and there exists pog > 0 such that
min, cjo g #1(2) = o,

An estimator 6,, = 0,(z) of f is a measurable function with respect to the observations (1)
and defined for x € [0,1]. We define the maximal risk with sup-norm loss of an estimator 6,, by

Rn(6,) = sup Ef(w<”9”_f”°°>),
F€8q(B.L) Un
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where w(u) is a continuous non-decreasing function defined for v > 0 which has a polynomial

upper bound w(u) < Wy (1 + «”) with some positive constants Wy, v and such that w(0) = O,BIEf
is the expectation with respect to the joint distribution Py of the (X;,Y;) and ¢, = (%(n) o

Let us recall that in our model, v, is the minimax rate of convergence (c.f. Ibragimov and
Has’minskii (1981,1982), Stone (1982)).
Our goal is to determine the minimax exact constant C' and an estimator 6}, such that

C = lim inf R, (0,) = lim R,(6;), (3)

n—oo 0, n—oo

where infg, stands for the infimum over all the estimators. An estimator that satisfies (3) is said
to be asymptotically exact. The aim of this paper is to extend a result proved by Korostelev
(1993) to the regression model with random design. Korostelev (1993) studied the estimation of
a function f € 3(f4, L) with 0 < # < 1 with sup-norm loss and for the regression model with
fixed equidistant design (X; =i/n in (1)). He obtained the exact constant which is w(C}) with

, 1 1\"\ 77
COZ("ML(W))

and an asymptotically exact estimator which is a kernel estimator close to

Fu( nhZYK< ’/”> (4)

Here h is a bandwidth depending on n and

p+1
26

with 24 = max(0, ). Donoho (1994) extended Korostelev’s result to the Gaussian white noise
model for Holder classes with § > 1 for estimation in sup-norm. He proved that asymptotically
exact estimators and exact constants in several settings with Holder classes (2) are closely related
to the solution gg of the optimization problem

K(t) = 21— [t]")+ (5)

. llggll2 < 1
max gg(0) subject to 6
gﬁ( ) J { gs € E(ﬁ, 1)7 ( )

which is linked to an “optimal recovery problem”. He proved that the asymptotically exact
estimators are kernel estimators (the equivalent of (4) for white noise model) where the kernel
K is expressed in terms of the solution gg:

k() = P20 )

and that the exact constant depends on gg(0). For 0 < 8 < 1, the solution of (6) is known
(see Korostelev (1993) or Donoho (1994)) and the kernel used by Korostelev defined in (5) is
equal to that defined in (7) up to a renormalization on the support. However the function gg
is not known for § > 1, except for 5 = 2. Korostelev and Nussbaum (1999) have found the
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exact constant and asymptotically exact estimator for the density model in sup-norm. Lepski
(1992) has studied the exact constant in the case of adaptation for the white noise model. The
sup-norm estimation is only one of the approaches studied in the nonparametric literature. For
the Lo-norm risk, one can find overview of results on exact minimax and adaptive estimation in
the books of Efromovich (1999) and Tsybakov (2003).

Our results are the following. In Section 2, we give an asymptotically exact estimator 6,
and the exact constant for the regression model with random design. If the density p is uniform
(1o = 1), then the constant is equal to w(C})) (the constant of Korostelev (1993)). As it could be
expected, the exact constant and the asymptotically exact estimator 6} depend on the minimum
value of the design density pg. It means that the asymptotically minimax estimators contribute
to the sup-norm risk essentially at the points where we have less observations. The estimator 6
that is proposed in Section 2 is close to a Nadaraya-Watson estimator and is independent of Q.
The proofs are given in Section 3.

2 The main result and the estimator

In this section, we define an estimator ;. We shall prove in Subsection 3.1 that 6} is an
asymptotically exact estimator. This estimator is close to a Nadaraya-Watson estimator with
the kernel K defined in (5). The bandwidth of €} is

_ C'o%%
=)

with )
Co = (UZBL <ﬂ+ ! >ﬁ> o )
2620
First let us define 6} in a regular grid of points x; = kTm € [0,1] for k € {1,...,[X]}, with
m = [(5,4:11/},% +1], 6, = @ and [z] denotes the integer part of x. To account for the boundary

effects, we need to introduce other kernels:
Ki(t) = 2K ()1 (t), Ka(t) =2K(t)I|_10(t) for teR.

The estimator € is defined for k € {1,...,[2]} by

n
m

o K ()
max (7 S5 K (52 60)

if x, € [h,1 —h]. If x; € [0,h) (respectively i € (1 — h, 1)), 0 (x) is defined by (8) where K
is replaced by K (respectively by K3). Finally the function €} is defined to be the polygonal
function connecting the points (x4, 0y, (zx)) for k € {1,...,[;=]}. Moreover, we put 0; () = 0;, (1)
if z € [0,21] and if zn] <1 we put 05 (z) = 0 (v[n)) for z € [x(n], 1].

The results we obtain are the following:

O (x) = (8)
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Theorem 1. We consider the model and the assumptions defined in Section 1. We suppose that
the function f € ¥g(B8,L), with 0 < 3 < 1. The estimator 0}, satisfies

lim inf R,(6,) = lim R,(6}) = w(Cy).

n—oo 6,

We are going to prove Theorem 1 in two steps: the upper bound (Subsection 3.1) and the
lower bound (Subsection 3.2). Let 0 < £ < 1/2. In Subsection 3.1, we show that 0 satisfies

limsup sup  Ef [w (|6 — fllootop )] < w (C’o (1+ 5)2) . 9)
n—oo  fe¥q(B,L)
In Subsection 3.2, we prove that

liminfinf  sup  Ep[w([|0n — fllo®n )] > w(Co(1 — ¢€)). (10)
"0 O fesio(s.L)

Since 0 < & < 1/2 in (9) and (10) can be arbitrarily small and w is a continuous function, this
proves Theorem 1.

Remarks:
(i) We introduce the cut-off &, in (8) to account for the case - YIK (X;;m) = 0 which

leads to a zero denominator. As it is proved in Lemma 1, # 27]?:1 K (Xj}:xk) — u(xg) tends to

Xj—l’k

0 in probability as soon as n tends to oo, so that % 2?21 K ( ) = ( essentially does not
occur.

(74) The estimator 0 does not depend on @, but it depends on pg. It is possible to construct
an asymptotically exact estimator independent of py and ) but the proof is rather technical.
For this purpose, we cut the sample (Xi,...,X,) in two parts of size ,, and n — «,, where

oy, is an integer such that o, — oo and a,/n — 0 as n — co. We estimate po with the part

(X1,...,X,,) of the sample by
N .. (kK
fo =, min_fiy <n> :

where fi,(7) = —1- 5% K (M> and g, such that g, — 0 and ay,g, — 00. We construct an

Angn gn
estimator of f in the same way as 6, except we only use the part (Xa,, +1,. .., Xn) of the sample

and we replace pg by fig, if the latter is not zero, in Cy and h. The results are similar to those of
this paper for this estimator but one needs to consider the law conditionned by (Xi,..., Xa,).
(ii7) We have only solved the problem of exact constant and asymptotically exact estimator for
the Holder classes ¥g(8, L) such that 0 < 3 < 1. In this case we have an explicit form for the
constant and the estimator. An extension to § > 1 is possible but it does not give realizable
estimators (since the solution gg of the problem (6) is not explicitly known except for 8 = 2). A
similar result could be found and the exact constant will be w(C7) with

B\ 771
1= ol0) (”%L (o) ) '

The analogue of inequality (9) for 8 > 1 holds for example for the estimator 6 defined for
t € [0,1] by:

X;—t
ﬁ Z?:l K <]T> Yj

O G () )

n

, (11)
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with certain modifications near the boundaries. To prove inequality (9) with this new estimator,
we will use methods similar to those of Lepski and Tsybakov (2000), based on the supremum of
Gaussian processes. For 3 > 1, the proof of inequality (10) is the same as that of Subsection
3.2, but we need to use the function gg and the fact that gg is compactly supported. This was
proved by Leonov (1997). He also proved that gg is continuous and even for all 3 > 1.

(iv) Our result can be presumably extended to the white noise model

dY (t) = f(t)dt + o(t)dW (t), te[o,1],

where W is a standard Wiener process and o2 serves to replace the density of the design points.
In this model, the maximum of o2 corresponds to the minimum value of the design density uo.
An asymptotically exact estimator will be of the form

)= [ K (*50) aviw.

where h a bandwidth that depends on n and K is defined in (7).

(v) The constants L and 3 are supposed to be known, but using the techniques similar to Lepski
(1992), one can presumably obtain adaptive asymptotically exact estimator. One should note
however that the exact constant for adaptive estimator would be in general different.

3 Proofs

3.1 Proof of inequality (9)
We define the event A,, as

1 " X-—xk
A= o)~ Ly ae (K)o,
wken[}sih} ) nh = ( h >

Similarly we define A ,, (respectively As ;) which are obtained by replacing K by K (respectively
by K2) and taking the supremum over xj, € [0, h) (respectively over z3 € (1 — h, 1]). We define
also

+1) 1< X, — xp
Al — /.L(I'k)(/a o K2 J 6n
T e v e L G VAL £

and the events A} ,, (respectively A’Qn) obtained by replacing K by K; (respectively by K2) and

taking the supremum over xj € [0, h) (respectively over x € (1 — h,1]). Let B, = A, N A1, N
Agn NA, N AL, N A, . We have the following result.

Lemma 1. There exists ¢ > 0 such that

PX(B,) >1— 12% exp (—cnhég) )

for n large enough, where P~ is the joint distribution of X = (X1,...,Xy).
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The proof of the lemma is given in Subsection 3.3.

Before proving inequality (9), we give four propositions studying the behaviour of A, =
Y f — 0%]leo on B, and BY. We postpone their proofs to Subsection 3.3. We denote I the
indicator function of a set B which takes the value 1 on B and 0 otherwise. In the sequel, Dy,
Dq,...are positive constants.

Proposition 1. We have

timsup By [u (4517 03llc) Tig]
o0 fexig(B,L)

0.

Define the bias and the stochastic terms for x € [0, 1]
bu(w, ) = B4 (0(2)15,) = (@) P¥(By),
Zn(x, f) = 0,(x) P (Bn) — Ef (60, (x)15,)-

Proposition 2. The bias term satisfies

Co
limsup sup wgl (e oo < .
n—oo ferq(s.L) o Pl = 95747

We study the stochastic term at the points x; and we take n large enough such that PX (Bpn) >
0. Fork € {1,...,[%]}, the process Z,(-, f) satisfies Z, (xy, f)IB, = (Zn(xk, ks )) B
where for z3, € [h,1 — h], on B,

2ol ) = P98 (i
i T K (%)

Zn(xkaf) = Un(l‘k, f)PX(Bn) - Ef(Un($ka f)IBn)a

)PX(Bn),

with

T 0K (K
i K ()

For zj € [0,h) (respectively (1 — h,1]), Z Zo(@, f), Zn(ar, f) and Uy, (zy, f) are defined in the
same way except that we replace K by K (respectively Ka).

Un(xk‘a f) =

Proposition 3. The process 2n(, f) satisfies for all z > 1 and n large enough

_ -~ 25002’ 1 __1r ( )
sup P [{wnlmax Zn(xg, f }ﬂBn] <6, (logn) 25+~ 41\,
feso(sL) | b D> 55705 og)
where a1 (n) = % and C(dy,) tends to 1 as n — oo.

Proposition 4. The process Zy (-, f) satisfies for z > e/2

250@2
260+ 1

where Dy is independent of f € Xq(5,L).

Py [{wgl max | Zn (wx, £)] > } n Bn] < 20,91 exp (=Dozvn)
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Here we prove inequality (9). By Proposition 1, limsup,, ., Ef(w(An)Igo) = 0. We have,
using the monotonicity of w

Es(w(An)Ip,) < w(Co(l+¢)*)Ps [Anlp, < Co(l+¢)?]

+(Bf (w2(An)I5,))? (Br [Anls, > Co(l+€)])2 .

To obtain the inequality (9), it is enough to prove that
(Z) hmn_wo supfeEQ(@L) ]P)f [AnIBn > C()(]. + 5)2] = O,
(i) there exists a constant Dy such that limsup,, . Supses,(g,r) Ef(w?(Ay)Ip,) < Di.
Here we prove (i). Considering n large enough such that PX(B,,) > %ﬁ, we have
Py [AnIp, > Co(1+¢e)*] =Py [AnIp, PX(By) > CoP™(By)(1 +¢)?]
< Py [Anlp, P*(Bn) > Co(1+¢)].

Note also that
AnIBnPX(Bn) < wrjl(an(7f)Hoo + ”Zn('7f)H<>O)IBn~

Thus using Proposition 2, we deduce that, for n large enough

Py [Anln, > Co(1+27) <Py {120 Dl > TET 0,

Since 67 is the polygonal function connecting the points (zy, 8} (zx)), Zn (-, f) is the polygonal
function connecting the points (zg, Z,(zk, f)). Thus we have || Z, (-, f)|lco = max | Zn(xk, f)],

By {12 Dl > LT 0| =y [{urtmaxi 2o 1> 2580 0B,

25+ 1 2511
and
C = C
By [{ort ma 2o )1 > ZEEE 08, ] <y [fur s 2 ) > L
+Py |:{,¢7:1 m’?X’Zn($k,f)| > W} ﬂBn:| .

Since C(d,) tends to 1 as n — oo, in view of Propositions 3 and 4 used respectively with
z=14¢/2 and z = £/2, the right hand side of the last inequality tends to 0 as n tends to oo
uniformly in f € ¥g(4, L). So we obtain (7).

Here we prove (ii). We have, since w(u) < Wy(1 + u?),

By (w*(An)p,) < Da+ Dy [By (6511Za( Nllse)™ 15, ) + (93 10 Nlloo) ] (14 0(1).
Using the fact that
-1 2y _ oo -1 2y
Ey (0 120 Dlloe) " I, ) = /0 Py | (U 1Zas Nlloe)” I, > 2]

Propositions 3 and 4, and noting that C(é,,) tends to 1 as n — oo, we prove that
limsup,, . Ey [(wglﬂZn(-, f)Hoo)%] < oo. This and Proposition 2 entail (7).
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3.2 Proof of inequality (10)
3.2.1 Preliminaries

First, we need to define ¥, a subspace of Xg(8,L). Since u satisfies a Lipschitz condition
on [0, 1], there exists zo € [0,1] such that p(zo) = mingep p(r). Let v, = (n/logn) 2+
for e introduced in Section 2. Let M = [m}
neighbourhood of ¢ in the following way. For n large enough and if z¢ € (0,1), we put

and define the points ai,...,aps in a

alzxo—%/2+<21/ﬁ+l) h, aj+1—aj:2(21/’6+1) h.

If 2o = 0 (respectively g = 1), we define the points a; in the same way except that a; is
(21/5 + 1) h (respectively 1 — v, + (21/ﬁ + 1) h). We define the set ¥’ as

S ={f(-0),0 € [-1, 1M}, (12)
where for 0 = (61,...,0y) € [-1,1]™ and x € [0, 1]
)
+.

M
fla,0) = LhP> "6 (1 —
j=1

For all § € [-1,1]M, f(-,0) € ¥(3, L) and ||f||cc < Q for n large enough. Therefore for n large
enough ¥’ C ¥g(8, L).
Remark: For § > 1 the subspace X’ should be defined in a similar way:

m—aj

h

M
' = { f(x,0) = Lh® S 0;g5 (”“’ ;Laf) L fel-1,1M

j=1

and the values (a;)j—1, s should satisfy aj;1 —a; = 243h(2/7 + 1) where [~Ag, Ag] is the
support of gg.
Then we need to introduce an event N,, that satisfies the following lemma

Lemma 2. The event

Ny =<4 (X1,...,X,): sup (ﬁ+1)(2ﬁ+1)2”:<1_xk_aj

j=1,. M 4p103%*nh P

satisfies limy, oo PX(N,) = 1.

The proof is in Subsection 3.3.
Finally, we study a set of statistics. Let § € [—1,1]M. We suppose that f(-) = f(-,0). The
model (1) is then written in the form

Yk:f(Xk70)+€ka k:]-a"'an)

and the vector (X1,Y1,...,X,,Y,) follows the law Py 9) that we will denote for brevity Pp. For
X € N, consider the statistics

)= D1 Yiefi (Xi)
TN (X))

=1,...,.M (13)
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r—a;

where f;(z) = Lh® (1 -

B
) for z € [0,1]. For X € N,, the statistics y; are well defined.
These statistics satisfy the following proposition.

Proposition 5. (i) For all j € {1,..., M}, the conditional distribution of y; given X € N, is
gaussian with mean 0; and variance v2. The variance UJQ- does not depend on 6 and satisfies

2.
241 _ o 2041

Stogm)(1+2) = = 2log(n)(1—2) (14)

(73) Conditionally on X, for X € Ny, the variables y; are independent.

(#i1) In the model (1), with f(-) = f(-,0), conditionally on X, for X € Ny, (y1,...,ym) 18
a sufficient statistic for 0 and the likelihood function of (Y1,...,Ys) conditionally on X, for
X € N, has the form

a M o0, (5 — 0;)
g1, V) = [[eo(¥o) [ =225—2
paley o oY)

where @, is the density of N'(0,v?) for v > 0.

The proof is in Subsection 3.3.

3.2.2 Proof of the inequality

Here we prove inequality (10). For f € ¥g(, L) and an estimator 6, using the monotonicity of
w and the Markov inequality we obtain that

Ey [w (¢ 1100 = flloo)] Zw(Co(1 = €)Py [w (¥ 1 — fllec) = w(Co(1 —¢))]
>w(Co(1 = €))Ps [, '[|6n — flloo > Co(1 —¢)] .

Since ¥’ C X¢(f, L) for n large enough, it is enough to prove that lim, .~ A, = 1, where

Ay, = inf sup Py (v, |05 — flloo = Co(1 —¢)) .
On fexr’

We have max;—1,.ar [0n(a;) — f(aj)| < [|0n — flloo. Setting 6; = 6,(a;)Cothn and using that
flaj) = Covpnb;, we see that
A, > inf  sup Py(Ch),

OERM ge[—1,1]M

where C,, = {max;—1,_ . m \é] — 6| > 1—¢} and 0 = (91, e ,éM) € RM is measurable with
respect to the (Xj,Y;)’s. We have
e [ Box(@ap* (x)n(ao). (15)
0eRM J{—(1—¢),1—e}M JN,,

where Py x is the distribution of Y7, ...,Y,, conditionally on X = (X1,...,X,,) and 7 is the prior
distribution on 6, 7(df) = Hjj‘il 7j(df;), where 7; is the Bernoulli distribution on {—(1—¢),1—¢}
that assigns probability 1/2 to —(1 —¢) and to (1 — €). We will prove that for X € N,

HY = inf / Po.x (Co)r(d8) > 1+ o(1), (16)
0ecRM
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where o(1) is independent of X. This entails that

/ inf /]P’(;X )7(d0)dPX (X) > (1 + o(1)) PX(N,).
N, 0cRM

Using (15) and the Fubini and Fatou theorems, we find that A, is greater than the left hand side
of the last inequality. Thus we obtain that

A, > PY(N,) (1 +0(1)),

and by Lemma 2, we conclude that lim, .., A, = 1.

Proof of the inequality (16). We fix X € N,,. We have

X
e =1- éS%Iz)w / H I{léj—Gj|<1—s}dP9’X7r(d6)’ (17)
€ j=1

where the supremum is taken over all the estimators 6 measurable with respect to the (X;,Y;)’s
By Proposition 5, the Fubini and Fatou theorems we have

M
sup /HI{éj_0j|<1_€}dIP’97X7r(d9)
j=1

HeRM
4,0 M
/ L=l FORTY Asup /HI{|éj—9j|<1—8}(pvj(yj — ej)ﬂ'j(dej) le s 'dYn
H] 1901)] feRM j=1
M

= 900' z
/H 1 H?“p/I{|éj—0j<1—e}%j(yj‘Qj)ﬁj(d‘)j) dYi--- d¥n.

j= 19011] y] j:]_ajER

It is not hard to prove that the problem of maximisation

ggﬁ/jﬂéj—ejkl—a}(pvj (yj - ej)ﬂj(dej)

has the solution ;(y;) = (1 — )l >0y — (1 — €)1y, <0y This allows to compute the supremum
in (17) directly but to avoid calculations we can argue in follows. The above inequality is in fact
an equality and we have

sup /HI{éj—9j|<1—s}dP9aX7T(d9 maX/HI{e-—e <1- E}dIP’g x7(dh),
eRM Vi1 OeT

where the max is taken over the class T of all the estimators of the form 6 = (1 (y1), . .., 0 (yar))
where 6; is a measurable function of y; with values in {—(1 — ¢),1 — ¢} and the supremum is
taken on the estimators which are measurable with respect to the (X;,Y;)’s. Moreover we have,
as 0 depends only on T = (Y1, -+, Ynm)

repea%/HI 16,0;1<1—ey PP, x(d6) rglea;(/HI 16,—0;1<1—y AP, x7(d0), (18)
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where P7 x is the probability associated to the statistic 7' = (y1,...,yam) conditionally on X.
The quantity (18) is also equal by Proposition 5 to

M

o oy (5 — 0;)dy;mi(d0),
HO e{-(1-¢),1— 5}/ {105 (yj)—0;1<1~ E}(‘OJ( ]) Yj ]( ])

and then we have

M

X
He=1- Héve{ o }/I{|éj<yj)—ej|<1—a}%j(yj = 03)dygm; (d9;) (19)
j=1% —(1—¢),1—¢

M
H 177"
7=1

where

X _ . _ 0. . .
T i gural 1_5}/I{gj(u)_9j|21—€}90uj(u 6;)dum;(dby).

We denote by Pg x the probability measure with density u — ¢, (u — 0). We have

1 :
X _Z i — > (1 — J . — > (1 —
K 2éje{gm§),1s}[ heox (Il === (=2 + Py {ll+ (=2l 2 (1 -0)]]

A A (1 j
T2 4er- i) U Ui oy T Tigz0p) 100 (dP“‘E)’X o >]

/mm (1 €) X’dPZ(l—a),X)

Tj _oo“” (W) dy = ® <_(1u_j5))’

where @ is the standard normal cdf. By the inequality (14) and using that
B(—2) = —— exp(—22/2)(1 + 0(1)) for z — +o0, we have

V21
(1-¢)\_  wvVer (1-¢)p?
<I>(— ” )—(16)\/%@@( 202 >(1+o(1))

J

as n — oo and using inequality (14) for v;, we get

Dy _(-9%0+e
frX > 2051 (1+0(1)).
L S Toar" (1+o0(1))
1—e¢
Now M = O <<logn) 2ﬁ+1>, therefore
11— 1 (176)62
inf Mr > Ds(logn)25+1 2n 2541 (1 + o(1)).

XEeN,

From this last inequality and inequality (19), we obtain the inequality (16), which finishes the
proof of the lower bound.
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3.3 Proofs of lemmas and propositions
3.3.1 Proof of Lemma 1

We are going to prove that the event A, satisfies
PX(4,)>1— o exp (—cAnhég) ,
m

for a constant ¢4 > 0. There are similar results for the events Ay ,. .. ’A/Zn with other constants.
Together these results entail the lemma. We are going to use Bernstein’s inequality. First we
take a point xx € [h,1 — h]. The proof will be similar for z; € [0,h) U (1 — h, 1] and we define
the random variables Z;, for i € {1,...,n} by

1 X — xp 1 Xi —xy,
Z; = — —E;|-K .
o (5 - o ()

These variables satisfy Ef[Z;] = 0, Ef [ZZQ] < % and |Z;| < QK% The constant K,,qz 1S
such that K(z) < Kpay for all z in [—1,1] and g is such that p(z) < pq for all z in [0, 1] (such

w1 exists because p is continuous). Let A(k) = {‘,u(:ck) - L3 K (@) | < (5n}. We have

PX(A(k)) — pX (‘:LG:<zz +5k,h)| < 5n> ,

i=1

where 0y, = fil K (y) [z + yh) — p(xg)ldy. As p satisfies a Lipschitz condition, 6y, satisfies
|0k.n| < ph f_ll K(y)|y|dy with p > 0. We have for n large enough

PX(A(k)) > pX (’,rllzn:ZZ < 0, — |5k,h‘> .

=1

By Bernstein’s inequality applied to the variables Z;, we have

1< n(6n — |0k,n])?
X . _ _ _ n 3
P (\n ZZZI <oy 5k,h!> >1—2exp 5 (K%mzm N 2(5n_\5k,h\)Kmam)
i=1 h 3h

Using the fact that 05, = O(h), we obtain that for n large enough, there exists a constant cy4
independent of k such that

PX(A(k)) > 1 —2exp (—canhd?).
From this we deduce easily the result about A, because card{k} < =.
3.3.2 Proof of Proposition 1
Let f € ¥g(8,L). We have

By [ (621f = 63llo) Tng ] <y/By [w? (v 11f = 03ll)]y/Pr(BY)

<¢Ef (14 (a1 = 03l1)") /P (BS)
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since the event B,, only depends on X,

< VB[4 By (0515 - 030e) )y PX(B).

Now E¢ ((wngf — 9;”00)27) < ¥n?'Dg (Q27 + EfHG:‘LHgg) Some algebra and the fact that

1 “ Xj—l’k
max (nhjle( h >,5n) > 6,

yield E¢||05 | 21 = O(n™), with some y; > 0. From the relations above and Lemma 1, we deduce
that limy e E; [w (Wl f = 05]10) IBE} — 0.

3.3.3 Proof of Proposition 2
Let f € ¥g(8,L) and zj, € [h,1 — h]. Consider n large enough such that 6, < p(xy) — 6,. We

have on B,
1 X’—a:k
_ < E 7 TR
H(xk) 5n <S nh 1K< h >

4600 15,) — o) P (B,)] <] 5By [nlh > (M) ) - f<xk>>an] |

<Lhﬁ S5 WP K (y) (e + yh)dy

- p(wg) — 0n
LhPp(zy)(1 4 o(1))

~ (k) = 0n)(268 4+ 1)

For x, belonging to [0, h) or (1 — h, 1], we have the same result. Thus for all k£ € {1,..., [%]}
_ On, Co(1+0(1)) _ Co(1+0(1))
YE (6% (z)Ip.) — PX(B,)| < (1 0 < ,

As f € 3g(B, L), we have for z € [0,1]

bute, NI < max (b 1]+ L () PY(B,)

= ke{l 2]}
< bo (i, W00 L(1 1)).
_ke{rlr,l.%,)f%}}’ (2k, f)] + ¥ndp L(1 + o(1))

Then we obtain that v, b, (z, f)| < % with o(1) independent of f.
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3.3.4 Proof of Proposition 3
Let f € ¥g(B,L), z > 1 and

- 28C,
P, =P [{mkaan1|2n(xk,f)| 2? fi} N Bn} .

We have

26C,
P, <Z[P>f H% | Zy (2, )|>22+0’i}m3n].

We are going to reason for xj, € [h,1 — h], but the proof is similar for z3 € [0,h) U (1 —h,1]. As
B,, depends only on Xi,...,X,, we have

P 2B8C
s Hwﬁzn(a:k,fﬂ >

QﬁCOZ
26+ 1

} N Bn] =E; [Pf [¢;1|Zn(xkjf)| > ‘Xb . ,Xn} IBn] .

The variable Z\n(azk, f) is gaussian conditionally on the X;’s, with conditional variance equal to
o2 (PX(B,))? S, K2 (X7

(i (57

Since n has been chosen such that PX(B,,) > 0 in the definition of the stochastic term, we obtain

0aeaCe? (S K (X))
0> (PX(Ba))2 Sy, K2 (X5

QﬁCOZ
26+ 1

n

Py [{¢;1|Zn(xk7f)| > } ﬂBn} <E; |exp

Replacing the expression for h and o2 in terms of n, Cy, L, 3 and pg, we obtain that the quantity
above in the right hand side is equal to

Ef |exp |— Zlogn(B+1) ("hzj IK( *%))2 Ip,

po(PX(Bn))2(26 +1)%55 X7, K? <%xk)

We have on B,,
~ 1 Xj—l‘k
J— — ) > — > —
E nhK < z > > p(wg) — 0p > o — Oy,

j=1
1 — Tk ﬁ—l—l
< .

s ( h >—2ﬁ+1“(“5’“)+5”

n

j=1

.

Consider n large enough such that pg — §, > 0. Thus we deduce using the inequalities above

that
P 7 Aoz | 2log nC(6y,
f Hwﬁl n(wk, )] > ;ﬁ Oi} Bn:| < exp [_W] 7

with
(MO - (5n) 1 5n(3/8 + 2)

R e
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The quantity C(d,) tends to 1 as n — oo. Because of the fact that card{k} <, Ly P e
have )
P, < 6 (logn) g~ (),

3.3.5 Proof of Proposition 4

Let f € ¥q(B,L). We are still going to reason for z;, € [h,1 — h], and the proof is similar for
zr, € [0,h) U (1 = h,1]. Let Up(zg, f) = Un(a, £YPX(Bn)Ip, — Ef[Un(zr, f)PX(Bn)Is,]. If B,
holds, we have Zy(zg, f) = Un(2k, f) — E¢[Un(zk, f)IB,)PX(BY). Consider n large enough such
that for all z > ¢/2 we have

BCozn

|E¢[U, w(@n, f)Ip,|PY(BS)| < 28+1"

Such choice of n is possible in view of Lemma 1, since E¢[Up(xy, f)Ip,] is bounded. Thus we
have

25002
26+ 1

ﬁCoZ
26+ 1

Pf[{¢gw2;@%hﬂ|> }fWBn}fEPf[¢E”Uﬁ@%“ﬂ|>

We are going to apply Bernstein’s inequality to the variable ﬁn(mk, f) which is a zero-mean
variable bounded by 2Q). Since u(xy) > o, the variance of U, (zy, f) satisfies

e Yy PG K (X)

Es |Un(ae, £)2| <E; — Ip, (PX(B,))?] ,
[ ] hZ] 1K( k)
1 9 o [ X1 —xp X 2
S(M(xk) ) )2nh2Ef [f (XK < h ﬂ (B Bn))
Q2 u( 1—|—0
= (u( — dn)?nh / K2y,
i o)

nh ’

where o(1) is uniform in f € ¥g(8, L) and Dy is independent of f € ¥q(5,L), n and k. By
applying Bernstein’s inequality to the variable U, (zk, f) (note that here the family of random
variables contains only one summand), we obtain

1 6Chz A2
P Lo, <2 —
/ [wn Ul DI > 557 77) < 2oxp 5 (D7(1+0(1)) N 2/\Q) ’
nh 3
where \ = wggffz . Thus for n large enough, we have

B8Chz
260+ 1

Pﬂ%ﬂm@MM> }S%WFDM%%

with Dy independent of f € Yg(8,L) and k. To finish the proof, it is enough to note that
card{k} = [2] < 5, /7.
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3.3.6 Proof of Lemma 2

Like in Lemma 1, using Bernstein’s inequality we obtain that for n large enough

pX {‘ (B ‘Z:zéz,i;‘ 1) Z(l _ |¥|3)i _ 1‘ > 5} < 2exp(—nhDsg)
=1

where Dg is a constant which depends on ¢, but does not depend on n. Now

M 1)(28+1) & Xp — a
PN SZPX{\“ZM);QZT Iy “JW)il\z»s}.
7=0 k=1

Thus
pPX [NS] < 2M exp(—nhDs).

d—c_
Since M = O <<logn) 2ﬁ+1>, we deduce that lim,,_,., PX [NC] =0.

3.3.7 Proof of Proposition 5

(¢) The fact that y; is conditionally gaussian with conditional mean #; comes from the definition
of y; and the fact that the functions f; have disjoint supports. The conditional variance of y;
satisfies for X € N,,

(Chey e fi(Xn)° X
2
(ZZ:1 sz(Xk))

02

T A
2

g

Var(y;| X) =E¢

n Xi—a;
rene gy, (1] B

6)2 '
+
Using that X € N, and replacing the expression for ¢ and h in terms of Cy, n, § and L, we
obtain the inequality for v;.

(t7) comes from the fact the functions f; have disjoint supports and that the &;’s are independent

and independent of the X;’s. (ii7) is obtained by calculating the likelihood function of Y7,...,Y,
conditionally on X, for X € N,,.
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