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Dynamical localization is a localization phenomenon taking place, for example, in the quantum
periodically-driven kicked rotor. It is due to subtle quantum destructive interferences and is thus
of intrinsic quantum origin. It has been shown that deviation from strict periodicity in the driving
rapidly destroys dynamical localization. We report experimental results showing that this destruc-
tion is partially reversible when the deterministic perturbation that destroyed it is slowly reversed.
We also provide an explanation for the partial character of the reversibility.

PACS numbers: 05.45.Mt, 32.80.Lg, 03.65.Yz, 05.60.-k

Dynamical localization (DL) is one of the most dra-
matic manifestations of how the quantum behavior of a
complex system may differ from that of its classical coun-
terpart. It takes place in one-dimensional time-periodic
Hamiltonian systems where the deterministic motion is
classically chaotic and, on the average, equivalent to a
diffusive expansion in momentum space (the so-called
chaotic diffusion behavior). Because of subtle destructive
interference effects, the quantum dynamics is substan-
tially different: while this dynamics is similar to the clas-
sical one for short times, the diffusive behavior stops after
some break-time and the quantum momentum distribu-
tion gets frozen to a steady state at long times. Interest
in the DL come also from the fact that it can be eas-
ily observed experimentally, e.g. by placing laser-cooled
atoms in a periodically kicked laser standing wave, the
so-called “kicked rotor” [1]. The quantum inhibition of
classical transport is a rather generic behavior in one-
dimensional time-periodic Hamiltonian systems. It relies
on the existence of a class of states which are stationary
under the one-cycle evolution operator, the so-called Flo-
quet states, forming a basis of the Hilbert space. DL is
thus a rather robust feature, which can be observed for a
large class of initial states, either pure states or statistical
mixtures.

Another fascinating feature of DL is its sensitivity to
external non-periodic perturbations or deviations from
the temporal periodicity of the system [2]. Various ways
of breaking DL have been studied experimentally and
theoretically. One way is to add amplitude noise to the
kicks [3]. In such case, it has been observed that DL is
destroyed, i.e., that the quantum motion remains diffu-
sive at long times, as the classical motion. This destruc-
tion has also been observed by adding a second series
of kicks at an incommensurate frequency [4], an experi-
ment that has also evidenced a very high sensitivity to
frequency differences, allowing observation of sub-Fourier
resonances [5]. Another qualitatively different way of de-

stroying DL is to introduce a small amount of sponta-
neous emission in the system, thus breaking its quantum
coherences [3, 6]. While the first two examples corre-
spond to a purely Hamiltonian evolution, the latter one
introduces an irreversible dissipative evolution.

In the case of a purely Hamiltonian dynamics, a fun-
damental question remains, concerning the nature of the
DL destruction: is this destruction complete and irre-
versible or is it possible to stop the diffusive behavior?
Even better, is it possible to reverse the evolution and
reconstruct a more localized state? The purpose of this
paper is to report experimental results showing that such
a relocalization is possible (at least partially) when the
non-periodic perturbation that destroys DL is slowly re-
versed in time.

Let us first consider the standard kicked rotor Hamil-
tonian of a single atom in a pulsed standing wave (SW):

H0 =
P 2

2
+ K sin θ

N−1
∑

n=0

δτ (t − n), (1)

where P is the reduced momentum along the SW axis in
units of M/(2kLT1) (kL is the laser wavenumber and M
the mass of the atom), θ = 2kLz the reduced position of
the atom along the SW axis, K = Ω2T1τ~k2

L/(2M∆L)
the kick strength (Ω is the resonant Rabi frequency of the
SW, ∆L its detuning from the atomic resonance). The
time t is measured in units of the period T1 of the kicks.
N is the number of kicks, and δτ is a Dirac-like function;
τ is the finite duration of the kicks. In the limit τ → 0,
the dynamics of this Hamiltonian system is well known
and depends on only two parameters: K and the effec-
tive Planck constant k̄ = 4~k2

LT1/M . For K ≫ 1, the
classical dynamics is a chaotic diffusion; a localized set
of initial conditions will spread in momentum space like a
Gaussian of width ∝ t1/2. Below the break-time, the clas-
sical and the quantum dynamics of an initially localized
state are identical. After the localization time, the quan-
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tum dynamics is frozen, the average kinetic energy ceases
to grow; at the same time, the momentum distribution
evolves from a characteristic Gaussian shape in the dif-
fusive regime to an exponential shape ∼ exp(−|P |/L)
(with L being the localization length) characteristic of
the localized regime [7, 8].

Consider now an experiment in which a slowly increas-
ing and then decreasing perturbation is added. This per-
turbation is added to Hamiltonian (1) as a second series
of kicks with the same frequency but with a time depen-
dent amplitude (see upper frame in figure 2):

H = H0 +
K

2
sin θ

[

1 − ε cos

(

2πt

Θ

)]

×

N−1
∑

n=0

δτ

(

t − n −
φ

2π

)

(2)

where Θ ≫ 1 is the period of the perturbation, φ the
relative phase between the two kicks series, and ε the
modulation amplitude, with ε ∼ 1. Experimental values
are: Θ = 35, φ/2π = 1/6, and ε = 0.94. At time t = N,
the system has been exposed to N kicks of the primary
sequence (with fixed strength K) and N kicks of the sec-
ondary sequence (with time-varying strength), i.e., to a
total of 2N pulses.

In order to experimentally realize the Hamiltonian
Eq. (2), a sample of cold cesium atoms is produced in a
standard magneto-optical trap and released in the Fg = 4
hyperfine ground-state sublevel. A double sequence of N
pulses built according to Eq. (2) is applied. The SW is
detuned by ∆L/2π = 20 GHz (∼ 3800Γ, where Γ is the
natural width of the atomic transition) with respect to
the 6S1/2, Fg = 4 → 6P3/2, Fe = 5 hyperfine transition
of the Cesium D2 line (λL = 852 nm). Such largely de-
tuned radiation essentially induces stimulated transitions
responsible for conservative momentum exchanges with
the atoms, so that the dynamics is Hamiltonian. How-
ever, the SW laser line presents a very broad low-level
background (several hundreds of GHz) responsible for a
significant rate of dissipative spontaneous transitions. To
get rid of this problem, the SW passes through a 10 cm
cesium cell before interacting with the cold atoms. This
filtering reduces the background by more than one order
of magnitude in a bandwidth of about 500 MHz around
the cesium transitions. Finally, after being transported
by a polarization-maintaining fiber, 92 mW of laser light,
collimated to a 1.5 mm waist, is available for the experi-
ment, and retro-reflected to build the SW. The frequency
of each kick series is set to 30 kHz, and the duration
of each kick to τ = 0.6µs. For these values, the pa-
rameter K is ∼ 9, and the localization time ∼ 10 peri-
ods. The spontaneous emission rate is estimated to 0.06
per atom for the maximum duration of the experiment.
Once the SW sequence is over, the atomic momentum
distribution is probed with a velocity selective Raman

Figure 1: (color online). Experimentally measured velocity
distributions as a function of time. The atomic velocity is
measured in units of the recoil velocity vr = ~kL/M ≃ 3.5
mm/s. At short times, the diffusive broadening (or the re-
duction of the zero-velocity population) of the velocity distri-
bution is observed. When the slowly changing perturbation
is reversed (around t = 17), the velocity distribution starts to

shrink. This is highly non-trivial behavior, showing that the
destruction of dynamical localization by a slowly time-varying
kick sequence is reversible. After a second cycle of the per-
turbation a second relocalization of the velocity distribution
is observed (around t = 70).

pulse. Thanks to Doppler effect, and a well-chosen de-
tuning, this pulse transfers the atoms in a well defined
velocity class from the hyperfine sublevel Fg = 4 to the
Fg = 3 sublevel [9, 10]. The atoms remaining in the
Fg = 4 sublevel are pushed away by a resonant laser
beam. A resonant pulse brings the selected atoms back
in the Fg = 4 level where their number is measured by a
resonant probe. The whole cycle starts again to measure
the population in another velocity class, allowing to re-
construct the full atomic momentum distribution. Such a
measurement is then performed for increasing pulse num-
bers N .

A last precaution must however be taken. As discussed
above, the SW is intense enough to induce – for a few
atoms – a real transition from the level Fg = 4 to the
excited state, followed by spontaneous emission leading
possibly to the hyperfine level Fg = 3, whatever their mo-
mentum. Those atoms would be repomped to the Fg = 4
sublevel and detected, generating an incoherent, N de-
pendant, background. For each experiment, the Raman
detuning is set very far away (at 10 MHz, more than
one thousand recoil velocities), where the probability to
find a Raman resonant atom is very low. Except for this
modification, the experiment is launched in exactly the
same conditions. The stray background is corrected by
subtracting the resulting signal from the resonant one.

Figure 1 shows the velocity distribution as a function
of N . As expected, the early dynamics is diffusive. DL
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is expected around t = 10. Since the perturbation starts
increasing from t = 0, DL is not visible and one could
assume it is destroyed before it could be seen. How-
ever, when the perturbation is reversed, the distribution
shrinks and takes an exponential shape (see Fig. 2), sign-
ing a partial “revival” of the localization. This is clearly
visible in figure 2 which displays the zero velocity pop-
ulation Π0 as a function of N (red crossed solid line),
which is inversely proportional to the width of the distri-
bution and therefore directly proportional to the degree
of localization. The insets (a) and (b) display, respec-
tively, the velocity distribution at t = 17 ∼ Θ/2, where
the perturbation reaches its maximum amplitude, and
at t = Θ = 35, where it is back to its minimum initial
value. In inset (a), the distribution is very well fitted
by a Gaussian, whereas the distribution in inset (b) is
better fitted by an exponential. The exponential shape
at t = Θ is not the only remarkable fact. The fact that
the momentum distribution gets narrower (Π0 increases)
is highly significative. Indeed, the classical dynamics is
diffusive and irreversible, forbidding, in the general case
1, a return to a narrower distribution. Furthermore, DL
leads to the suppression of the classical diffusion, i.e., a
freezing of the velocity distribution; but it cannot lead to
a narrowing of the distribution, which is precisely what is
experimentally observed in figure 2. This is a key point
of the present experiment: it proves that the exponen-
tial shape observed at t = Θ, where the perturbation is
zero, does not simply results from the DL that would be
observed in the periodic case, with no perturbation.

It is even possible to go further by proving the coherent
nature of the reversibility process. We have performed an
additional experiment where a resonant laser pulse irra-
diates the atomic cloud at t = 17. The intensity and de-
tuning of this pulse are set such that, in the average, only
one or two spontaneous photons are emitted per atom.
Its purpose is to destroy the quantum coherences, with
minimum of heating and mechanical effects. The two
curves in figure 2 (with and without the resonant pulse)
are practically identical before t = 17, which indicates
that heating resulting from the resonant pulse is negligi-
ble 2. In the presence of resonant light, the “revival”at
t = 35 disappears almost completely (blue dashed line
curve in figure 2). Moreover, the velocity distribution
(not shown in Fig. 2) is Gaussian around t = 35. This
clearly proves that, in the absence of spontaneous emis-

1 One can indeed conceive carefully prepared initial states that

would evolve to a narrower shape, but this is clearly not the case

here.
2 Each point in Fig. 2 represents a different experiment with a dif-

ferent N . The resonant pulse of light is always applied at t = 17

and the Raman detection then performed. Any significant heat-

ing effect would enlarge the momentum distribution and would

be detected.

Figure 2: (color online) Upper frame: kick sequence. Main
frame: Population in the zero-velocity class as a function of
the duration N of the pulse sequence with no resonant light
(red crossed solid line) and with a 50µW pulse of resonant
light applied at t = 17 (blue dashed line). The absence of
revival in presence of resonant light (decoherence) is a clear-
cut proof of the importance of quantum interference for the
reversibility of the DL destruction. The resonant pulse is
weak enough to induce no heating of the atoms but kills the
phase coherence, thus preventing the relocalization when the
perturbation reaches zero amplitude at t = 35 and t = 70.
The inset (a) shows the Gaussian velocity distribution at t =
17, near the maximum of the perturbation, in the absence of
resonant light, inset (b) shows a exponential shape near the
minimum of the perturbation, t = 35.

sion, although DL is not observed before t = 17, there
is a memory in the system which is destroyed by sponta-
neous emission. This reinforces the idea that, when the
perturbation is reversed, a dynamically localized state is
recovered, at least partially. In fact, the “revival” of DL
is only partial, and a part of it is irremediably destroyed.
As shown in Figs.1 and 2, a second perturbation cycle
from t = Θ to 2Θ has been performed, and a second re-
vival is observed. However, its amplitude is smaller than
the first one, and the shape of the velocity distribution
is also damaged. This is due to fundamental reasons,
although spontaneous emission or experimental imper-
fections could also contribute to that.

A detailed discussion of the physical processes at work
in our experiment is beyond the scope of the present
paper, and will be published elsewhere. We give here
a few guidelines to the theoretical interpretation. The
robust structure behind DL is the existence of Floquet
states for a time-periodic Hamiltonian system, which are
eigenstates of the evolution operator over one period. By
their definition, such states repeat identically (except for
a phase factor) at each kick and thus do not spread in
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momentum space. Any initial state can be expanded on
the complete set of Floquet states. Chaotic diffusion is
– in this picture – due to a gradual dephasing of the
various Floquet states (of different eigenenergies) that
contribute to the initial state. However, a non-trivial
property of the periodically kicked rotor is that all Flo-
quet states are localized in momentum space [11]: this is
the temporal analogous of Anderson localization in dis-
ordered one-dimensional systems, as put on firm grounds
in Ref. [12]. Only Floquet states localized close to the
initial (zero) momentum significantly overlap with the
initial state and contribute to the long term dynamics.
At sufficiently long times, the various Floquet states sig-
nificantly contributing to the dynamics are completely
dephased (in a characteristic time which is but the break-
time), the momentum distribution covers all significantly
populated Floquet states, but cannot extend further in
momentum space, leading to the freezing of the diffusive
growth. When the dynamics is no longer exactly peri-
odic, population is transferred among the various Floquet
states, and Floquet states localized farther from P = 0
can be populated. In this situation, DL is thus expected
to be destroyed. There is however a situation where
such an evolution can be controlled: if, at any time, the
Hamiltonian is almost periodic with, for example, a kick
strength K(t) slowly changing with time t, an adiabatic
approximation can be used. The atomic state at time t
can be expanded in terms of the “instantaneous”Floquet
eigenbasis corresponding to the local value of K(t). If the
variation of K(t) is slow enough, the evolution is adia-
batic in the Floquet basis, meaning that the populations
of the Floquet eigenstates do not change with time, while
the eigenstates themselves evolve [13, 14]. This leads to
an apparent diffusive broadening of the momentum dis-
tribution [15], but the robust Floquet structure is still
underlying. To recover the localization, it is sufficient to
reverse the evolution of K(t) back to its initial value. One
then recovers the initial well localized Floquet eigenstates
with unchanged populations, i.e., a dynamically localized
momentum distribution. This is the deep origin of the re-
vival of the localization experimentally observed above.
Any phenomenon breaking phase coherence (such as a
spontaneous emission) will redistribute the atomic wave-
function over other Floquet states, eliminating all pos-
sibility of revival. However, the revival is only partial,
because the evolution cannot be made 100% adiabatic.
Indeed, even for very slow changes of K(t), there are
some avoided crossings between various Floquet states of
such size that they will be crossed neither diabatically,
nor adiabatically, and will consequently redistribute the
population over the Floquet states, partially destroying
the reversibility.

To summarize, we have observed that the destruction

of dynamical localization in the kicked rotor, induced by
a non-periodic driving can be partially reversed. If the
external driving evolves sufficiently slowly, some informa-
tion is carefully stored in the populations of the various
Floquet states. Although it is not visible in the momen-
tum distribution – which seems to follow an irreversible
diffusive broadening – it can be easily restored by re-
verting the driving back to its initial value, producing a
relocalization of the wavefunction. We have also show
that this intrinsically quantum behavior is destroyed by
decoherence, i.e., by adding spontaneous emission to the
experiment.
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