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The universal cover of an algebra without double
bypasses

Patrick Le Meur

Abstract

Let A be a finite dimensional connected algebra over a field k of characteristic zero.
We show that if the quiver of A has no double bypasses then the fundamental group
(as defined in [14]) of any presentation of A by quiver and relations is the quotient of
the fundamental group of a privileged presentation of A. We then show that the Galois
covering of A associated with this privileged presentation satisfies a universal property
with respect to the connected Galois coverings of A in a similar fashion to the universal
cover of a topological space.

Introduction

Let A be a finite dimensional algebra over a field k. In order to study left A-modules we
may assume that A is basic and connected, where basic means that A is the direct sum
of pairwise non isomorphic projective left A-modules. For such an algebra, the study
of the Galois coverings of A gives some information on the representation theory of A
(see [6], [10] and [14]) and is a particular case of the covering techniques introduced in
[5], [9] and [15]. Recall that in order to manipulate coverings of A we consider (and we
always will unless otherwise stated) A as a k-category with set of objects a complete set
{ei}i of primitive pairwise orthogonal idempotents and with morphisms space e; — e;
the vector space e;Ae;. The covering techniques have led to the definition (see [10]
and [14]) of a fundamental group associated with any presentation of A by quiver and
admissible relations, and which satisfies many topological flavoured properties (see [1],
[10] and [14]). This construction and its associated properties depend on the choice of
a presentation of A. In particular, one can find algebras for which there exist different
presentations giving rise to non isomorphic fundamental groups. In this text we com-
pare the fundamental groups of the presentations of A as defined in [14], and we study
the coverings of A with the following question in mind: does A have a universal Galois
covering? i.e. does A admit a Galois covering which is factorised by any other Galois
covering? This question has been successfully treated in the case A is representation
finite (see [5] and [9]). The present study will involve quivers “without double bypasses”.
In simple terms, a quiver without double bypasses is a quiver which has no distinct par-
1’ ..
allel arrows, no oriented cycles and has no subquiver of the following form .-- "y
where continued (resp. dotted) arrows represent arrows (resp. oriented paths) of the
quiver. Assuming that k is a characteristic zero field and that the ordinary quiver @) of
A has no double bypasses, we prove the following result announced in [13]:



Theorem 1. Assuming the above conditions, there exists a presentation kQ /Iy ~ A by
quiver and relations such that for any other presentation kQ/I ~ A, the identity map
on the walks of Q induces a surjective group morphism m(Q, Iy) — m(Q, ).

The proof of the above Theorem allows us to recover the following fact that was proven
in [4]: if A is a basic triangular connected and constricted finite dimensional k-algebra,
then different presentations of A give rise to isomorphic fundamental groups. Un-
der the hypotheses made before stating Theorem 1 and with the same notations, if

kQ/ I, fo, kQ/Iy is the Galois covering with group m (@, Iy) induced by the universal
Galois covering of (Q, Ip) (see [14]), we show the following result.

Theorem 2. For any connected Galois covering F: C' — A with group G there exist
an isomorphism kQ/Iy — A, a Galois covering p: kQ/Iy — C' with group a normal
subgroup N of m1(Q, Ip) and a commutative diagram:

k@/fo P c!

Fol lF
kQ/Ip — A
together with an exact sequence of groups: 1 — N — m1(Q,Ip) — G — 1

Hence the Theorem 2 partially answers the question concerning the existence of
a universal Galois covering. The text is organised as follows: in section 1 we define
the notions we will use, in section 2 we prove Theorem 1, in section 3 we give useful
results on covering functors, these results will be used in the proof of Theorem 2 to
which section 4 is devoted. The section 2 gives the proofs of all the results that have
been announced by the author in [13]. This text is part of the author’s thesis made at
Université Montpellier 2 under the supervision of Claude Cibils.

1 Basic definitions

k-categories, covering functors, Galois coverings
A k-category is a category C such that the objects class Cy of C is a non empty set and
each set ,C, of morphisms x — y of C is a k-vector space with k-bilinear composition.
Let C be a k-category. We will say that C is locally bounded if the following properties
are satisfied:

a) distinct objects are not isomorphic,

b) for each x € Cy, the k-algebra ,C, is local,

¢) @yec, yCx is finite dimensional for any x € Co,

d) ®gecy yCo is finite dimensional for any y € Cp.
Unless otherwise stated, all the k-categories we will introduce will be locally bounded.
As an example, let A be a basic finite dimensional k-algebra, where basic means that A is
the direct sum of pairwise non isomorphic projective left A-modules. If 1 =37 | e; is a
decomposition of the unit into a sum of pairwise orthogonal primitive idempotents, then
A = @; jejAe; and A is a locally bounded k-category with set of objects {e1,...,e,}
and with morphisms space e; — e; equal to e;Ae;. We will say that the k-category C
is connected if for any x,y € Cy there exists a sequence zg = «,...,z, =y in Cy such
that ;,Cz,., # 0 or 4,,,Cy; # 0 for any i. Recall that an ideal I of C is the data of
vector subspaces I, C ,C,; for each x,y € Cp, such that the composition of a morphism



in I with any morphism of C lies in I. The radical (see [5]) of C is the ideal RC of
C such that ,RC, is the set of non invertible morphisms z — y for any z,y € Cp. If
n > 2 we set R"C = (RC)". The ordinary quiver of C has set of vertices Cp, and for
z,y € Co the number of arrows z — y is exactly dimy ,RCy/,R?*C,. Finally, we say C is
triangular if @) has no oriented cycles. All functors are assumed to be k-linear functors
between k-categories.
A functor F': £ — B is called a covering functor (see [5]) if the following properties
are satisfied:

a) F~1(x) # 0 for any x € By,

b) for any xg,yo € C and any Zg, Jo € & such that F(&y) = xg and F(gg) = yo, the
following maps induced by F' are isomorphisms:

@ §€20 = yoBay and @ 30€e = yoBay -
F(g)=y F(&)=x

In particular, if u € 4 By,, the inverse images of u by these isomorphisms will be called
the lifting of u (w.r.t. F) with source (resp. target) o (resp. 9o). Recall that if B
is locally bounded then £ is locally bounded as well, recall also that if £ is connected
then so is B.

A G-category is a k-category C endowed with G — Aut(C) a group morphism. If
moreover the induced action of G on Cy is free, then C is called a free G-category.
The quotient category C/G of a free G-category C (see 6] for instance) has set of
objects Cy/G. For any «, f € Cy/G we set:

ﬁ(c/G)Ol = @ yC:c /G

TEa,YES

and the composition is induced by the composition in C. The natural projection
C — C/G is a covering functor. A Galois covering with group G is a functor
F: & — B with £ a free G-category and such that there exists a commutative diagram:

£
£/G = B
where £ — £ /G is the natural projection and the horizontal arrow is an isomorphism.
In particular a Galois covering is a covering functor. A connected Galois covering
is a Galois covering & — B where £ is connected.
A G-graded category is a k-category C such that each morphism space has a decom-
position ,C, = Bgeq ,C4 satisfying .Cj. ,Ch C .C9". The smash-product category
(see [6]) CHG has set of objects (CiG)o = Co x G, and (1) (CIG)(g,s) = yC};ls for
(z,s) and (y,t) in (C#G)p. The composition in C{G is induced by the composition in
C. The natural projection F': C4G — C, defined by F(z,s) = x and F(u) = u for
u € (y)(CiG)(z,5) © Ca, is a Galois covering with group G. It has been shown in [6]
that if p: £ — B is a Galois covering with group G, then B is a G-graded category and
there exists a commutative diagram:

£ = BiG




where B§G — B is the natural projection and ¢ is an isomorphism.

Quivers with admissible relations

Let @ be a locally finite quiver with set of vertices g, set of arrows @)1 and source
and target map s,t: Q1 — Qo respectively. Recall that locally finite means that s~ (z)
and t~!(x) are finite sets for any x € Qg. For simplicity we will write zF (resp. z7)
for the set s~!(z) (resp. t~!(z)). A (non trivial) oriented path in Q is a non empty
sequence uq,...,u, of arrows of @ such that s(u;y1) = t(u;) for any 1 < i < n — 1.
Such a path is written o, ...a, its source (resp. target) is s(aq) (resp. ¢(ay,)). For
each z € Qo we will write e, for the (trivial) path of length 0 and with source and
target equal to x. The path category kQ has set of objects Qg, the morphism space
ykQy is the vector space with basis the set of oriented paths in @ with source x and
target y (including e, in case x = y). The composition of morphisms in kQ is induced
by the concatenation of paths. Notice that kQ is a free k-category in the following

sense: for any k-category C, a functor kQ s uniquely determined by by the family
of morphisms {F(a) € p)Cr) | = %y € Q1}. We will denote by kQ% the ideal
of kQ generated by (1. Notice also that if Qg is finite then kQ is also a k-algebra,
kEQ = @y ykQy, with unit 1 = erQo ez, and kQT becomes an ideal of this k-algebra.
If r € 4kQ, we call support of r (denoted by supp(r)) the set of paths in @ which
appear in r with a non zero coefficient, and we call a normal form of r an equality of
the type » = >, A; u; such that A; € k* for any ¢ and where the paths u; are pairwise
distinct. An admissible ideal of kQ is an ideal I C kQ such that I C (kQ%)? and
such that for any = € Qg there exists n > 2 such that I contains all the paths with
length at least n and with source or target x. The couple (@, I) is then called a quiver
with admissible relations and the quotient category kQ/I is locally bounded. When
Qo is finite, an admissible ideal I of kQ is exactly an ideal I of the k-algebra kQ such
that (kQ1)" C I C (kQ*)? for some integer n > 2. Recall from [5] that if C is a locally
bounded k-category then there exists an admissible ideal I for the ordinary quiver @
of C and there exists an isomorphism kQ/I = C. Such an isomorphism is called a
presentation of C with quiver and (admissible) relations (or an admissible
presentation for short). Similarly, if A is a finite dimensional and basic k-algebra, an
admissible presentation of A is an isomorphism of k-algebras kQ/I = A where (Q,I)
is a bound quiver.

Transvections, dilatations

A bypass (see [3]) of kQ is a couple (a,u) where a € @1 and u # « is a path in @
parallel to « (this means that a and u share the same source and the same target).
A double bypass is a 4-tuple (o, u, 3,v) such that (o, u) and (8,v) are bypasses and
such that the arrow § appears in the path u. Notice that if o, are distinct parallel
arrows of @, then («, [, 3,«) is a double bypass. Notice also that if u = va is an
oriented cycle in @ with first arrow a, then (a,au,a,au) is a double bypass. Hence,
if @ has no double bypassses, then ) has no distinct parallel arrows and no oriented
cycles. If A is a basic k-algebra with quiver @), we will say for short that A has no
double bypasses if () has no double bypasses. A transvection is an automorphism
Yaur Of the k-category k@ where (a,u) is a bypass, 7 € k and ¢qa,4, - is given by
Paur() = a+7Tuand g, -(3) = B for any arrow 3 # o (this uniquely defines ¢q 4 -
since k@ is a free k-category). Notice that @ has no double bypasses if and only if any
two transvections commute. A dilatation is an automorphism D: kQ = kQ such that
D(a) € k*a for any arrow . Notice that the definition of transvections and dilatations



are analogous to the one of transvection and dilatation matrices (see [12, Chap. XIII, §
9] for instance). Recall that a dilatation matrix of Gl,, (k) is a diagonal invertible matrix
and a transvection matrix is a matrix with diagonal entries equal to 1 and which has at
most one non diagonal entry different from 0.

Fundamental group, coverings of quivers with relations

Let (@, I) be a quiver with admissible relations. For each arrow o € Q1 we will write o™
for its formal inverse with source (resp. target) s(a™!) = t(a) (resp. t(a™!) = s(a)). A
walk is an unoriented path in @), more precisely it is a formal product w, ... u; of arrows
and of formal inverse of arrows such that s(u;+1) = t(u;) forany 1 < i <n — 1. Let
r=tiui+...+tyu, € yI; where t; € k* and the u;’s are distinct paths. Then r is called
a minimal relation if n > 1 and if for any non empty proper subset E of {1,...,n}
we have ZieE tiu; € yI,. With this definition, any r € I can be written as the sum of
minimal relations with pairwise disjoint supports. Notice that in this definition we do
not ask that n > 2 as done usually (see [14]). This change is done for simplicity and
does not affect the constructions which follow. The homotopy relation of (Q,I) is
the smallest equivalence relation ~; on the set of walks (of @) which is compatible with
the concatenation of walks and such that:

1

Caat ~g ey and a"ta ~j e, for any arrow x N 1,

. U1 ~g ug for any minimal relation t1uq + ... 4+ tpuy,.
Notice that in order to compute ~j we may restrict ourselves to any set of minimal
relations generating the ideal I (see [7]). Assume @ is connected (i.e. @ is connected as
an unoriented graph) and let xg € Qp. The fundamental group (see [14]) 71(Q, I, x0)
of (@, 1) at zo is the set of ~j-classes of walks starting and ending at xo. The com-
position is induced by the concatenation of walks and the unit is the ~j-class of eg,.
Since different choices for xg give rise to isomorphic fundamental groups (since @ is
connected) we will write m1(Q, I) for short.

Example 1. (see [1]) Assume Q is the following quiver:

N

d
and set [ =< da > and J =< da—dcb >. Then kQ/I ~ kQ/J whereas m(Q, 1) ~ Z
and m(Q,J) = 0.

A covering (Q',I') & (Q, 1) of quivers with admissible relations (see [14]) is a quiver
morphism Q' & @ such that p(I') € I and such that:

a) p~(x) # 0 for any z € Qo,

b) ™ 2, p(x)* and 2~ 2, p(x)~ are bijective for any z € Qf,

c) for any minimal relation r € ,I, and for any 2’ € p~!(x) there exist ¥’ € p~1(y)
and r’ € /I, such that p(r') =r,

d) same statement as c) after interchanging  and y.
Recall that the automorphism group Aut(Q,I) of a bound quiver (Q,I) is the group
of automorphisms g: Q@ — Q of the quiver Q such that g(I) C I. Assume that
p: (Q,I') — (Q,I) is a covering, then the group of automorphisms Aut(p) of
p is defined by Aut(p) = {g € Aut(Q',I') | pog = p}. With this definition, if
p: (Q,I') — (Q,I) is a covering and if G is a subgroup of Aut(p), then p is called
a Galois covering with group G if Q and Q" are connected and if G acts transi-
tively on p~1(x) for any x € Qo. If p: (Q',I') — (Q,I) is a covering (resp. a Galois



covering with group G) then the induced functor kQ'/I’ 2, kQ/I is a covering functor
(resp. a Galois covering with group G). Let (@, ) be a connected quiver with admis-
sible relations and let g € @p. The universal cover of (Q,I) is a Galois covering
(Q,1) 5 (Q, 1) with group m(Q, I, z¢) defined in [14]. One can describe it as follows:
Qo is the set of ~j-classes [w] of walks w starting from zo. The arrows of Q are the
couples (o, [w]) where o € @ and [w] € Qq are such that s(a) = t(w). The source
(resp. target) of the arrow (o, [w]) is [w] (resp. [oaw]). The map Q & Q is defined by
p([w]) = t(w) and p(a, [w]) = a. The ideal I is equal to p~'(I). Finally, the action of
71(Q,I) on (Q,I) is the following: if g € m(Q,I) we may write g = [y] with 4 some
walk with source and target equal to z. Then for any [w] € Qo (resp. (a,[w]) € Q1)
we have g.[u] = [wy~1] (resp. g.(a []) = (@, [wy~1])).
Some linear algebra
We introduce here some notions that will be useful in the sequel and freely used without
reference. Let F be a finite dimensional k-vector space with a basis (eq,...,e,). We will
denote by (e],...,e),) the basis of E* dual of (e1,...,ey,) (i.e. €f(e;) =1 and €] (e;) =0
if j #4). If {ri}ser € ET is a family in E, then Span(ry ; t € T) will the denote the
subspace of E generated by this family. If » € E we will write supp(r) (the support of r)
for the set of those e/s appearing in r with a non zero coefficient. Therefore e; € supp(r)
is equivalent to ef(r) # 0. Let FF C E be a subspace. A non zero element r € F' is
called minimal if it cannot be written as the sum of two non zero elements of F' with
pairwise disjoint supports. We will denote by = the smallest equivalence relation on
{e1,... e} such that e; =p e; for any r € F' minimal and any e;,e; € supp(r). Like
in the situation of the homotopy relation of a bound quiver, the equivalence relation
= is determined by set of the supports of a generating family of F. Notice that if
FE is the vector space with basis the set of oriented paths in a finite quiver @ and if I
is an admissible ideal of k@), then for any paths u and v we have: © =7 v = u ~y v.
The converse is usually false as one can see in Example 1 where a ~; ¢b and a #; cb.
Assume now that the basis of E is totally ordered: e; < ... < e,. A Groebner basis
of F'is a basis (r1,...,7) of F such that:

. for any j there is some i; such that r; € e;; + Vect(e; ; i <1 ).

. e;; & supp(ry) unless j = j'.

Sifr=e + ), 7i e € F then ¢ = ¢;; for some j.
With this definition, F' has a unique Groebner basis which has a natural total order:

r1 < ... <ryif we assume that i; < ... <4, Moreover, if e;,e; € supp(r;) for some
[ then e; =y e;. This last property implies in particular that e; = e; if and only if
there exists a sequence of integers my, ..., m, such that e; € supp(rm,), e; € supp(rm,)

and supp(rm;) N supp(rm;,) # 0 for each j. Notice that our definition of the Groebner
basis is weaker than the usual one since we do not assume that E has a multiplicative
structure. For a general introduction to Groebner bases we refer the reader to [2|. Notice
also that a study of Groebner bases in path algebras of quivers has been made in [§].
We end this paragraph with a reminder on the exponential and on the logarithm of an
endomorphism. If u: ' — F is a nilpotent endomorphism, we define the exponential of
u to be exp(u) = 35 # ul. Thus, exp(u): E — E is a well defined linear isomorphism
such that exp(u) — Id is nilpotent. If v: £ — FE is an isomorphism such that v — Id is
nilpotent, we define the logarithm of v to be log(v) = Zlgo(_l)lﬂ% (v —Id)". Recall
that if u: £ — F is a nilpotent endomorphism, then log(exp(u)) = u.



2 Proof of Theorem 1

In this section we provide the proof of Theorem 1 (see also [13, thm 1.1]). We fix A a
finite dimensional basic and connected k-algebra with quiver Q). Until the end of the
section we will assume that ) has no oriented cycles. The proof of Theorem 1
decomposes into 4 steps as follows, and we will devote a subsection to each step:

a) If kQ/I and kQ/J are isomorphic to A as k-algebras, then there exists p: kQ ~
kQ a product of transvections and of a dilatation such that (1) = J.

b) If (1) = J and if  is a dilatation then w1 (Q, I) ~ m1(Q, J). If ¢ is a transvection,
then there exists a surjective group morphism m1(Q,I) — m(Q,J) or m(Q,J) —
m1(Q, I), induced by the identity map on the walks of Q.

c) The homotopy relations ~; of the admissible presentations kQ/I of A can be
displayed as the vertices of a quiver I such that for any arrow ~;—n~; the identity map
on walks induces a surjective group morphism 71(Q, 1) - m1(Q, J).

d) If k£ has characteristic zero and if @ has no double bypasses, then the quiver T’
has a unique source, and if ~; is the source of I' then I fits Theorem 1.

2.1 Different presentations of an algebra are linked by products of
transvections and dilatations

In order to consider A as a k-category we need to choose a decomposition of the unit
into a sum of pairwise orthogonal primitive idempotents. The following Proposition
shows that for the study the presentations of A, this choice is irrelevant and that we
may fix these idempotents once and for all. We will omit the proof which is basic linear
algebra.

Proposition 2.1. [13, 3.1] Let I and J be admissible ideals of kQ. If kQ/I ~ kQ/J
as k-algebras then there exists p: kQ = kQ an automorphism equal to the identity map

on Qo and such that o(I) = J.

Recall that GL, (k) is generated by transvections and dilatations matrices. The
following Proposition states an analogous result for the group of automorphisms of £Q
that are equal to the identity map on Q.

Proposition 2.2. Let G be the group of automorphisms of kQ that equal the identity
map on Qq. Let D C G be the subgroup of the dilatations of kQ and let T C G be the
subgroup generated by the transvections. Then T is a normal subgroup and G is the
semi-direct product T X D.

Remark 1. The group of automorphism of an algebra was already studied. More pre-
cisely the reader can find in [11], [17] and [18] a study of the group of outer automor-
phisms of an algebra.

Proof of Proposition 2.2: Obviously we have 7ND = 1. Moreover, for any transvec-
tion ¢ = @, and any dilatation D we have DpD™! = 0, > Where A € k* and
b} K n

w € k* are such that D(u) = A w and D(a) = p a. Hence, in order to prove the
Proposition, it is enough to prove that G = 7D. To do this, let us fix some notation:
for any ¥ € G we set n(¢) to be the number of arrows o € Q1 such that ¥ («) &€ k*a.
Notice that n(¢) = 0 if and only if ¢ € D. Let us prove by induction on n > 0 that
R, is true where R, ="if ©» € G and n(¢)) < n then there exists g € T such that

7



g € D”. Obviously Ry is true. Let n > 1, assume that R,_ is true, and let ¥ € G
such that n(y)) = n. Hence there exists © —% y € @ such that 1(a;) € k*ay. Let

aq,...,aq be the arrows © — y of @ and let F = Vect(ay,...,qaq). Since kQ ¥, kQ
is an automorphism, ¢ induces an automorphism of kQ*/(kQ*)? and the composition

fiE— ,kQ, ¥, ykQy — E of ¢ with the natural inclusion £ — ,kQ, (resp. the
natural projection ,kQ, — E) is a k-linear isomorphism hence an element of GLg4(k).
Recall (see [12, Chap. XIII Prop. 9.1]) that the group GL4(k) is generated by transvec-
tions and dilatations matrices. Thus there exist transvections f1, ..., fi of GL4(k) such
that f1... fif(c;) € k*a; for each i € {1,...,d}. For each fj, let f;: kQ — kQ be the
automorphism such that fj(o;) = fj(;) for each i € {1,...,d} and such that f;(3) = 3
for any arrow [ not parallel to ay. In particular, f] is a transvection with respect to
some ay;. Let g1 = fi... fq, then g1p(a;) € k¥ + (kQT)?, and if B € Q1 is not parallel
to oy and satisfies ¥(03) € k*3 then g1¢(8) € k*3. Let 11 = g19. By construction, for
each i € {1,...,d}, we have ¥y (o) = \; a; + Z?;l 7,7 wi; with u; ; paths of length
at least 2. Let ¢; ; be the transvection @q, 4, —7 /5, for each ¢ € {1,...,d} and each
Jj € {l,...,n;}, and let go € 7 be the product of the ¢;;’s (for any ¢ € {1,...,d}
and any j € {1,...,n;}). It is easy to check that the ¢;;’s are pairwise commuting
hence the definition of g9 is unambiguous. Since () has no oriented cycles, for each i we
have got1 (o) = Nj; and gop1(B) € k*B if B € Q1 is not parallel to ag and satisfies
P1(B) € k*B. In particular n(geg19) < n(y) = n. Since R,_; is true, there exists
g3 € T such that g3gog19 € D. Hence Ry, is true for any n > 0. This achieves the proof
of Proposition 2.2. O

Remark 2. Propositions 2.1 and 2.2 imply that if I and J are admissible ideals of kQ
such that kQ/I ~ kQ/J as k-algebras, then there exist ©1,...,¢n (resp. ©,...,¢h) a
sequence of transvections of kQ, together with D a dilatation such that J = Dy, ... p1(I)

(resp. J =l ... D(I)).

2.2 Comparison of the fundamental group of two presentations of an
algebra linked by a transvection or a dilatation

If I is an ideal and ¢ is a dilatation or a transvection, then I and ¢(I) are close enough
in order to compare the associated homotopy relations. Before stating this comparison
we prove two useful Lemmas.

Lemma 2.1. Let I be an admissible ideal of kQ, let ¢ = Yaur be a transvection
and set J = o(I). Assume that o o1 w and let v € ,I, be a minimal relation with
normal form r = Y~ X Oc + Y 5\ vpouy, such that o does not appear in the path
0. for any ¢ € C. Then there exists a minimal relation r' € ,J, with normal form
=30 A Oc+ D5 X vpoup + Y g AT vpuny, where B' C B.

Proof: Let us assume B # ) (if B = (), the conclusion is immediate). Since @ has no
oriented cycles, the paths v, and u, do not contain «. Since r is a minimal relation of
I and since « 1 u, we have 0. # vyuuy for any ¢ € C,b € B. Therefore, p(r) has a
normal form @(r) =Y~ Ae O+ Y g A vpouy + > 5 X7 vyuuy € J;\{0}. Thus there
exists a minimal relation r’ € ,J, with normal form r' =", . 0. + 231 Ap vpoup +
> AT vpuny such that § #£ B} € B, ¢/ C C and B’ C B. Hence ¢~ 1(r') has a normal
form 71 (') = Yo Ae b + ZBi Ay Upouy + ZB'\B’l T Vputy — ZBQ\B' N T vpuuy €
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y1:\{0}. Since r € ,I, is a minimal relation and since a o7 u we infer that there exists
a minimal relation 7 € ,I, with normal form r” = 3", Ac 0.+ > gv Ap vpauy such
that C” C ¢’ C C and () # B” C Bj. This forces C” = C and B"” = B because r € ,I,
is a minimal relation. Thus C’ = C and B} = B. Hence we have a minimal relation
"€ yJp with normal form 7" = 3" Ac 0.+ > 5 Ap vsaup+Y_ g ApT Vpuy, as announced.
O

Lemma 2.2. Let I be an admissible ideal of kQ, let ¢ = pq 7 be a transvection and
set J = (I). Assume that o ~j u and let r € I, be a minimal relation. Then v ~; w
for any v,w € supp(r).

Proof: We may write 7 =)~ e 0.+ D> 5 o Upaup + iy vpuuyp SO as:

AN €k*and pp € k for any c€ C and b € B,

. the paths 6., vyauy, vyuuy (c € C,b,b' € B) are pairwise distinct,

. for any ¢ € C, the path 6. does not contain «a.

Hence ¢(7) = > Ae O+ D5 Mo vsouy + (1p + 7X) vyuuy € 4J, and there exists a
decomposition ¢(r) = r1 + ...+ 1, where r; € yJ, is a minimal relation and supp(r;) N
supp(rj) = 0 if ¢ # j. If B = 0 then ¢(r) = r € ,J; is a minimal relation and
the Lemma is proved. Hence we may assume that B # (). This implies that for any
i € {1,...,n} there exists b € B such that vyauy € supp(r;) or vyuuy € supp(r;)
(if this is not the case then 7; = Y~ A¢ 6. for some non empty subset C’ of C, thus
o (r) = > v Acbe € I, which contradicts the minimality of r). Let = be the smallest
equivalence relation on the set {1,...,n} such that: i = j if there exists b € B such
that vyaw, € supp(r;) and vyuw, € supp(r;). Since the r;’s are minimal relations of J
and since a ~; u, we get: if ¢ = j then v ~; w for any v,w € supp(r;) U supp(r;).
Let O C {1,...,n} be a =-orbit and let ' =3, ,r; € 4J,. Hence 7’ =3 Ac 0.+
> A vpouy, + (pp + TAp) vpuu, where €' C C and ) # B’ C B. This implies that
") = Yo Ae Oc + X g A vpaup, + iy vpuuy, € I, and the minimality of r yields
C'=C,B =B, = ¢(r)and O = {1,...,n}. Hence {1,...,n} is an =-orbit.
Therefore v ~; w for any v,w € supp(¢(r)). And since a ~y u we infer that v ~; w
for any v, w € supp(r). O

We can now state the announced comparison. For the sake of simplicity, the word
generated for an equivalence relation on the set of walks in @) stands for: generated as
an equivalence relation which is compatible with the concatenation of walks and which
satisfies e, ~ o ‘o and ey ~ aa™! for any arrow x = y.

Proposition 2.3. [13, 3.2] Let I be an admissible ideal of kQ, let ¢ be an automorphism
of kQ and set J = p(I). If ¢ is a dilatation, then ~; and ~; coincide. Assume now
that © = Ya.ur 15 a transvection.

a) if a« ~ru and o ~j u then ~y and ~j coincide.

b) if a b1 uw and o ~j u then ~ is generated by ~; and o ~j u.

c)ifadruand agbyu then I =J and ~1 and ~j coincide.

Remark 3. The following implication (symmetric to b)):
if @ ~1 u and a %5 u then ~g is generated by ~; and o ~j u
s also satisfied since gp;}m = Qa,u,—r

Proof of Proposition 2.3: If ¢ is a dilatation, then ~; and ~; coincide because for
any r € ykQ, we have supp(r) = supp(¢(r)) and because r is a minimal relation of I



if and only if the same holds in J. Let us assume that ¢ = ¢q 4 7 is a transvection.

a) The Lemma 2.2 applied to I,J,¢ (resp. J,I,¢~' = ¢4 —r) shows that any two
paths appearing in a same minimal relation of I (resp. J) are ~ j-equivalent (resp.
~r-equivalent). Hence ~; and ~; coincide.

b) Let = be the equivalence relation generated by: (v ~;y w = v = w) and a = u. Our
aim is to show that ~; and = coincide. Thanks to Lemma 2.2 we have: v =w = v ~
w. Let Min(I) be the set of the minimal relations of I. For each r € Min(I) let us
fix a normal form r = Y~ A: 0. + Y5 X\ vpauy satisfying the hypotheses of Lemma
2.1. Hence there exists B’ C B and a minimal relation 7; of J with normal form
=Y A O+ 5 X v+ g AT vyuuy. Thus o(r) —ry = EB\B, Ty Vpuuy € J
can be written as a sum 79 + ...+ ry,, of minimal relations of J with pairwise disjoint
supports. In particular, ¢(r) =7y + ...+ r,,. where each r; € J is a minimal relation.
Notice that any two paths appearing in r; are =-equivalent because of the normal
form of r; and because of the definition of =. With these notations, the set {r; | r €
Min(I) and 1 < i < n,} is made of minimal relations of J and generates the ideal .J.
Thus, in order to show that ~; and = coincide, it is enough to show that any two paths
appearing in some r; are =-equivalent. Let r € Min(I), let i € {1,...,n,}, and let v, w
be two paths appearing in r;. We have already proved that if ¢ = 1 then v = w, thus
we may assume that ¢ > 2. Keeping the above notations for the normal form of r, there
exist b, b’ € B such that v = vyuuy, and w = vyuwuy. Since o = u and since any two paths
appearing in r; are =-equivalent we get v = vpuup = Vpaup = VyQUy = VpUlUy = W.
Hence any two paths appearing in some r; are =-equivalent. This implies that ~; and
= coincide. Therefore, ~; is generated by ~; and o ~; u.

c) Let r € I be a minimal relation of I and apply Lemma 2.1 to r. Since « ¢ u, we
infer that r € J. Since [ is generated by its minimal relations we get I C J. Finally,
I = J because I and J have the same dimension. O

Remark 4. In the situation b) of Proposition 2.3 the identity map on the walks of Q
induces a surjective group morphism 71 (Q,I) — m(Q, J).

The Proposition 2.3 allows us to prove the following result which has already been
proved in [4]. Recall that the algebra kQ /I, where I is admissible, is called constricted
if dim (kQ/I), =1 for any arrow  — y of Q.

Proposition 2.4 (see also [4]). Assume that A is constricted. Then different ad-
missible presentations of A yield the same homotopy relation. In particular, they have
isomorphic fundamental groups.

Proof: Notice that if v: kQ/J = A is any admissible presentation and if (a,u) is a
bypass in @) then u € J because A is constricted and J is admissible. Let us assume that
the conclusion of the Proposition 2.4 is false. From Remark 2 and Proposition 2.3 we
deduce that there exist two presentations kQ/I ~ A and kQ/J ~ A, and a transvection
@aur such that: J = a4 (1), a 91 wand o ~; u. Let r € I be a minimal relation.
Thanks to Lemma 2.1 we know that there exist paths vyuu, and scalars \, € k* (b € B)
such that r + ZbeB Ap vpuuy € J. Since u € J we get r € J for any minimal relation r
of I. Hence I C J, and I = J because dimy, I = dimy J. This contradicts the property:
« otr u and a ~ 5 u. Hence the homotopy relation does not depend on the presentation
of A. d

If ~ and ~' are homotopy relations, we will say that ~' is a direct successor (see
also [13, sect. 3|) of ~ if there exist admissible ideals I and J of k@, together with
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a transvection ¢ = @q 4,7 such that ~=~j, ~'=~; J = ¢(I), o ¢ v and o ~; u.
Notice that I, J, ¢ need not be unique.

2.3 The quiver I' of the homotopy relations of the presentations of
the algebra

Definition 2.1. [13, 4.1] We define the quiver I' as follows:
. Iy is the set of homotopy relations of the admissible presentations of A:

To={~1 | I is admissible and kQ/I ~ A}

. there is an arrow ~—~' if and only if ~' is a direct successor of ~.

Example 2. Assume that A = kQ/I where Q is

7N
d
a
and I =< da >. Let J =< da — dcb >. Using Proposition 2.8 one can show that T’
is equal to: ~;___ o ~ ;. Notice that the identity map on walks induces a surjective

group morphism 7 ~ m(Q,I) - m(Q, J) ~ 1.
The author thanks Mariano Suarez-Alvarez for the following remark:

Remark 5. A homotopy relation is determined by its restriction to the paths in QQ with
length at most the radical length of A. Thus there are only finitely many homotopy
relations. This argument shows that T' is finite.

The following Proposition states some additional properties of I' and is a direct
consequence of Remark 2 and Proposition 2.3.

Proposition 2.5. Assume Q) has no oriented cycles and let m be the number of bypasses
in Q. Then I' is connected and has no oriented cycles. Any vertex of I' is the source of
at most m arrows and any oriented path in I’ has length at most m.

Remark 6. According to Remark 4, if there is a path in I' with source ~1 and target ~ g,
then the identity map on the walks in Q induces a surjective group morphism m1(Q,I) —
m1(Q,J). Moreover, since T is finite, any vertex of I is the target of a (finite) path the
source of which is a source of I' (i.e. a vertex with no arrow arriving at it). As a
consequence, if I' has a unique source ~j, then the fundamental group of any admissible
presentation of A is a quotient of m(Q, Ip).

2.4 The unicity of the source of I' and the proof of Theorem 1

Notice that up to now we have used neither the characteristic of k& nor the possible non
existence of double bypasses in ). These hypotheses will be needed in order to prove
the uniqueness of the source of I'. The complete proof of the unicity of the source of I'
is somewhat technical. For this reason we deal with the technical considerations in the
two Lemmas that follow.
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Lemma 2.3. Let E be a finite dimensional k-vector space endowed with a totally ordered
basis e1 < ... < e,. Assume that k has characteristic zero. Let v: E — E be a linear
map such that v(e;) € Span(ej ; j < i) for anyi € {1,...,n}, and let I and J be two
subspaces of E such that the following conditions are satisfied:

a) W(I)=J where ¢b: E — E is equal to exp(v).

b) if e; € supp(v(e;)) then e; 1 e; and e; £ €;.
Then I and J have the same Groebner basis and I = J.

Proof: Let us prove Lemma 2.3 by induction on n. If n = 1 the equality is obvious so
let us assume that n > 1 and that the conclusion of Lemma 2.3 holds for dimensions
less than n. We will denote by r; < ... <7, (resp. 7} < ... < r') the Groebner basis
of I (vesp. of J) and we will write 41,...,7, (vesp. 4,..., p) for the integers such that
Tj € €;; + Span(e; ; i <ij) (resp. 7} € eir + Span(e; ; i < i)). In order to prove that
I = J we will prove the following four facts:

a) the two sequences i; < ... < i, and #} < ... <4, coincide,

b) ¥(ry) =i,

¢) r1 =77 and v(r1) = 0 (using the induction hypothesis on E/k.e1),
d) ro =7y,...,7p = 1), (using the induction hypothesis on E/k.r).

a) For simplicity let us set E; = Span(e; ; j < i). Since v(e;) € Ej_; and r; €
ei; +Ei;—1, and since ¢ = exp(v), we get 1(r;) € JN (e;;, + Ey;—1) for any j. Hence, the
definition of the Groebner basis of J forces {i1,...,i,} C {1’1, ..., iy} and the cardinality

and the ordering on these two sets imply that i3 =4,...,ip, = zp

b) Since 4; = i} we infer that ¢(r1) —r] € J N E;;_;. The definition of the Groebner
basis of J then forces (r1) — r; = 0.

¢) Let us prove that r; = r{. Notice that the definition of a Groebner basis and the
equalities ¢(r1) = r] and ¢(e1) = ey force: ey € I &1 =€ & 1] =e1 & e € J.
Hence we may assume that e; ¢ I and e; & J.

Let E = E/k.e; and let m: E — E be the natural projection. We will write Z for
7(z). Similarly we set I = m(I) and J = 7(.J). In particular F has a totally ordered
basis: €2 < ... < é,. Since v(e1) = 0 and since ¢)(e1) = e1, the mappings v and v
induce hnear mappings v, E — E. Tt follows from the properties of v and ¢ that
() = J, that (&) € Span(é; ; 2 < j < i) for any i > 2, that Y = exp(i), and that
supp(P(€;)) = { €| j = 2 and e; € supp(v(e;))} for any i > 2. Moreover, with the
definition of the Groebner basis of I we get:

. 7j € &, + Span(&; ; i <ij) for any j (recall that e; & I),
. supp(7j) = {€; | i > 2 and e; € supp(r;)} for any j.

Therefore 71 < ... <7, is the Groebner basis of I and: € =j €; = €; =1 e;. Similarly
M <...< f; is the Groebner basis of J and: € =j¢; = ¢; =; e;. Using the above
description of supp(7(€;)) together with the above link between =; (resp. =;) and =;
(resp. =j5) we infer that:

€ #j €5 and & #j €; as soon as €; € supp(P(é;))

For this reason we may apply the induction hypothesis to E, I and J. Hence I and J
have the same Groebner basis and 71 = 7 i.e. r] = r1 + A e; with A € k. Therefore
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(v—1Id)(r1) = X e1, and since ¥ (e1) = e1 we get v(r1) = log(1)(r1) = A e1. Assume that
A #0ie. e; € supp(v(r1)). Thus there exists e; € supp(ry) such that e; € supp(v(e;)).
This implies that e; Z; e;, and since any two elements in supp(r1) are =j-equivalent,
this forces e; & supp(r1). Hence e;,e; € supp(r}) = supp(r1) U {e1} and therefore
e; =y e1. This contradicts e; € supp(v(e;)) and shows that A = 0, that 1 = 7} and
that v(r1) = 0.

d) Let us show that ry = r5,...,r, = ). For this purpose we will apply the induction
hypothesis to E = E/k.ri. Let q: E — E be the natural projection. We will write ¢;
(vesp. I, J, 7, 7;) for q(e;) (vesp. q(1), q(J), q(r;), q(r})). Hence E has a totally ordered
basis: €1 < ... < €,-1 < €41 < ... < é,. Since v(r;) = 0 and since (r;) = r1, the
mappings v and 1 induce linear mappings 7,v¢: E — E. These mappings obviously
satisfy ¢(I) = I, v(€;) € Span(é; ; j # i1 and j < i) for any i # i1, and ¢ = exp(D).
Moreover, our choice for the basis of E and the definition of the Groebner basis of I
imply that:

. supp(;) = {€& | e; € supp(r;)} for any j > 2,
. 79 < ... < Ty is the Groebner basis of I.

These two properties imply in particular that: e; =7 €; = e; =1 e; for any 4,5 # 1.
The corresponding properties hold for J (replace rj by r;-, I by J and I by J). Thus,
in order to apply the induction hypothesis to F it only remains to prove that: e; €
supp(v(€;)) = €; #1 €; and &; #j €; for any i,j # 4. Assume that 4,5 # iy satisfy
é; € supp((&;)). From the definition of E and ¥ we know that:

1%

- supp(v(&;)) = {& | e € supp(v(e:))} if e;, & supp(v(e:)),
. supp(v(&;)) C {e; | e; € supp(v(e;)) and I # i1} U{e |l < iy and e; € supp(r1)}
i i, € supp(v(er)).
Let us distinguish the cases e; € supp(v(e;)) and e; & supp(v(e;)):

- if e; € supp(v(e;)) then e; #; e; and e; #; e; and the above comparison between
=7 (resp. =y) and =y (resp. =7) yields €; #7 €; and €; 5 €;.

- if e; & supp(v(e;)) then necessarily e;, € supp(v(e;)) and e; € supp(ri). Since
r1 = r}, the property e; € supp(rq) implies that e; =; ¢;, and e; =5 ¢;,. On the other
hand, the property e;, € supp(v(e;)) implies that e;, #; e; and e;, #Z; e;. Therefore
€; %7 €; and €; %7 e; and finally € §éf e; and € §éj €;-

Thus all the conditions of Lemma 2.3 are satisfied for £, I,.J, 7. For this reason we can
apply the induction hypothesis which gives: I and J have the same Groebner basis. We
infer that ¢(r;) = q(r]) for each i = 2,...,p. Hence for each ¢ > 2 there exists \; € k
such that r; =} + \; 71, and \; is necessarily zero because ef (ri) = €j, (ri) = 0 (cf the
definition of a Groebner basis). Therefore r; = 7} for each i = 1,...,p and I = J as
announced. g

Lemma 2.4. Let p: kQ — kQ be an automorphism equal to the identity map on Q.
Let I be an admissible ideal of kQ and set J = o(I). Suppose that k has characteristic
zero. Suppose that for any arrow « there is a normal form p(o) = o+ > ; i u; where
each w; satisfies: a L1 u; and o 5 u;, and (a) = a for any arrow appearing in u; (in
particular p(u;) = u;). Then I and J coincide.

Proof: Let E be the vector space @®,+y ,kQ,. Hence E is finite dimensional since @
has no oriented cycles, and I and J can be considered as subspaces of £. In order to
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apply Lemma 2.3 to E,I,J, we need to exhibit a totally ordered basis of E together
with a mapping v: E — FE. Let us take the non trivial paths in @ for the basis of E.
For short, we will write path for non trivial path. The following construction of a total
order < on this basis is taken from [8|. Let us fix a total order on @; (which is finite)
and let < be the induced lexicographical order on the paths in @. If u is a path we let
W (u) be the number of arrows « € 1 appearing in u and such that ¢(a) # a. Hence,
for any a € Q1, we have W(a) = 0 if p(a) = a and W(a) = 1 if p(a) # a. The total
order < is then defined as follows:

W(u) < W(v)
u<v &< or
W(u) =W(v) and u < v

This yields: e; < ... < e, a totally ordered basis of £ made of the non trivial paths in
Q. Notice that with this basis, the equivalence relations =; and ~j (resp. = and ~ )
satisfy the following property: e; = e; = e; ~y €; (resp. ¢; =5 e; = €; ~j €;). Let
v: kQ — k@ be the derivation (i.e. the functor such that v(vu) = v(v)u 4+ vv(u) for
any u and v) such that v(a) = p(a) — « for any arrow « € Q1. We will write v: E — E
for the induced map on E. Thus, for any path u and any v € supp(v(u)) there exist
an arrow « € (1 together with paths wy,us,us such that v = ugau;, v = uguguy
and ug € supp(v(a)). Notice that with the assumptions made on ¢, this implies that
e; #1 ej and e; £ e; as soon as e; € supp(v(e;)). Moreover, for any o € @1 and
any u € supp(v(a)) we have W(u) = 0 hence v ov(a) = 0. Since v: kQ — kQ is
a derivation, we infer that: e; € supp(v(e;)) = Wi(e;) < W(e;) = ej < e;. Hence
v(e;) € Span(e; ; j < i) for any 4. In order to apply Lemma 2.3, it only remains to
prove that J = exp(v)(I). To do this it suffices to prove that ¢ = exp(r). This equality
is easily checked on any path in @ by induction on the length of the path using the
fact that v is a derivation, that p(a) = a 4+ v(«) and that v o v(a) = 0 for any arrow
«. Hence, the data E, I, J, v together with the ordered basis e; < ... < e, satisfy the
hypotheses of Lemma 2.3 which implies that I = J. O

The uniqueness of the source of I' is given by the following result.

Proposition 2.6. [13, 4.3] Assume that A satisfies the hypotheses made before stating
Theorem 1, then I' has a unique source.

Proof: Notice that any two transvections of k() commute since () has no double by-
passes. Let ~ and ~’ be sources of I". Let I and J be admissible ideals of kQ such
that kQ/I ~ A ~ kQ/J and such that ~=~; and ~'=~;. According to Remark 2
there exist a sequence of transvections ©1 = Yo, ui,rs--+>Pn = Pan,un,m of kKQ and
a dilatation D such that J = ¢, ...91D(I). Thanks to Lemma 2.3 we know that
~1=~p()- Thus, in order to prove that ~=~/'_ we may assume that D = Idyg and
J =@n...p1(I). Moreover we may assume that n is the smallest non negative integer
such that there exist I, J and a sequence of transvections 1, ..., @, satisfying ~=~,
~'=~jand J = @, ...p1(I). Let us prove that «; %1 u; for any i € {1,...,n}. If i
is such that a; ~j u; then Proposition 2.3 implies that ~j=~, 1) since ~ is a source
of I'. Hence ~=n~, 1), ~=~jgand J =@, ... 0ir10i-1 - - - p1(pi(1)) which contradicts
the minimality of n. Thus «; %1 u; for any ¢ and the same arguments apply to J since
I = gpl_l ..oy 1(J) and ~ is a source of T'. Hence a; % u; for any i. This shows that
the data I, J, p, ...y satisfy the hypotheses of Lemma 2.4. We infer that I = J and
that ~=~' coincide. This shows that I" has a unique source. O
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The Proposition 2.6 and the Remark 6 prove the Theorem 1:

Theorem 1. (see also [13, thm 1.1]) Let A be a basic connected finite dimensional
algebra over a field of characteristic zero. If the quiver QQ of A has no double bypasses,
then there exists a presentation kQ/Iy ~ A with quiver and admissible relations such
that for any other admissible presentation kQ/I ~ A, the identity map on walks induces
a surjective group morphism m (Q, Iy) - m(Q, I).

The following example shows that one cannot remove the hypothesis on the charac-
teristic of k in Proposition 2.6:

Example 3. Let QQ be the following quiver without double bypasses:

NN
a d

Set u = ¢b and v = fe. Set A = kQ/Iy where Iy =< da + vu,va + du >. Then
m(Q,I1) =7Z/2. Let Iy and Iy be the ideals defined below:

o I} = pau1(lo) =< da+ du+vu,va+ du + vu >,

o Ir =au—1°¢dy—1(11) =<da,va+ du— 2vu >.
Hence A ~ kQ/Iy ~ kQ/Is. If car(k) = 0, then m1(Q, 1) = m1(Q,I2) =1 and T is
equal to ~jp, o~y . Suppose now that car(k) = 2. Then Iy =< da,va + du >,
m(Q, ly) ~2Z/2, m(Q, ) =1, m(Q, I2) ~7Z and T is equal to:

NIO N12

Nll
Hence T' has two sources. Notice that the identity map on walks induces a surjective
group morphism w1 (Q, I2) — m1(Q, Iy). Notice also that one can build similar examples
for any non zero value p of car(k) by taking for Q a sequence of p bypasses.

3 Preliminaries on covering functors

In this section we give some useful facts on covering functors.

Lemma 3.1. Let p: £ — B and q: &' — B be functors where £ is connected. Let
r,r’': € — &' be such that gor = qor’ = p. If there exists xg € &y such that r(xg) = r'(x0)
then r =1'.

Proof: Since ¢ is a covering functor, for any u € ,&;\{0} we have:

(r(z) = r'(z) or r(y) = r'(y)) = (r(u) = r'(v), r(z) =r'(x) and r(y) = r'(y)) (%)
Assume that there exists xg € & such that r(zg) = 7/(xg). Since & is connected, for any

x € & there exists a sequence xg,...,x, = x of objects of £ together with a non zero
morphism between z; and x;41 for any i. This implies (thanks to (x)) that r(z) = r/(z).
Thus 7 and 7’ coincide on &y and (x) implies r = 7/ O

The following Proposition generalises the result [14, Prop. 3.3|. Using Lemma 3.1
its proof is immediate.

Proposition 3.1. Let F: £ — B be a covering functor where £ is connected. Then
E is an Aut(F)-category. Moreover, F is a Galois covering if and only if Aut(F)
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acts transitively on each F~'(x). Finally if F is Galois covering with group G, then
G = Aut(F).

Proposition 3.2. Let p: £ — B and q: F — & be functors where & is connected and
setr=poq: F — B. Then p,q,r are covering functors as soon as two of them are so.

Proof: We only need to prove that if p and 7 are covering functors then ¢=1(z) # ()
for any x € & (the other properties are basic linear algebra). Assume that p and r
are covering functors. Since ¢ is a covering functor, for any u € ,&;\{0} we have:
¢ N x) £ 0 < ¢ Hy) #0 (x). Fix 29 € Fy and set 29 = q(&), thus ¢ (zg) # 0. The
connectedness of £ and (x) imply that ¢~!(z) # () for any x € &. O

Proposition 3.3. Let p: C — B (resp. q: C' — B) be a connected Galois covering with
group G (resp. G') and assume there exists a commutative diagram of k-categories and
k-linear functors where @ is an isomorphism equal to the identity map on By:

c——=

pl lq

B— B
Then there exists a unique mapping \: G — G’ such that rog = X(g)or for any g € G.
Moreover X is a surjective morphism of groups and r is a Galois covering with group

Ker(\).

Proof: Thanks to Proposition 3.2, r is a covering functor. Fix &g € C and set zg =
p(Zo). For any g € Aut(p) we have q(r(20)) = zo = q(r(g(Zo))). Since ¢ is Galois with
group G, there exists a unique \(g) € G’ such that A(g)(r(&o)) = 7(9(Z0)), and Lemma
3.1 yields A\(g) or = rog. Hence: (Vg€ G) (3\(g9) € G') A(g) or = rog. This last
property shows the existence and the uniqueness of \. It also shows that A\: G — G’ is
a group morphism and that Aut(r) = Ker(\). Moreover, X is surjective because of its
definition and because p is Galois with group G. Finally Proposition 3.1 shows that r
is a Galois covering with group Ker(\). O

4 The universal cover of an algebra

In this section we will prove Theorem 2. Let ) be a connected quiver without oriented
cycles and let zp € Qo for the computation of the groups m1(Q,I). If there is no
ambiguity we will write [w] for the homotopy class of a walk w.

Lemma 4.1. Let I be an admissible ideal of kQ, let D be a dilatation of kQ and set
J = D). Let A\: m(Q,I) = 71(Q,J) be the isomorphism given by Proposition 2.3.
Let p: (Q,I) — (Q,I) (resp. q: (Q, j) — (Q, J)) be the universal Galois covering with
group m(Q,I) (resp. 7 (Q,J)). Then there exists an isomorphism ¥: kQ/I = k@/j

such that the following diagram commutes:

KO /T —2= 10/

ﬁl lq

KQ/T 2~ 1kQ)T
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where D,p and § are induced by D,p and q respectively.
Moreover, 1 satisfies: 1 o g = A(g) ot for any g € m(Q,I).

Proof: We have Q = Q since ~y and ~ coincide (see Proposition 2.3). Set D:kQ —
kQ to be defined by: D(a, [w]) = (D(a), [w]) for any arrow (a, [w ]) € Q1 By construc-
tion D is an automorphism of kQ and D(I) J. Set 1: kQ/I = kQ/J to be induced
by D. It is then easy to check all announced properties. O

Lemma 4.2. Let I be an admissible ideal of kQ, let ¢ = paur be a transvection,
set J = p(I) and assume that o ~y w. Let A\: m(Q,I) — 7 (Q,J) be the surjection
given by Proposition 2.3. Denote by p: (Q,I) — (Q,I) (resp. by ¢: (Q,J) — (Q,J))
the universal Galois covering with group m (Q,I) (resp. 7 (Q,J)). Then there exists
a Galois covering ¢: kQ/I = kQ/J with group Ker(\) and such that the following

diagram commutes:

KO/T—2- kO

ﬁl llf
kQ/I —=kQ/T
where @, p and q are induced by @, p and q respectively.

Moreover, 1 satisfies: 1 o g= \g) ot for any g € m(Q,I).

Proof: Let ¢': kQ — kQ be defined by: ¢'([w]) = [w] for any [w] € Qo, ' (3, [w]) =
(5. lw) for any (5, [u]) € Q1 such that § # a, and o/(a ) = () + rlu, v]) for
any (a, [w]) € Ql Then ¢’ is well defined since a ~; u. Moreover, ¢ o p(a) = q o ¢'(a)
for any a € Qy, and ¢/'(I) C J. Let ¢: kQ/I — k‘Q/J be induced by ¢’. Thus
goy =@op. Let g=[y] € m(Q,1) and let [w] € Qp. Then ¢ o g([w]) = P([wy™']) =
[wy~1] = A(g)([w]) = A(g)o®([w]). The Lemma 3.1 implies that 1pog = A(g) ot for any
g € m1(Q,I). Finally, Proposition 3.3 gives: 9 is a Galois covering with group Ker(\).
U

Lemma 4.3. Let A be a finite dimensional basic k-algebra with ordinary quiver Q.
Assume that k has characteristic zero and that @ no double bypasses. Let kQ/Iy ~ A
and kQ/I ~ A be two presentations with quiver and relations such that ~p, is the
unique source of I'. Then there exist a sequence o1, ...,y of transvections of kQ (with
©i = Pay i) and a dilatation D such that:

a) I =Dy ...p1(10),

b) if I; is the ideal ¢; ...p1(Io) then a; ~g, u; for 0 < i < n.

Proof: We will write [n] for the set {1,...,n}. The Remark 2 implies that there exist
a dilatation D and a sequence @1, ..., ¢, of transvections (¢; = @q,u;,7) such that
I =Dy, ...01(Io). Let us set J = D~Y(I). For n > 0 let R, be the following property:
i J = n...01(lo) with ©; = Yo, i, there exist v > 0 and a bijection [n] Z [n]
such that Iy = @g(r—1 - Po(1)(lo), and such that if I; is the ideal @) ... ps)(lo)
then ag () ~1; Ug) for any r < i < n”. Notice that if R, is true, then the sequence
Ory ..., pn and the dilatation D satisfy the conclusion of Lemma 4.3. Hence we only
need to show that R, is true for n > 0. Obviously Ry is true. Let n > 1 be such
that R,_ is true. Assume first that there exists i9 € [n] such that a;, ~; u;,. Let
[n] % [n] be the transposition (ig,n) and set I' = Pun—1) - - - Pu(1)({o). Applying Ry, 1

to this last equality gives rise to a bijection [n — 1] £ [n — 1] together with 7 > 0, such
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that Io = @uu(r—1) - - - Puv(1)({o), and such that if I; is the ideal ;) - - - 1) (o) then
Quu (i) ~I; Upp(s) Tor m <@ <n—1. Set u(n) = n, then [n] £, [n] is a bijection and the
couple (o = pv,r) shows that R, is true when such an i exists. Assume now that for
any i € [n] we have o %7 u;. Let ¢ = ¢, ...p1. The Lemma 2.4, applied to the data
Iy, J, ¢, shows that J = Iy. Hence R, is true (with »r = n 4+ 1) in this situation as well.
This achieves the proof of the Lemma 4.3. O

The following Proposition shows how a Galois covering of k-categories is induced by
a covering of quivers with relations. It generalises the results [14, prop 3.4, 3.5]. The
proof uses the ideas presented in [10, sect. 3.

Proposition 4.1. Let F': ¢ — C be a Galois covering with group G where C is a locally
bounded and triangular k-category. Fiz @o: kQ/I = C be an admissible presentation.
Then, there exist admissible presentations @: kQ/I' = C and : k@/f = C and a
covering of quiver with relations p: (Q, f) —(Q,I'), such that ¢ and @g coincide on Qq
and such that the following diagram is commutative:

kQ/I' Z .
where P 1s induced by p. ]f@ is connected, then p is Galois with group G.
Proof: Using [6, thm 3.8] we may assume that C is G-graded, that ¢’ = C#G and

that ' = C4G L, ¢ is the natural projection. Since C is triangular, the ideals RC
and R2C are homogeneous. Thus, for any  # y € Qo there exist homogeneous
elements yu;”,..., yu;ynz) of o) RCoo(x) = wo(y)Coo(x) 8lVing rise to a basis of

v) (RC/R2C)¢O(:B)' In particular, yn, is equal to the number of arrows x — y in Q.
Let p: kQ — C be defined as follows: p(z) = po(x) for any x 6 Qo, and p induces a
bijection between the arrows x — y of Q and {yug), ey yug;y “/} for any z # y € Qo.

Set I' = Ker(u). Hence I’ is admissible and g induces an isomorphism ¢: kQ/I' = C.
The following construction of p uses the ideas of Green in |10, sect. 3|. The k-category
kQ is a G-graded as follows: a path u in @ is homogeneous of degree the degree of
p(u). By using the G-grading on C, it is easy to check that I’ is homogeneous and
that ¢: kQ/I' — C is homogeneous of degree 1g. Let Q be the quiver as follows:
Qo = Qu x G, and the arrows (z,5) 5 (y,t) in Q1 are exactly the arrows z 5 y in Q4
with degree t~1s. Let p: Q — Q be defined by: p(z,s) = z and p((z,s) = (y,t)) = a
for any (z,s) € Qo and any (z,5) = (y,t) € Q1. Let I C Q be the admissible ideal

p~ (') of kQ. According to |10, sect. 3] p is a covering, and if Q is connected then
p is Galois with group G. In particular p: kQ/I — kQ/I' is a covering functor. Let
v:kQ/ — C = CHG be as follows: v(z,s) = (¢(z),s) for any (z,s) € Qo, and if
(z,s) 5 (y,t) € Q1 then v(a) = u(p(a)) € g,(y)CfD(;f = (W(y)vt)céap(m),s)' Therefore
Fov=yop, and since ¢ is an isomorphism, we have [ = Ker(v). Let ¢: k@/f —
be induced by v. Hence : Qo — Co is bijective, v is faithful and pop = Fov. Moreover
1 is full because p and F' are covering functors. Thus, 7 is an isomorphism. Finally,
if ¢’ is connected then Q is connected and this implies that p is a Galois covering with
group G. U

Remark 7. The Proposition 4.1 does not necessarily hold when F' is a covering functor
and not a Galois covering. As an example, set C = kQ where Q is equal to:
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N
|3
set G =7/2 =< o|o® > and set C' = kQ' where Q' is the quiver:

o3 <1

N
o2 2
ol “oa 3
Set F': C' — C to be defined by: F(b) = F(cb) = b, F(c) = F(oc) = ¢, F(a) = a and
F(oa) =a+cb. Then F is a covering functor. The group Aut(F') is trivial therefore F
1s not Galois, and F cannot be induced by any covering of bound quivers. Notice that if

F:(C" — C is a covering functor and if the ordinary quiver of C has no bypasses, then
F is induced by a covering of bound quivers.

Theorem 2. Assume that A satisfies the hypotheses made before stating Theorem 1.
Let po: kQ/Iy ~ A be an admissible presentation such that ~p, is the source of T.
Let (Q, Ip) LEN (Q, Ip) be the universal Galois covering with group 71 (Q,Iy) and let
k‘@/fo B, kQ/I be induced by py. For any connected Galois covering F:C' — A
with group G there exist an isomorphism kQ /Iy — A equal to @o on objects, a Galois
covering F': kQ/Iy — C' with group N a normal subgroup of m1(Q,Iy) such that the
following diagram commutes:

k@/jOL)C/

| lp
kQ /I = A

Moreover, there is exact sequence of groups: 1 — N — m1(Q, I)) — G — 1.

Proof: Let C' 2+ A be a connected Galois covering with group G. The Proposition
4.1 implies there exist admissible presentations ¢: kQ/I = A and ¢: kQ'/I'" = C’
together with (Q',I') % (Q,I) a Galois covering with group G such that ¢ and g
coincide on objects and such that F o1 = ¢ o g (where kQ'/I' - kQ/I is induced by
q). Let (Q,1) & (Q,I) be the universal Galois covering with group 71(Q,I). Thus (see
[14]) there exists a Galois covering (Q, I) = (Q', I") with group 71 (Q’, I’) and such that
gor = p. Hence we have a commutative diagram (denoted by D):

kQ/I —=kQT S

ﬁl ql LF

QT == kQ/I —=— A
Since ~g, is the source of I', the Lemma 4.3 implies that there exist a sequence of
transvections 1 = Yo, ui,my > Pn = Pagun,m Of KQ and a dilatation D such that
I = Dy, ...¢1(ly) and such that a; ~p, u; if I; = ¢; ... ¢1(lp) for any i. The Lemmas

4.1 and 4.2 applied to D, I, I, and ;, I;_1, I; respectively yield the following commuta-
tive diagrams denoted by D’ and 7; respectively:
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QM /T(") —— k@/j EQU-) /1(=1) —— Q@) /1)
lpn lp lml lpi
kQ/ I —2— kQ/T kQ/ Loy — = kQ/T,
where @; (resp. D) is induced by ¢; (resp D) and kQU /I(Z b == kQ/I; is induced by

the universal Galois covering (Q®, I™) 25 (Q, I;) with group 71(Q, ;). If we connect

Ti,...,7,, D' and D we get the announced commutative diagram:
~ o~ F/
kQ/Ip —= '
pol lF
kQ/Iy — A
where the bottom arrow is an isomorphism equal to ¢y on objects. Finally the an-
nounced properties of F’ are given by Proposition 3.3. O

Remark 8. Using the universal property in Theorem 2 it is quickly checked that if there
exists a Galois covering C' — C such that C' is simply connected (i.e. the fundamental
group of any presentation of C' is trivial), then C' ~ kQ/Iy.

One may wish to use the more general framework of Galois categories (see |16])
in order to recover Theorem 1 and Theorem 2. Unfortunately this cannot be done in
general because the category of covering functors with finite fibre of A may not have
products as explained in the following example:

Example 4. Let A = kQ/I where Q is equal to

2 4
NN
1 3 5
and I =< da, dcb+ fea, fecb>. Set G =7/2 =< olo? >. Let Q' be the quiver:

1—=03

N

2

N

and set I' =< od a,d oa,dcb + o f oe a,ad oe ab + fea, fecb,of oe oc ob >. Hence
the natural mapping p: (Q',I') — (Q,I) (x,0x — x) is a Galois covering with group
G. Therefore, if we set A" = kQ'/I', then p induces a Galois covering F: A" — A with
group G. Let us set F': A — A to be the Galois covering with group G as well and
defined as follows:

. F'(a mod I') = F'(ca mod I') = a+ ¢b mod I,
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. F'(x mod I') = F'(ox mod I') = x mod I for any arrow x # a.

Assume that the category of the coverings of A with finite fibre is a Galois category.
Hence this category admits finite products and the product of F with F' gives rise to a

diagram:
C
AN
A A
N
A

such that F" = Fopy = F'opy is a covering functor with fibre the product of the fibres of
Fand F'. In particular, we may assume that Co = Q4 xQ, Qo = U,eq (7, 7), (,07), (02, 2), (0z, 02)}.
Moreover, the Proposition 3.2 implies that p1 and pa are covering functors as well. Let
us compute the lifting v of a mod I € 3A; w.r.t. F" and with source (1,1). Using the
lifting property of p1 and py we get:
curtu2 € (533C1,1)D (63,03)C(1,1) the lifting of a mod I' w.r.t. p1 and with source
(1,1),
c U1t v2 € (343)C1,1)D (63,03)Ca1,1) the lifting of a mod I w.r.t. py and with source
(17 1))
“ U3t v € (633)C1,1) D (3,3)C(1,1) the lifting of cb mod I' w.r.t. ps and with source
(1,1),
Since a mod I = F(a mod I') and a mod I = F'(a mod I' — ¢b mod I'), we infer that
uy + us and vy + vy — v3 — vg both lift a mod I w.r.t. Fop; = F' opy and have their
source equal to (1,1). Therefore uw = uy +ug = vy +v9 —v3 — v4. Using the target of the
involved morphims we get v1 = v4 = 0, uy = vg and ugy = vy. Notice that vs # 0 and
vy # 0 since a mod I' # 0 and cb mod I' # 0. Hence (53 53)C1,1y and (533C(1,1) are
non zero spaces. Moreover, p1 induces an inclusion (43,3)C1,1) ® (63,3)C(1,1) — o3 Al
Therefore 53A] = k.(a mod I') contains a 2 dimensional subspace. This contradiction
shows that F' and F' do not have a product and that the category of the coverings of A
with finite fibre need not be a Galois category.
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