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Minimax exact constant in sup-norm for nonparametric

regression with random design

KARINE BERTIN∗

Abstract: We consider the nonparametric regression model with random design. We study the
estimation of a regression function f in the uniform norm assuming that f belongs to a Hölder
class. We determine the minimax exact constant and an asymptotically exact estimator. They
depend on the minimum value of the design density.

Key Words: nonparametric regression, minimax risk, minimax exact constant, uniform norm.
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1 Introduction

We study the problem of estimating a nonparametric regression function f defined on [0, 1] from
observations

Yi = f(Xi) + ξi, i = 1, . . . , n, (1)

for n > 1 where the Xi are independent random variables in [0, 1] and the ξi are independent
zero-mean gaussian random variables with known variance σ2 and independent of the Xi. We
suppose that f belongs to the Hölder smoothness class Σ(β, L) with β and L positive constants
defined by:

Σ(β, L) =
{

f : |f (m)(x) − f (m)(y)| ≤ L|x − y|α, x, y ∈ R

}
, (2)

where m = ⌊β⌋ is an integer such that 0 < α ≤ 1 and α = β − m. Moreover, we suppose that f
is bounded by a fixed constant Q > 0, so that f belongs to ΣQ(β, L) where

ΣQ(β, L) = Σ(β, L) ∩ {f : ‖f‖∞ ≤ Q},

and ‖f‖∞ = supx∈[0,1] |f(x)|. We suppose that the Xi have a density µ w.r.t. the Lebesgue
measure, µ belongs to a Hölder class Σ(l, C) with 0 < l ≤ 1 and there exists µ0 > 0 such that
minx∈[0,1] µ(x) = µ0.

An estimator θn = θn(x) of f is a measurable function with respect to the observations (1)
and defined for x ∈ [0, 1]. We define the maximal risk with sup-norm loss of an estimator θn by

Rn(θn) = sup
f∈ΣQ(β,L)

Ef

(
w

(‖θn − f‖∞
ψn

))
,
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Exact constant in sup-norm 2

where w(u) is a continuous non-decreasing function defined for u ≥ 0 which has a polynomial
upper bound w(u) ≤ W0 (1 + uγ) with some positive constants W0, γ and such that w(0) = 0, Ef

is the expectation with respect to the joint distribution Pf of the (Xi, Yi) and ψn =
(

log(n)
n

) β
2β+1

.

Let us recall that in our model, ψn is the minimax rate of convergence (c.f. Ibragimov and
Has’minskii (1981,1982), Stone (1982)).

Our goal is to determine the minimax exact constant C and an estimator θ∗n such that

C = lim
n→∞

inf
θn

Rn(θn) = lim
n→∞

Rn(θ∗n), (3)

where infθn stands for the infimum over all the estimators. An estimator that satisfies (3) is said
to be asymptotically exact. The aim of this paper is to extend a result proved by Korostelev
(1993) to the regression model with random design. Korostelev (1993) studied the estimation of
a function f ∈ Σ(β, L) with 0 < β ≤ 1 with sup-norm loss and for the regression model with
fixed equidistant design (Xi = i/n in (1)). He obtained the exact constant which is w(C ′

0) with

C ′
0 =

(
σ2βL

(
β + 1

2β2

)β
) 1

2β+1

and an asymptotically exact estimator which is a kernel estimator close to

f̂n(t) =
1

nh

n∑

i=1

YiK

(
t − i/n

h

)
. (4)

Here h is a bandwidth depending on n and

K(t) =
β + 1

2β
(1 − |t|β)+ (5)

with x+ = max(0, x). Donoho (1994) extended Korostelev’s result to the Gaussian white noise
model for Hölder classes with β > 1 for estimation in sup-norm. He proved that asymptotically
exact estimators and exact constants in several settings with Hölder classes (2) are closely related
to the solution gβ of the optimization problem

max gβ(0) subject to

{
‖gβ‖2 ≤ 1
gβ ∈ Σ(β, 1),

(6)

which is linked to an “optimal recovery problem”. He proved that the asymptotically exact
estimators are kernel estimators (the equivalent of (4) for white noise model) where the kernel
K is expressed in terms of the solution gβ :

K(t) =
gβ(t)∫
gβ(s)ds

, (7)

and that the exact constant depends on gβ(0). For 0 < β ≤ 1, the solution of (6) is known
(see Korostelev (1993) or Donoho (1994)) and the kernel used by Korostelev defined in (5) is
equal to that defined in (7) up to a renormalization on the support. However the function gβ

is not known for β > 1, except for β = 2. Korostelev and Nussbaum (1999) have found the
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exact constant and asymptotically exact estimator for the density model in sup-norm. Lepski
(1992) has studied the exact constant in the case of adaptation for the white noise model. The
sup-norm estimation is only one of the approaches studied in the nonparametric literature. For
the L2-norm risk, one can find overview of results on exact minimax and adaptive estimation in
the books of Efromovich (1999) and Tsybakov (2003).

Our results are the following. In Section 2, we give an asymptotically exact estimator θ∗n
and the exact constant for the regression model with random design. If the density µ is uniform
(µ0 = 1), then the constant is equal to w(C ′

0) (the constant of Korostelev (1993)). As it could be
expected, the exact constant and the asymptotically exact estimator θ∗n depend on the minimum
value of the design density µ0. It means that the asymptotically minimax estimators contribute
to the sup-norm risk essentially at the points where we have less observations. The estimator θ∗n
that is proposed in Section 2 is close to a Nadaraya-Watson estimator and is independent of Q.
The proofs are given in Section 3.

2 The main result and the estimator

In this section, we define an estimator θ∗n. We shall prove in Subsection 3.1 that θ∗n is an
asymptotically exact estimator. This estimator is close to a Nadaraya-Watson estimator with
the kernel K defined in (5). The bandwidth of θ∗n is

h =

(
C0ψn

L

) 1
β

,

with

C0 =

(
σ2βL

(
β + 1

2β2µ0

)β
) 1

2β+1

.

First let us define θ∗n in a regular grid of points xk = km
n ∈ [0, 1] for k ∈ {1, . . . , [ n

m ]}, with

m = [δnnψ
1
β
n + 1], δn = 1

log n and [x] denotes the integer part of x. To account for the boundary
effects, we need to introduce other kernels:

K1(t) = 2K(t)I[0,1](t), K2(t) = 2K(t)I[−1,0](t) for t ∈ R.

The estimator θ∗n is defined for k ∈ {1, . . . , [ n
m ]} by

θ∗n(xk) =

1
nh

∑n
j=1 K

(
Xj−xk

h

)
Yj

max
(

1
nh

∑n
j=1 K

(
Xj−xk

h

)
, δn

) , (8)

if xk ∈ [h, 1 − h]. If xk ∈ [0, h) (respectively xk ∈ (1 − h, 1]), θ∗n(xk) is defined by (8) where K
is replaced by K1 (respectively by K2). Finally the function θ∗n is defined to be the polygonal
function connecting the points (xk, θ

∗
n(xk)) for k ∈ {1, . . . , [ n

m ]}. Moreover, we put θ∗n(x) = θ∗n(x1)
if x ∈ [0, x1] and if x[ n

m
] < 1 we put θ∗n(x) = θ∗n(x[ n

m
]) for x ∈ [x[ n

m
], 1].

The results we obtain are the following:
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Theorem 1. We consider the model and the assumptions defined in Section 1. We suppose that

the function f ∈ ΣQ(β, L), with 0 < β ≤ 1. The estimator θ∗n satisfies

lim
n→∞

inf
θn

Rn(θn) = lim
n→∞

Rn(θ∗n) = w(C0).

We are going to prove Theorem 1 in two steps: the upper bound (Subsection 3.1) and the
lower bound (Subsection 3.2). Let 0 < ε < 1/2. In Subsection 3.1, we show that θ∗n satisfies

lim sup
n→∞

sup
f∈ΣQ(β,L)

Ef

[
w

(
‖θ∗n − f‖∞ψ−1

n

)]
≤ w

(
C0 (1 + ε)2

)
. (9)

In Subsection 3.2, we prove that

lim inf
n→∞

inf
θn

sup
f∈ΣQ(β,L)

Ef [w(‖θn − f‖∞ψ−1
n )] ≥ w(C0(1 − ε)). (10)

Since 0 < ε < 1/2 in (9) and (10) can be arbitrarily small and w is a continuous function, this
proves Theorem 1.

Remarks:
(i) We introduce the cut-off δn in (8) to account for the case 1

nh

∑n
j=1 K

(
Xj−xk

h

)
= 0 which

leads to a zero denominator. As it is proved in Lemma 1, 1
nh

∑n
j=1 K

(
Xj−xk

h

)
− µ(xk) tends to

0 in probability as soon as n tends to ∞, so that 1
nh

∑n
j=1 K

(
Xj−xk

h

)
= 0 essentially does not

occur.
(ii) The estimator θ∗n does not depend on Q, but it depends on µ0. It is possible to construct
an asymptotically exact estimator independent of µ0 and Q but the proof is rather technical.
For this purpose, we cut the sample (X1, . . . , Xn) in two parts of size αn and n − αn, where
αn is an integer such that αn → ∞ and αn/n → 0 as n → ∞. We estimate µ0 with the part
(X1, . . . , Xαn) of the sample by

µ̂0 = min
k=1,...,n

µ̂n

(
k

n

)
,

where µ̂n(x) = 1
αngn

∑αn
i=1 K

(
Xi−x

gn

)
and gn such that gn → 0 and αngn → ∞. We construct an

estimator of f in the same way as θ∗n except we only use the part (Xαn+1, . . . , Xn) of the sample
and we replace µ0 by µ̂0, if the latter is not zero, in C0 and h. The results are similar to those of
this paper for this estimator but one needs to consider the law conditionned by (X1, . . . , Xαn).
(iii) We have only solved the problem of exact constant and asymptotically exact estimator for
the Hölder classes ΣQ(β, L) such that 0 < β ≤ 1. In this case we have an explicit form for the
constant and the estimator. An extension to β > 1 is possible but it does not give realizable
estimators (since the solution gβ of the problem (6) is not explicitly known except for β = 2). A
similar result could be found and the exact constant will be w(C1) with

C1 = gβ(0)

(
σ2βL

(
2

µ0(2β + 1)

)β
) 1

2β+1

.

The analogue of inequality (9) for β > 1 holds for example for the estimator θ∗n defined for
t ∈ [0, 1] by:

θ∗n(t) =

1
nh

∑n
j=1 K

(
Xj−t

h

)
Yj

max
(

1
nh

∑n
j=1 K

(
Xj−t

h

)
, δn

) , (11)
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with certain modifications near the boundaries. To prove inequality (9) with this new estimator,
we will use methods similar to those of Lepski and Tsybakov (2000), based on the supremum of
Gaussian processes. For β > 1, the proof of inequality (10) is the same as that of Subsection
3.2, but we need to use the function gβ and the fact that gβ is compactly supported. This was
proved by Leonov (1997). He also proved that gβ is continuous and even for all β > 1.
(iv) Our result can be presumably extended to the white noise model

dY (t) = f(t)dt + σ(t)dW (t), t ∈ [0, 1],

where W is a standard Wiener process and σ−2 serves to replace the density of the design points.
In this model, the maximum of σ2 corresponds to the minimum value of the design density µ0.
An asymptotically exact estimator will be of the form

θ∗n(t) =
1

h

∫
K

(
u − t

h

)
dY (u),

where h a bandwidth that depends on n and K is defined in (7).
(v) The constants L and β are supposed to be known, but using the techniques similar to Lepski
(1992), one can presumably obtain adaptive asymptotically exact estimator. One should note
however that the exact constant for adaptive estimator would be in general different.

3 Proofs

3.1 Proof of inequality (9)

We define the event An as

An =



 max

xk∈[h,1−h]

∣∣∣µ(xk) −
1

nh

n∑

j=1

K

(
Xj − xk

h

) ∣∣∣ < δn



 .

Similarly we define A1,n (respectively A2,n) which are obtained by replacing K by K1 (respectively
by K2) and taking the supremum over xk ∈ [0, h) (respectively over xk ∈ (1 − h, 1]). We define
also

A′
n =



 max

xk∈[h,1−h]

∣∣∣
µ(xk)(β + 1)

2β + 1
− 1

nh

n∑

j=1

K2

(
Xj − xk

h

) ∣∣∣ < δn



 ,

and the events A′
1,n (respectively A′

2,n) obtained by replacing K by K1 (respectively by K2) and
taking the supremum over xk ∈ [0, h) (respectively over xk ∈ (1 − h, 1]). Let Bn = An ∩ A1,n ∩
A2,n ∩ A′

n ∩ A′
1,n ∩ A′

2,n. We have the following result.

Lemma 1. There exists c > 0 such that

P
X(Bn) ≥ 1 − 12

n

m
exp

(
−cnhδ2

n

)
,

for n large enough, where PX is the joint distribution of X = (X1, . . . , Xn).
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The proof of the lemma is given in Subsection 3.3.
Before proving inequality (9), we give four propositions studying the behaviour of ∆n =

ψ−1
n ‖f − θ∗n‖∞ on Bn and BC

n . We postpone their proofs to Subsection 3.3. We denote IB the
indicator function of a set B which takes the value 1 on B and 0 otherwise. In the sequel, D0,
D1,. . . are positive constants.

Proposition 1. We have

lim
n→∞

sup
f∈ΣQ(β,L)

Ef

[
w

(
ψ−1

n ‖f − θ∗n‖∞
)
IBC

n

]
= 0.

Define the bias and the stochastic terms for x ∈ [0, 1]

bn(x, f) = Ef (θ∗n(x)IBn) − f(x)PX(Bn),

Zn(x, f) = θ∗n(x)PX(Bn) − Ef (θ∗n(x)IBn).

Proposition 2. The bias term satisfies

lim sup
n→∞

sup
f∈ΣQ(β,L)

ψ−1
n ‖bn(., f)‖∞ ≤ C0

2β + 1
.

We study the stochastic term at the points xk and we take n large enough such that PX(Bn) >

0. For k ∈ {1, . . . , [ n
m ]}, the process Zn(·, f) satisfies Zn(xk, f)IBn =

(
Z̃n(xk, f) + Ẑn(xk, f)

)
IBn ,

where for xk ∈ [h, 1 − h], on Bn

Ẑn(xk, f) =

1
nh

∑n
j=1 ξjK

(
Xj−xk

h

)

1
nh

∑n
j=1 K

(
Xj−xk

h

) PX(Bn),

Z̃n(xk, f) = Un(xk, f)PX(Bn) − Ef (Un(xk, f)IBn),

with

Un(xk, f) =

1
nh

∑n
j=1 f(Xj)K

(
Xj−xk

h

)

1
nh

∑n
j=1 K

(
Xj−xk

h

) .

For xk ∈ [0, h) (respectively (1 − h, 1]), Ẑn(xk, f), Z̃n(xk, f) and Un(xk, f) are defined in the
same way except that we replace K by K1 (respectively K2).

Proposition 3. The process Ẑn(·, f) satisfies for all z > 1 and n large enough

sup
f∈ΣQ(β,L)

Pf

[{
ψ−1

n max
k

∣∣Ẑn(xk, f)
∣∣ >

2βC0z

2β + 1

}
∩ Bn

]
≤ δ−1

n (log n)
− 1

2β+1 n−α1(n),

where α1(n) = z2C(δn)−1
2β+1 and C(δn) tends to 1 as n → ∞.

Proposition 4. The process Z̃n(·, f) satisfies for z ≥ ε/2

Pf

[{
ψ−1

n max
k

∣∣Z̃n(xk, f)
∣∣ >

2βC0z

2β + 1

}
∩ Bn

]
≤ 2δ−1

n ψ−1/β
n exp (−D0zψn) ,

where D0 is independent of f ∈ ΣQ(β, L).
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Here we prove inequality (9). By Proposition 1, lim supn→∞ Ef (w(∆n)IBC
n
) = 0. We have,

using the monotonicity of w

Ef (w(∆n)IBn) ≤ w(C0(1 + ε)2)Pf

[
∆nIBn ≤ C0(1 + ε)2

]

+
(
Ef

(
w2(∆n)IBn

)) 1
2
(
Pf

[
∆nIBn > C0(1 + ε)2

]) 1
2 .

To obtain the inequality (9), it is enough to prove that
(i) limn→∞ supf∈ΣQ(β,L) Pf

[
∆nIBn > C0(1 + ε)2

]
= 0,

(ii) there exists a constant D1 such that lim supn→∞ supf∈ΣQ(β,L) Ef (w2(∆n)IBn) ≤ D1.

Here we prove (i). Considering n large enough such that PX(Bn) ≥ 1
1+ε , we have

Pf

[
∆nIBn > C0(1 + ε)2

]
= Pf

[
∆nIBnPX(Bn) > C0P

X(Bn)(1 + ε)2
]

≤ Pf

[
∆nIBnPX(Bn) > C0(1 + ε)

]
.

Note also that
∆nIBnPX(Bn) ≤ ψ−1

n (‖bn(·, f)‖∞ + ‖Zn(·, f)‖∞)IBn .

Thus using Proposition 2, we deduce that, for n large enough

Pf

[
∆nIBn > C0(1 + ε)2

]
≤ Pf

[{
ψ−1

n ‖Zn(·, f)‖∞ >
2βC0(1 + ε)

(2β + 1)

}
∩ Bn

]
.

Since θ∗n is the polygonal function connecting the points (xk, θ
∗
n(xk)), Zn(·, f) is the polygonal

function connecting the points (xk, Zn(xk, f)). Thus we have ‖Zn(·, f)‖∞ = maxk |Zn(xk, f)|,

Pf

[{
ψ−1

n ‖Zn(·, f)‖∞ >
2βC0(1 + ε)

2β + 1

}
∩ Bn

]
= Pf

[{
ψ−1

n max
k

|Zn(xk, f)| >
2βC0(1 + ε)

2β + 1

}
∩ Bn

]
,

and

Pf

[{
ψ−1

n max
k

|Zn(xk, f)| >
2βC0(1 + ε)

2β + 1

}
∩ Bn

]
≤ Pf

[{
ψ−1

n max
k

|Ẑn(xk, f)| >
2βC0(1 + ε/2)

2β + 1

}
∩ Bn

]

+Pf

[{
ψ−1

n max
k

|Z̃n(xk, f)| >
2βC0ε/2

2β + 1

}
∩ Bn

]
.

Since C(δn) tends to 1 as n → ∞, in view of Propositions 3 and 4 used respectively with
z = 1 + ε/2 and z = ε/2, the right hand side of the last inequality tends to 0 as n tends to ∞
uniformly in f ∈ ΣQ(β, L). So we obtain (i).

Here we prove (ii). We have, since w(u) ≤ W0(1 + uγ),

Ef

(
w2(∆n)IBn

)
≤ D2 + D3

[
Ef

((
ψ−1

n ‖Zn(·, f)‖∞
)2γ

IBn

)
+

(
ψ−1

n ‖bn(., f)‖∞
)2γ

]
(1 + o(1)).

Using the fact that

Ef

((
ψ−1

n ‖Zn(·, f)‖∞
)2γ

IBn

)
=

∫ +∞

0
Pf

[(
ψ−1

n ‖Zn(·, f)‖∞
)2γ

IBn > t
]
dt,

Propositions 3 and 4, and noting that C(δn) tends to 1 as n → ∞, we prove that

lim supn→∞ Ef

[(
ψ−1

n ‖Zn(·, f)‖∞
)2γ

]
< ∞. This and Proposition 2 entail (ii).
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3.2 Proof of inequality (10)

3.2.1 Preliminaries

First, we need to define Σ′, a subspace of ΣQ(β, L). Since µ satisfies a Lipschitz condition

on [0, 1], there exists x0 ∈ [0, 1] such that µ(x0) = minx∈[0,1] µ(x). Let γn = (n/ log n)
− ε

2β+1

for ε introduced in Section 2. Let M =
[

γn

2h(21/β+1)

]
and define the points a1, . . . , aM in a

neighbourhood of x0 in the following way. For n large enough and if x0 ∈ (0, 1), we put

a1 = x0 − γn/2 +
(
21/β + 1

)
h, aj+1 − aj = 2

(
21/β + 1

)
h.

If x0 = 0 (respectively x0 = 1), we define the points aj in the same way except that a1 is(
21/β + 1

)
h (respectively 1 − γn +

(
21/β + 1

)
h). We define the set Σ′ as

Σ′ =
{
f(·, θ), θ ∈ [−1, 1]M

}
, (12)

where for θ = (θ1, . . . , θM ) ∈ [−1, 1]M and x ∈ [0, 1]

f(x, θ) = Lhβ
M∑

j=1

θj

(
1 −

∣∣∣∣
x − aj

h

∣∣∣∣
β
)

+

.

For all θ ∈ [−1, 1]M , f(·, θ) ∈ Σ(β, L) and ‖f‖∞ ≤ Q for n large enough. Therefore for n large
enough Σ′ ⊂ ΣQ(β, L).
Remark: For β > 1 the subspace Σ′ should be defined in a similar way:

Σ′ =



f(x, θ) = Lhβ

M∑

j=1

θjgβ

(
x − aj

h

)
, θ ∈ [−1, 1]M





and the values (aj)j=1,...,M should satisfy aj+1 − aj = 2Aβh(21/β + 1) where [−Aβ , Aβ] is the
support of gβ.

Then we need to introduce an event Nn that satisfies the following lemma

Lemma 2. The event

Nn =



(X1, . . . , Xn) : sup

j=1,...,M

∣∣∣∣∣∣
(β + 1)(2β + 1)

4µ0β2nh

n∑

k=1

(
1 −

∣∣∣∣
Xk − aj

h

∣∣∣∣
β
)2

+

− 1

∣∣∣∣∣∣
< ε



 ,

satisfies limn→∞ PX(Nn) = 1.

The proof is in Subsection 3.3.
Finally, we study a set of statistics. Let θ ∈ [−1, 1]M . We suppose that f(·) = f(·, θ). The

model (1) is then written in the form

Yk = f(Xk, θ) + ξk, k = 1, . . . , n,

and the vector (X1, Y1, . . . , Xn, Yn) follows the law Pf(·,θ) that we will denote for brevity Pθ. For
X ∈ Nn, consider the statistics

yj =

∑n
k=1 Ykfj(Xk)∑n
k=1 f2

j (Xk)
, j = 1, . . . , M (13)
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where fj(x) = Lhβ

(
1 −

∣∣∣x−aj

h

∣∣∣
β
)

+

for x ∈ [0, 1]. For X ∈ Nn the statistics yj are well defined.

These statistics satisfy the following proposition.

Proposition 5. (i) For all j ∈ {1, . . . ,M}, the conditional distribution of yj given X ∈ Nn is

gaussian with mean θj and variance v2
j . The variance v2

j does not depend on θ and satisfies

2β + 1

2 log(n)(1 + ε)
≤ v2

j ≤ 2β + 1

2 log(n)(1 − ε)
. (14)

(ii) Conditionally on X, for X ∈ Nn, the variables yj are independent.

(iii) In the model (1), with f(·) = f(·, θ), conditionally on X, for X ∈ Nn, (y1, . . . , yM ) is

a sufficient statistic for θ and the likelihood function of (Y1, . . . , Yn) conditionally on X, for

X ∈ Nn, has the form

g(Y1, . . . , Yn) =
n∏

i=1

ϕσ(Yi)
M∏

j=1

ϕvj (yj − θj)

ϕvj (yj)
,

where ϕv is the density of N (0, v2) for v > 0.

The proof is in Subsection 3.3.

3.2.2 Proof of the inequality

Here we prove inequality (10). For f ∈ ΣQ(β, L) and an estimator θn, using the monotonicity of
w and the Markov inequality we obtain that

Ef

[
w

(
ψ−1

n ‖θn − f‖∞
)]

≥w(C0(1 − ε))Pf

[
w

(
ψ−1

n ‖θn − f‖∞
)
≥ w(C0(1 − ε))

]

≥w(C0(1 − ε))Pf

[
ψ−1

n ‖θn − f‖∞ ≥ C0(1 − ε)
]
.

Since Σ′ ⊂ ΣQ(β, L) for n large enough, it is enough to prove that limn→∞ Λn = 1, where

Λn = inf
θn

sup
f∈Σ′

Pf

(
ψ−1

n ‖θn − f‖∞ ≥ C0(1 − ε)
)
.

We have maxj=1,...,M |θn(aj) − f(aj)| ≤ ‖θn − f‖∞. Setting θ̂j = θn(aj)C0ψn and using that
f(aj) = C0ψnθj , we see that

Λn ≥ inf
θ̂∈RM

sup
θ∈[−1,1]M

Pθ(Cn),

where Cn = {maxj=1,...,M |θ̂j − θj | ≥ 1 − ε} and θ̂ = (θ̂1, . . . , θ̂M ) ∈ R
M is measurable with

respect to the (Xi, Yi)’s. We have

Λn ≥ inf
θ̂∈RM

∫

{−(1−ε),1−ε}M

∫

Nn

Pθ,X(Cn)dPX(X)π(dθ), (15)

where Pθ,X is the distribution of Y1, . . . , Yn conditionally on X = (X1, . . . , Xn) and π is the prior

distribution on θ, π(dθ) =
∏M

j=1 πj(dθj), where πj is the Bernoulli distribution on {−(1−ε), 1−ε}
that assigns probability 1/2 to −(1 − ε) and to (1 − ε). We will prove that for X ∈ Nn

HX
n = inf

θ̂∈RM

∫
Pθ,X(Cn)π(dθ) ≥ 1 + o(1), (16)
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where o(1) is independent of X. This entails that
∫

Nn

inf
θ̂∈RM

∫
Pθ,X(Cn)π(dθ)dPX(X) ≥ (1 + o(1))PX(Nn).

Using (15) and the Fubini and Fatou theorems, we find that Λn is greater than the left hand side
of the last inequality. Thus we obtain that

Λn ≥ PX(Nn)(1 + o(1)),

and by Lemma 2, we conclude that limn→∞ Λn = 1.

Proof of the inequality (16). We fix X ∈ Nn. We have

HX
n = 1 − sup

θ̂∈RM

∫ M∏

j=1

I{|θ̂j−θj |<1−ε}dPθ,Xπ(dθ), (17)

where the supremum is taken over all the estimators θ̂ measurable with respect to the (Xi, Yi)
′s.

By Proposition 5, the Fubini and Fatou theorems we have

sup
θ̂∈RM

∫ M∏

j=1

I{|θ̂j−θj |<1−ε}dPθ,Xπ(dθ)

≤
∫ ∏n

i=1 ϕσ(Yi)∏M
j=1 ϕvj (yj)


 sup

θ̂∈RM

∫ M∏

j=1

I{|θ̂j−θj |<1−ε}ϕvj (yj − θj)πj(dθj)


 dY1 · · · dYn

=

∫ ∏n
i=1 ϕσ(Yi)∏M
j=1 ϕvj (yj)




M∏

j=1

sup
θ̂j∈R

∫
I{|θ̂j−θj |<1−ε}ϕvj (yj − θj)πj(dθj)


 dY1 · · · dYn.

It is not hard to prove that the problem of maximisation

max
θ̂j∈R

∫
I{|θ̂j−θj |<1−ε}ϕvj (yj − θj)πj(dθj)

has the solution θ̂j(yj) = (1 − ε)I{yj≥0} − (1 − ε)I{yj<0}. This allows to compute the supremum
in (17) directly but to avoid calculations we can argue in follows. The above inequality is in fact
an equality and we have

sup
θ̂∈RM

∫ M∏

j=1

I{|θ̂j−θj |<1−ε}dPθ,Xπ(dθ) = max
θ̂∈Υ

∫ M∏

j=1

I{|θ̂j−θj |<1−ε}dPθ,Xπ(dθ),

where the max is taken over the class Υ of all the estimators of the form θ̂ = (θ̂1(y1), . . . , θ̂M (yM ))
where θ̂j is a measurable function of yj with values in {−(1 − ε), 1 − ε} and the supremum is
taken on the estimators which are measurable with respect to the (Xi, Yi)’s. Moreover we have,
as θ̂ depends only on T = (y1, . . . , yM )

max
θ̂∈Υ

∫ M∏

j=1

I{|θ̂j−θj |<1−ε}dPθ,Xπ(dθ) = max
θ̂∈Υ

∫ M∏

j=1

I{|θ̂j−θj |<1−ε}dPT,Xπ(dθ), (18)
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where PT,X is the probability associated to the statistic T = (y1, . . . , yM ) conditionally on X.
The quantity (18) is also equal by Proposition 5 to

M∏

j=1

max
θ̂j∈{−(1−ε),1−ε}

∫
I{|θ̂j(yj)−θj |<1−ε}ϕvj (yj − θj)dyjπj(dθj),

and then we have

HX
n ≥ 1 −

M∏

j=1

max
θ̂j∈{−(1−ε),1−ε}

∫
I{|θ̂j(yj)−θj |<1−ε}ϕvj (yj − θj)dyjπj(dθj) (19)

= 1 −
M∏

j=1

(
1 − rX

j

)
,

where

rX
j = min

θ̂j∈{−(1−ε),1−ε}

∫
I{|θ̂j(u)−θj |≥1−ε}ϕvj (u − θj)duπj(dθj).

We denote by P j
θ,X the probability measure with density u → ϕvj (u − θ). We have

rX
j =

1

2
min

θ̂j∈{−(1−ε),1−ε}

[
P j

(1−ε),X

{
|θ̂j − (1 − ε)| ≥ (1 − ε)

}
+ P j

−(1−ε),X

{
|θ̂j + (1 − ε)| ≥ (1 − ε)

}]

≥1

2
min

θ̂j∈{−(1−ε),1−ε}

[∫
(I{θ̂j≤0} + I{θ̂j≥0}) min

(
dP j

(1−ε),X , dP j
−(1−ε),X

)]

=
1

2

∫
min

(
dP j

(1−ε),X , dP j
−(1−ε),X

)

=
1

vj

∫ 0

−∞
ϕ1

(
y − (1 − ε)

vj

)
dy = Φ

(
−(1 − ε)

vj

)
,

where Φ is the standard normal cdf. By the inequality (14) and using that
Φ(−z) = 1

z
√

2π
exp(−z2/2)(1 + o(1)) for z → +∞, we have

Φ

(
−(1 − ε)

vj

)
=

vj

√
2π

(1 − ε)
√

2π
exp

(
−(1 − ε)2

2v2
j

)
(1 + o(1))

as n → ∞ and using inequality (14) for vj , we get

inf
X∈Nn

rX
j ≥ D4√

log n
n
− (1−ε)2(1+ε)

2β+1 (1 + o(1)).

Now M = O

((
n

log n

) 1−ε
2β+1

)
, therefore

inf
X∈Nn

MrX
j ≥ D5(log n)

1−ε
2β+1

− 1
2 n

(1−ε)ε2

2β+1 (1 + o(1)).

From this last inequality and inequality (19), we obtain the inequality (16), which finishes the
proof of the lower bound.
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3.3 Proofs of lemmas and propositions

3.3.1 Proof of Lemma 1

We are going to prove that the event An satisfies

PX(An) ≥ 1 − 2
n

m
exp

(
−cAnhδ2

n

)
,

for a constant cA > 0. There are similar results for the events A1,n,. . . ,A′
2,n with other constants.

Together these results entail the lemma. We are going to use Bernstein’s inequality. First we
take a point xk ∈ [h, 1 − h]. The proof will be similar for xk ∈ [0, h) ∪ (1 − h, 1] and we define
the random variables Zi, for i ∈ {1, . . . , n} by

Zi =
1

h
K

(
Xi − xk

h

)
− Ef

[
1

h
K

(
Xi − xk

h

)]
.

These variables satisfy Ef [Zi] = 0, Ef

[
Z2

i

]
≤ K2

maxµ1

h and |Zi| ≤ 2Kmax
h . The constant Kmax is

such that K(x) ≤ Kmax for all x in [−1, 1] and µ1 is such that µ(x) ≤ µ1 for all x in [0, 1] (such

µ1 exists because µ is continuous). Let A(k) =
{∣∣µ(xk) − 1

nh

∑n
i=1 K

(
Xi−xk

h

) ∣∣ < δn

}
. We have

PX(A(k)) = PX

(
∣∣ 1
n

n∑

i=1

(Zi + δk,h)
∣∣ < δn

)
,

where δk,h =
∫ 1
−1 K(y)[µ(xk + yh) − µ(xk)]dy. As µ satisfies a Lipschitz condition, δk,h satisfies

|δk,h| ≤ ρh
∫ 1
−1 K(y)|y|dy with ρ > 0. We have for n large enough

PX(A(k)) ≥ PX

(
| 1
n

n∑

i=1

Zi| < δn − |δk,h|
)

.

By Bernstein’s inequality applied to the variables Zi, we have

PX

(
| 1
n

n∑

i=1

Zi| < δn − |δk,h|
)

≥ 1 − 2 exp


− n(δn − |δk,h|)2

2
(

K2
maxµ1

h +
2(δn−|δk,h|)Kmax

3h

)


 .

Using the fact that δk,h = O(h), we obtain that for n large enough, there exists a constant cA

independent of k such that

PX(A(k)) ≥ 1 − 2 exp
(
−cAnhδ2

n

)
.

From this we deduce easily the result about An because card{k} ≤ n
m .

3.3.2 Proof of Proposition 1

Let f ∈ ΣQ(β, L). We have

Ef

[
w

(
ψ−1

n ‖f − θ∗n‖∞
)
IBC

n

]
≤

√
Ef

[
w2

(
ψ−1

n ‖f − θ∗n‖∞
)]√

Pf (BC
n )

≤
√

Ef

(
1 +

(
ψ−1

n ‖f − θ∗n‖∞
)γ

)2√
PX(BC

n )
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since the event Bn only depends on X,

≤
√

2

√
1 + Ef

((
ψ−1

n ‖f − θ∗n‖∞
)2γ

)√
PX(BC

n ).

Now Ef

((
ψ−1

n ‖f − θ∗n‖∞
)2γ

)
≤ ψ−2γ

n D6

(
Q2γ + Ef‖θ∗n‖2γ

∞
)
. Some algebra and the fact that

max


 1

nh

n∑

j=1

K

(
Xj − xk

h

)
, δn


 ≥ δn,

yield Ef‖θ∗n‖2γ
∞ = O(nγ1), with some γ1 ≥ 0. From the relations above and Lemma 1, we deduce

that limn→∞ Ef

[
w

(
ψ−1

n ‖f − θ∗n‖∞
)
IBC

n

]
= 0.

3.3.3 Proof of Proposition 2

Let f ∈ ΣQ(β, L) and xk ∈ [h, 1 − h]. Consider n large enough such that δn ≤ µ(xk) − δn. We
have on Bn

µ(xk) − δn ≤ 1

nh

n∑

j=1

K

(
Xj − xk

h

)
.

Thus some algebra and the fact f ∈ ΣQ(β, L) yield

∣∣Ef (θ∗n(xk)IBn) − f(xk)P
X(Bn)

∣∣ ≤
∣∣∣

1

µ(xk) − δn
Ef

[
1

nh

n∑

i=1

K

(
Xi − xk

h

)
(f(Xi) − f(xk))IBn

] ∣∣∣

≤
Lhβ

∫ 1
−1 |y|βK(y)µ(xk + yh)dy

µ(xk) − δn

≤ Lhβµ(xk)(1 + o(1))

(µ(xk) − δn)(2β + 1)
.

For xk belonging to [0, h) or (1 − h, 1], we have the same result. Thus for all k ∈ {1, . . . , [ n
m ]}

ψ−1
n |Ef (θ∗n(xk)IBn) − f(xk)P

X(Bn)| ≤
(

1 +
δn

µ0 − δn

)
C0(1 + o(1))

2β + 1
≤ C0(1 + o(1))

2β + 1
.

As f ∈ ΣQ(β, L), we have for x ∈ [0, 1]

|bn(x, f)| ≤ max
k∈{1,...,[ n

m
]}
|bn(xk, f)| + L

(m

n

)β
PX(Bn)

≤ max
k∈{1,...,[ n

m
]}
|bn(xk, f)| + ψnδβ

nL(1 + o(1)).

Then we obtain that ψ−1
n |bn(x, f)| ≤ C0(1+o(1))

2β+1 with o(1) independent of f .
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3.3.4 Proof of Proposition 3

Let f ∈ ΣQ(β, L), z > 1 and

Pn = Pf

[{
max

k
ψ−1

n |Ẑn(xk, f)| >
2βC0z

2β + 1

}
∩ Bn

]
.

We have

Pn ≤
∑

k

Pf

[{
ψ−1

n |Ẑn(xk, f)| >
2βC0z

2β + 1

}
∩ Bn

]
.

We are going to reason for xk ∈ [h, 1− h], but the proof is similar for xk ∈ [0, h) ∪ (1− h, 1]. As
Bn depends only on X1, . . . , Xn, we have

Pf

[{
ψ−1

n |Ẑn(xk, f)| >
2βC0z

2β + 1

}
∩ Bn

]
= Ef

[
Pf

[
ψ−1

n |Ẑn(xk, f)| >
2βC0z

2β + 1

X1, . . . , Xn

]
IBn

]
.

The variable Ẑn(xk, f) is gaussian conditionally on the Xi’s, with conditional variance equal to

σ2(PX(Bn))2
∑n

j=1 K2
(

Xj−xk

h

)

(∑n
j=1 K

(
Xj−xk

h

))2 .

Since n has been chosen such that PX(Bn) > 0 in the definition of the stochastic term, we obtain

Pf

[{
ψ−1

n |Ẑn(xk, f)| >
2βC0z

2β + 1

}
∩ Bn

]
≤ Ef


exp


−

ψ2
n(2βC0z)2

(∑n
j=1 K

(
Xj−xk

h

))2

σ2(PX(Bn))2
∑n

j=1 K2
(

Xj−xk

h

)


 IBn


 .

Replacing the expression for h and σ2 in terms of n, C0, L, β and µ0, we obtain that the quantity
above in the right hand side is equal to

Ef


exp


−

z2 log n(β + 1)
(

1
nh

∑n
j=1 K

(
Xj−xk

h

))2

µ0(PX(Bn))2(2β + 1)2 1
nh

∑n
j=1 K2

(
Xj−xk

h

)


 IBn


 .

We have on Bn
n∑

j=1

1

nh
K

(
Xj − xk

h

)
≥ µ(xk) − δn ≥ µ0 − δn,

n∑

j=1

1

nh
K2

(
Xj − xk

h

)
≤ β + 1

2β + 1
µ(xk) + δn.

Consider n large enough such that µ0 − δn > 0. Thus we deduce using the inequalities above
that

Pf

[{
ψ−1

n |Ẑn(xk, f)| >
2βC0z

2β + 1

}
∩ Bn

]
≤ exp

[
−z2 log nC(δn)

(2β + 1)

]
,

with

C(δn) =
(µ0 − δn)

µ0(PX(Bn))2


1 − δn(3β + 2)

(β + 1)
(
µ1 + δn(2β+1)

β+1

)


 .
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The quantity C(δn) tends to 1 as n → ∞. Because of the fact that card{k} ≤ δ−1
n ψ

−1/β
n , we

have
Pn ≤ δ−1

n (log n)
− 1

2β+1 n−α1(n).

3.3.5 Proof of Proposition 4

Let f ∈ ΣQ(β, L). We are still going to reason for xk ∈ [h, 1 − h], and the proof is similar for

xk ∈ [0, h) ∪ (1 − h, 1]. Let Ũn(xk, f) = Un(xk, f)PX(Bn)IBn − Ef [Un(xk, f)PX(Bn)IBn ]. If Bn

holds, we have Z̃n(xk, f) = Ũn(xk, f)−Ef [Un(xk, f)IBn ]PX(BC
n ). Consider n large enough such

that for all z ≥ ε/2 we have

|Ef [Un(xk, f)IBn ]PX(BC
n )| ≤ βC0zψn

2β + 1
.

Such choice of n is possible in view of Lemma 1, since Ef [Un(xk, f)IBn ] is bounded. Thus we
have

Pf

[{
ψ−1

n |Z̃n(xk, f)| >
2βC0z

2β + 1

}
∩ Bn

]
≤ Pf

[
ψ−1

n |Ũn(xk, f)| >
βC0z

2β + 1

]
.

We are going to apply Bernstein’s inequality to the variable Ũn(xk, f) which is a zero-mean
variable bounded by 2Q. Since µ(xk) ≥ µ0, the variance of Ũn(xk, f) satisfies

Ef

[
Ũn(xk, f)2

]
≤Ef







1
nh

∑n
j=1 f(Xj)K

(
Xj−xk

h

)

1
nh

∑n
j=1 K

(
Xj−xk

h

)




2

IBn(PX(Bn))2


 ,

≤ 1

(µ(xk) − δn)2nh2
Ef

[
f2(X1)K

2

(
X1 − xk

h

)]
(PX(Bn))2,

≤Q2µ(xk)(1 + o(1))

(µ(xk) − δn)2nh

∫ 1

−1
K2(y)dy,

≤D7(1 + o(1))

nh
,

where o(1) is uniform in f ∈ ΣQ(β, L) and D7 is independent of f ∈ ΣQ(β, L), n and k. By

applying Bernstein’s inequality to the variable Ũn(xk, f) (note that here the family of random
variables contains only one summand), we obtain

Pf

[
ψ−1

n |Ũn(xk, f)| >
βC0z

2β + 1

]
≤ 2 exp


− λ2

2
(

D7(1+o(1))
nh + 2λQ

3

)


 ,

where λ = ψnβC0z
2β+1 . Thus for n large enough, we have

Pf

[
ψ−1

n |Ũn(xk, f)| >
βC0z

2β + 1

]
≤ 2 exp (−D0zψn) ,

with D0 independent of f ∈ ΣQ(β, L) and k. To finish the proof, it is enough to note that

card{k} = [ n
m ] ≤ δ−1

n ψ
−1/β
n .
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3.3.6 Proof of Lemma 2

Like in Lemma 1, using Bernstein’s inequality we obtain that for n large enough

PX

{∣∣∣
(β + 1)(2β + 1)

4µ0β2nh

n∑

k=1

(1 − |Xk − aj

h
|β)2+ − 1

∣∣∣ ≥ ε

}
≤ 2 exp(−nhD8)

where D8 is a constant which depends on ε, but does not depend on n. Now

PX
[
NC

n

]
≤

M∑

j=0

PX

{∣∣∣
(β + 1)(2β + 1)

4µ0β2nh

n∑

k=1

(1 − |Xk − aj

h
|β)2+ − 1

∣∣∣ ≥ ε

}
.

Thus
PX

[
NC

n

]
≤ 2M exp(−nhD8).

Since M = O

((
n

log n

) 1−ε
2β+1

)
, we deduce that limn→∞ PX

[
NC

n

]
= 0.

3.3.7 Proof of Proposition 5

(i) The fact that yj is conditionally gaussian with conditional mean θj comes from the definition
of yj and the fact that the functions fj have disjoint supports. The conditional variance of yj

satisfies for X ∈ Nn

V ar(yj |X) =Ef




(
∑n

k=1 ξkfj(Xk))
2

(∑n
k=1 f2

j (Xk)
)2

∣∣X




=
σ2

∑n
k=1 f2

j (Xk)

=
σ2

L2h2β
∑n

k=1

(
1 −

∣∣∣Xk−aj

h

∣∣∣
β
)2

+

.

Using that X ∈ Nn and replacing the expression for σ and h in terms of C0, n, β and L, we
obtain the inequality for vj .
(ii) comes from the fact the functions fj have disjoint supports and that the ξi’s are independent
and independent of the Xi’s. (iii) is obtained by calculating the likelihood function of Y1, . . . , Yn

conditionally on X, for X ∈ Nn.
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