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The universal cover of an algebra without double bypass

) of any presentation of A by quiver and relations is the quotient of the fundamental group of a privileged presentation of A. Then we show that the Galois covering of A associated with this privileged presentation satisfies a universal property with respect to the connected Galois coverings of A in a similar fashion to the universal cover of a topological space.

together with an exact sequence of groups:

.

Introduction

In this text, k will be an algebraically closed field. Let A be a finite dimensional algebra over k. In order to study left A-modules we may assume that A is basic and connected, where basic means that A is the direct sum of pairwise non isomorphic indecomposable projective left A-modules. For such an algebra, the study of the Galois coverings of A gives some information on the representation theory of A (see [START_REF] Cibils | Skew categories, Galois coverings and smash-product of a k-category[END_REF], [START_REF] Green | Graphs with relations, coverings and group-graded algebras[END_REF] and [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF]) and is a particular case of the covering techniques introduced in [START_REF] Bongartz | Covering spaces in representation theory[END_REF], [START_REF] Gabriel | The universal cover of a representation finite algebra[END_REF] and [START_REF] Ch | Algebren, darstellungsköcher ueberlagerungen und zurück[END_REF]. In order to manipulate coverings of A we will always consider, unless otherwise stated, A as a k-category with set of objects a complete set {e i } i of primitive pairwise orthogonal idempotents and with morphisms space e i → e j the vector space e j Ae i . The covering techniques have led to the definition (see [START_REF] Green | Graphs with relations, coverings and group-graded algebras[END_REF] and [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF]) of a fundamental group associated with any presentation of A by quiver and admissible relations, and which satisfies many topological flavoured properties (see [START_REF] Assem | The fundamental groups of a triangular algebra[END_REF], [START_REF] Green | Graphs with relations, coverings and group-graded algebras[END_REF] and [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF]). This construction and its associated properties depend on the choice of a presentation of A. In particular, one can find algebras for which there exist different presentations giving rise to non isomorphic fundamental groups. In this text we compare the fundamental groups of the presentations of A as defined in [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF], and we study the coverings of A with the following question in mind: does A have a universal Galois covering? i.e. does A admit a Galois covering which is factorised by any other Galois covering? This question has been successfully treated when A is representation-finite (see [START_REF] Bongartz | Covering spaces in representation theory[END_REF] and [START_REF] Gabriel | The universal cover of a representation finite algebra[END_REF]). The present study will involve quivers "without double bypass". In simple terms, a quiver without double bypass is a quiver which has no distinct parallel arrows, no oriented cycle and has no subquiver of the following form where continued (resp. dotted) arrows represent arrows (resp. oriented paths) in the quiver. Assuming that k is a characteristic zero field and that the ordinary quiver Q of A has no double bypass, we prove the following result announced in [START_REF] Meur | The fundamental group of a triangular algebra without double bypasses[END_REF]: Theorem 1. Assuming the above conditions, there exists a presentation kQ/I 0 ≃ A by quiver and relations such that for any other presentation kQ/I ≃ A the identity map on the walks in Q induces a surjective group morphism π 1 (Q, I 0 ) ։ π 1 (Q, I).

The proof of the above theorem allows us to recover the following fact proven in [START_REF] Bardzell | H 1 and representation of finite dimensional algebras[END_REF]: if A is a basic triangular connected and constricted finite dimensional k-algebra, then different presentations of A give rise to isomorphic fundamental groups. Under the hypotheses made before stating Theorem 1 and with the same notations, if k Q/ Ĩ0 F 0 -→ kQ/I 0 is the Galois covering with group π 1 (Q, I 0 ) induced by the universal Galois covering of (Q, I 0 ) (see [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF]), we show the following result.

Theorem 2. For any connected Galois covering F : C ′ → A with group G there exist an isomorphism kQ/I 0 1 Basic definitions k-categories, covering functors, Galois coverings A k-category is a category C such that the objects class C 0 of C is a non empty set and such that each set y C x of morphisms x → y of C is a k-vector space with k-bilinear composition. Let C be a k-category. We will say that C is locally bounded if the following properties are satisfied: a) distinct objects are not isomorphic, b) for each x ∈ C 0 , the k-algebra x C x is local, c) ⊕ y∈C 0 y C x is finite dimensional for any x ∈ C 0 , d) ⊕ x∈C 0 y C x is finite dimensional for any y ∈ C 0 . Unless otherwise stated, all the k-categories we will introduce will be locally bounded. As an example, let A be a basic finite dimensional k-algebra. If 1 = n i=1 e i is a decomposition of the unit into a sum of primitive orthogonal idempotents, then A = ⊕ i,j e j Ae i and A is a locally bounded k-category with set of objects {e 1 , . . . , e n } and with morphisms space e i → e j equal to e j Ae i . We will say that the k-category C is connected if for any x, y ∈ C 0 there exists a sequence x 0 = x, . . . , x n = y in C 0 such that x i C x i+1 = 0 or x i+1 C x i = 0 for any i. Recall that an ideal I of C is the data of vector subspaces y I x ⊆ y C x for each x, y ∈ C 0 , such that the composition of a morphism in I with any morphism in C lies in I. The radical (see [START_REF] Bongartz | Covering spaces in representation theory[END_REF]) of C is the ideal RC of C such that y RC x is the set of non invertible morphisms x → y for any x, y ∈ C 0 . If n 2 we set R n C = (RC) n . The ordinary quiver of C has set of vertices C 0 , and for x, y ∈ C 0 the number of arrows x → y is exactly dim k y RC x / y R 2 C x . Finally, we say that C is triangular if its ordinary quiver has no oriented cycle. All functors are assumed to be k-linear functors between k-categories. A functor F : E → B is called a covering functor (see [START_REF] Bongartz | Covering spaces in representation theory[END_REF]) if the following properties are satisfied: a) F -1 (x) = ∅ for any x ∈ B 0 , b) for any x 0 , y 0 ∈ C and any x0 , ŷ0 ∈ E 0 such that F (x 0 ) = x 0 and F (ŷ 0 ) = y 0 , the following maps induced by F are isomorphisms:

F (ŷ)=y ŷ E x0 → y 0 B x 0 and F (x)=x ŷ0 E x → y 0 B x 0 .
In particular, if u ∈ y 0 B x 0 , the inverse images of u by these isomorphisms will be called the lifting of u (w.r.t. F ) with source (resp. target) x0 (resp. ŷ0 ). Recall that if E is locally bounded (resp. connected) then so is B. A G-category is a k-category C endowed with a group morphism G → Aut(C). Moreover, if the induced action of G on C 0 is free, then C is called a free G-category. The quotient category C/G of a free G-category C (see [START_REF] Cibils | Skew categories, Galois coverings and smash-product of a k-category[END_REF] for instance) has set of objects C 0 /G. For any α, β ∈ C 0 /G we set:

β (C/G) α =   x∈α,y∈β y C x   /G
and the composition is induced by the composition in C. The natural projection C → C/G is a covering functor. A Galois covering with group G is a functor F : E → B with E a free G-category and such that there exists a commutative diagram:

E } } | | | | | | | | F 0 0 a a a a a a a a E/G ∼ G G B where E → E/G
is the natural projection and the horizontal arrow is an isomorphism. In particular a Galois covering is a covering functor. A connected Galois covering is a Galois covering E → B where E is connected. A G-graded category is a k-category C such that each morphism space has a decom-

position y C x = ⊕ g∈G y C g x satisfying z C g y . y C h x ⊆ z C gh x .
The smash-product category (see [START_REF] Cibils | Skew categories, Galois coverings and smash-product of a k-category[END_REF]) C♯G has set of objects (C♯G) 0 = C 0 × G, and (y,t) (C♯G) (x,s) = y C t -1 s x for (x, s) and (y, t) in (C♯G) 0 . The composition in C♯G is induced by the composition in C. The natural projection F : C♯G → C, defined by F (x, s) = x and F (u) = u for u ∈ (y,t) (C♯G) (x,s) ⊆ y C x , is a Galois covering with group G. It has been shown in [START_REF] Cibils | Skew categories, Galois coverings and smash-product of a k-category[END_REF] that if p : E → B is a Galois covering with group G, then B is a G-graded category and there exists a commutative diagram:

E ∼ ϕ G G p 0 0 b b b b b b b b B♯G } } { { { { { { { { B
where B♯G → B is the natural projection and ϕ is an isomorphism.

Quivers with admissible relations

Let Q be a locally finite quiver with set of vertices Q 0 , set of arrows Q 1 and source and target maps s, t : Q 1 → Q 0 respectively. Recall that locally finite means that s -1 (x) and t -1 (x) are finite sets for any x ∈ Q 0 . For simplicity we will write x + (resp. x -) for the set s -1 (x) (resp. t -1 (x)). A (non trivial) oriented path in Q is a non empty sequence α 1 , . . . , α n of arrows of Q such that s(α i+1 ) = t(α i ) for any 1 i n -1. Such a path is written α n . . . α 1 , its source (resp. target) is s(α 1 ) (resp. t(α n )). For each x ∈ Q 0 we will write e x for the (trivial) path of length 0 and with source and target equal to x. The path category kQ has set of objects Q 0 , the morphism space y kQ x is the vector space with basis the set of oriented paths in Q with source x and target y (including e x in case x = y). The composition of morphisms in kQ is induced by the concatenation of paths. Notice that kQ is a free k-category in the following sense: for any k-category C, a functor kQ

F -→ C is uniquely determined by the family of morphisms {F (α) ∈ F (y) C F (x) | x α -→ y ∈ Q 1 }.
We will denote by kQ + the ideal of kQ generated by Q 1 . Notice also that if Q 0 is finite then kQ is also a k-algebra, kQ = ⊕ x,y y kQ x , with unit 1 = x∈Q 0 e x , and kQ + becomes an ideal of this k-algebra. If r ∈ y kQ x we define the support of r (denoted by supp(r)) to be the set of paths in Q which appear in r with a non zero coefficient. Moreover, we define normal form of r as an equality of the type r = i λ i u i such that λ i ∈ k * for any i and where the paths u i are pairwise distinct. An admissible ideal of kQ is an ideal I ⊆ kQ such that I ⊆ (kQ + ) 2 and such that for any x ∈ Q 0 there exists n 2 such that I contains all the paths with length at least n and with source or target x. The couple (Q, I) is then called a quiver with admissible relations and the quotient category kQ/I is locally bounded. When Q 0 is finite, an admissible ideal I of kQ is exactly an ideal I of the k-algebra kQ such that (kQ + ) n ⊆ I ⊆ (kQ + ) 2 for some integer n 2. Recall from [START_REF] Bongartz | Covering spaces in representation theory[END_REF] that if C is a locally bounded k-category then there exists an admissible ideal I for the ordinary quiver Q of C and there exists an isomorphism kQ/I ∼ -→ C. Such an isomorphism is called a presentation of C with quiver and (admissible) relations (or an admissible presentation for short). Similarly, if A is a basic finite dimensional k-algebra, an admissible presentation of A is an isomorphism of k-algebras kQ/I ∼ -→ A where (Q, I) is a bound quiver.

Transvections, dilatations

A bypass (see [START_REF] Assem | Strongly simply connected shurian algebras and multiplicative bases[END_REF]) in Q is a couple (α, u) where α = u, α ∈ Q 1 and u is a path in Q parallel to α (this means that α and u share the same source and the same target). A double bypass is a 4-tuple (α, u, β, v) such that (α, u) and (β, v) are bypasses and such that the arrow β appears in the path u. Notice that if α, β are distinct parallel arrows of Q, then (α, β, β, α) is a double bypass. Notice also that if u = va is an oriented cycle in Q with first arrow a, then (a, au, a, au) is a double bypass. Hence, if Q has no double bypass, then Q has no distinct parallel arrows and no oriented cycle. If A is a basic k-algebra with quiver Q, we will say that A has no double bypass if Q has no double bypass. A transvection is an automorphism of the k-category kQ of the form ϕ α,u,τ where (α, u) is a bypass, τ ∈ k and ϕ α,u,τ is given by ϕ α,u,τ (α) = α + τ u and ϕ α,u,τ (β) = β for any arrow β = α (this uniquely defines ϕ α,u,τ since kQ is a free k-category). Notice that Q has no double bypass if and only if any two transvections commute. A dilatation is an automorphism D : kQ ∼ -→ kQ such that D(α) ∈ k * α for any arrow α. Notice that the definitions of transvections and dilatations are analogous to those of transvection and dilatation matrices (see [15, Chap. XIII, § 9] for instance).

Recall that a dilatation matrix of GL n (k) is a diagonal invertible matrix with at most one diagonal entry different from 1 and a transvection matrix is a matrix with diagonal entries equal to 1 and which has at most one non diagonal entry different from 0.

Fundamental group, coverings of quivers with relations Let (Q, I) be a quiver with admissible relations. For each arrow α ∈ Q 1 we will write α -1 for its formal inverse with source (resp. target) s(α -1 ) = t(α) (resp. t(α -1 ) = s(α)). A walk is an unoriented path in Q. More precisely it is a formal product u n . . . u 1 of arrows and of formal inverses of arrows such that s(u i+1 ) = t(u i ) for any 1 i n -1. Let r = t 1 u 1 + . . . + t n u n ∈ y I x where t i ∈ k * and where the paths u i are distinct. Then r is called a minimal relation if n 1 and if for any non empty proper subset E of {1, . . . , n} we have i∈E t i u i ∈ y I x . With this definition, any r ∈ I can be written as the sum of minimal relations with pairwise disjoint supports. Notice that in this definition we do not assume n to be greater than or equal to 2 as done usually (see [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF]). This change is done for simplicity and does not affect the constructions which follow. The homotopy relation of (Q, I) is the smallest equivalence relation ∼ I on the set of walks (in Q) which is compatible with the concatenation of walks and such that:

. αα -1 ∼ I e y and α -1 α ∼ I e x for any arrow x α -→ y, . u 1 ∼ I u 2 for any minimal relation t 1 u 1 + . . . + t n u n . Notice that in order to compute ∼ I we may restrict ourselves to any set of minimal relations generating the ideal I (see [START_REF] Farkas | Diagonalizable derivations of finite dimensional algebras[END_REF]). Assume that Q is connected (i.e. Q is connected as an unoriented graph) and let x 0 ∈ Q 0 . The fundamental group (see [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF]) π 1 (Q, I, x 0 ) of (Q, I) at x 0 is the set of ∼ I -classes of walks starting and ending at x 0 . The composition is induced by the concatenation of walks and the unit is the ∼ I -class of e x 0 . Since different choices for x 0 give rise to isomorphic fundamental groups (since Q is connected) we shall write π 1 (Q, I) for short.

Example 1. (see [START_REF] Assem | The fundamental groups of a triangular algebra[END_REF]) Assume that Q is the following quiver:

c 1 1 c c c c c c c a G G b c c d G G
and set I =< da > and J =< dadcb >. Then kQ/I ≃ kQ/J whereas π 1 (Q, I) ≃ Z and π 1 (Q, J) = 0.

A covering (Q ′ , I ′ ) p -→ (Q, I) of quivers with admissible relations (see [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF]) is a quiver morphism

Q ′ p -→ Q such that p(I ′ ) ⊆ I and such that: a) p -1 (x) = ∅ for any x ∈ Q 0 , b) x + p
-→ p(x) + and x -p -→ p(x) -are bijective for any x ∈ Q ′ 0 , c) for any minimal relation r ∈ y I x and for any x ′ ∈ p -1 (x) there exist y ′ ∈ p -1 (y) and r ′ ∈ y ′ I ′

x ′ such that p(r ′ ) = r, d) same statement as c) after interchanging x and y. Recall that the automorphism group Aut(Q, I) of a bound quiver (Q, I) is the group of automorphisms g :

Q ∼ -→ Q of the quiver Q such that g(I) ⊆ I. Assume that (Q ′ , I ′ ) p -→ (Q, I) is a covering, then the group of automorphisms of p is defined by Aut(p) = {g ∈ Aut(Q ′ , I ′ ) | p • g = p}. If (Q ′ , I ′ ) p -→ (Q, I) is a covering and if G is a subgroup of Aut(p), then p is called a Galois covering with group G if Q and Q ′ are connected and if G acts transitively on p -1 (x) for any x ∈ Q 0 . Notice that if (Q ′ , I ′ ) p -→ (Q, I) is
a covering (resp. a Galois covering with group G) then the induced functor kQ ′ /I ′ p -→ kQ/I is a covering functor (resp. a Galois covering with group G). Let (Q, I) be a connected quiver with admissible relations and let x 0 ∈ Q 0 . The universal cover of (Q, I) is a Galois covering ( Q, Ĩ) π -→ (Q, I) with group π 1 (Q, I, x 0 ) as defined in [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF]. One can describe it as follows: Q0 is the set of ∼ I -classes [w] of walks w starting at x 0 . The arrows of Q are the couples (α, [w]) where α ∈ Q 1 and [w] ∈ Q0 are such that s(α) = t(w). The source (resp. target) of the arrow (

α, [w]) is [w] (resp. [αw]). The map Q p -→ Q is defined by p([w]) = t(w) and p(α, [w]) = α.
The ideal Ĩ is equal to p -1 (I). Finally, the action of π 1 (Q, I) on ( Q, Ĩ) is the following: if g ∈ π 1 (Q, I) we may write g = [γ] with γ some walk with source and target equal to x 0 . Then for any

[w] ∈ Q0 (resp. (α, [w]) ∈ Q1 ) we have g.[w] = [wγ -1 ] (resp. g.(α, [w]) = (α, [wγ -1 ])).

Some linear algebra

We introduce here some notions that will be useful in the sequel and that will be used without reference. Let E be a finite dimensional k-vector space with basis (e 1 , . . . , e n ) and let (e * 1 , . . . , e * n ) be the corresponding dual basis (i.e. e * i (e i ) = 1 and e * i (e j ) = 0 if j = i). If {r t } t∈T is a family in E, then Span(r t ; t ∈ T ) will denote the subspace of E generated by this family. If r ∈ E we will write supp(r) (the support of r) for the set of those e ′ i s appearing in r with a non zero coefficient. Therefore e i ∈ supp(r) is equivalent to e * i (r) = 0. Let F ⊆ E be a subspace. A non zero element r ∈ F is called minimal if it cannot be written as the sum of two non zero elements of F with disjoint supports. We will denote by ≡ F the smallest equivalence relation on {e 1 , . . . , e n } such that e i ≡ F e j for any r ∈ F minimal and any e i , e j ∈ supp(r). Like in the situation of the homotopy relation of a bound quiver, the equivalence relation ≡ F is determined by any generating family of F made of minimal elements. Notice that if E is the vector space with basis the set of oriented paths in a finite quiver Q (without oriented cycle) and if I is an admissible ideal of kQ, then for any paths u and v we have:

u ≡ I v ⇒ u ∼ I v.
The converse is usually false as one can see in Example 1 where a ∼ J cb and a ≡ J cb. Assume now that the basis of E is totally ordered: e 1 < . . . < e n . A Gröbner basis of F is a basis (r 1 , . . . , r t ) of F such that:

. for any j there is some i j such that r j ∈ e i j + Span(e i ; i < i j ).

. e i j ∈ supp(r j ′ ) unless j = j ′ .

. if r = e l + i<l τ i e i ∈ F then e l = e i j for some j. With this definition, F has a unique Gröbner basis which has a natural total order: r 1 < . . . < r t if we assume that i 1 < . . . < i t . Moreover, r 1 , . . . , r t are minimal elements of F . This last property implies in particular that e i ≡ F e j if and only if there exists a sequence of integers m 1 , . . . , m p such that e i ∈ supp(r m 1 ), e j ∈ supp(r mp ) and supp(r m j ) ∩ supp(r m j+1 ) = ∅ for each j. Notice that our definition of Gröbner basis is slightly different from the classical one (see e.g. [START_REF] Adams | An introduction to Gröbner bases[END_REF]) since we do not use any multiplicative structure. Moreover, our definition is linked with the notion of reduced echelon form matrix (see [14, p. 65]). We may also point out that a study of Gröbner bases in path algebras of quivers has been made in [START_REF] Farkas | Synergy in the theories of Gröebner bases and path algebras[END_REF]. We end this paragraph with a reminder on the exponential and on the logarithm of an endomorphism. If u : E → E is a nilpotent endomorphism, we define the exponential of u to be exp(u

) = l 0 1 l! u l . Thus, exp(u) : E → E is a well defined linear isomor- phism such that exp(u) -Id is nilpotent. If v : E → E is an isomorphism such that v -Id is nilpotent, we define the logarithm of v to be log(v) = l 0 (-1) l+1 1 l (v -Id) l . Recall that if u : E → E is a nilpotent endomorphism, then log(exp(u)) = u.

Proof of Theorem 1

In this section we provide the proof of Theorem 1 (see also [START_REF] Meur | The fundamental group of a triangular algebra without double bypasses[END_REF]Thm 1.1]). We fix A a basic connected finite dimensional k-algebra with quiver Q. Throughout this section we will assume that Q has no oriented cycle. The proof of Theorem 1 decomposes into 4 steps as follows, and we will devote a subsection to each step: a) If kQ/I and kQ/J are isomorphic to A as k-algebras, then there exists ϕ : kQ ∼ -→ kQ a product of transvections and of a dilatation such that ϕ

(I) = J. b) If ϕ(I) = J and if ϕ is a dilatation then π 1 (Q, I) ≃ π 1 (Q, J).
If ϕ is a transvection, then there exists a surjective group morphism π 1 (Q, I) → π 1 (Q, J) or π 1 (Q, J) → π 1 (Q, I), induced by the identity map on the walks in Q.

c) The homotopy relations ∼ I of the admissible presentations kQ/I of A can be displayed as the vertices of a quiver Γ such that for any arrow ∼ I →∼ J the identity map on walks induces a surjective group morphism

π 1 (Q, I) ։ π 1 (Q, J).
d) If k has characteristic zero and if Q has no double bypass, then the quiver Γ has a unique source. Moreover, if ∼ I 0 is the source of Γ then I 0 fits Theorem 1.

Different presentations of an algebra are linked by products of transvections and dilatations

In order to consider A as a k-category we need to choose a decomposition of the unit into a sum of primitive orthogonal idempotents. The following proposition shows that this choice is unrelevant and that we may fix these idempotents once and for all. We will omit the proof which is basic linear algebra. Recall that GL n (k) is generated by transvection and dilatation matrices. The following proposition states an analogous result for the group of automorphisms of kQ extending the identity map on Q 0 . Proposition 2.2. Let G be the group of automorphisms of kQ extending the identity map on Q 0 . Let D ⊆ G be the subgroup of the dilatations of kQ and let T ⊆ G be the subgroup generated by the transvections. Then T is a normal subgroup and G = DT = T D.

Remark 1. The group of automorphisms of an algebra has already been studied. More precisely the reader can find in [START_REF] Guil-Asensio | The group of outer automorphisms and the Picard group of an algebra[END_REF], [START_REF] Strametz | The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra[END_REF] and [START_REF] Strametz | The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra[END_REF] a study of the group of outer automorphisms of an algebra.

Proof of Proposition 2.2: For any transvection ϕ = ϕ α,u,τ and any dilatation D we have DϕD -1 = ϕ α,u, τ λ µ where λ ∈ k * and µ ∈ k * are such that D(u) = λ u and D(α) = µ α. Hence, in order to prove the proposition, it is enough to prove that G = T D. If ψ ∈ G we shall write n(ψ) for the number of arrows α ∈ Q 1 such that ψ(α) ∈ k * α. Notice that n(ψ) = 0 if and only if ψ ∈ D. Let us prove by induction on n 0 that R n : "n(ψ) n ⇒ ψ ∈ T D" is true. Obviously R 0 is true. Let n 1, assume that R n-1 is true, and let ψ ∈ G such that n(ψ) = n. Hence, there exists

x α 1 -→ y ∈ Q 1 such that ψ(α 1 ) ∈ k * α 1 . Let α 1 , . . . , α d be the arrows x → y of Q and let E = Span(α 1 , . . . , α d ) ≃ y kQ + /(kQ + ) 2
x . Since kQ ψ -→ kQ is an automorphism, the composition f : E ֒→ y kQ x ψ -→ y kQ x ։ E of ψ with the natural inclusion and the natural projection is a k-linear isomorphism hence an element of GL d (k). Thus (see [15, Chap. XIII Prop. 9.1]) there exist transvections matrices f 1 , . . . , f l ∈ GL d (k) such that f 1 . . . f l f (α i ) ∈ k * α i for each i ∈ {1, . . . , d}. For each f j , let fj : kQ → kQ be the automorphism such that fj (α i ) = f j (α i ) for each i ∈ {1, . . . , d} and such that fj (β) = β for any arrow β not parallel to α 1 . In particular, fj is a transvection with respect to some α i j . Let g 1 = f1 . . . fl ∈ T . Then,

g 1 ψ(α i ) ∈ k * α i + (kQ + ) 2 and if β ∈ Q 1 is not parallel to α 1 and satisfies ψ(β) ∈ k * β then g 1 ψ(β) ∈ k * β. Let ψ 1 = g 1 ψ.
By construction, for each i ∈ {1, . . . , d}, we have ψ 1 (α i ) = λ i α i + n i j=1 τ i,j u i,j with u i,j paths of length at least 2. Let ϕ i,j be the transvection ϕ α i ,u i,j ,-τ i,j /λ i for each i ∈ {1, . . . , d} and each j ∈ {1, . . . , n i }, and let g 2 ∈ T be the product of the ϕ i,j 's (for any i ∈ {1, . . . , d} and any j ∈ {1, . . . , n i }). It is easy to check that the transvections ϕ i,j commute between each other so that the definition of g 2 is unambiguous. Since Q has no oriented cycle, we have g 2 ψ 1 (α i ) = λ i α i for each i, and

g 2 ψ 1 (β) ∈ k * β if β ∈ Q 1 is not parallel to α 1 and satisfies ψ 1 (β) ∈ k * β. In particular: n(g 2 g 1 ψ) < n(ψ) = n. Since R n-1 is true, g 2 g 1 ψ
lies in T D and so does ψ (recall g 1 , g 2 ∈ T ). Hence, R n is true. This achieves the proof of Proposition 2.2.

Remark 2. Proposition 2.1 and Proposition 2.2 imply that if I and J are admissible ideals of kQ such that kQ/I ≃ kQ/J as k-algebras, then there exist ϕ 1 , . . . , ϕ n (resp. ϕ ′ 1 , . . . , ϕ ′ m ) a sequence of transvections of kQ, together with D a dilatation such that

J = Dϕ n . . . ϕ 1 (I) (resp. J = ϕ ′ m . . . ϕ ′ 1 D(I)).

Comparison of the fundamental group of two presentations of an algebra linked by a transvection or a dilatation

If I is an ideal and ϕ is a dilatation or a transvection, then I and ϕ(I) are similar enough in order to compare the associated homotopy relations. Before stating this comparison we prove two useful lemmas. We fix I an admissible ideal of kQ, we fix ϕ = ϕ α,u,τ a transvection (τ = 0) and we set J = ϕ(I). 

(r) = C λ c θ c + B λ b v b αu b + B λ b τ v b uu b ∈ y J x \{0}. Thus there exists a minimal relation r ′ ∈ y J x with normal form r ′ = C ′ λ c θ c + B ′ 1 λ b v b αu b + B ′ λ b τ v b uu b such that ∅ = B ′ 1 ⊆ B, C ′ ⊆ C and B ′ ⊆ B. Hence ϕ -1 (r ′ ) has a normal form ϕ -1 (r ′ ) = C ′ λ c θ c + B ′ 1 λ b v b αu b + B ′ \B ′ 1 λ b τ v b uu b -B ′ 1 \B ′ λ b τ v b uu b ∈ y I x \{0}. Since r ∈ y I x is
(r i ) ∩ supp(r j ) = ∅ if i = j. If B = ∅ then ϕ(r) = r ∈ y J
x is a minimal relation and the lemma is proved. Hence we may assume that B = ∅. This implies that for any i ∈ {1, . . . , n} there exists b

∈ B such that v b αu b ∈ supp(r i ) or v b uu b ∈ supp(r i ) (if this is not the case then r i = C ′ λ c θ c for some non empty subset C ′ of C, thus ϕ -1 (r i ) = C ′ λ c θ c ∈ y I
x which contradicts the minimality of r). Let ≡ be the smallest equivalence relation on the set {1, . . . , n} such that: i ≡ j if there exists b ∈ B such that v b αu b ∈ supp(r i ) and v b uu b ∈ supp(r j ). Since the r i 's are minimal relations of J and since α ∼ J u, we get: if i ≡ j then v ∼ J w for any v, w ∈ supp(r i ) ⊔ supp(r j ). Let O ⊆ {1, . . . , n} be a ≡-orbit and let

r ′ = i∈O r i ∈ y J x . Hence r ′ = C ′ λ c θ c + B ′ λ b v b αu b + (µ b + τ λ b ) v b uu b where C ′ ⊆ C and ∅ = B ′ ⊆ B. This implies that ϕ -1 (r ′ ) = C ′ λ c θ c + B ′ λ b v b αu b + µ b v b uu b ∈ y I x and the minimality of r yields C ′ = C, B ′ = B, r ′ = ϕ(r)
and O = {1, . . . , n}. Hence {1, . . . , n} is an ≡-orbit. Therefore v ∼ J w for any v, w ∈ supp(ϕ(r)). And since α ∼ J u we infer that v ∼ J w for any v, w ∈ supp(r).

We can state the announced comparison now. For short, the word generated stands for: generated as an equivalence relation compatible with the concatenation of walks and such that α -1 α ∼ I e x , αα -1 ∼ I e y for any arrow x α -→ y. 

= C λ c θ c + B λ b v b αu b + B ′ λ b τ v b uu b . Thus ϕ(r) -r 1 = B\B ′ τ λ b v b uu b ∈ J
can be written as a sum r 2 + . . . + r nr of minimal relations of J with pairwise disjoint supports. In particular, ϕ(r) = r 1 + . . . + r nr where each r i ∈ J is a minimal relation. Notice that any two paths appearing in r 1 are ≡-equivalent because of the normal form of r 1 and because of the definition of ≡. With these notations, the set {r i | r ∈ M in(I) and 1 i n r } is made of minimal relations of J and generates the ideal J. Thus, in order to show that ∼ J and ≡ coincide, it is enough to show that any two paths appearing in some r i are ≡-equivalent. Let r ∈ M in(I), let i ∈ {1, . . . , n r }, and let v, w ∈ supp(r i ). We have already proved that if i = 1 then v ≡ w, thus we may assume that i 2. Keeping the above notations for the normal form of r, there exist b, b ′ ∈ B such that v = v b uu b and w = v b ′ uu b ′ . Since α ≡ u and since any two paths appearing in r 1 are ≡-equivalent

we get v = v b uu b ≡ v b αu b ≡ v b ′ αu b ′ ≡ v b ′ uu b ′ = w.
Hence any two paths appearing in some r i are ≡-equivalent. This implies that ∼ J and ≡ coincide. Therefore, ∼ J is generated by ∼ I and α ∼ J u. c) Let r ∈ I be a minimal relation of I and apply Lemma 2.3 to r. Since α ∼ J u, we infer that r ∈ J. Since I is generated by its minimal relations we get I ⊆ J. Finally, I = J because I and J have the same dimension.

Remark 4. In the situation b) of Proposition 2.5, the identity map on the walks of Q induces a surjective group morphism π 1 (Q, I) ։ π 1 (Q, J). Proposition 2.5 allows us to prove the following result which has already been proved in [START_REF] Bardzell | H 1 and representation of finite dimensional algebras[END_REF]. Recall that the algebra kQ/I, where I is admissible, is called constricted if dim y (kQ/I) x = 1 for any arrow x → y of Q. Proposition 2.6 (see also [START_REF] Bardzell | H 1 and representation of finite dimensional algebras[END_REF]). Assume that A is constricted. Then different admissible presentations of A yield the same homotopy relation. In particular, they have isomorphic fundamental groups.

Proof: Let kQ/I ≃ A be any admissible presentation. If (α, u) is a bypass in Q then u ∈ I because A is constricted and I is admissible. In particular, for any τ ∈ k and any r ∈ kQ we have: ϕ α,u,τ (r)r belongs to the ideal of kQ generated by u ∈ I and therefore ϕ α,u,τ (r)r ∈ I. This shows that ϕ(I) ⊆ I and that ϕ(I) = I (I is finite dimensional because Q has no oriented cycle) for any transvection ϕ. Let kQ/J ≃ A be another admissible presentation. From Remark 2 we know that there exist a dilatation D and transvections ϕ 1 , . . . , ϕ n such that J = Dϕ n . . . ϕ 1 (I). We deduce from what we have proved above that ϕ n . . . ϕ 1 (I) = I. Hence, J = D(I). Proposition 2.5 implies that ∼ I and ∼ J coincide. Therefore, π 1 (Q, I) and π 1 (Q, J) are isomorphic.

If ∼ and ∼ ′ are homotopy relations, we will say that ∼ ′ is a direct successor (see also [START_REF] Meur | The fundamental group of a triangular algebra without double bypasses[END_REF]Sect. 3]) of ∼ if there exist admissible ideals I and J of kQ, together with a transvection ϕ = ϕ α,u,τ such that ∼=∼ I , ∼ ′ =∼ J , J = ϕ(I), α ∼ I u and α ∼ J u. Notice that I, J, ϕ need not be unique.

The quiver Γ of the homotopy relations of the presentations of the algebra

Definition 2.7. [16, 4.1] We define the quiver Γ as follows: . Γ 0 is the set of homotopy relations of the admissible presentations of A:

Γ 0 = { ∼ I | I is admissible and kQ/I ≃ A} . there is an arrow ∼→∼ ′ if and only if ∼ ′ is a direct successor of ∼. Example 2. Assume that A = kQ/I where Q is c 1 1 c c c c c c c a G G b c c d G G
and I =< da >. Let J =< dadcb >. Using Proposition 2.5 one can show that Γ is equal to: ∼ I G G ∼ J . Notice that the identity map on walks induces a surjective group morphism

Z ≃ π 1 (Q, I) ։ π 1 (Q, J) ≃ 1.
The author thanks Mariano Suárez-Alvarez for the following remark: Remark 5. A homotopy relation is determined by its restriction to the paths in Q with length at most the radical length of A. Thus there are only finitely many homotopy relations. This argument shows that Γ is finite.

The following proposition states some additional properties of Γ and is a direct consequence of Remark 2 and Proposition 2.5.

Proposition 2.8. Assume that Q has no oriented cycle and let m be the number of bypasses in Q. Then Γ is connected and has no oriented cycle. Any vertex of Γ is the source of at most m arrows and any oriented path in Γ has length at most m. Remark 6. According to Remark 4, if there is a path in Γ with source ∼ I and target ∼ J , then the identity map on the walks in Q induces a surjective group morphism π 1 (Q, I) ։ π 1 (Q, J). Moreover, since Γ is finite, any vertex of Γ is the target of a (finite) path whose source is a source of Γ (i.e. a vertex with no arrow ending at it). As a consequence, if Γ has a unique source ∼ I 0 , then the fundamental group of any admissible presentation of A is a quotient of π 1 (Q, I 0 ).

The uniqueness of the source of Γ and the proof of Theorem 1

Notice that until now we have used neither the characteristic of k nor the possible non existence of a double bypass in Q. These hypotheses will be needed in order to prove the uniqueness of the source of Γ. The complete proof of the uniqueness of the source of Γ is somewhat technical. For this reason we deal with the technical considerations in the two lemmas that follow. Lemma 2.9. Let E be a finite dimensional k-vector space endowed with a totally ordered basis e 1 < . . . < e n . Assume that k has characteristic zero. Let ν : E → E be a linear map such that ν(e i ) ∈ Span(e j ; j < i) for any i ∈ {1, . . . , n}, and let I and J be two subspaces of E such that the following conditions are satisfied: a) ψ(I) = J where ψ : E → E is equal to exp(ν). b) if e i ∈ supp(ν(e j )) then e i ≡ I e j and e i ≡ J e j . Then I and J have the same Gröbner basis and I = J.

Proof: Let us prove Lemma 2.9 by induction on n. If n = 1 the equality is obvious so let us assume that n > 1 and that the conclusion of Lemma 2.9 holds for dimensions less than n. We will denote by r 1 < . . . < r p (resp. r ′ 1 < . . . < r ′ p ) the Gröbner basis of I (resp. of J) and we will write i 1 , . . . , i p (resp. i ′ 1 , . . . , i ′ p ) for the integers such that r j ∈ e i j + Span(e i ; i < i j ) (resp. r ′ j ∈ e i ′ j + Span(e i ; i < i ′ j )). In order to prove that I = J we will prove the four following facts: a) the two sequences i 1 < . . . < i p and i

′ 1 < . . . < i ′ p coincide, b) ψ(r 1 ) = r ′ 1 , c) r 1 = r ′
1 and ν(r 1 ) = 0 (using the induction hypothesis on E/k.e 1 ), d) r 2 = r ′ 2 , . . . , r p = r ′ p (using the induction hypothesis on E/k.r 1 ).

a) For simplicity let us set E i = Span(e j ; j i). Since ν(e j ) ∈ E j-1 and r j ∈ e i j +E i j -1 , and since ψ = exp(ν), we get ψ(r j ) ∈ J ∩ e i j + E i j -1 for any j. Hence, the definition of the Gröbner basis of J forces {i 1 , . . . , i p } ⊆ {i ′ 1 , . . . , i ′ p } and the cardinality and the ordering on these two sets imply that i

1 = i ′ 1 , . . . , i p = i ′ p b) Since i 1 = i ′ 1 we infer that ψ(r 1 )-r ′ 1 ∈ J ∩E i 1 -1 .
Then, the definition of the Gröbner basis of J forces ψ(r 1 )r ′ 1 = 0. c) Let us prove that r 1 = r ′ 1 . Notice that the definition of a Gröbner basis and the equalities ψ(r 1 ) = r ′ 1 and ψ(e 1 ) = e 1 force: e 1 ∈ I ⇔ r 1 = e 1 ⇔ r ′ 1 = e 1 ⇔ e 1 ∈ J. Hence we may assume that e 1 ∈ I and e 1 ∈ J. Let E = E/k.e 1 and let π : E ։ E be the natural projection. We will write x for π(x). Similarly we set I = π(I) and J = π(J). In particular E has a totally ordered basis: e 2 < . . . < e n . Since ν(e 1 ) = 0 and since ψ(e 1 ) = e 1 , the mappings ν and ψ induce linear mappings ν, ψ : E → E. It follows from the properties of ν and ψ that ψ( I) = J, that ν( e i ) ∈ Span( e j ; 2 j < i) for any i 2, that ψ = exp( ν), and that supp( ν( e i )) = { e j | j

2 and e j ∈ supp(ν(e i ))} for any i 2. Moreover, with the definition of the Gröbner basis of I we get: . r j ∈ e i j + Span( e i ; i < i j ) for any j (recall that e 1 ∈ I),

. supp( r j ) = { e i | i 2 and e i ∈ supp(r j )} for any j.

Therefore r 1 < . . . < r p is the Gröbner basis of I and: e i ≡ I e j ⇒ e i ≡ I e j . Similarly r ′ 1 < . . . < r ′ p is the Gröbner basis of J and: e i ≡ J e j ⇒ e i ≡ J e j . Using the above description of supp( ν( e i )) together with the above link between ≡ I (resp. ≡ J ) and ≡ I (resp. ≡ J ) we infer that: e i ≡ I e j and e i ≡ J e j as soon as e j ∈ supp( ν( e i ))

For this reason we may apply the induction hypothesis to E, I and J. Hence I and J have the same Gröbner basis and r 1 = r ′ 1 i.e. r ′ 1 = r 1 + λ e 1 with λ ∈ k. Therefore (ψ-Id)(r 1 ) = λ e 1 , and since ψ(e 1 ) = e 1 we get ν(r 1 ) = log(ψ)(r 1 ) = λ e 1 . Assume that λ = 0 i.e. e 1 ∈ supp(ν(r 1 )). Thus there exists e i ∈ supp(r 1 ) such that e 1 ∈ supp(ν(e i )). This implies that e 1 ≡ I e i , and since any two elements in supp(r 1 ) are ≡ I -equivalent, this forces e 1 ∈ supp(r 1 ). Hence e i , e 1 ∈ supp(r ′ 1 ) = supp(r 1 ) ⊔ {e 1 } and therefore e i ≡ J e 1 . This contradicts e 1 ∈ supp(ν(e i )) and shows that λ = 0, that r 1 = r ′ 1 and that ν(r 1 ) = 0. of arrows α ∈ Q 1 appearing in u and such that ϕ(α) = α. Hence, for any α ∈ Q 1 , we have W (α) = 0 if ϕ(α) = α and W (α) = 1 if ϕ(α) = α. The total order < is then defined as follows:

u < v ⇔    W (u) < W (v) or W (u) = W (v) and u ≺ v
This yields: e 1 < . . . < e n a totally ordered basis of E made of the paths in Q. Notice that with this basis, the equivalence relations ≡ I and ∼ I (resp. ≡ J and ∼ J ) satisfy the following property: e i ≡ I e j ⇒ e i ∼ I e j (resp. e i ≡ J e j ⇒ e i ∼ J e j ). Let ν : kQ → kQ be the derivation (i.e. the k-linear map such that ν(vu) = ν(v)u + vν(u) for any u and v) such that ν(e x ) = 0 for any x ∈ Q 0 and ν(α) = ϕ(α)α for any arrow α ∈ Q 1 . Thus, for any path u and any v ∈ supp(ν(u)) there exist an arrow α ∈ Q 1 together with paths u 1 , u 2 , u 3 such that u = u 3 αu 1 , v = u 3 u 2 u 1 and u 2 ∈ supp(ν(α)). Notice that with the assumptions made on ϕ, this implies that e i ≡ I e j and e i ≡ J e j as soon as e j ∈ supp(ν(e i )). Moreover, for any α ∈ Q 1 and any u ∈ supp(ν(α)) we have W (u) = 0, hence ν • ν(α) = 0. Since ν : kQ → kQ is a derivation, we infer that: e j ∈ supp(ν(e i )) ⇒ W (e j ) < W (e i ) ⇒ e j < e i . Hence ν(e i ) ∈ Span(e j ; j < i) for any i. In order to apply Lemma 2.9, it only remains to prove that J = exp(ν)(I). To do this it suffices to prove that ϕ = exp(ν). Since ν is a derivation, exp(ν) : kQ → kQ is an automorphism such that exp(ν)(e x ) = e x for any

x ∈ Q 0 (recall that ν(e x ) = 0). Moreover, if α ∈ Q 1 then ν 2 (α) = 0 and ν(α) = ϕ(α) -α, therefore exp(ν)(α) = ϕ(α).
Hence ϕ and exp(ν) are automorphisms of kQ and they coincide on Q 0 ∪ Q 1 . This implies that ϕ = exp(ν). Hence, the data E, I, J, ν together with the ordered basis e 1 < . . . < e n satisfy the hypotheses of Lemma 2.9 which implies that I = J.

The uniqueness of the source of Γ is given by the following result.

Proposition 2.11. [16, 4.3] Assume that A satisfies the hypotheses made before stating Theorem 1, then Γ has a unique source.

Proof: Notice that any two transvections of kQ commute since Q has no double bypass. Let ∼ and ∼ ′ be sources of Γ. Let I and J be admissible ideals of kQ such that kQ/I ≃ A ≃ kQ/J and such that ∼=∼ I and ∼ ′ =∼ J . According to Remark 2 there exist a sequence of transvections ϕ 1 = ϕ α 1 ,u 1 ,τ 1 , . . . , ϕ n = ϕ αn,un,τn of kQ and a dilatation D such that J = ϕ n . . . ϕ 1 D(I). Thanks to Proposition 2.5 we know that ∼ I =∼ D(I) . Thus, in order to prove that ∼=∼ ′ , we may assume that D = Id kQ and J = ϕ n . . . ϕ 1 (I). Moreover we may assume that n is the smallest non negative integer such that there exist I, J and a sequence of transvections ϕ 1 , . . . , ϕ n satisfying ∼=∼ I , ∼ ′ =∼ J and J = ϕ n . . . ϕ 1 (I). Let us prove that α i ∼ I u i for any i ∈ {1, . . . , n}. If i is such that α i ∼ I u i then Proposition 2.5 implies that ∼ I =∼ ϕ i (I) since ∼ I is a source of Γ. Hence ∼=∼ ϕ i (I) , ∼ ′ =∼ J and J = ϕ n . . . ϕ i+1 ϕ i-1 . . . ϕ 1 (ϕ i (I)) which contradicts the minimality of n. Thus α i ∼ I u i for any i and the same arguments apply to J since I = ϕ -1 1 . . . ϕ -1 n (J) and since ∼ J is a source of Γ. Hence α i ∼ J u i for any i. This shows that the data I, J, ϕ n . . . ϕ 1 satisfy the hypotheses of Lemma 2.10. We infer that I = J and that ∼=∼ ′ . This shows that Γ has a unique source. Proposition 2.11 and Remark 6 prove Theorem 1: Theorem 1. (see also [START_REF] Meur | The fundamental group of a triangular algebra without double bypasses[END_REF]Thm 1.1]) Let A be a basic connected finite dimensional algebra over a field k of characteristic zero. If the quiver Q of A has no double bypass, then there exists a presentation kQ/I 0 ≃ A with quiver and admissible relations such that for any other admissible presentation kQ/I ≃ A, the identity map on walks induces a surjective group morphism π 1 (Q, I 0 ) ։ π 1 (Q, I).

The following example shows that one cannot remove the hypothesis on the characteristic of k in Proposition 2.11: Example 3. Let Q be the following quiver without double bypass:

c 1 1 c c c c c c c f 1 1 c c c c c c c b c c a G G e c c d G G
Set u = cb and v = f e. Set A = kQ/I 0 where I 0 =< da + vu, va + du >. Then π 1 (Q, I 1 ) = Z/2. Let I 1 and I 2 be the ideals defined below:

• I 1 = ϕ a,u,1 (I 0 ) =< da + du + vu, va + du + vu >,

• I 2 = ϕ a,u,-1 • ϕ d,v,-1 (I 0 ) =< da, va + du -2vu >. Hence A ≃ kQ/I 1 ≃ kQ/I 2 . If car(k) = 0, then π 1 (Q, I 1 ) = π 1 (Q, I 2 ) = 1 and Γ is equal to ∼ I 0 G G ∼ I 1 . Suppose now that car(k) = 2. Then I 2 =< da, va + du >, π 1 (Q, I 0 ) ≃ Z/2, π 1 (Q, I 1 ) = 1, π 1 (Q, I 2 ) ≃ Z and Γ is equal to ∼ I 0 →∼ I 1 ←∼ I 2 .
Hence Γ has two sources. Notice that the identity map on walks induces a surjective group morphism π 1 (Q, I 2 ) ։ π 1 (Q, I 0 ). Notice also that one can build similar examples for any non zero value p of car(k) by taking for Q a sequence of p bypasses.

Preliminaries on covering functors

In this section we give some useful facts on covering functors. Lemma 3.1. Let p : E → B and q : E ′ → B be covering functors where E is connected. Let r, r ′ : E → E ′ be such that q • r = q • r ′ = p. If there exists x 0 ∈ E 0 such that r(x 0 ) = r ′ (x 0 ) then r = r ′ .

Proof: Since q is a covering functor, for any u ∈ y E x \{0} we have:

(r(x) = r ′ (x) or r(y) = r ′ (y)) ⇒ (r(u) = r ′ (u), r(x) = r ′ (x) and r(y) = r ′ (y)) (⋆) Assume that there exists x 0 ∈ E 0 such that r(x 0 ) = r ′ (x 0 ). Since E is connected, for any x ∈ E 0 there exists a sequence x 0 , . . . , x n = x of objects of E together with a non zero morphism between x i and x i+1 for any i. This implies (thanks to (⋆)) that r(x) = r ′ (x). Thus r and r ′ coincide on E 0 , and (⋆) implies r = r ′ .

The following proposition generalises the result [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF]Prop. 3.3]. Using Lemma 3.1 its proof is immediate. Proposition 3.2. Let F : E → B be a covering functor where E is connected. Then E is an Aut(F )-category. Moreover, F is a Galois covering if and only if Aut(F ) acts transitively on each F -1 (x). Finally, if F is Galois covering with group G, then G = Aut(F ). Proposition 3.3. Let p : E → B and q : F → E be functors where E is connected and set r = p • q : F → B. Then p, q, r are covering functors as soon as two of them are so.

Proof: Using basic linear algebra arguments, it is easy to verify the two following facts: if p and q (resp. q and r) are covering functors then so is r (resp. p). If p and r are covering functors, then q satisfies the condition b) in the definition of a covering functor. We only need to prove that q -1 (x) = ∅ for any x ∈ E 0 . The condition b) implies that q -1 (x) = ∅ ⇔ q -1 (y) = ∅ as soon as y E x = 0. Since E is connected and q -1 (q(x)) = ∅ for any x ∈ F 0 we deduce that q -1 (x) = ∅ for any x ∈ E 0 . Proposition 3.4. Let p : C → B (resp. q : C ′ → B) be a connected Galois covering with group G (resp. G ′ ) and assume there exists a commutative diagram of k-categories and k-linear functors where ϕ is an isomorphism extending the identity map on B 0 :

C r G G p C ′ q B ∼ ϕ G G B
Then there exists a unique mapping λ : G → G ′ such that r • g = λ(g) • r for any g ∈ G. Moreover λ is a surjective morphism of groups and r is a Galois covering with group Ker(λ).

Proof: Thanks to Proposition 3.3, r is a covering functor. Fix x0 ∈ C and set x 0 = p(x 0 ). For any g ∈ Aut(p) we have q(r(x 0 )) = x 0 = q(r(g(x 0 ))). Since q is Galois with group G ′ , there exists a unique λ(g) ∈ G ′ such that λ(g)(r(x 0 )) = r(g(x 0 )), and Lemma 3.

1 yields λ(g) • r = r • g. Hence: (∀g ∈ G) (∃!λ(g) ∈ G ′ ) λ(g) • r = r • g.
This last property shows the existence and the uniqueness of λ. It also shows that λ : G → G ′ is a group morphism and that Aut(r) = Ker(λ). Moreover, λ is surjective because of its definition and because p is Galois with group G. Finally, Proposition 3.2 shows that r is a Galois covering with group Ker(λ).

The universal cover of an algebra

In this section we will prove Theorem 2. Let Q be a connected quiver without oriented cycle and fix x 0 ∈ Q 0 for the computation of the groups π 1 (Q, I). If there is no ambiguity we shall write [w] for the homotopy class of a walk w. Lemma 4.1. Let I be an admissible ideal of kQ, let D be a dilatation of kQ and set J = D(I). Let λ : π 1 (Q, I) ∼ -→ π 1 (Q, J) be the isomorphism given by Proposition 2.5. Let p : ( Q, Ĩ) → (Q, I) (resp. q : ( Q, Ĵ ) → (Q, J)) be the universal Galois covering with group π 1 (Q, I) (resp. π 1 (Q, J)). Then there exists an isomorphism ψ :

k Q/ Ĩ ∼ -→ k Q/ Ĵ such that the following diagram commutes: k Q/ Ĩ ψ G G p k Q/ Ĵ
q kQ/I D G G kQ/J where D, p and q are induced by D, p and q respectively. Moreover, ψ satisfies: ψ • g = λ(g) • ψ for any g ∈ π 1 (Q, I).

Proof:

We have Q = Q since ∼ I and ∼ J coincide (see Proposition 2.5). Set D : k Q → k Q to be defined by: D(a, [w]) = (D(a), [w]) for any arrow (a, [w]) ∈ Q1 . By construction D is an automorphism of kQ and D( Ĩ) = Ĵ . Set ψ : k Q/ Ĩ ∼ -→ k Q/ Ĵ to be induced by D. Then it is easy to check all the announced properties. Lemma 4.2. Let I be an admissible ideal of kQ, let ϕ = ϕ α,u,τ be a transvection, set J = ϕ(I) and assume that α ∼ J u. Let λ : π 1 (Q, I) ։ π 1 (Q, J) be the surjection given by Proposition 2.5. Denote by p : ( Q, Ĩ) → (Q, I) (resp. by q : ( Q, Ĵ) → (Q, J)) the universal Galois covering with group π 1 (Q, I) (resp. π 1 (Q, J)). Then there exists a Galois covering ψ : k Q/ Ĩ ∼ -→ k Q/ Ĵ with group Ker(λ) and such that the following diagram commutes:

k Q/ Ĩ ψ G G p k Q/ Ĵ
q kQ/I φ G G kQ/J where φ, p and q are induced by ϕ, p and q respectively. Moreover, ψ satisfies: 

ψ • g = λ(g) • ψ for any g ∈ π 1 (Q, I). Proof: Let ϕ ′ : k Q → k Q be defined by: ϕ ′ ([w]) = [w] for any [w] ∈ Q0 , ϕ ′ (β, [w]) = (β, [w]) for any (β, [w]) ∈ Q1 such that β = α, and ϕ ′ (α, [w]) = (α, [w]) + τ (u, [w]) for any (α, [w]) ∈ Q1 . Then ϕ ′ is well defined since α ∼ J u. Moreover, ϕ • p(a) = q • ϕ ′ (a) for any a ∈ Q1 , and ϕ ′ ( Ĩ) ⊆ Ĵ. Let ψ : k Q/ Ĩ → k Q/ Ĵ be induced by ϕ ′ . Thus q • ψ = φ • p. Let g = [γ] ∈ π 1 (Q, I) and let [w] ∈ Q0 . Then ψ • g([w]) = ψ([wγ -1 ]) = [wγ -1 ] = λ(g)([w]) = λ(g) • ψ([w]). The Lemma 3.1 implies that ψ • g = λ(g) • ψ for any g ∈ π 1 (Q, I).
that R m-1 is true. Let J = ψ 1 . . . ψ m (I 0 ) where ψ i = ϕ a i ,v i ,t i . Assume first that there exists i 0 ∈ [m] such that a i 0 ∼ J v i 0 . Set J ′ = ψ 1 . . . ψ i 0 -1 ψ i 0 +1 . . . ψ m (I 0 ). Thanks to R m-1
, there exists a sequence ϕ 1 , . . . , ϕ n of transvections such that J ′ = ϕ n . . . ϕ 1 (I 0 ) and which satisfies the property b) of Lemma 4.3. The sequence ϕ 1 , . . . , ϕ n , ψ i 0 shows that R m is true when such an i 0 exists. Assume now that for any i ∈ [m] we have a i ∼ J v i . Let ϕ = ψ m . . . ψ 1 . Lemma 2.10, applied to the data I 0 , J, ϕ, shows that J = I 0 . Hence R m is true (with n = 0) in this situation as well. This achieves the proof of Lemma 4.3.

The following proposition shows how a Galois covering of locally bounded k-category is induced by a covering of quivers with relations. Notice that this proposition makes no assumption on the ordinary quiver of the involded k-categories (in particular, the quiver may have loops, oriented cycles, multiple arrows...). It generalises [17, -→ C and ψ : k Q/ Î ∼ -→ Ĉ and a covering of quiver with relations p : ( Q, Î) → (Q, I ′ ), such that ϕ restricts to the identity map Q 0 = C 0 → C 0 on C 0 and such that the following diagram is commutative:

k Q/ Î ψ G G p ĈF kQ/I ′ ϕ G G C
where p is induced by p. If Ĉ is connected, then p is Galois with group G.

Proof: Using [7, Thm 3.8] we may assume that C is G-graded, that C ′ = C♯G and that C ′ = C♯G F -→ C is the natural projection. Since Ĉ and C are locally bounded, [6, 3.3] implies that any morphism in RC is the sum of images (under F ) of morphisms in R Ĉ. Since the image under F of a morphism in Ĉ is a homogeneous morphism in C, we deduce that the ideals RC and R 2 C are homogeneous. Thus, for any x = y ∈ Q 0 there exist homogeneous elements y u

x , . . . , y u ( y nx) x of y RC x giving rise to a basis of y RC/R 2 C x . In particular, y n x is equal to the number of arrows x → y in Q. Let µ : kQ → C be defined as follows: µ(x) = x for any x ∈ Q 0 = C 0 , and µ induces a bijection between the set of arrows x → y of Q and { y u

x , . . . , y u ( y nx) x } for any x = y ∈ Q 0 . Set I ′ = Ker(µ). Hence I ′ is admissible and µ induces an isomorphism ϕ : kQ/I ′ ∼ -→ C. The following construction of p uses the ideas of Green in [START_REF] Green | Graphs with relations, coverings and group-graded algebras[END_REF]Sect. 3]. The k-category kQ is a Ggraded as follows: a path u in Q is homogeneous of degree the degree of µ(u). By using the G-grading on C, it is easy to check that I ′ is homogeneous and that ϕ : kQ/I ′ → C is homogeneous of degree 1 G . Let Q be the quiver as follows: Q0 = Q 0 × G, and the arrows (x, s) α -→ (y, t) in Q1 are exactly the arrows x α -→ y in Q 1 with degree t -1 s. Let p : Q → Q be defined by: p(x, s) = x and p((x, s) α -→ (y, t)) = α for any (x, s) ∈ Q0 and any (x, s) α -→ (y, t) ∈ Q1 . Let Î ⊆ Q be the admissible ideal p -1 (I ′ ) of k Q. According to [START_REF] Green | Graphs with relations, coverings and group-graded algebras[END_REF]Sect. 3], p is a covering, and if Q is connected then p is Galois with group G. In particular p : k Q/ Î → kQ/I ′ is a covering functor. Let ν : k Q → C ′ = C♯G be as follows: ν(x, s) = (ϕ(x), s) for any (x, s) ∈ Q0 , and if (x, s) α -→ (y, t) ∈ Q1 then ν(α) = µ(p(α)) ∈ ϕ(y) C t -1 s ϕ(x) = (ϕ(y),t) C ′ (ϕ(x),s) . Therefore F • ν = ϕ • p, and since ϕ is an isomorphism, we have Î = Ker(ν). Let ψ : k Q/ Î → C ′ be induced by ν. Hence ψ : Q0 → Ĉ0 is bijective, ψ is faithful and ϕ • p = F • ψ. Moreover ψ is full because p and F are covering functors. Thus, ψ is an isomorphism. Finally, if C ′ is connected then Q is connected and this implies that p is a Galois covering with group G.

Recall from [START_REF] Assem | On some classes of simply connected algebras[END_REF] that a triangular algebra is called simply connected if the fundamental group of any presentation of this algebra is trivial. A triangular algebra is simply connected if and only if it has no proper connected Galois covering, see [START_REF] Skowroński | Algebras of polynomial growth[END_REF]. The following corollary generalises this characterisation to non triangular algebras, it is a direct consequence of Proposition 4.4 where φi (resp. D) is induced by ϕ i (resp. D) and kQ (i) /I (i) pi -→ kQ/I i is induced by the universal Galois covering (Q (i) , I (i) ) p i -→ (Q, I i ) with group π 1 (Q, I i ). If we connect T 1 , . . . , T n , D ′ and D we get the announced commutative diagram. Finally the announced properties of F ′ are given by Proposition 3.4.

Remark 8. Using the universal property in Theorem 2 it is easily verified that if there exists a Galois covering C ′ → A such that C ′ is simply connected (i.e. the fundamental group of any presentation of C ′ is trivial), then C ′ ≃ k Q/ Ĩ0 .

One may wish to use the more general framework of Galois categories (see [START_REF] Grothendieck | Revêtements étales et groupe fondamental[END_REF]) in order to recover Theorem 1 and Theorem 2. Unfortunately this cannot be done in general because the category of covering functors with finite fibre of A may not be a Galois category as explained in the following example: Hence the natural mapping p : (Q ′ , I ′ ) → (Q, I) (x, σx → x) is a Galois covering with group G. Therefore, if we set A ′ = kQ ′ /I ′ , then p induces a Galois covering F : A ′ → A with group G. If u is a path in Q ′ (resp. in Q) we will write u (resp. u) for: umodI ′ ∈ A ′ (resp. for: u mod I ∈ A). Let us set F ′ : A ′ → A to be the Galois covering with group G as well and defined as follows:

f f f f f f f f f f f f f f f f f f f σ2 σc a a { { { { { { { { 2 c 2 2 f f f f f f f f f f f f f f f f f f f σ1 σb a a { { { { { { { {
. F ′ ( a) = F ′ ( σa) = a + cb, . F ′ ( x) = F ′ ( σx) = x for any x ∈ {b, c, d, e, f }.

Proposition 2 . 1 .

 21 [16, 3.1] Let I and J be admissible ideals of kQ. If kQ/I ≃ kQ/J as k-algebras then there exists ϕ : kQ ∼ -→ kQ an automorphism extending the identity map on Q 0 and such that ϕ(I) = J.

Lemma 2 . 3 .

 23 Assume that α ∼ I u and let r ∈ y I x be a minimal relation with normal form r = C λ c θ c + B λ b v b αu b such that α does not appear in the path θ c for any c ∈ C. Then there exists a minimal relation r ′ ∈ y J x with normal form r ′ = C λ c θ c + B λ b v b αu b + B ′ λ b τ v b uu b where B ′ ⊆ B. Proof: Let us assume that B = ∅ (if B = ∅, the conclusion is immediate). Since Q has no oriented cycle, the paths v b and u b do not contain α. Since r is a minimal relation of I and since α ∼ I u, we have θ c = v b uu b for any c ∈ C, b ∈ B. Therefore, ϕ(r) has a normal form ϕ

Lemma 2 . 4 .

 24 a minimal relation and since α ∼ I u we infer that there exists a minimal relation r ′′ ∈ y I x with normal form r ′′ = C ′′ λ c θ c + B ′′ λ b v b αu b such that C ′′ ⊆ C ′ ⊆ C and ∅ = B ′′ ⊆ B ′ 1 . This forces C ′′ = C and B ′′ = B because r ∈ y I x is a minimal relation. Thus C ′ = C and B ′ 1 = B. Hence we have a minimal relation r ′ ∈ y J x with normal form r ′ = C λ c θ c + B λ b v b αu b + B ′ λ b τ v b uu b as announced. Assume that α ∼ J u and let r ∈ y I x be a minimal relation. Then v ∼ J w for any v, w ∈ supp(r). Proof: We may write r = C λ c θ c + B λ b v b αu b + µ b v b uu b where: . λ c , λ b ∈ k * and µ b ∈ k for any c ∈ C and b ∈ B, . the paths θ c , v b αu b , v b ′ uu b ′ (c ∈ C, b, b ′ ∈ B) are pairwise distinct, . for any c ∈ C, the path θ c does not contain α. Hence ϕ(r) = C λ c θ c + B λ b v b αu b + (µ b + τ λ b ) v b uu b ∈ y J x and there exists a decomposition ϕ(r) = r 1 + . . . + r n where r i ∈ y J x is a minimal relation and supp

Proposition 2 . 5 .Remark 3 . 5 :

 2535 [16, 3.2] Let I be an admissible ideal of kQ, let ϕ be an automorphism of kQ and set J = ϕ(I). If ϕ is a dilatation, then ∼ I and ∼ J coincide. Assume now that ϕ = ϕ α,u,τ is a transvection. a) if α ∼ I u and α ∼ J u then ∼ I and ∼ J coincide. b) if α ∼ I u and α ∼ J u then ∼ J is generated by ∼ I and α ∼ J u. c) if α ∼ I u and α ∼ J u then I = J and ∼ I and ∼ J coincide. The following implication (symmetric to b)):if α ∼ I u and α ∼ J u then ∼ I is generated by ∼ J and α ∼ I u is also satisfied since ϕ -1 α,u,τ = ϕ α,u,-τProof of Proposition 2.If ϕ is a dilatation, then ∼ I and ∼ J coincide because for any r ∈ y kQ x we have supp(r) = supp(ϕ(r)) and because r is a minimal relation of I if and only if the same holds for ϕ(r) in J. Let us assume that ϕ = ϕ α,u,τ is a transvection. a) Lemma 2.4 applied to I, J, ϕ (resp. J, I, ϕ -1 = ϕ α,u,-τ ) shows that any two paths appearing in a same minimal relation of I (resp. J) are ∼ J -equivalent (resp. ∼ Iequivalent). Hence ∼ I and ∼ J coincide. b) Let ≡ be the equivalence relation generated by: (v ∼ I w ⇒ v ≡ w) and α ≡ u.Our aim is to show that ∼ J and ≡ coincide. Thanks to Lemma 2.4 we have: v ≡ w ⇒ v ∼ J w. Let M in(I) be the set of the minimal relations of I. For each r ∈ M in(I) let us fix a normal form r = C λ c θ c + B λ b v b αu b satisfying the hypotheses of Lemma 2.3. Hence there exists B ′ ⊆ B and a minimal relation r 1 of J with normal form r 1

  Finally, Proposition 3.4 gives: ψ is a Galois covering with group Ker(λ).

Lemma 4 . 3 .

 43 Let A be a basic and connected finite dimensional k-algebra with ordinary quiver Q. Assume that k has characteristic zero and that Q has no double bypass. Let ∼ I 0 be the unique source of Γ and ∼ I be a vertex of Γ. Then there exist a sequence ϕ 1 , . . . , ϕ n (ϕ i = ϕ α i ,u i ,τ i ) of transvections and a dilatation D such that:a) I = Dϕ n . . . ϕ 1 (I 0 ), b) if I i is the ideal ϕ i . . . ϕ 1 (I 0 ) then α i ∼ I i u i .Proof: We shall write [n] for the set {1, . . . , n}. Remark 2 implies that I = Dψ 1 . . . ψ m (I 0 ) where the ψ i 's are transvections and D is a dilatation. Set J = D -1 (I) = ψ 1 . . . ψ m (I 0 ). Thus we only need to prove that the conclusion of Lemma 4.3 holds for J. Let R m be the property: "If J is the image of I 0 by a product of m transvections, then there exists a sequence ϕ 1 , . . . , ϕ n of transvections such that J = ϕ n . . . ϕ 1 (I 0 ) and which satisfies the property b) of Lemma 4.3". Let us prove that R m is true by induction on m 0. Obviously R 0 is true, let m 1 and let us assume

  prop 3.4, 3.5]. The proof uses the ideas presented in [11, sect. 3]. Proposition 4.4. Let F : Ĉ → C be a Galois covering with group G where C and Ĉ are locally bounded. Then, there exist admissible presentations ϕ : kQ/I ′ ∼

Corollary 4 . 5 .

 45 Let A be a basic connected finite dimensional k-algebra. Then the following assertions are equivalent:. for any admissible presentation kQ/I ≃ A we have π 1 (Q, I) = 1, . A has no proper Galois covering C → A with C connected and locally bounded.

1 G

 1 mutative diagrams denoted by D ′ and T i respectively:kQ (n) /I (n) pn G G k Q/ Î p kQ (i-1) /I (i-1) pi-G kQ (i) /I (i) pi kQ/I n D G G kQ/I kQ/I i-1 φi G G kQ/I i

Example 4 . 5 andI 1 b

 451 Let A = kQ/I where Q is equal to =< da, dcb + f ea, f ecb >. Set G = Z/2 =< σ|σ 2 >. Let Q ′ be the quiver: || | | | | | | | | | | | | | | | | | a G G σ3 σe

I

  ′ =< σd a, d σa, dcb + σf σe a, σd σc σb + f e σa, f ecb, σf σe σc σb >
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d) Let us show that r 2 = r ′ 2 , . . . , r p = r ′ p . For this purpose we will apply the induction hypothesis to Ē = E/k.r 1 . Let q : E ։ Ē be the natural projection. We will write ēi (resp. Ī, J , rj , r′ j ) for q(e i ) (resp. q(I), q(J), q(r j ), q(r ′ j )). Hence Ē has a totally ordered basis: ē1 < . . . < ēi 1 -1 < ēi 1 +1 < . . . < ēn . Since ν(r 1 ) = 0 and since ψ(r 1 ) = r 1 , the mappings ν and ψ induce linear mappings ν, ψ : Ē → Ē. These mappings obviously satisfy ψ( Ī) = J, ν(ē i ) ∈ Span(ē j ; j = i 1 and j < i) for any i = i 1 , and ψ = exp(ν). Moreover, our choice for the basis of Ē and the definition of the Gröbner basis of I imply that:

. supp(r j ) = {ē i | e i ∈ supp(r j )} for any j 2, . r2 < . . . < rp is the Gröbner basis of Ī.

These two properties imply in particular that: ēi ≡Ī ēj ⇒ e i ≡ I e j for any i, j = i 1 . The corresponding properties hold for J (replace r j by r ′ j , I by J and Ī by J). Thus, in order to apply the induction hypothesis to Ē it only remains to prove that: ēj ∈ supp(ν(ē i )) ⇒ ēi ≡Ī ēj and ēi ≡ J ēj for any i, j = i 1 . Assume that i, j = i 1 satisfy ēj ∈ supp(ν(ē i )). From the definition of Ē and ν we know that:

. supp(ν(ē

Let us distinguish the cases e j ∈ supp(ν(e i )) and e j ∈ supp(ν(e i )):

• if e j ∈ supp(ν(e i )) then e i ≡ I e j and e i ≡ J e j and the above comparison between ≡ I (resp. ≡ J ) and ≡Ī (resp. ≡ J ) yields ēi ≡Ī ēj and ēi ≡ J ēj .

• if e j ∈ supp(ν(e i )) then necessarily e i 1 ∈ supp(ν(e i )) and e j ∈ supp(r 1 ). Since r 1 = r ′ 1 , the property e j ∈ supp(r 1 ) implies that e j ≡ I e i 1 and e j ≡ J e i 1 . On the other hand, the property e i 1 ∈ supp(ν(e i )) implies that e i 1 ≡ I e i and e i 1 ≡ J e i . Therefore e j ≡ I e i and e j ≡ J e i and finally ēj ≡Ī ēi and ēj ≡ J ēi . Thus all the conditions of Lemma 2.9 are satisfied for Ē, Ī, J, ν. For this reason we can apply the induction hypothesis which gives: Ī and J have the same Gröbner basis. We infer that q(r i ) = q(r ′ i ) for each i = 2, . . . , p. Hence for each i 2 there exists λ i ∈ k such that r i = r ′ i + λ i r 1 , and λ i is necessarily zero because e * i 1 (r i ) = e * i 1 (r ′ i ) = 0 (cf the definition of a Gröbner basis). Therefore r i = r ′ i for each i = 1, . . . , p and I = J as announced.

Lemma 2.10. Let ϕ : kQ → kQ be an automorphism extending the identity map on Q 0 . Let I be an admissible ideal of kQ and set J = ϕ(I). Suppose that k has characteristic zero. Suppose that for any arrow α there is a normal form ϕ(α) = α + i λ i u i where each u i satisfies: α ∼ I u i , α ∼ J u i and ϕ(a) = a for any arrow appearing in u i (in particular ϕ(u i ) = u i ). Then I and J coincide.

Proof: Let E be the vector space kQ = ⊕ x,y y kQ x . Hence E is finite dimensional since Q has no oriented cycle, and I and J can be considered as subspaces of E. In order to apply Lemma 2.9 to E, I, J, we need to exhibit a totally ordered basis of E together with a mapping ν : E → E. Let us take the family of paths in Q for the basis of E. The following construction of a total order < on this basis is taken from [START_REF] Farkas | Synergy in the theories of Gröebner bases and path algebras[END_REF]. Let us fix a total order on Q 0 ∪ Q 1 (which is finite) and let ≺ be the induced lexicographical order on the paths in Q (e x ≺ u if u is non trivial). If u is a path we let W (u) be the number Remark 7. Proposition 4.4 does not necessarily hold when F is a covering functor and not a Galois covering. As an example, set C = kQ where Q is equal to:

Then F is a covering functor. The group Aut(F ) is trivial therefore F is not Galois, and F cannot be induced by any covering of bound quivers. Notice that if F : C ′ → C is a covering functor and if the ordinary quiver of C has no bypass, then F is induced by a covering of bound quivers.

Theorem 2. Assume that A satisfies the hypotheses made before stating Theorem 1. Let ϕ 0 : kQ/I 0 ≃ A be an admissible presentation such that ∼ I 0 is the source of Γ. Let ( Q, Ĩ0 ) p 0 -→ (Q, I 0 ) be the universal Galois covering with group π 1 (Q, I 0 ) and let k Q/ Ĩ0 p0 -→ kQ/I be induced by p 0 . For any connected Galois covering F : C ′ → A with group G there exist an isomorphism kQ/I 0 ∼ -→ A equal to ϕ 0 on objects, a Galois covering F ′ : k Q/ Ĩ0 → C ′ with group N a normal subgroup of π 1 (Q, I 0 ) such that the following diagram commutes:

Moreover, there is an exact sequence of groups:

-→ A be a connected Galois covering with group G. Thanks to Proposition 4.4 we may assume that there exists a Galois covering (with group

be the universal Galois covering with group π 1 (Q, I). Thus (see [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF]) there exists a Galois covering ( Q, Î) r -→ (Q ′ , I ′ ) such that q • r = p. Hence we have a commutative diagram (denoted by D):

Since ∼ I 0 is the source of Γ, Lemma 4.3 implies that there exist both a sequence of transvections ϕ 1 = ϕ α 1 ,u 1 ,τ 1 , . . . , ϕ n = ϕ α b ,un,τn of kQ and a dilatation D such that I = Dϕ n . . . ϕ 1 (I 0 ) and such that α i ∼ I i u i if I i = ϕ i . . . ϕ 1 (I 0 ) for any i. Lemma 4.1 and Lemma 4.2 applied to D, I, I n and ϕ i , I i-1 , I i respectively yield the following com-

Assume that the category of the coverings of A with finite fibre is a Galois category. Hence this category admits finite products and the product of F with F ′ gives rise to a diagram:

a covering functor with fibre the product of the fibres of F and F ′ . Hence

x), (x, σx), (σx, x), (σx, σx)}. Moreover, Proposition 3.3 implies that p 1 and p 2 are covering functors as well. Let us compute the lifting u of a ∈ 3 A 1 w.r.t. F ′′ and with source (1, 1). Using the lifting property of p 1 and p 2 we get:

Notice that v 3 = 0 and v 2 = 0 since a = 0 and cb = 0. Therefore, the spaces (σ3,3) C (1,1) and (σ3,σ3) C (1,1) are non zero. Since p 1 is a covering functor, we infer that p 1 induces an inclusion (σ3,σ3)

This contradiction shows that the product of F with F ′ does not exist and that the category of coverings of A with finite fibre is not necessarily a Galois category.

We end this study with a final remark concerning monomial algebras. Recall that an algebra A is monomial if it admits a presentation kQ/I 0 ≃ A where I 0 is generated by a set of paths. In such a case, π 1 (Q, I 0 ) ≃ π 1 (Q) (the fundamental group of Q) and therefore the fundamental group of any other presentation of A is a quotient of π 1 (Q, I 0 ). Thus, Theorem 1 holds for A monomial without hypothesis on the characteristic of k or on the double bypasses in Q. Hence we can wonder if Theorem 2 holds for monomial algebras. This question will be studied in a subsequent text.