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Abstract

The measurement of finite frequency cross-correlations noise represents an experimental chal-

lenge in mesoscopic physics. Here we propose a generalisation of the resonant LC circuit setup of

Lesovik and Loosen which allow to probe directly such cross-correlations by measuring the charge

fluctuations on the plates of a capacitor. The measuring circuit collects noise contributions at

the resonant frequency of the LC circuit. Auto-correlation noise can be canceled out by switching

the wires and making two distinct measurements. The measured cross-correlations then depend

on four non-symmetrized correlators. This detection method is applied to a normal metal three

terminal device. We subsequently discuss to what extent the measurement circuit can detect

electron-antibunching and what singularities appear in the spectral density of cross-correlations

noise.

PACS numbers:
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I. INTRODUCTION

The measurement of finite frequency noise in mesoscopic systems provides a useful di-

agnosis of quantum transport: it allows to characterize the carriers which are involved. In

normal metal conductors[1, 2], at zero temperature (and in the absence of spatial averag-

ing effects [3, 4]), finite frequency correlations exhibit a singularity at ω = eV . In normal

metal-superconductor junctions [5], Andreev reflection gives rise to a singularity at 2eV

signaling that Cooper pairs enter the superconductor, in the fractional quantum Hall effect,

the tunneling of quasiparticles in the vicinity of a point contact leads to a singularity at

eνV , with ν the filling factor[6]. At the same time, “zero” frequency noise cross correlations

can be used to probe directly the statistics of the charge carriers: are the carriers bunched

or anti-bunched[7]? This implies a “Y” geometry where carriers are injected in one arm,

and correlations are measured in the two receiving arms. The purpose of the present work

is to discuss an inductive coupling setup which can be used toward the measurement of high

frequency noise correlations in such geometries.

Any setup for measuring noise involves the selection (filtering) of a range of specific fre-

quencies by the electronic detection circuit. Provided that the electrical apparatus in an

experiment can sample the current at discrete times, finite frequency noise can in prin-

ciple be computed directly from this time series. Yet, a noise correlator is a quantum

mechanical average of products of operators. Symmetrized or non-symmetrized correlators

can thus be constructed from the time series, provided that the frequency is much smaller

than the inverse time step of the series. This recipe for computing the noise is not prac-

tical at high frequencies. Here, we are interested in systems where noise is detected via a

measuring device – coupled to the mesoscopic device which should pick up the noise con-

tribution at a specific frequency, via repeated measurements. Such proposals have been

put forth and some have been implemented experimentally within the last decade. Ref.

[8] uses effectively a LC circuit in order to measure the noise of a two terminal diffusive

conductor. A theoretical suggestion due to Lesovik and Loosen[9] consists of a LC circuit

coupled inductively to the fluctuating current emanating from a mesoscopic conductor: the

measurement of the charge fluctuations on the capacitor plates provides information on the

finite frequency noise correlators at the resonant frequency of the LC circuit. The fact

that this method samples contributions from the non-symmetrized noise correlators, which

are related to emission and absorption from the device, has been emphasized in Ref. [10].
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Aguado and Kouvenhoven[11] have proposed to measure the noise of an arbitrary circuit

by coupling capacitively this circuit to a detector circuit: a DC current – generated by

inelastic electron tunneling events – flows in the detector circuit when a “photon” ~ω, is

provided/absorbed by the mesoscopic circuit. This theoretical suggestion has been success-

fully implemented to measure the finite frequency noise of a Josephson junction using a large

Superconductor-Insulator-Superconductor junction[12]: quasiparticles tunnelling in the SIS

junction can occur only if it is assisted by the frequency provided by the antenna. A sub-

sequent experiment allowed to isolate the emission and absorption contributions to noise

[13]. High frequency noise measurements have been also performed using the detection of

photons emitted by the mesoscopic conductor [14]. Such photons propagate in coaxial lines

and are analyzed/detected in a Hanbury–Brown and Twiss geometry for microwave photons

appeared in order to measure two terminal noise with an auxiliary mesoscopic circuit. Turn-

ing to noise cross correlations, low frequency noise measurement in such branched circuits

have been performed[15], which showed that a fully degenerate electron gas has negative

noise correlations. Cross-correlations noise have obvious applications in the study of elec-

tron transport in Hanbury–Brown and Twiss type geometries. Below, we will mention two

situations where they are useful: the study of electronic entanglement in mesoscopic devices

[16, 17], and the identification of anomalous charges in Luttinger liquid wires[18]. Here we

consider the case of a setup where the cross-correlations noise are analyzed via inductive

coupling to the mesoscopic circuit to be measured.

The paper is organized as follows. In section II, the model with a measuring circuit is

introduced, and it is shown how cross-correlations can be directly obtained. In section III,

we compute the measured cross-correlations noise. In section IV, we introduce a model

with two separated circuits and we compute the measured cross-correlations noise. Our

results, in the case of one circuit, are then applied in section V to a simple device: a three

terminals normal metallic sample, where we stress the difference between the symmetrized

noise, the non-symmetrized noise, and the measured noise. Section VI gives two examples

where cross-correlations are needed. We conclude in section VII.

II. MODEL AND METHOD

For measuring cross-correlations, two inductances (L1 and L2) and a single capacitor

(C) are needed. The two inductors having coupling constants α1 and α2, are placed next
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FIG. 1: Schematic description of the noise cross-correlation setup. M is the mesoscopic circuit to

be measured, C is the capacitor and there are two inductors with coupling constants α1 and α2 to

the mesoscopic circuit. a) and b): the electrical components of the detector are in series and they

“see” the current with the same sign (a) or with the opposite sign (b). c) and d): the electrical

components of the detector are in parallels and they “see” the current with the same sign (c) or

with the opposite sign (d).

to the two outgoing arms of the three terminal mesoscopic device (Fig. 1). We consider

two cases: the two inductances are placed in series (Fig. 1a and Fig. 1b) or in parallel

(Fig. 1c and Fig. 1d). Depending on the wiring of these inductances (Fig. 1a,c or Fig. 1b,d),

the two inductances “see” the outgoing currents with the opposite sign or with the same

sign. Throughout this paper, we neglect the mutual inductance of the detector circuit: it

is justified by the fact that such inductances are placed near opposite ends of the circuit

whose noise correlations are measured. Classically, the charge x on the capacitor plates of

the measuring circuit obeys the equation of motion:

Mẍ(t) = −Dx(t) − α1İ1(t) ∓ α2İ2(t) , (2.1)

where the “mass” M = L1 + L2 if the circuit is in series (Fig. 1a,b) or M = L1L2/(L1 + L2)

if the circuit is in parallel (Fig. 1c,d), and D = 1/C. The characteristic frequency of the LC

circuit is Ω =
√

D/M .

The currents which appear in the two coupling terms are I1(2)(t) = l−1
∫ x1(2)+l/2

x1(2)−l/2 I(r, t)dr,

where l is the length of the inductive coupling region. We assume in a standard way that the

chemical potential of the leads is the largest energy scale, compared to the bias voltage and

the frequency we want to probe. Spatial averaging effects for the currents have been discussed
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in Ref. [19, 20]: the current operator contains fast and slow oscillations [21], at least in the

ballistic case. Here we claim to be measuring a current which is spatially independent

because of the integral over the inductive region l. We first assume that l ≫ λF , so that

short wave lengths oscillations are averaged out. Furthermore, the slowly oscillating terms

in the current will be reduced to a constant contribution if we require that l ≪ vF /ω. Ref.

[3] has studied the spatial oscillations of the current in the presence of Coulomb interactions:

interactions modify the wavelength πvF /ω of such oscillations, but the amplitude of its signal

is reduced with increasing interaction strength.

The derivation of Ref. 9 is generalized to the two inductances situation. To quantize the

measuring circuit, we note that the equation of motion can be derived from the Hamiltonian:

H = H0 + Hint =
p2

2M
+

Dx2

2
+ Hint , (2.2)

with

Hint = −
p(α1I1(t) ± α2I2(t))

M
+

(α1I1(t) ± α2I2(t))
2

2M
. (2.3)

The mesoscopic circuit plus measuring circuit are assumed to be decoupled at t = −∞. The

coupling between the two is switched on adiabatically, and one can monitor the charge of

the capacitor, and its fluctuations, in the presence of the fluctuating currents at time t = 0:

it is a stationary measurement.

The n-th power of the capacitor charge reads, in the interaction representation:

〈xn(0)〉 = Tr[e−βH0U−1(0)xn(0)U(0)] , (2.4)

with the evolution operator

U(0) = T exp
(−i

~

∫ 0

−∞

dt′Hint(t
′)
)

. (2.5)

We calculate perturbatively the n-th power of the charge, expanding the evolution term

(U(0)) in powers of Hint. Considering the average charge and the average charge square,

one obtains:

〈x(0)〉 = 〈x(0)〉1 + 〈x(0)〉3 + ... , (2.6)

〈x2(0)〉 = 〈x2(0)〉0 + 〈x2(0)〉2 + ... , (2.7)

where the different orders in Hint are linked to the higher cumulants of the current: 〈x(0)〉1

contains information about the average current, 〈x2(0)〉2 about the current fluctuations, and

〈x(0)〉3 about the third moment, and so on.
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The zero order contribution of the charge fluctuations gives:

〈x2(0)〉0 =
~

2MΩ
(N(Ω) + 1/2) , (2.8)

with N(Ω) = 1/(eβ~Ω + 1) is the Bose Einstein distribution at the detector circuit temper-

ature, which is not necessarily the mesoscopic device temperature. The next non-vanishing

term, which depends on products of current operators is:

〈x2(0)〉2± =
〈 1

2M

(−i

~

)2
∫ 0

−∞

dt1

∫ t1

−∞

dt2

× [[x(0), p(t1)(α1I1(t1) ± α2I2(t1))],

p(t2)(α1I1(t2) ± α2I2(t2))]
〉

−
1

2M

(−i

~

)

∫ 0

−∞

dt〈I2(t)〉〈x2(0)〉 − 〈x2(0)〉〈I2(t)〉 , (2.9)

where one recalls that the sign in front of the coupling constants α1,2 reflect the choice of the

circuit, (a or b) and (c or d). The calculation of the charge fluctuations gives four terms: two

autocorrelation terms which correspond to the fluctuations due to a single inductor (in terms

of α2
1 or α2

2), and two terms associated with the correlation between the two inductors, which

are proportional to α1α2. It is precisely these latter terms which allow to detect the noise

correlations. Thus, it seems that it is impossible in practice to get rid of the autocorrelation

terms: the measurement of the cross terms would require a prior knowledge of the charge

fluctuations for a single impedance with a high degree of accuracy. We argue that this is not

the case, provided that two measurements with the same setup but with different wiring can

be achieved. One measures the charge fluctuations 〈x2(0)〉2+ with the geometry of Fig. 1a

for the inductances in series (Fig. 1c for the parallel case), and subsequently one can switch

the wiring and measure such fluctuations 〈x2(0)〉2− with the circuit of Fig. 1b (Fig. 1d). In

each case (series or parallel setup) by subtracting the two signals:

〈x2(0)〉2 =
1

2

(

〈x2(0)〉2+ − 〈x2(0)〉2−
)

, (2.10)

one isolates the contribution of cross-correlations, which is proportional to α1α2. This

combination of charge fluctuations, which in turn depends on current cross-correlators, will

be referred from now on as the measured cross correlations.
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III. MEASURED CROSS-CORRELATIONS AND NON-SYMMETRIZED NOISE

In order to proceed, the charge and the momentum are now written in terms of the

oscillator variables of the LC circuit:

x(t) =

√

~

2MΩ
(ae−iΩt + a†eiΩt) , (3.1)

p(t) = i

√

~MΩ

2
(a†eiΩt − ae−iΩt) , (3.2)

where a is the destruction operator which satisfies 〈a†a〉 = N(Ω). The first commutator in

Eq. (2.9) becomes:

[x2(0), p(t1)Ii(t1)] =
2i~

MΩ

(

~MΩ

2

)1/2

cos(Ωt1)(a + a†)Ii(t1) , (3.3)

and the average of the two interlocked correlators of Eq. (2.9) reads:

〈[

[x2(0), p(t1)Ii(t1)], p(t2)Ij(t2)
]〉

= −~
2 cos(Ωt1)

×
{

〈Ii(t1)Ij(t2)〉
[

(N(Ω) + 1)eiΩt2 − N(Ω)e−iΩt2
]

−〈Ij(t2)Ii(t1)〉
[

N(Ω)eiΩt2 − (N(Ω) + 1)e−iΩt2
]

}

, (3.4)

with i, j = 1, 2 (i 6= j). Substituting this commutator in the expression of charge fluctua-

tions, four correlators of current derivatives appear in the result. Translationnal invariance

motivates the change of variables: {t1, t2} → {t = t1 − t2, T = t1 + t2}. The charge fluctua-

tions become:

〈x2(0)〉 =
α1α2

(4M)2

∫ +∞

−∞

dt

∫ 0

−∞

dTeηT

×
{

(eiΩt + e−iΩTsign(t))

×[(N(Ω) + 1)(〈I2(0)I1(t)〉 + 〈I1(0)I2(t)〉)

−N(Ω)(〈I1(t)I2(0)〉 + 〈I2(t)I1(0)〉)]
}

. (3.5)

In a manner similar to Refs. 9 and 10, the following non-symmetrized current correlators

are introduced in Fourier space:

S+
ij (ω) =

∫

dt

2π
eiωt〈Ii(0)Ij(t)〉 , (3.6)

S−
ij (ω) =

∫

dt

2π
eiωt〈Ii(t)Ij(0)〉 . (3.7)
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Translation invariance relates these two correlators: S−
ij (ω) = S+

ij (−ω), and furthermore

〈Ii(ω1)Ij(ω2)〉 = δ(ω1 − ω2)S
+
ij (ω2), where Ii(ω) is the Fourier transform of Ii(t). Note

that only in the case of autocorrelation: S+
ii (ω) (S−

ii (ω)) can be identified as an emission

(absorption) rate from the mesoscopic device at positive frequencies. At this point, both

integrals in Eq. (3.5) can be performed. The integration over t gives two contributions: one

is a delta function, and the other gives products of principal parts, which cancel out. The

charge fluctuations take the final form:

〈x2(0)〉 =
πα1α2

2η(2M)2

[

(N(Ω) + 1)(S+
12(Ω) + S+

21(Ω))

−N(Ω)(S−
12(Ω) + S−

21(Ω))
]

. (3.8)

To show that 〈x2(0)〉 is real, we use the properties of the noise correlators: [S±
ij (Ω)]∗ = S±

ji(Ω),

and the measured charge fluctuation reads:

〈x2(0)〉 =
πα1α2

η(2M)2
Re

[

(N(Ω) + 1)S+
12(Ω)

−N(Ω)S−
12(Ω)

]

. (3.9)

This is a central result of this paper, which is illustrated below for a specific mesoscopic

circuit. The LC measurement setup effectively measures the real part of the noise cross

correlator. A similar result was mentioned in Ref. 22, although without justification. Note

that the final result still depends on the adiabatic coupling parameter. In order to eliminate

the dependence on η, the calculation can be generalized to a system with a distribution of

oscillators, peaked around Ω. This is discussed in the appendix. The fact that the LC circuit

has a finite line shape, has of course a physical origin: the LC circuit contains dissipative

elements (due to both the finite conductivity of the wires and to the electronic environment

which surround the circuit), but for simplicity we do not consider the detailed mechanism

for dissipation here.

IV. MEASUREMENT WITH TWO LC CIRCUITS

Next, we examine the situation for using two separate circuits, with capacitors (C1 and

C2) and two inductances (L1 and L2) with inductive coupling constants α1 and α2. The

two LC circuits are placed next to the two outgoing arms of the three terminal mesoscopic

device. The two capacitors is charging by the two inductances (Fig. 2).
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L1 α1 L2 α2

C1 C2

M

FIG. 2: Schematic description of the noise cross-correlation setup. M is the mesoscopic circuit to

be measured, C1 and C2 are the two capacitors and there are two inductors with coupling constants

α1 and α2 to the mesoscopic circuit.

The charges on each capacitor satisfy equations of motion similar to the previous calcu-

lation with a single circuit, where the “mass” M1(2) = L1(2). The characteristic frequency of

each LC circuit is Ω1(2) =
√

1/C1(2)M1(2).

The second power of the capacitor two-charge correlator reads, in the interaction repre-

sentation:

〈x1(0)x2(0)〉 = Tr[e−β(H0,1+H0,2)U−1(0)x1(0)x2(0)U(0)] . (4.1)

Note that unlike in the previous section, we do not provide a scenario here for finding an

observable which corresponds to the measurement of the product of the two charges. We

calculate perturbatively the n-th power of the charge, expanding the evolution term (U(0))

in powers of Hint,1(2). Considering the average charge and the average charge square, one

obtains:

〈x1(2)(0)〉 = 〈x1(2)(0)〉1 + 〈x1(2)(0)〉3 + ... , (4.2)

〈x1(0)x2(0)〉 = 〈x1(0)x2(0)〉0 + 〈x1(0)x2(0)〉2 + ... , (4.3)

where the different orders in Hint,1(2) are linked to the higher cumulants of the current:

〈x1(2)(0)〉1 contains information about the average current, the product 〈x1(0)x2(0)〉2 about

the current fluctuations, and 〈x1(2)(0)〉3 about the third moment, and so on.

The zero order contribution of the charge fluctuation 〈x1(0)x2(0)〉0 becomes zero . The

9



first non-vanishing term, which depends on products of current operators is:

〈x1(0)x2(0)〉2 =
〈1

2

∫ 0

−∞

dt1

∫ t1

−∞

dt2

×

[

[x1(0)x2(0),
−i

~M1

p1(t1)α1I1(t1) +
−i

~M2

p2(t1)α2I2(t1)],

−i

~M1
p1(t2)α1I1(t2) +

−i

~M2
p2(t2)α2I2(t2)

]

〉

−
1

2

(−i

~

)2
∫ 0

−∞

dt
〈(α1I1(t)

M1

)2

+
(α2I2(t)

M2

)2〉

〈x1(0)x2(0)〉

−〈x1(0)x2(0)〉
〈(α1I1(t)

M1

)2

+
(α2I2(t)

M2

)2〉

. (4.4)

The calculation of the charge fluctuations gives four terms: two autocorrelation terms which

correspond to the fluctuations due to a single inductor (in terms of α2
1 or α2

2), and two terms

associated with the correlation between the two inductors, which are proportional to α1α2.

In the two autocorrelation terms, we calculate the average of an odd number of creation and

destruction operators for the each circuit. The autocorrelation is zero. The combination of

current cross-correlators will be referred from now on as the measured cross-correlations.

Choosing a particular case where the two LC circuits have the same characteristic fre-

quencies (Ω1 = Ω2 = Ω), the charge fluctuations correspond to the result obtained in the

presence of a single capacitor with two inductances (see Eq. 3.8). In practice, it is challeng-

ing to build two LC circuits with exactly the same characteristic frequency. The result of

Eq. (3.8) for Ω1 = Ω2 has also appeared in Ref. [20]. For the case of different frequencies

(Ω1 6= Ω2), The charge fluctuations have a general form:

〈x1(0)x2(0)〉 = −
α1α2

2

∫ +∞

0

dt
{

× (
eit(Ω1−Ω2)/2

η + iΩ1+Ω2

2

+
e−it(Ω2+Ω1)/2

η + i−Ω1+Ω2

2

)[(N(Ω2) + 1)〈I1(t)I2(0)〉 − N(Ω2)〈I2(0)I1(t)〉]

+ (
eit(Ω2+Ω1)/2

η + iΩ1−Ω2

2

+
eit(Ω2−Ω1)/2

η − iΩ1+Ω2

2

)[N(Ω2)〈I1(t)I2(0)〉 − (N(Ω2) + 1)〈I2(0)I1(t)〉]

+ (
eit(Ω2−Ω1)/2

η + iΩ1+Ω2

2

+
e−it(Ω1+Ω2)/2

η + iΩ1−Ω2

2

)[(N(Ω1) + 1)〈I2(t)I1(0)〉 − N(Ω1)〈I1(0)I2(t)〉]

+ (
eit(Ω1+Ω2)/2

η + i−Ω1+Ω2

2

+
eit(Ω1−Ω2)/2

η + i−Ω1−Ω2

2

)[N(Ω1)〈I2(t)I1(0)〉 − (N(Ω1) + 1)〈I1(0)I2(t)〉]
}

,(4.5)

which result in delta function contributions, as well as (unwanted) principal parts: strictly

speaking the charge fluctuations do not simplify. However, a practical measurement always

10



involves some bandwidth averaging, which could possibly lead to a result close to that of

the case Ω1 = Ω2.

Furthermore, the use of two separate capacitors should also consider the multiplication

process of the two charge operators. Multiplication of two signals involves adding and sub-

tracting the two signals, then squaring and subtracting. In these steps of the measurement,

the noise from the amplifiers will be detrimental in the same manner as in the case of a

single LC circuit.

V. APPLICATION TO A THREE TERMINAL NORMAL CONDUCTOR

Next, we consider noise measurement with the single capacitor and two inductances

circuit initially proposed. It is tested on a system of three terminals (Fig 3), a so called

“Y junction”, electrons are injected from terminal 1, which has a higher chemical potential

than terminals 2 and 3. The noise cross–correlations are measured. This corresponds to

the setup where a fermionic analog of Hanbury–Brown and Twiss type experiments[23] was

proposed[7] and measured[15]. Without loss of generality, one considers that the three bias

voltages, µij = µi − µj, (i, j = 1, 2, 3), are chosen such that µ13 > µ12, µ23.PSfrag repla
ements 1 23�1 �2
�3

�1 � �2 � �3
FIG. 3: A system with three terminals (Y junction) with chemical potentials µ1, µ2 and µ3 with

µ1 ≥ µ2 ≥ µ3.

Using scattering theory, one can readily obtain the general expression for the non-

symmetrized finite frequency noise[21]:

S+
αβ(ω) =

e2

2π~

∑

γδ

∫

dE (δαγδαδ − s†αγ(E)sαδ(E − ~ω))

×(δβδδβγ − s†βδ(E)sβγ(E − ~ω))

×fγ(E)(1 − fδ(E − ~ω)) , (5.1)

where Greek letters represent the terminals and sα,β is the scattering amplitude for electrons

incoming from β and ending in α. fγ(E) is the Fermi-Dirac distribution function associated

11



with terminal γ whose chemical potential is µγ. In what follows we assume that the tem-

perature is much smaller than the applied biases. One also neglects the energy dependence

of the scattering matrix over the energy ranges specified by the voltages biases µij. Fur-

thermore, Eq. (5.1) neglects ±2kF oscillating terms in the noise fluctuations spectrum: this

assumes that the region over which current is measured is much larger than the Fermi wave

length, l ≫ λF .

For µ23 < µ12 and at negative frequencies, cross-correlations between terminals 2 and 3

yield:

S+
23(ω) = S+

32(ω) = −
e2

2π
ω(T21T13 − (2 − R2 − R3)T23)

−
e2

2π~



























(−~ω)(2T13R3 + 2T12R2 + 2T23R2) if ~ω < −µ13

T13R3(µ13 − ~ω) − ~ω(2T12R2 + 2T23R2) if − µ13 < ~ω < −µ12

T13R3(µ13 − ~ω) + T12R2(µ12 − ~ω) − ~ω(2T23R2) if − µ12 < ~ω < −µ23

T23R2(µ23 − ~ω) + T13R3(µ13 − ~ω) + T12R2(µ12 − ~ω) if − µ23 < ~ω < 0

(5.2)

while for positive frequencies:

S+
23(ω) = S+

32(ω) = −
e2

2π~



























T23R2(µ23 − ~ω) + T13R3(µ13 − ~ω) + T12R2(µ12 − ~ω) if 0 < ~ω < µ23

T13R3(µ13 − ~ω) + T12R2(µ12 − ~ω) if µ23 < ~ω < µ12

T13R3(µ13 − ~ω) if µ12 < ~ω < µ13

0 if µ13 < ~ω

(5.3)

where Rα = s†α,αsα,α is the reflection probability from lead α and Tαβ = s†α,βsα,β = Tβα is

the transmission probability from α to β.

As expected, the frequency dependence is given by a set of continuous straight lines with

singular derivatives. At zero frequency, the non-symmetrized cross-correlations are:

S+
23(ω = 0) = −

e2

2π~
(T23R2µ23 + T13R3µ13

+ T12R2µ12) . (5.4)

The cross-correlations are negative regardless of bias voltage and transmission of the sample:

one recovers the result of Ref. 7.

On the other hand, the symmetrized finite frequency cross-correlations are defined by:

SS
23(ω) =

∫

dωeiωt〈∆I2(t)∆I3(0) + ∆I3(0)∆I2(t)〉 , (5.5)
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with ∆I(t) = I(t) − 〈I(t)〉. From Ref. 2, when µ23 < µ12 and at zero temperature, one

obtains:

SS
23(ω) = −

e2

2π
|ω|(T21T13 − (2 − R2 − R3)T23)

−
e2

2π~



























+T23R2µ23 + T13R3µ13 + T12R2µ12 if |~ω| < µ23

~|ω|(T23R2) + T13R3µ13 + T12R2µ12 if µ23 < |~ω| < µ12

~|ω|(T12R2 + T23R2) + T13R3µ13 if µ12 < |~ω| < µ13

~|ω|(T13R3 + T12R2 + T23R2) if µ13 < |~ω|

(5.6)

The frequency dependence of SS
23(ω) is symmetric in ω. The non-symmetrized cross-

correlations, given by Eqs. (5.2) and (5.3), coincides with the symmetrized cross-correlations

at ω = 0, as illustrated in Fig. 4. The non-symmetrized cross-correlations behavior is quite

different from the symmetrized cross-correlations, although the locations of their singularities

are the same. The symmetrized and non-symmetrized cross-correlations are both negative.

The non-symmetrized cross-correlations are monotonously increasing and equal to zero for

~ω > µ13.

-1.5 -1 -0.5 0 0.5 1 1.5
ω

-1

-0.5

0

S 23
(ω

)

Non-symmetric crosscorrelation
symmetric crosscorrelation

-µ13
-µ12 -µ23 µ23 µ12 µ13

FIG. 4: Comparison between non-symmetrized and symmetrized cross-correlations as a function

of frequency for µ12 > µ23, in units of e2µ13/2π~. Singularities occur at ~ω = 0, ±µ23, ±µ12, ±µ13.

The curves are plotted for µ12 = 0.7µ13 and µ23 = 0.3µ13.

We now consider the measured cross-correlations, given by Eq. (3.8), as a function of

temperature of the measurement circuit. Because of the symmetry of the transmission

probabilities, we have in this case S±
23(ω) = S±

32(ω) [9, 10]. With the above symmetry

consideration, the charge fluctuations resemble the formula for auto-correlation noise:

〈x2(0)〉 =
α1α2π

η(2M)2
[S+

23(ω) + ∆S23(ω)N(ω)] . (5.7)
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Note that it is the difference of the two non–symmetrized correlators ∆S23(ω) = S+
23(ω) −

S+
23(−ω) which is multiplied by the Bose distribution N(ω):

∆S23(ω) = −
e2

2π
ω
(

T21T13 − (2 − R2 − R3)T23

−2T13R3 − 2T12R2 − 2T23R2

)

, (5.8)

i.e., it is linear with frequency with a positive slope, and does not have any singularities.

Taking µ2 = µ3 for simplicity, the measured cross-correlations are plotted in Fig. 5.

0 2 4
ω

0

0.5

1

<
x2 (0

)>

k
B
T=0

k
B
T=0.1

k
B
T=0.5

k
B
T=1

k
B
T=1.5

k
B
T=2

k
B
T=2.5

FIG. 5: Measured charge fluctuations as a function of frequency for different temperatures kBT ,

measured in units of µ13. The frequency and the biases are in units of µ13.

For temperatures such that kBT & µ13, the Bose distribution is large, N(ω) ∼ kBT/~ω ≫

1. ∆S23(ω)N(ω) is thus larger than |S+
23(ω)|. The effect of the increasing temperature is to

change the sign of the charge fluctuations which becomes positive. This may seem change

given the fact that one is computing the fluctuations of charge at the plates of a capacitor:

recall that our measurement implicitly assumes two experiments with different wiring, whose

results are subtracted one from another. The main message of Fig. 5 is that the sign of the

measured correlation can be misleading if the temperature of the measuring device is too

large: one can observe positive cross-correlations in a normal fermionic fork although this

is a system where anti-bunching is expected. For ω ≥ µ13, the measured noise equals

∆S23(ω)N(ω), while for ω < µ13, S+
23(ω) lowers ∆S23(ω)N(ω). At all temperatures, the

measured charge fluctuations have a clear singularity at ~ω = µ13: we are not taking into

account the thermal effects in the mesoscopic circuit itself.

At low temperature, kBT ≪ µ13, and low frequency, ω ≪ µ13, ∆S23(ω)N(ω) is smaller
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FIG. 6: Same as Fig. 5, for a smaller frequency range and at lower temperatures (in units of µ13).

than |S+
23(ω)| and the measured signal remains negative (see Fig. 6). When the temperature

goes to zero, the measured charge fluctuations equal S+
23(ω).

For completeness, the case where the voltage biases satisfy µ13 > µ12 > µ23 > 0 is

discussed. The fact that terminals 2 and 3 have different chemical potential will lower the

contribution of S+
23(ω) to ∆S23(ω)N(ω), and increase the amplitude of charge fluctuations.

At low temperature, the charge fluctuations stay negatives and singularities are present at

frequencies equal to µ23, µ12, µ13. When the temperature becomes larger than the bias

voltages, the charge fluctuations become positive. However, when the temperature goes

to zero, the charge fluctuations become equal to S+
23(ω). When the difference between

the chemical potentials of terminals 2 and 3 increases the effect of temperature is more

important at small temperature the amplitude is bigger regardless of the effect of S+
23(ω) is

less important for large temperatures.

VI. WHEN ARE FINITE FREQUENCY CROSS-CORRELATIONS NOISE USE-

FUL ?

When probing quantum non-locality with a source of electrons (for instance a S–wave

superconductor or any other source of electrons) with the help of Bell inequalities[24], one

is confronted with the fact that particle number correlators must be converted into noise

correlators. The particle number operator reads:

Nα(τ) =

∫ τ

0

Iα(t′)dt′ = 〈Nα(τ)〉 + δNα(τ) , (6.1)
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FIG. 7: Same as Fig. 5, for a smaller frequency range, and at lower temperatures. µ12 = 0.7µ13,

µ23 = 0.3µ13 have been chosen.

where Iα(t) is the current operator in lead α. The irreducible particle number correlator is

expressed in terms of the finite frequency shot noise power:

〈δNα(τ)δNβ(τ)〉 = (1/2π)

∫ ∞

−∞

dωSα,β(ω)4 sin2(ωτ/2)/ω2 . (6.2)

It is therefore only in the limit of relatively “large” acquisition times that the Bell inequality

can be cast in terms of zero frequency correlations only[24, 25], thus the need in general

to measure in general finite frequency noise correlations. This is implicit in the work of

Ref. 26, where entanglement occurs with a normal source of electrons, provided that short

time dynamics can be analyzed. Ref. 24 missed this subtlety concerning normal electron

sources.

Another situation of interest for finite frequency cross-correlations noise deals with the

detection of anomalous (non-integer charges) in carbon nanotube. A Hanbury–Brown

and Twiss experiment has been proposed where an STM tip injects electron in the

bulk of the nanotube and cross-correlations noise are measured at the extremities of the

nanotube[18, 27]. In Ref. 27, the case of an infinite nanotube has been considered. Schottky-

like relations for the zero-frequency Fourier transforms of the auto-correlation noise and the

cross-correlations noise were derived within the Tomonaga-Luttinger model:

Sauto(ω = 0) =
1 + (Kc+)2

2
e|〈I(x)〉| , (6.3)

Scross(ω = 0) =
1 − (Kc+)2

2
e|〈I(x)〉| , (6.4)
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where 〈I(x)〉 is the charge current through the nanotube and Kc+ is the Luttinger liquid in-

teraction parameter. Sauto is the term of auto-correlations and Scross is the cross-correlations

term. However, in the presence of electrical contacts at the extremities of the nanotube, the

zero-frequency Fourier transforms for noise and cross-correlations lose their Kc+-dependence:

at order 2 in the perturbative expansion with the tunneling amplitude from the tip to the

nanotube, they reduce to Sauto(ω = 0) = e|〈I(x)〉| and Scross(ω = 0) = 0. It has been shown

in Ref. [18], that one has to consider finite frequency Fourier transform in order to recovered

non zero cross-correlations and coulomb interactions effects in such a system.

VII. CONCLUSION

In summary, we have shown that the cross-correlations noise of a mesoscopic circuit

can be measured by coupling the latter to a resonant circuit which is composed of two

inductances and a capacitor. Each inductance is attached to the arms where correlations

are measured. As in Ref. [9], the proposed noise measurement is made by monitoring the

charge fluctuations on the capacitor. Two distinct measurements, with different wiring of

the circuit, are necessary to isolate the cross-correlations noise.

Granted, we have not described the experimental apparatus which is needed to con-

vert the signal into classical information, i.e. the amplification scheme: this goes beyond the

scope of the present paper, which goal is to convey that information about cross-correlations

noise can be converted into a charge signal on a capacitor. A general approach for analyz-

ing the quantum behavior of electronic circuitry has been proposed [28], allowing to treat

both nonlinear and dissipative elements, hence useful for signal conversion. The transition

from mesoscopic to macroscopic quantum transport has been addressed in the context of

scattering theory [29]. Note that in our analysis of the setup, the variable ẋ denotes the

current flowing in the capacitor’s circuit. It is assumed to be a constant current in space.

This description may be inappropriate at high frequencies, setting some upper limit to the

frequencies we want to probe.

Note that the quality of the diagnosis of cross-correlations presented in this work de-

pends, to a large extent, on how the mesoscopic circuit is perturbed when one switches from

one wiring configuration to the other. Indeed, it is necessary to minimize the changes in

configuration (the values of α1 and α2) of the circuit which occurs between the two mea-

surements. Here one could assume ideally that the inductances are built “on-chip” with the
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mesoscopic circuit, or with the wires connected to it, which is a challenge in practice: small

inductors working at high frequencies (ω = 100GHz) may be difficult to achieve. While it

may be more realistic to couple the two circuits away from the mesoscopic device, on chip

inductances of small scale are nevertheless used in qbit circuitry [30]. Moreover, the wires

of the measurement circuit are assumed to have a low impedance compared to that of the

mesoscopic sample: within these working conditions the change of wiring does not affect

significantly the inductive couplings, and the measurement will be reliable.

As a first necessary application of this measurement scheme, we considered a three ter-

minal normal metal conductor, which is known to exhibit negative noise correlations at

zero frequency. The symmetrized noise differs strongly from the non-symmetrized noise and

the measured noise. For a mesoscopic circuit at zero temperature, the non-symmetrized

noise contains singularities at frequencies corresponding to the chemical potential differ-

ences. However, when considering the measured noise, care must be taken to work with a

detector circuit whose temperature is below these relevant biases. In this case the singulari-

ties in the derivative can still be detected, and upon increasing slowly the temperature, the

measured noise deviates from the non-symmetrized noise. This provides a condition for the

observation of negative noise correlations – electron anti-bunching – in such three terminal

devices. Because of the above mentioned temperature effects of the device, the amplifiers

needed for signal conversion would need to be cooled down in order to avoid such problems.

The present analysis can be extended to study the measured noise correlations in other

mesoscopic devices, in particular three terminal structures where electrons are injected in

one lead from a superconductor[31]. Finite frequency noise correlations in this case contain

information of the time dynamics of the two electrons subject to crossed-Andreev transport.

APPENDIX A

We discuss the case where the resonant LC circuit has a finite line shape. For a distribu-

tion of oscillators, the charge operator now takes the form:

x(t) =
∑

ω

xω(t) =
∑

ω

√

~/2Mω(aωe−iωt + a†
ωeiωt) , (A1)

where the interaction coupling, −αIp/M , becomes −I
∑

ω αωpω/M .

These expressions are substituted in the interlocked commutators Eq. (2.9), which now

contains a sum over 4 frequencies ω1, ω2, ω3 and ω4. Because of time integrations, delta
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functions appear and give equalities between the frequencies. We are left with two summa-

tions:

〈[

[x2(0), p(t1)Ii(t1)], p(t2)Ij(t2)
]〉

=
∑

ω1,ω2

~
2 cos(ω1t1)

×
[

〈Ii(t1)Ij(t2)〉(Nω2e
−iω2t2 − (Nω2 + 1)eiω2t2)

− 〈Ij(t2)Ii(t1)〉((Nω2 + 1)e−iω2t2 − Nω2e
iω2t2)

]

. (A2)

We substitute this expression in the charge fluctuations and proceed with the change of

variable, we make use of the time translational invariance: t = t1 − t2 and T = t1 + t2

and 〈Ii(t)Ij(0)〉 = 〈Ii(0)Ij(−t)〉. Making use of the definitions of Eqs. (3.6) and (3.7), the

integral over T leads to two contributions:

K1 =

∫ 0

−∞

dTei(ω1+ω2)t/2eηT+i(ω1−ω2)sign(t)T/2

=
ei(ω1+ω2)t/2

η + i(ω1 − ω2)sign(t)/2
, (A3)

K2 = −

∫ 0

−∞

dTei(−ω1+ω2)t/2eηT−i(ω1+ω2)sign(t)T/2

= −
ei(−ω1+ω2)t/2

η − i(ω1 + ω2)sign(t)/2
. (A4)

The line shape L(ω −Ω), which is sharply peak around the resonant circuit frequency Ω, is

introduced when converting discrete sums over frequencies into integrals. The integral over

t is performed subsequently.

The denominators of K1 and K2 yield a real part which are a principal part and an

imaginary part which are a Dirac delta function. We obtain four contributions for the

charge fluctuations:

〈x2(0)〉 = A1 + A2 + A3 + A4 , (A5)
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where

A1 = 4π2

∫

dωL2(ω − Ω)
α1α2

(2M)2

×Re
[

(Nω + 1)S+
12(ω) − NωS−

12(ω)
]

, (A6)

A2 = −2

∫

dω1dω2dω3L(ω1 − Ω)L(ω2 − Ω)
α1α2

(2M)2

×P
(

((ω1 + ω2)/2 − ω3)
−1

)

P
(

2/(ω1 − ω2)
)

×Re
[

(Nω2 + 1)S+
12(ω3) − Nω2S

−
12(ω3)

]

, (A7)

A3 = 4π2

∫

dωL(ω − Ω)L(−ω − Ω)
α1α2

(2M)2

×Re
[

(Nω + 1)S+
12(−ω) − NωS−

12(−ω)
]

, (A8)

A4 = −2

∫

dω1dω2dω3L(ω1 − Ω)L(ω2 − Ω)
α1α2

(2M)2

×P
(

((ω1 − ω2)/2 − ω3)
−1

)

P
(

2/(ω1 + ω2)
)

×Re
[

(Nω2 + 1)S+
12(ω3) − Nω2S

−
12(ω3)

]

, (A9)

where the function P gives the principal part. The contribution which dominates is the

contribution where the two line shape functions L(ω−Ω) are peaked at the same frequency,

i.e., Eq (A6). The quantity η which appears in the single oscillator model thus corresponds

physically to the width of the line shape, as expected.
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