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The universal 
over of an algebra without doublebypassesPatri
k Le MeurAbstra
tLet A be a �nite dimensional 
onne
ted algebra over a �eld k of 
hara
teristi
 zero.We show that if the quiver of A has no double bypasses then the fundamental group(as de�ned in [14℄) of any presentation of A by quiver and relations is the quotient ofthe fundamental group of a privileged presentation of A. We then show that the Galois
overing of A asso
iated with this privileged presentation satis�es a universal propertywith respe
t to the 
onne
ted Galois 
overings of A in a similar fashion to the universal
over of a topologi
al spa
e.Introdu
tionLet A be a �nite dimensional algebra over a �eld k. In order to study left A-modules wemay assume that A is basi
 and 
onne
ted, where basi
 means that A is the dire
t sumof pairwise non isomorphi
 proje
tive left A-modules. For su
h an algebra, the studyof the Galois 
overings of A gives some information on the representation theory of A(see [6℄, [10℄ and [14℄) and is a parti
ular 
ase of the 
overing te
hniques introdu
ed in[5℄, [9℄ and [15℄. Re
all that in order to manipulate 
overings of A we 
onsider (and wealways will unless otherwise stated) A as a k-
ategory with set of obje
ts a 
omplete set
{ei}i of primitive pairwise orthogonal idempotents and with morphisms spa
e ei → ejthe ve
tor spa
e ejAei. The 
overing te
hniques have led to the de�nition (see [10℄and [14℄) of a fundamental group asso
iated with any presentation of A by quiver andadmissible relations, and whi
h satis�es many topologi
al �avoured properties (see [1℄,[10℄ and [14℄). This 
onstru
tion and its asso
iated properties depend on the 
hoi
e ofa presentation of A. In parti
ular, one 
an �nd algebras for whi
h there exist di�erentpresentations giving rise to non isomorphi
 fundamental groups. In this text we 
om-pare the fundamental groups of the presentations of A as de�ned in [14℄, and we studythe 
overings of A with the following question in mind: does A have a universal Galois
overing? i.e. does A admit a Galois 
overing whi
h is fa
torised by any other Galois
overing? This question has been su

essfully treated in the 
ase A is representation�nite (see [5℄ and [9℄). The present study will involve quivers �without double bypasses�.In simple terms, a quiver without double bypasses is a quiver whi
h has no distin
t par-allel arrows, no oriented 
y
les and has no subquiver of the following formwhere 
ontinued (resp. dotted) arrows represent arrows (resp. oriented paths) of thequiver. Assuming that k is a 
hara
teristi
 zero �eld and that the ordinary quiver Q of
A has no double bypasses, we prove the following result announ
ed in [13℄:1



Theorem 1. Assuming the above 
onditions, there exists a presentation kQ/I0 ≃ A byquiver and relations su
h that for any other presentation kQ/I ≃ A, the identity mapon the walks of Q indu
es a surje
tive group morphism π1(Q, I0) ։ π1(Q, I).The proof of the above Theorem allows us to re
over the following fa
t that was provenin [4℄: if A is a basi
 triangular 
onne
ted and 
onstri
ted �nite dimensional k-algebra,then di�erent presentations of A give rise to isomorphi
 fundamental groups. Un-der the hypotheses made before stating Theorem 1 and with the same notations, if
kQ̃/Ĩ0

F0−→ kQ/I0 is the Galois 
overing with group π1(Q, I0) indu
ed by the universalGalois 
overing of (Q, I0) (see [14℄), we show the following result.Theorem 2. For any 
onne
ted Galois 
overing F : C′ → A with group G there existan isomorphism kQ/I0
∼
−→ A, a Galois 
overing p : kQ̃/Ĩ0 → C′ with group a normalsubgroup N of π1(Q, I0) and a 
ommutative diagram:

kQ̃/Ĩ0
p //

F0

��

C′

F

��
kQ/I0

∼ // Atogether with an exa
t sequen
e of groups: 1 → N → π1(Q, I0) → G→ 1Hen
e the Theorem 2 partially answers the question 
on
erning the existen
e ofa universal Galois 
overing. The text is organised as follows: in se
tion 1 we de�nethe notions we will use, in se
tion 2 we prove Theorem 1, in se
tion 3 we give usefulresults on 
overing fun
tors, these results will be used in the proof of Theorem 2 towhi
h se
tion 4 is devoted. The se
tion 2 gives the proofs of all the results that havebeen announ
ed by the author in [13℄. This text is part of the author's thesis made atUniversité Montpellier 2 under the supervision of Claude Cibils.1 Basi
 de�nitions
k-
ategories, 
overing fun
tors, Galois 
overingsA k-
ategory is a 
ategory C su
h that the obje
ts 
lass C0 of C is a non empty set andea
h set yCx of morphisms x → y of C is a k-ve
tor spa
e with k-bilinear 
omposition.Let C be a k-
ategory. We will say that C is lo
ally bounded if the following propertiesare satis�ed:a) distin
t obje
ts are not isomorphi
,b) for ea
h x ∈ C0, the k-algebra xCx is lo
al,
) ⊕y∈C0 yCx is �nite dimensional for any x ∈ C0,d) ⊕x∈C0 yCx is �nite dimensional for any y ∈ C0.Unless otherwise stated, all the k-
ategories we will introdu
e will be lo
ally bounded.As an example, let A be a basi
 �nite dimensional k-algebra, where basi
 means that A isthe dire
t sum of pairwise non isomorphi
 proje
tive left A-modules. If 1 =

∑n
i=1 ei is ade
omposition of the unit into a sum of pairwise orthogonal primitive idempotents, then

A = ⊕i,jejAei and A is a lo
ally bounded k-
ategory with set of obje
ts {e1, . . . , en}and with morphisms spa
e ei → ej equal to ejAei. We will say that the k-
ategory Cis 
onne
ted if for any x, y ∈ C0 there exists a sequen
e x0 = x, . . . , xn = y in C0 su
hthat xi
Cxi+1

6= 0 or xi+1
Cxi

6= 0 for any i. Re
all that an ideal I of C is the data ofve
tor subspa
es yIx ⊆ yCx for ea
h x, y ∈ C0, su
h that the 
omposition of a morphism2



in I with any morphism of C lies in I. The radi
al (see [5℄) of C is the ideal RC of
C su
h that yRCx is the set of non invertible morphisms x → y for any x, y ∈ C0. If
n > 2 we set RnC = (RC)n. The ordinary quiver of C has set of verti
es C0, and for
x, y ∈ C0 the number of arrows x→ y is exa
tly dimk yRCx/yR

2Cx. Finally, we say C istriangular if Q has no oriented 
y
les. All fun
tors are assumed to be k-linear fun
torsbetween k-
ategories.A fun
tor F : E → B is 
alled a 
overing fun
tor (see [5℄) if the following propertiesare satis�ed:a) F−1(x) 6= ∅ for any x ∈ B0,b) for any x0, y0 ∈ C and any x̂0, ŷ0 ∈ E0 su
h that F (x̂0) = x0 and F (ŷ0) = y0, thefollowing maps indu
ed by F are isomorphisms:
⊕

F (ŷ)=y

ŷEx̂0
→ y0Bx0

and ⊕

F (x̂)=x

ŷ0Ex̂ → y0Bx0
.In parti
ular, if u ∈ y0Bx0

, the inverse images of u by these isomorphisms will be 
alledthe lifting of u (w.r.t. F ) with sour
e (resp. target) x̂0 (resp. ŷ0). Re
all that if Bis lo
ally bounded then E is lo
ally bounded as well, re
all also that if E is 
onne
tedthen so is B.A G-
ategory is a k-
ategory C endowed with G → Aut(C) a group morphism. Ifmoreover the indu
ed a
tion of G on C0 is free, then C is 
alled a free G-
ategory.The quotient 
ategory C/G of a free G-
ategory C (see [6℄ for instan
e) has set ofobje
ts C0/G. For any α, β ∈ C0/G we set:
β(C/G)α =





⊕

x∈α,y∈β

yCx



 /Gand the 
omposition is indu
ed by the 
omposition in C. The natural proje
tion
C → C/G is a 
overing fun
tor. A Galois 
overing with group G is a fun
tor
F : E → B with E a free G-
ategory and su
h that there exists a 
ommutative diagram:

E

}}||
||

||
||

F

��=
==

==
==

=

E/G
∼ // Bwhere E → E/G is the natural proje
tion and the horizontal arrow is an isomorphism.In parti
ular a Galois 
overing is a 
overing fun
tor. A 
onne
ted Galois 
overingis a Galois 
overing E → B where E is 
onne
ted.A G-graded 
ategory is a k-
ategory C su
h that ea
h morphism spa
e has a de
om-position yCx = ⊕g∈G yC

g
x satisfying zC

g
y . yC

h
x ⊆ zC

gh
x . The smash-produ
t 
ategory(see [6℄) C♯G has set of obje
ts (C♯G)0 = C0 × G, and (y,t)(C♯G)(x,s) = yC

t−1s
x for

(x, s) and (y, t) in (C♯G)0. The 
omposition in C♯G is indu
ed by the 
omposition in
C. The natural proje
tion F : C♯G → C, de�ned by F (x, s) = x and F (u) = u for
u ∈ (y,t)(C♯G)(x,s) ⊆ yCx, is a Galois 
overing with group G. It has been shown in [6℄that if p : E → B is a Galois 
overing with group G, then B is a G-graded 
ategory andthere exists a 
ommutative diagram:

E
∼
ϕ

//

p
��>

>>
>>

>>
>

B♯G

}}{{
{{

{{
{{

B3



where B♯G→ B is the natural proje
tion and ϕ is an isomorphism.Quivers with admissible relationsLet Q be a lo
ally �nite quiver with set of verti
es Q0, set of arrows Q1 and sour
eand target map s, t : Q1 → Q0 respe
tively. Re
all that lo
ally �nite means that s−1(x)and t−1(x) are �nite sets for any x ∈ Q0. For simpli
ity we will write x+ (resp. x−)for the set s−1(x) (resp. t−1(x)). A (non trivial) oriented path in Q is a non emptysequen
e u1, . . . , un of arrows of Q su
h that s(ui+1) = t(ui) for any 1 6 i 6 n − 1.Su
h a path is written αn . . . α1, its sour
e (resp. target) is s(α1) (resp. t(αn)). Forea
h x ∈ Q0 we will write ex for the (trivial) path of length 0 and with sour
e andtarget equal to x. The path 
ategory kQ has set of obje
ts Q0, the morphism spa
e
ykQx is the ve
tor spa
e with basis the set of oriented paths in Q with sour
e x andtarget y (in
luding ex in 
ase x = y). The 
omposition of morphisms in kQ is indu
edby the 
on
atenation of paths. Noti
e that kQ is a free k-
ategory in the followingsense: for any k-
ategory C, a fun
tor kQ F

−→ C is uniquely determined by by the familyof morphisms {F (α) ∈ F (y)CF (x) | x
α
−→ y ∈ Q1}. We will denote by kQ+ the idealof kQ generated by Q1. Noti
e also that if Q0 is �nite then kQ is also a k-algebra,

kQ = ⊕x,y ykQx, with unit 1 =
∑

x∈Q0
ex, and kQ+ be
omes an ideal of this k-algebra.If r ∈ ykQx we 
all support of r (denoted by supp(r)) the set of paths in Q whi
happear in r with a non zero 
oe�
ient, and we 
all a normal form of r an equality ofthe type r =

∑

i λi ui su
h that λi ∈ k∗ for any i and where the paths ui are pairwisedistin
t. An admissible ideal of kQ is an ideal I ⊆ kQ su
h that I ⊆ (kQ+)2 andsu
h that for any x ∈ Q0 there exists n > 2 su
h that I 
ontains all the paths withlength at least n and with sour
e or target x. The 
ouple (Q, I) is then 
alled a quiverwith admissible relations and the quotient 
ategory kQ/I is lo
ally bounded. When
Q0 is �nite, an admissible ideal I of kQ is exa
tly an ideal I of the k-algebra kQ su
hthat (kQ+)n ⊆ I ⊆ (kQ+)2 for some integer n > 2. Re
all from [5℄ that if C is a lo
allybounded k-
ategory then there exists an admissible ideal I for the ordinary quiver Qof C and there exists an isomorphism kQ/I

∼
−→ C. Su
h an isomorphism is 
alled apresentation of C with quiver and (admissible) relations (or an admissiblepresentation for short). Similarly, if A is a �nite dimensional and basi
 k-algebra, anadmissible presentation of A is an isomorphism of k-algebras kQ/I ∼

−→ A where (Q, I)is a bound quiver.Transve
tions, dilatationsA bypass (see [3℄) of kQ is a 
ouple (α, u) where α ∈ Q1 and u 6= α is a path in Qparallel to α (this means that α and u share the same sour
e and the same target).A double bypass is a 4-tuple (α, u, β, v) su
h that (α, u) and (β, v) are bypasses andsu
h that the arrow β appears in the path u. Noti
e that if α, β are distin
t parallelarrows of Q, then (α, β, β, α) is a double bypass. Noti
e also that if u = va is anoriented 
y
le in Q with �rst arrow a, then (a, au, a, au) is a double bypass. Hen
e,if Q has no double bypassses, then Q has no distin
t parallel arrows and no oriented
y
les. If A is a basi
 k-algebra with quiver Q, we will say for short that A has nodouble bypasses if Q has no double bypasses. A transve
tion is an automorphism
ϕα,u,τ of the k-
ategory kQ where (α, u) is a bypass, τ ∈ k and ϕα,u,τ is given by
ϕα,u,τ (α) = α+ τ u and ϕα,u,τ (β) = β for any arrow β 6= α (this uniquely de�nes ϕα,u,τsin
e kQ is a free k-
ategory). Noti
e that Q has no double bypasses if and only if anytwo transve
tions 
ommute. A dilatation is an automorphism D : kQ

∼
−→ kQ su
h that

D(α) ∈ k∗α for any arrow α. Noti
e that the de�nition of transve
tions and dilatations4



are analogous to the one of transve
tion and dilatation matri
es (see [12, Chap. XIII, �9℄ for instan
e). Re
all that a dilatation matrix of Gln(k) is a diagonal invertible matrixand a transve
tion matrix is a matrix with diagonal entries equal to 1 and whi
h has atmost one non diagonal entry di�erent from 0.Fundamental group, 
overings of quivers with relationsLet (Q, I) be a quiver with admissible relations. For ea
h arrow α ∈ Q1 we will write α−1for its formal inverse with sour
e (resp. target) s(α−1) = t(α) (resp. t(α−1) = s(α)). Awalk is an unoriented path in Q, more pre
isely it is a formal produ
t un . . . u1 of arrowsand of formal inverse of arrows su
h that s(ui+1) = t(ui) for any 1 6 i 6 n − 1. Let
r = t1u1+. . .+tnun ∈ yIx where ti ∈ k∗ and the ui's are distin
t paths. Then r is 
alleda minimal relation if n > 1 and if for any non empty proper subset E of {1, . . . , n}we have ∑

i∈E tiui 6∈ yIx. With this de�nition, any r ∈ I 
an be written as the sum ofminimal relations with pairwise disjoint supports. Noti
e that in this de�nition we donot ask that n > 2 as done usually (see [14℄). This 
hange is done for simpli
ity anddoes not a�e
t the 
onstru
tions whi
h follow. The homotopy relation of (Q, I) isthe smallest equivalen
e relation ∼I on the set of walks (of Q) whi
h is 
ompatible withthe 
on
atenation of walks and su
h that:. αα−1 ∼I ey and α−1α ∼I ex for any arrow x
α
−→ y,. u1 ∼I u2 for any minimal relation t1u1 + . . . + tnun.Noti
e that in order to 
ompute ∼I we may restri
t ourselves to any set of minimalrelations generating the ideal I (see [7℄). Assume Q is 
onne
ted (i.e. Q is 
onne
ted asan unoriented graph) and let x0 ∈ Q0. The fundamental group (see [14℄) π1(Q, I, x0)of (Q, I) at x0 is the set of ∼I-
lasses of walks starting and ending at x0. The 
om-position is indu
ed by the 
on
atenation of walks and the unit is the ∼I -
lass of ex0

.Sin
e di�erent 
hoi
es for x0 give rise to isomorphi
 fundamental groups (sin
e Q is
onne
ted) we will write π1(Q, I) for short.Example 1. (see [1℄) Assume Q is the following quiver:
c

��?
??

??
??

a
//

b
??������� d //and set I =< da > and J =< da−dcb >. Then kQ/I ≃ kQ/J whereas π1(Q, I) ≃ Zand π1(Q,J) = 0.A 
overing (Q′, I ′)

p
−→ (Q, I) of quivers with admissible relations (see [14℄) is a quivermorphism Q′ p

−→ Q su
h that p(I ′) ⊆ I and su
h that:a) p−1(x) 6= ∅ for any x ∈ Q0,b) x+ p
−→ p(x)+ and x− p

−→ p(x)− are bije
tive for any x ∈ Q′
0,
) for any minimal relation r ∈ yIx and for any x′ ∈ p−1(x) there exist y′ ∈ p−1(y)and r′ ∈ y′I

′
x′ su
h that p(r′) = r,d) same statement as 
) after inter
hanging x and y.Re
all that the automorphism group Aut(Q, I) of a bound quiver (Q, I) is the groupof automorphisms g : Q

∼
−→ Q of the quiver Q su
h that g(I) ⊆ I. Assume that

p : (Q′, I ′) → (Q, I) is a 
overing, then the group of automorphisms Aut(p) of
p is de�ned by Aut(p) = {g ∈ Aut(Q′, I ′) | p ◦ g = p}. With this de�nition, if
p : (Q′, I ′) → (Q, I) is a 
overing and if G is a subgroup of Aut(p), then p is 
alleda Galois 
overing with group G if Q and Q′ are 
onne
ted and if G a
ts transi-tively on p−1(x) for any x ∈ Q0. If p : (Q′, I ′) → (Q, I) is a 
overing (resp. a Galois5




overing with group G) then the indu
ed fun
tor kQ′/I ′
p̄
−→ kQ/I is a 
overing fun
tor(resp. a Galois 
overing with group G). Let (Q, I) be a 
onne
ted quiver with admis-sible relations and let x0 ∈ Q0. The universal 
over of (Q, I) is a Galois 
overing

(Q̃, Ĩ)
π
−→ (Q, I) with group π1(Q, I, x0) de�ned in [14℄. One 
an des
ribe it as follows:

Q̃0 is the set of ∼I -
lasses [w] of walks w starting from x0. The arrows of Q̃ are the
ouples (α, [w]) where α ∈ Q1 and [w] ∈ Q̃0 are su
h that s(α) = t(w). The sour
e(resp. target) of the arrow (α, [w]) is [w] (resp. [αw]). The map Q̃ p
−→ Q is de�ned by

p([w]) = t(w) and p(α, [w]) = α. The ideal Ĩ is equal to p−1(I). Finally, the a
tion of
π1(Q, I) on (Q̃, Ĩ) is the following: if g ∈ π1(Q, I) we may write g = [γ] with γ somewalk with sour
e and target equal to x0. Then for any [w] ∈ Q̃0 (resp. (α, [w]) ∈ Q̃1)we have g.[w] = [wγ−1] (resp. g.(α, [w]) = (α, [wγ−1])).Some linear algebraWe introdu
e here some notions that will be useful in the sequel and freely used withoutreferen
e. Let E be a �nite dimensional k-ve
tor spa
e with a basis (e1, . . . , en). We willdenote by (e∗1, . . . , e

∗
n) the basis of E∗ dual of (e1, . . . , en) (i.e. e∗i (ei) = 1 and e∗i (ej) = 0if j 6= i). If {rt}t∈T ∈ ET is a family in E, then Span(rt ; t ∈ T ) will the denote thesubspa
e of E generated by this family. If r ∈ E we will write supp(r) (the support of r)for the set of those e′is appearing in r with a non zero 
oe�
ient. Therefore ei ∈ supp(r)is equivalent to e∗i (r) 6= 0. Let F ⊆ E be a subspa
e. A non zero element r ∈ F is
alled minimal if it 
annot be written as the sum of two non zero elements of F withpairwise disjoint supports. We will denote by ≡F the smallest equivalen
e relation on

{e1, . . . , en} su
h that ei ≡F ej for any r ∈ F minimal and any ei, ej ∈ supp(r). Likein the situation of the homotopy relation of a bound quiver, the equivalen
e relation
≡F is determined by set of the supports of a generating family of F . Noti
e that if
E is the ve
tor spa
e with basis the set of oriented paths in a �nite quiver Q and if Iis an admissible ideal of kQ, then for any paths u and v we have: u ≡I v ⇒ u ∼I v.The 
onverse is usually false as one 
an see in Example 1 where a ∼J cb and a 6≡J cb.Assume now that the basis of E is totally ordered: e1 < . . . < en. A Groebner basisof F is a basis (r1, . . . , rt) of F su
h that:. for any j there is some ij su
h that rj ∈ eij + V ect(ei ; i < ij).. eij 6∈ supp(rj′) unless j = j′.. if r = el +

∑

i<l τi ei ∈ F then el = eij for some j.With this de�nition, F has a unique Groebner basis whi
h has a natural total order:
r1 < . . . < rt if we assume that i1 < . . . < it. Moreover, if ei, ej ∈ supp(rl) for some
l then ei ≡I ej . This last property implies in parti
ular that ei ≡F ej if and only ifthere exists a sequen
e of integers m1, . . . ,mp su
h that ei ∈ supp(rm1

), ej ∈ supp(rmp)and supp(rmj
)∩ supp(rmj+1

) 6= ∅ for ea
h j. Noti
e that our de�nition of the Groebnerbasis is weaker than the usual one sin
e we do not assume that E has a multipli
ativestru
ture. For a general introdu
tion to Groebner bases we refer the reader to [2℄. Noti
ealso that a study of Groebner bases in path algebras of quivers has been made in [8℄.We end this paragraph with a reminder on the exponential and on the logarithm of anendomorphism. If u : E → E is a nilpotent endomorphism, we de�ne the exponential of
u to be exp(u) =

∑

l>0
1
l! u

l. Thus, exp(u) : E → E is a well de�ned linear isomorphismsu
h that exp(u) − Id is nilpotent. If v : E → E is an isomorphism su
h that v − Id isnilpotent, we de�ne the logarithm of v to be log(v) =
∑

l>0(−1)l+1 1
l (v− Id)l. Re
allthat if u : E → E is a nilpotent endomorphism, then log(exp(u)) = u.6



2 Proof of Theorem 1In this se
tion we provide the proof of Theorem 1 (see also [13, thm 1.1℄). We �x A a�nite dimensional basi
 and 
onne
ted k-algebra with quiver Q. Until the end of these
tion we will assume that Q has no oriented 
y
les. The proof of Theorem 1de
omposes into 4 steps as follows, and we will devote a subse
tion to ea
h step:a) If kQ/I and kQ/J are isomorphi
 to A as k-algebras, then there exists ϕ : kQ
∼
−→

kQ a produ
t of transve
tions and of a dilatation su
h that ϕ(I) = J .b) If ϕ(I) = J and if ϕ is a dilatation then π1(Q, I) ≃ π1(Q,J). If ϕ is a transve
tion,then there exists a surje
tive group morphism π1(Q, I) → π1(Q,J) or π1(Q,J) →
π1(Q, I), indu
ed by the identity map on the walks of Q.
) The homotopy relations ∼I of the admissible presentations kQ/I of A 
an bedisplayed as the verti
es of a quiver Γ su
h that for any arrow ∼I→∼J the identity mapon walks indu
es a surje
tive group morphism π1(Q, I) ։ π1(Q,J).d) If k has 
hara
teristi
 zero and if Q has no double bypasses, then the quiver Γhas a unique sour
e, and if ∼I0 is the sour
e of Γ then I0 �ts Theorem 1.2.1 Di�erent presentations of an algebra are linked by produ
ts oftransve
tions and dilatationsIn order to 
onsider A as a k-
ategory we need to 
hoose a de
omposition of the unitinto a sum of pairwise orthogonal primitive idempotents. The following Propositionshows that for the study the presentations of A, this 
hoi
e is irrelevant and that wemay �x these idempotents on
e and for all. We will omit the proof whi
h is basi
 linearalgebra.Proposition 2.1. [13, 3.1℄ Let I and J be admissible ideals of kQ. If kQ/I ≃ kQ/Jas k-algebras then there exists ϕ : kQ

∼
−→ kQ an automorphism equal to the identity mapon Q0 and su
h that ϕ(I) = J .Re
all that GLn(k) is generated by transve
tions and dilatations matri
es. Thefollowing Proposition states an analogous result for the group of automorphisms of kQthat are equal to the identity map on Q0.Proposition 2.2. Let G be the group of automorphisms of kQ that equal the identitymap on Q0. Let D ⊆ G be the subgroup of the dilatations of kQ and let T ⊆ G be thesubgroup generated by the transve
tions. Then T is a normal subgroup and G is thesemi-dire
t produ
t T ⋊ D.Remark 1. The group of automorphism of an algebra was already studied. More pre-
isely the reader 
an �nd in [11℄, [17℄ and [18℄ a study of the group of outer automor-phisms of an algebra.Proof of Proposition 2.2: Obviously we have T ∩D = 1. Moreover, for any transve
-tion ϕ = ϕα,u,τ and any dilatation D we have DϕD−1 = ϕα,u, τλ

µ

where λ ∈ k∗ and
µ ∈ k∗ are su
h that D(u) = λ u and D(α) = µ α. Hen
e, in order to prove theProposition, it is enough to prove that G = T D. To do this, let us �x some notation:for any ψ ∈ G we set n(ψ) to be the number of arrows α ∈ Q1 su
h that ψ(α) 6∈ k∗α.Noti
e that n(ψ) = 0 if and only if ψ ∈ D. Let us prove by indu
tion on n > 0 that
Rn is true where Rn =�if ψ ∈ G and n(ψ) 6 n then there exists g ∈ T su
h that7



gψ ∈ D�. Obviously R0 is true. Let n > 1, assume that Rn−1 is true, and let ψ ∈ Gsu
h that n(ψ) = n. Hen
e there exists x α1−→ y ∈ Q1 su
h that ψ(α1) 6∈ k∗α1. Let
α1, . . . , αd be the arrows x → y of Q and let E = V ect(α1, . . . , αd). Sin
e kQ ψ

−→ kQis an automorphism, ψ indu
es an automorphism of kQ+/(kQ+)2 and the 
omposition
f : E →֒ ykQx

ψ
−→ ykQx ։ E of ψ with the natural in
lusion E →֒ ykQx (resp. thenatural proje
tion ykQx ։ E) is a k-linear isomorphism hen
e an element of GLd(k).Re
all (see [12, Chap. XIII Prop. 9.1℄) that the group GLd(k) is generated by transve
-tions and dilatations matri
es. Thus there exist transve
tions f1, . . . , fl of GLd(k) su
hthat f1 . . . flf(αi) ∈ k∗αi for ea
h i ∈ {1, . . . , d}. For ea
h fj, let f̄j : kQ → kQ be theautomorphism su
h that f̄j(αi) = fj(αi) for ea
h i ∈ {1, . . . , d} and su
h that f̄j(β) = βfor any arrow β not parallel to α1. In parti
ular, f̄j is a transve
tion with respe
t tosome αij . Let g1 = f̄1 . . . f̄d, then g1ψ(αi) ∈ k

∗αi+(kQ+)2, and if β ∈ Q1 is not parallelto α1 and satis�es ψ(β) ∈ k∗β then g1ψ(β) ∈ k∗β. Let ψ1 = g1ψ. By 
onstru
tion, forea
h i ∈ {1, . . . , d}, we have ψ1(αi) = λi αi +
∑ni

j=1 τi,j ui,j with ui,j paths of lengthat least 2. Let ϕi,j be the transve
tion ϕαi,ui,j ,−τi,j/λi
for ea
h i ∈ {1, . . . , d} and ea
h

j ∈ {1, . . . , ni}, and let g2 ∈ T be the produ
t of the ϕi,j's (for any i ∈ {1, . . . , d}and any j ∈ {1, . . . , ni}). It is easy to 
he
k that the ϕi,j 's are pairwise 
ommutinghen
e the de�nition of g2 is unambiguous. Sin
e Q has no oriented 
y
les, for ea
h i wehave g2ψ1(αi) = λiαi and g2ψ1(β) ∈ k∗β if β ∈ Q1 is not parallel to α1 and satis�es
ψ1(β) ∈ k∗β. In parti
ular n(g2g1ψ) < n(ψ) = n. Sin
e Rn−1 is true, there exists
g3 ∈ T su
h that g3g2g1ψ ∈ D. Hen
e Rn is true for any n > 0. This a
hieves the proofof Proposition 2.2. �Remark 2. Propositions 2.1 and 2.2 imply that if I and J are admissible ideals of kQsu
h that kQ/I ≃ kQ/J as k-algebras, then there exist ϕ1, . . . , ϕn (resp. ϕ′

1, . . . , ϕ
′
n) asequen
e of transve
tions of kQ, together with D a dilatation su
h that J = Dϕn . . . ϕ1(I)(resp. J = ϕ′

n . . . ϕ
′
1D(I)).2.2 Comparison of the fundamental group of two presentations of analgebra linked by a transve
tion or a dilatationIf I is an ideal and ϕ is a dilatation or a transve
tion, then I and ϕ(I) are 
lose enoughin order to 
ompare the asso
iated homotopy relations. Before stating this 
omparisonwe prove two useful Lemmas.Lemma 2.1. Let I be an admissible ideal of kQ, let ϕ = ϕα,u,τ be a transve
tionand set J = ϕ(I). Assume that α 6∼I u and let r ∈ yIx be a minimal relation withnormal form r =
∑

C λc θc +
∑

B λb vbαub su
h that α does not appear in the path
θc for any c ∈ C. Then there exists a minimal relation r′ ∈ yJx with normal form
r′ =

∑

C λc θc +
∑

B λb vbαub +
∑

B′ λbτ vbuub where B′ ⊆ B.Proof: Let us assume B 6= ∅ (if B = ∅, the 
on
lusion is immediate). Sin
e Q has nooriented 
y
les, the paths vb and ub do not 
ontain α. Sin
e r is a minimal relation of
I and sin
e α 6∼I u, we have θc 6= vbuub for any c ∈ C, b ∈ B. Therefore, ϕ(r) has anormal form ϕ(r) =

∑

C λc θc +
∑

B λb vbαub +
∑

B λbτ vbuub ∈ yJx\{0}. Thus thereexists a minimal relation r′ ∈ yJx with normal form r′ =
∑

C′ λc θc +
∑

B′

1
λb vbαub +

∑

B′ λbτ vbuub su
h that ∅ 6= B′
1 ⊆ B, C ′ ⊆ C and B′ ⊆ B. Hen
e ϕ−1(r′) has a normalform ϕ−1(r′) =

∑

C′ λc θc +
∑

B′

1
λb vbαub +

∑

B′\B′

1
λbτ vbuub −

∑

B′

1
\B′ λbτ vbuub ∈8



yIx\{0}. Sin
e r ∈ yIx is a minimal relation and sin
e α 6∼I u we infer that there existsa minimal relation r′′ ∈ yIx with normal form r′′ =
∑

C′′ λc θc +
∑

B′′ λb vbαub su
hthat C ′′ ⊆ C ′ ⊆ C and ∅ 6= B′′ ⊆ B′
1. This for
es C ′′ = C and B′′ = B be
ause r ∈ yIxis a minimal relation. Thus C ′ = C and B′

1 = B. Hen
e we have a minimal relation
r′ ∈ yJx with normal form r′ =

∑

C λc θc+
∑

B λb vbαub+
∑

B′ λbτ vbuub as announ
ed.
�Lemma 2.2. Let I be an admissible ideal of kQ, let ϕ = ϕα,u,τ be a transve
tion andset J = ϕ(I). Assume that α ∼J u and let r ∈ yIx be a minimal relation. Then v ∼J wfor any v,w ∈ supp(r).Proof: We may write r =

∑

C λc θc +
∑

B λb vbαub + µb vbuub so as:. λc, λb ∈ k∗ and µb ∈ k for any c ∈ C and b ∈ B,. the paths θc, vbαub, vb′uub′ (c ∈ C, b, b′ ∈ B) are pairwise distin
t,. for any c ∈ C, the path θc does not 
ontain α.Hen
e ϕ(r) =
∑

C λc θc +
∑

B λb vbαub + (µb + τλb) vbuub ∈ yJx and there exists ade
omposition ϕ(r) = r1 + . . .+ rn where ri ∈ yJx is a minimal relation and supp(ri)∩
supp(rj) = ∅ if i 6= j. If B = ∅ then ϕ(r) = r ∈ yJx is a minimal relation andthe Lemma is proved. Hen
e we may assume that B 6= ∅. This implies that for any
i ∈ {1, . . . , n} there exists b ∈ B su
h that vbαub ∈ supp(ri) or vbuub ∈ supp(ri)(if this is not the 
ase then ri =

∑

C′ λc θc for some non empty subset C ′ of C, thus
ϕ−1(ri) =

∑

C′ λc θc ∈ yIx whi
h 
ontradi
ts the minimality of r). Let ≡ be the smallestequivalen
e relation on the set {1, . . . , n} su
h that: i ≡ j if there exists b ∈ B su
hthat vbαub ∈ supp(ri) and vbuub ∈ supp(rj). Sin
e the ri's are minimal relations of Jand sin
e α ∼J u, we get: if i ≡ j then v ∼J w for any v,w ∈ supp(ri) ⊔ supp(rj).Let O ⊆ {1, . . . , n} be a ≡-orbit and let r′ =
∑

i∈O ri ∈ yJx. Hen
e r′ =
∑

C′ λc θc +
∑

B′ λb vbαub + (µb + τλb) vbuub where C ′ ⊆ C and ∅ 6= B′ ⊆ B. This implies that
ϕ−1(r′) =

∑

C′ λc θc +
∑

B′ λb vbαub + µb vbuub ∈ yIx and the minimality of r yields
C ′ = C, B′ = B, r′ = ϕ(r) and O = {1, . . . , n}. Hen
e {1, . . . , n} is an ≡-orbit.Therefore v ∼J w for any v,w ∈ supp(ϕ(r)). And sin
e α ∼J u we infer that v ∼J wfor any v,w ∈ supp(r). �We 
an now state the announ
ed 
omparison. For the sake of simpli
ity, the wordgenerated for an equivalen
e relation on the set of walks in Q stands for: generated asan equivalen
e relation whi
h is 
ompatible with the 
on
atenation of walks and whi
hsatis�es ex ∼ α−1α and ey ∼ αα−1 for any arrow x

α
−→ y.Proposition 2.3. [13, 3.2℄ Let I be an admissible ideal of kQ, let ϕ be an automorphismof kQ and set J = ϕ(I). If ϕ is a dilatation, then ∼I and ∼J 
oin
ide. Assume nowthat ϕ = ϕα,u,τ is a transve
tion.a) if α ∼I u and α ∼J u then ∼I and ∼J 
oin
ide.b) if α 6∼I u and α ∼J u then ∼J is generated by ∼I and α ∼J u.
) if α 6∼I u and α 6∼J u then I = J and ∼I and ∼J 
oin
ide.Remark 3. The following impli
ation (symmetri
 to b)):if α ∼I u and α 6∼J u then ∼I is generated by ∼J and α ∼I uis also satis�ed sin
e ϕ−1

α,u,τ = ϕα,u,−τProof of Proposition 2.3: If ϕ is a dilatation, then ∼I and ∼J 
oin
ide be
ause forany r ∈ ykQx we have supp(r) = supp(ϕ(r)) and be
ause r is a minimal relation of I9



if and only if the same holds in J . Let us assume that ϕ = ϕα,u,τ is a transve
tion.a) The Lemma 2.2 applied to I, J, ϕ (resp. J, I, ϕ−1 = ϕα,u,−τ ) shows that any twopaths appearing in a same minimal relation of I (resp. J) are ∼J -equivalent (resp.
∼I -equivalent). Hen
e ∼I and ∼J 
oin
ide.b) Let ≡ be the equivalen
e relation generated by: (v ∼I w ⇒ v ≡ w) and α ≡ u. Ouraim is to show that ∼J and ≡ 
oin
ide. Thanks to Lemma 2.2 we have: v ≡ w ⇒ v ∼J

w. Let Min(I) be the set of the minimal relations of I. For ea
h r ∈ Min(I) let us�x a normal form r =
∑

C λc θc +
∑

B λb vbαub satisfying the hypotheses of Lemma2.1. Hen
e there exists B′ ⊆ B and a minimal relation r1 of J with normal form
r1 =

∑

C λc θc+
∑

B λb vbαub+
∑

B′ λbτ vbuub. Thus ϕ(r)−r1 =
∑

B\B′ τλb vbuub ∈ J
an be written as a sum r2 + . . . + rnr of minimal relations of J with pairwise disjointsupports. In parti
ular, ϕ(r) = r1 + . . . + rnr where ea
h ri ∈ J is a minimal relation.Noti
e that any two paths appearing in r1 are ≡-equivalent be
ause of the normalform of r1 and be
ause of the de�nition of ≡. With these notations, the set {ri | r ∈
Min(I) and 1 6 i 6 nr} is made of minimal relations of J and generates the ideal J .Thus, in order to show that ∼J and ≡ 
oin
ide, it is enough to show that any two pathsappearing in some ri are ≡-equivalent. Let r ∈Min(I), let i ∈ {1, . . . , nr}, and let v,wbe two paths appearing in ri. We have already proved that if i = 1 then v ≡ w, thuswe may assume that i > 2. Keeping the above notations for the normal form of r, thereexist b, b′ ∈ B su
h that v = vbuub and w = vb′uub′ . Sin
e α ≡ u and sin
e any two pathsappearing in r1 are ≡-equivalent we get v = vbuub ≡ vbαub ≡ vb′αub′ ≡ vb′uub′ = w.Hen
e any two paths appearing in some ri are ≡-equivalent. This implies that ∼J and
≡ 
oin
ide. Therefore, ∼J is generated by ∼I and α ∼J u.
) Let r ∈ I be a minimal relation of I and apply Lemma 2.1 to r. Sin
e α 6∼J u, weinfer that r ∈ J . Sin
e I is generated by its minimal relations we get I ⊆ J . Finally,
I = J be
ause I and J have the same dimension. �Remark 4. In the situation b) of Proposition 2.3 the identity map on the walks of Qindu
es a surje
tive group morphism π1(Q, I) ։ π1(Q,J).The Proposition 2.3 allows us to prove the following result whi
h has already beenproved in [4℄. Re
all that the algebra kQ/I, where I is admissible, is 
alled 
onstri
tedif dim y(kQ/I)x = 1 for any arrow x→ y of Q.Proposition 2.4 (see also [4℄). Assume that A is 
onstri
ted. Then di�erent ad-missible presentations of A yield the same homotopy relation. In parti
ular, they haveisomorphi
 fundamental groups.Proof: Noti
e that if ν : kQ/J

∼
−→ A is any admissible presentation and if (α, u) is abypass in Q then u ∈ J be
ause A is 
onstri
ted and J is admissible. Let us assume thatthe 
on
lusion of the Proposition 2.4 is false. From Remark 2 and Proposition 2.3 wededu
e that there exist two presentations kQ/I ≃ A and kQ/J ≃ A, and a transve
tion

ϕα,u,τ su
h that: J = ϕα,u,τ (I), α 6∼I u and α ∼J u. Let r ∈ I be a minimal relation.Thanks to Lemma 2.1 we know that there exist paths vbuub and s
alars λb ∈ k∗ (b ∈ B)su
h that r +
∑

b∈B λb vbuub ∈ J . Sin
e u ∈ J we get r ∈ J for any minimal relation rof I. Hen
e I ⊆ J , and I = J be
ause dimk I = dimk J . This 
ontradi
ts the property:
α 6∼I u and α ∼J u. Hen
e the homotopy relation does not depend on the presentationof A. �If ∼ and ∼′ are homotopy relations, we will say that ∼′ is a dire
t su

essor (seealso [13, se
t. 3℄) of ∼ if there exist admissible ideals I and J of kQ, together with10



a transve
tion ϕ = ϕα,u,τ su
h that ∼=∼I , ∼′=∼J , J = ϕ(I), α 6∼I u and α ∼J u.Noti
e that I, J, ϕ need not be unique.2.3 The quiver Γ of the homotopy relations of the presentations ofthe algebraDe�nition 2.1. [13, 4.1℄ We de�ne the quiver Γ as follows:. Γ0 is the set of homotopy relations of the admissible presentations of A:
Γ0 = { ∼I | I is admissible and kQ/I ≃ A}. there is an arrow ∼→∼′ if and only if ∼′ is a dire
t su

essor of ∼.Example 2. Assume that A = kQ/I where Q is

c

��?
??

??
??

a
//

b
??������� d //and I =< da >. Let J =< da − dcb >. Using Proposition 2.3 one 
an show that Γis equal to: ∼I // ∼J . Noti
e that the identity map on walks indu
es a surje
tivegroup morphism Z ≃ π1(Q, I) ։ π1(Q,J) ≃ 1.The author thanks Mariano Suárez-Alvarez for the following remark:Remark 5. A homotopy relation is determined by its restri
tion to the paths in Q withlength at most the radi
al length of A. Thus there are only �nitely many homotopyrelations. This argument shows that Γ is �nite.The following Proposition states some additional properties of Γ and is a dire
t
onsequen
e of Remark 2 and Proposition 2.3.Proposition 2.5. Assume Q has no oriented 
y
les and let m be the number of bypassesin Q. Then Γ is 
onne
ted and has no oriented 
y
les. Any vertex of Γ is the sour
e ofat most m arrows and any oriented path in Γ has length at most m.Remark 6. A

ording to Remark 4, if there is a path in Γ with sour
e ∼I and target ∼J ,then the identity map on the walks in Q indu
es a surje
tive group morphism π1(Q, I) ։

π1(Q,J). Moreover, sin
e Γ is �nite, any vertex of Γ is the target of a (�nite) path thesour
e of whi
h is a sour
e of Γ (i.e. a vertex with no arrow arriving at it). As a
onsequen
e, if Γ has a unique sour
e ∼I0 then the fundamental group of any admissiblepresentation of A is a quotient of π1(Q, I0).2.4 The uni
ity of the sour
e of Γ and the proof of Theorem 1Noti
e that up to now we have used neither the 
hara
teristi
 of k nor the possible nonexisten
e of double bypasses in Q. These hypotheses will be needed in order to provethe uniqueness of the sour
e of Γ. The 
omplete proof of the uni
ity of the sour
e of Γis somewhat te
hni
al. For this reason we deal with the te
hni
al 
onsiderations in thetwo Lemmas that follow.
11



Lemma 2.3. Let E be a �nite dimensional k-ve
tor spa
e endowed with a totally orderedbasis e1 < . . . < en. Assume that k has 
hara
teristi
 zero. Let ν : E → E be a linearmap su
h that ν(ei) ∈ Span(ej ; j < i) for any i ∈ {1, . . . , n}, and let I and J be twosubspa
es of E su
h that the following 
onditions are satis�ed:a) ψ(I) = J where ψ : E → E is equal to exp(ν).b) if ei ∈ supp(ν(ej)) then ei 6≡I ej and ei 6≡J ej .Then I and J have the same Groebner basis and I = J .Proof: Let us prove Lemma 2.3 by indu
tion on n. If n = 1 the equality is obvious solet us assume that n > 1 and that the 
on
lusion of Lemma 2.3 holds for dimensionsless than n. We will denote by r1 < . . . < rp (resp. r′1 < . . . < r′p) the Groebner basisof I (resp. of J) and we will write i1, . . . , ip (resp. i′1, . . . , i′p) for the integers su
h that
rj ∈ eij + Span(ei ; i < ij) (resp. r′j ∈ ei′j + Span(ei ; i < i′j)). In order to prove that
I = J we will prove the following four fa
ts:a) the two sequen
es i1 < . . . < ip and i′1 < . . . < i′p 
oin
ide,b) ψ(r1) = r′1,
) r1 = r′1 and ν(r1) = 0 (using the indu
tion hypothesis on E/k.e1),d) r2 = r′2, . . . , rp = r′p (using the indu
tion hypothesis on E/k.r1).a) For simpli
ity let us set Ei = Span(ej ; j 6 i). Sin
e ν(ej) ∈ Ej−1 and rj ∈
eij +Eij−1, and sin
e ψ = exp(ν), we get ψ(rj) ∈ J∩

(

eij + Eij−1

) for any j. Hen
e, thede�nition of the Groebner basis of J for
es {i1, . . . , ip} ⊆ {i′1, . . . , i
′
p} and the 
ardinalityand the ordering on these two sets imply that i1 = i′1, . . . , ip = i′pb) Sin
e i1 = i′1 we infer that ψ(r1) − r′1 ∈ J ∩ Ei1−1. The de�nition of the Groebnerbasis of J then for
es ψ(r1) − r′1 = 0.
) Let us prove that r1 = r′1. Noti
e that the de�nition of a Groebner basis and theequalities ψ(r1) = r′1 and ψ(e1) = e1 for
e: e1 ∈ I ⇔ r1 = e1 ⇔ r′1 = e1 ⇔ e1 ∈ J .Hen
e we may assume that e1 6∈ I and e1 6∈ J .Let Ẽ = E/k.e1 and let π : E ։ Ẽ be the natural proje
tion. We will write x̃ for

π(x). Similarly we set Ĩ = π(I) and J̃ = π(J). In parti
ular Ẽ has a totally orderedbasis: ẽ2 < . . . < ẽn. Sin
e ν(e1) = 0 and sin
e ψ(e1) = e1, the mappings ν and ψindu
e linear mappings ν̃, ψ̃ : Ẽ → Ẽ. It follows from the properties of ν and ψ that
ψ̃(Ĩ) = J̃ , that ν̃(ẽi) ∈ Span(ẽj ; 2 6 j < i) for any i > 2, that ψ̃ = exp(ν̃), and that
supp(ν̃(ẽi)) = { ẽj| j > 2 and ej ∈ supp(ν(ei))} for any i > 2. Moreover, with thede�nition of the Groebner basis of I we get:. r̃j ∈ ẽij + Span(ẽi ; i < ij) for any j (re
all that e1 6∈ I),. supp(r̃j) = {ẽi | i > 2 and ei ∈ supp(rj)} for any j.Therefore r̃1 < . . . < r̃p is the Groebner basis of Ĩ and: ẽi ≡Ĩ ẽj ⇒ ei ≡I ej . Similarly
r̃′1 < . . . < r̃′p is the Groebner basis of J̃ and: ẽi ≡J̃ ẽj ⇒ ei ≡J ej . Using the abovedes
ription of supp(ν̃(ẽi)) together with the above link between ≡I (resp. ≡J) and ≡Ĩ(resp. ≡J̃) we infer that:

ẽi 6≡Ĩ ẽj and ẽi 6≡J̃ ẽj as soon as ẽj ∈ supp(ν̃(ẽi))For this reason we may apply the indu
tion hypothesis to Ẽ, Ĩ and J̃ . Hen
e Ĩ and J̃have the same Groebner basis and r̃1 = r̃′1 i.e. r′1 = r1 + λ e1 with λ ∈ k. Therefore12



(ψ−Id)(r1) = λ e1, and sin
e ψ(e1) = e1 we get ν(r1) = log(ψ)(r1) = λ e1. Assume that
λ 6= 0 i.e. e1 ∈ supp(ν(r1)). Thus there exists ei ∈ supp(r1) su
h that e1 ∈ supp(ν(ei)).This implies that e1 6≡I ei, and sin
e any two elements in supp(r1) are ≡I -equivalent,this for
es e1 6∈ supp(r1). Hen
e ei, e1 ∈ supp(r′1) = supp(r1) ⊔ {e1} and therefore
ei ≡J e1. This 
ontradi
ts e1 ∈ supp(ν(ei)) and shows that λ = 0, that r1 = r′1 andthat ν(r1) = 0.d) Let us show that r2 = r′2, . . . , rp = r′p. For this purpose we will apply the indu
tionhypothesis to Ē = E/k.r1. Let q : E ։ Ē be the natural proje
tion. We will write ēi(resp. Ī, J̄ , r̄j, r̄′j) for q(ei) (resp. q(I), q(J), q(rj), q(r′j)). Hen
e Ē has a totally orderedbasis: ē1 < . . . < ēi1−1 < ēi1+1 < . . . < ēn. Sin
e ν(r1) = 0 and sin
e ψ(r1) = r1, themappings ν and ψ indu
e linear mappings ν̄, ψ̄ : Ē → Ē. These mappings obviouslysatisfy ψ̄(Ī) = Ī, ν̄(ēi) ∈ Span(ēj ; j 6= i1 and j < i) for any i 6= i1, and ψ̄ = exp(ν̄).Moreover, our 
hoi
e for the basis of Ē and the de�nition of the Groebner basis of Iimply that:. supp(r̄j) = {ēi | ei ∈ supp(rj)} for any j > 2,. r̄2 < . . . < r̄p is the Groebner basis of Ī.These two properties imply in parti
ular that: ēi ≡Ī ēj ⇒ ei ≡I ej for any i, j 6= i1.The 
orresponding properties hold for J̄ (repla
e rj by r′j , I by J and Ī by J̄). Thus,in order to apply the indu
tion hypothesis to Ē it only remains to prove that: ēj ∈
supp(ν̄(ēi)) ⇒ ēi 6≡Ī ēj and ēi 6≡J̄ ēj for any i, j 6= i1. Assume that i, j 6= i1 satisfy
ēj ∈ supp(ν̄(ēi)). From the de�nition of Ē and ν̄ we know that:. supp(ν̄(ēi)) = {ēl | el ∈ supp(ν(ei))} if ei1 6∈ supp(ν(ei)),. supp(ν̄(ēi)) ⊆ {ēl | el ∈ supp(ν(ei)) and l 6= i1} ∪ {ēl | l < i1 and el ∈ supp(r1)}if ei1 ∈ supp(ν(ei)).Let us distinguish the 
ases ej ∈ supp(ν(ei)) and ej 6∈ supp(ν(ei)):

· if ej ∈ supp(ν(ei)) then ei 6≡I ej and ei 6≡J ej and the above 
omparison between
≡I (resp. ≡J) and ≡Ī (resp. ≡J̄) yields ēi 6≡Ī ēj and ēi 6≡J̄ ēj .

· if ej 6∈ supp(ν(ei)) then ne
essarily ei1 ∈ supp(ν(ei)) and ej ∈ supp(r1). Sin
e
r1 = r′1, the property ej ∈ supp(r1) implies that ej ≡I ei1 and ej ≡J ei1 . On the otherhand, the property ei1 ∈ supp(ν(ei)) implies that ei1 6≡I ei and ei1 6≡J ei. Therefore
ej 6≡I ei and ej 6≡J ei and �nally ēj 6≡Ī ēi and ēj 6≡J̄ ēi.Thus all the 
onditions of Lemma 2.3 are satis�ed for Ē, Ī, J̄ , ν̄. For this reason we 
anapply the indu
tion hypothesis whi
h gives: Ī and J̄ have the same Groebner basis. Weinfer that q(ri) = q(r′i) for ea
h i = 2, . . . , p. Hen
e for ea
h i > 2 there exists λi ∈ ksu
h that ri = r′i + λi r1, and λi is ne
essarily zero be
ause e∗i1(ri) = e∗i1(ri) = 0 (
f thede�nition of a Groebner basis). Therefore ri = r′i for ea
h i = 1, . . . , p and I = J asannoun
ed. �Lemma 2.4. Let ϕ : kQ → kQ be an automorphism equal to the identity map on Q0.Let I be an admissible ideal of kQ and set J = ϕ(I). Suppose that k has 
hara
teristi
zero. Suppose that for any arrow α there is a normal form ϕ(α) = α +

∑

i λi ui whereea
h ui satis�es: α 6∼I ui and α 6∼J ui, and ϕ(a) = a for any arrow appearing in ui (inparti
ular ϕ(ui) = ui). Then I and J 
oin
ide.Proof: Let E be the ve
tor spa
e ⊕x 6=y ykQx. Hen
e E is �nite dimensional sin
e Qhas no oriented 
y
les, and I and J 
an be 
onsidered as subspa
es of E. In order to13



apply Lemma 2.3 to E, I, J , we need to exhibit a totally ordered basis of E togetherwith a mapping ν : E → E. Let us take the non trivial paths in Q for the basis of E.For short, we will write path for non trivial path. The following 
onstru
tion of a totalorder < on this basis is taken from [8℄. Let us �x a total order on Q1 (whi
h is �nite)and let ≺ be the indu
ed lexi
ographi
al order on the paths in Q. If u is a path we let
W (u) be the number of arrows α ∈ Q1 appearing in u and su
h that ϕ(α) 6= α. Hen
e,for any α ∈ Q1, we have W (α) = 0 if ϕ(α) = α and W (α) = 1 if ϕ(α) 6= α. The totalorder < is then de�ned as follows:

u < v ⇔







W (u) < W (v)
or
W (u) = W (v) and u ≺ vThis yields: e1 < . . . < en a totally ordered basis of E made of the non trivial paths in

Q. Noti
e that with this basis, the equivalen
e relations ≡I and ∼I (resp. ≡J and ∼J)satisfy the following property: ei ≡I ej ⇒ ei ∼I ej (resp. ei ≡J ej ⇒ ei ∼J ej). Let
ν : kQ → kQ be the derivation (i.e. the fun
tor su
h that ν(vu) = ν(v)u + vν(u) forany u and v) su
h that ν(α) = ϕ(α)−α for any arrow α ∈ Q1. We will write ν : E → Efor the indu
ed map on E. Thus, for any path u and any v ∈ supp(ν(u)) there existan arrow α ∈ Q1 together with paths u1, u2, u3 su
h that u = u3αu1, v = u3u2u1and u2 ∈ supp(ν(α)). Noti
e that with the assumptions made on ϕ, this implies that
ei 6≡I ej and ei 6≡J ej as soon as ej ∈ supp(ν(ei)). Moreover, for any α ∈ Q1 andany u ∈ supp(ν(α)) we have W (u) = 0 hen
e ν ◦ ν(α) = 0. Sin
e ν : kQ → kQ isa derivation, we infer that: ej ∈ supp(ν(ei)) ⇒ W (ej) < W (ei) ⇒ ej < ei. Hen
e
ν(ei) ∈ Span(ej ; j < i) for any i. In order to apply Lemma 2.3, it only remains toprove that J = exp(ν)(I). To do this it su�
es to prove that ϕ = exp(ν). This equalityis easily 
he
ked on any path in Q by indu
tion on the length of the path using thefa
t that ν is a derivation, that ϕ(α) = α + ν(α) and that ν ◦ ν(α) = 0 for any arrow
α. Hen
e, the data E, I, J, ν together with the ordered basis e1 < . . . < en satisfy thehypotheses of Lemma 2.3 whi
h implies that I = J . �The uniqueness of the sour
e of Γ is given by the following result.Proposition 2.6. [13, 4.3℄ Assume that A satis�es the hypotheses made before statingTheorem 1, then Γ has a unique sour
e.Proof: Noti
e that any two transve
tions of kQ 
ommute sin
e Q has no double by-passes. Let ∼ and ∼′ be sour
es of Γ. Let I and J be admissible ideals of kQ su
hthat kQ/I ≃ A ≃ kQ/J and su
h that ∼=∼I and ∼′=∼J . A

ording to Remark 2there exist a sequen
e of transve
tions ϕ1 = ϕα1,u1,τ1 , . . . , ϕn = ϕαn,un,τn of kQ anda dilatation D su
h that J = ϕn . . . ϕ1D(I). Thanks to Lemma 2.3 we know that
∼I=∼D(I). Thus, in order to prove that ∼=∼′, we may assume that D = IdkQ and
J = ϕn . . . ϕ1(I). Moreover we may assume that n is the smallest non negative integersu
h that there exist I, J and a sequen
e of transve
tions ϕ1, . . . , ϕn satisfying ∼=∼I ,
∼′=∼J and J = ϕn . . . ϕ1(I). Let us prove that αi 6∼I ui for any i ∈ {1, . . . , n}. If iis su
h that αi ∼I ui then Proposition 2.3 implies that ∼I=∼ϕi(I) sin
e ∼I is a sour
eof Γ. Hen
e ∼=∼ϕi(I), ∼′=∼J and J = ϕn . . . ϕi+1ϕi−1 . . . ϕ1(ϕi(I)) whi
h 
ontradi
tsthe minimality of n. Thus αi 6∼I ui for any i and the same arguments apply to J sin
e
I = ϕ−1

1 . . . ϕ−1
n (J) and ∼J is a sour
e of Γ. Hen
e αi 6∼J ui for any i. This shows thatthe data I, J, ϕn . . . ϕ1 satisfy the hypotheses of Lemma 2.4. We infer that I = J andthat ∼=∼′ 
oin
ide. This shows that Γ has a unique sour
e. �14



The Proposition 2.6 and the Remark 6 prove the Theorem 1:Theorem 1. (see also [13, thm 1.1℄) Let A be a basi
 
onne
ted �nite dimensionalalgebra over a �eld of 
hara
teristi
 zero. If the quiver Q of A has no double bypasses,then there exists a presentation kQ/I0 ≃ A with quiver and admissible relations su
hthat for any other admissible presentation kQ/I ≃ A, the identity map on walks indu
esa surje
tive group morphism π1(Q, I0) ։ π1(Q, I).The following example shows that one 
annot remove the hypothesis on the 
hara
-teristi
 of k in Proposition 2.6:Example 3. Let Q be the following quiver without double bypasses:
c

��?
??

??
?? f

��?
??

??
??

b
??�������
a

//

e
??�������
d

//Set u = cb and v = fe. Set A = kQ/I0 where I0 =< da + vu, va + du >. Then
π1(Q, I1) = Z/2. Let I1 and I2 be the ideals de�ned below:

• I1 = ϕa,u,1(I0) =< da+ du+ vu, va+ du+ vu >,
• I2 = ϕa,u,−1 ◦ ϕd,v,−1(I1) =< da, va+ du− 2vu >.Hen
e A ≃ kQ/I1 ≃ kQ/I2. If car(k) = 0, then π1(Q, I1) = π1(Q, I2) = 1 and Γ isequal to ∼I0 // ∼I1 . Suppose now that car(k) = 2. Then I2 =< da, va + du >,

π1(Q, I0) ≃ Z/2, π1(Q, I1) = 1, π1(Q, I2) ≃ Z and Γ is equal to:
∼I0

""F
FFF

FF
FF

∼I2

||xx
xx

xxx
x

∼I1Hen
e Γ has two sour
es. Noti
e that the identity map on walks indu
es a surje
tivegroup morphism π1(Q, I2) ։ π1(Q, I0). Noti
e also that one 
an build similar examplesfor any non zero value p of car(k) by taking for Q a sequen
e of p bypasses.3 Preliminaries on 
overing fun
torsIn this se
tion we give some useful fa
ts on 
overing fun
tors.Lemma 3.1. Let p : E → B and q : E ′ → B be fun
tors where E is 
onne
ted. Let
r, r′ : E → E ′ be su
h that q◦r = q◦r′ = p. If there exists x0 ∈ E0 su
h that r(x0) = r′(x0)then r = r′.Proof: Sin
e q is a 
overing fun
tor, for any u ∈ yEx\{0} we have:

(r(x) = r′(x) or r(y) = r′(y)) ⇒ (r(u) = r′(u), r(x) = r′(x) and r(y) = r′(y)) (⋆)Assume that there exists x0 ∈ E0 su
h that r(x0) = r′(x0). Sin
e E is 
onne
ted, for any
x ∈ E0 there exists a sequen
e x0, . . . , xn = x of obje
ts of E together with a non zeromorphism between xi and xi+1 for any i. This implies (thanks to (⋆)) that r(x) = r′(x).Thus r and r′ 
oin
ide on E0 and (⋆) implies r = r′. �The following Proposition generalises the result [14, Prop. 3.3℄. Using Lemma 3.1its proof is immediate.Proposition 3.1. Let F : E → B be a 
overing fun
tor where E is 
onne
ted. Then
E is an Aut(F )-
ategory. Moreover, F is a Galois 
overing if and only if Aut(F )15



a
ts transitively on ea
h F−1(x). Finally if F is Galois 
overing with group G, then
G = Aut(F ).Proposition 3.2. Let p : E → B and q : F → E be fun
tors where E is 
onne
ted andset r = p ◦ q : F → B. Then p, q, r are 
overing fun
tors as soon as two of them are so.Proof: We only need to prove that if p and r are 
overing fun
tors then q−1(x) 6= ∅for any x ∈ E0 (the other properties are basi
 linear algebra). Assume that p and rare 
overing fun
tors. Sin
e q is a 
overing fun
tor, for any u ∈ yEx\{0} we have:
q−1(x) 6= ∅ ⇔ q−1(y) 6= ∅ (⋆). Fix x̂0 ∈ F0 and set x0 = q(x̂0), thus q−1(x0) 6= ∅. The
onne
tedness of E and (⋆) imply that q−1(x) 6= ∅ for any x ∈ E0. �Proposition 3.3. Let p : C → B (resp. q : C′ → B) be a 
onne
ted Galois 
overing withgroup G (resp. G′) and assume there exists a 
ommutative diagram of k-
ategories and
k-linear fun
tors where ϕ is an isomorphism equal to the identity map on B0:

C
r //

p

��

C′

q

��
B

∼
ϕ

// BThen there exists a unique mapping λ : G→ G′ su
h that r ◦ g = λ(g) ◦ r for any g ∈ G.Moreover λ is a surje
tive morphism of groups and r is a Galois 
overing with group
Ker(λ).Proof: Thanks to Proposition 3.2, r is a 
overing fun
tor. Fix x̂0 ∈ C and set x0 =
p(x̂0). For any g ∈ Aut(p) we have q(r(x̂0)) = x0 = q(r(g(x̂0))). Sin
e q is Galois withgroup G′, there exists a unique λ(g) ∈ G′ su
h that λ(g)(r(x̂0)) = r(g(x̂0)), and Lemma3.1 yields λ(g) ◦ r = r ◦ g. Hen
e: (∀g ∈ G) (∃!λ(g) ∈ G′) λ(g) ◦ r = r ◦ g. This lastproperty shows the existen
e and the uniqueness of λ. It also shows that λ : G→ G′ isa group morphism and that Aut(r) = Ker(λ). Moreover, λ is surje
tive be
ause of itsde�nition and be
ause p is Galois with group G. Finally Proposition 3.1 shows that ris a Galois 
overing with group Ker(λ). �4 The universal 
over of an algebraIn this se
tion we will prove Theorem 2. Let Q be a 
onne
ted quiver without oriented
y
les and let x0 ∈ Q0 for the 
omputation of the groups π1(Q, I). If there is noambiguity we will write [w] for the homotopy 
lass of a walk w.Lemma 4.1. Let I be an admissible ideal of kQ, let D be a dilatation of kQ and set
J = D(I). Let λ : π1(Q, I)

∼
−→ π1(Q,J) be the isomorphism given by Proposition 2.3.Let p : (Q̃, Ĩ) → (Q, I) (resp. q : (Q̂, Ĵ) → (Q,J)) be the universal Galois 
overing withgroup π1(Q, I) (resp. π1(Q,J)). Then there exists an isomorphism ψ : kQ̃/Ĩ

∼
−→ kQ̂/Ĵsu
h that the following diagram 
ommutes:

kQ̃/Ĩ
ψ //

p̄

��

kQ̂/Ĵ

q̄

��
kQ/I

D̄ // kQ/J16



where D̄, p̄ and q̄ are indu
ed by D, p and q respe
tively.Moreover, ψ satis�es: ψ ◦ g = λ(g) ◦ ψ for any g ∈ π1(Q, I).Proof: We have Q̂ = Q̃ sin
e ∼I and ∼J 
oin
ide (see Proposition 2.3). Set D̂ : kQ̃→
kQ̂ to be de�ned by: D̂(a, [w]) = (D(a), [w]) for any arrow (a, [w]) ∈ Q̃1. By 
onstru
-tion D̂ is an automorphism of kQ and D̂(Ĩ) = Ĵ . Set ψ : kQ̃/Ĩ

∼
−→ kQ̂/Ĵ to be indu
edby D̂. It is then easy to 
he
k all announ
ed properties. �Lemma 4.2. Let I be an admissible ideal of kQ, let ϕ = ϕα,u,τ be a transve
tion,set J = ϕ(I) and assume that α ∼J u. Let λ : π1(Q, I) ։ π1(Q,J) be the surje
tiongiven by Proposition 2.3. Denote by p : (Q̃, Ĩ) → (Q, I) (resp. by q : (Q̂, Ĵ) → (Q,J))the universal Galois 
overing with group π1(Q, I) (resp. π1(Q,J)). Then there existsa Galois 
overing ψ : kQ̃/Ĩ

∼
−→ kQ̂/Ĵ with group Ker(λ) and su
h that the followingdiagram 
ommutes:

kQ̃/Ĩ
ψ //

p̄

��

kQ̂/Ĵ

q̄

��
kQ/I

ϕ̄ // kQ/Jwhere ϕ̄, p̄ and q̄ are indu
ed by ϕ, p and q respe
tively.Moreover, ψ satis�es: ψ ◦ g = λ(g) ◦ ψ for any g ∈ π1(Q, I).Proof: Let ϕ′ : kQ̃ → kQ̂ be de�ned by: ϕ′([w]) = [w] for any [w] ∈ Q̃0, ϕ′(β, [w]) =
(β, [w]) for any (β, [w]) ∈ Q̃1 su
h that β 6= α, and ϕ′(α, [w]) = (α, [w]) + τ(u, [w]) forany (α, [w]) ∈ Q̃1. Then ϕ′ is well de�ned sin
e α ∼J u. Moreover, ϕ ◦ p(a) = q ◦ ϕ′(a)for any a ∈ Q̃1, and ϕ′(Ĩ) ⊆ Ĵ . Let ψ : kQ̃/Ĩ → kQ̂/Ĵ be indu
ed by ϕ′. Thus
q̄ ◦ ψ = ϕ̄ ◦ p̄. Let g = [γ] ∈ π1(Q, I) and let [w] ∈ Q̃0. Then ψ ◦ g([w]) = ψ([wγ−1]) =
[wγ−1] = λ(g)([w]) = λ(g)◦ψ([w]). The Lemma 3.1 implies that ψ◦g = λ(g)◦ψ for any
g ∈ π1(Q, I). Finally, Proposition 3.3 gives: ψ is a Galois 
overing with group Ker(λ).
�Lemma 4.3. Let A be a �nite dimensional basi
 k-algebra with ordinary quiver Q.Assume that k has 
hara
teristi
 zero and that Q no double bypasses. Let kQ/I0 ≃ Aand kQ/I ≃ A be two presentations with quiver and relations su
h that ∼I0 is theunique sour
e of Γ. Then there exist a sequen
e ϕ1, . . . , ϕn of transve
tions of kQ (with
ϕi = ϕαi,ui,τi) and a dilatation D su
h that:a) I = Dϕn . . . ϕ1(I0),b) if Ii is the ideal ϕi . . . ϕ1(I0) then αi ∼Ii ui for 0 6 i 6 n.Proof: We will write [n] for the set {1, . . . , n}. The Remark 2 implies that there exista dilatation D and a sequen
e ϕ1, . . . , ϕn of transve
tions (ϕi = ϕαi,ui,τi) su
h that
I = Dϕn . . . ϕ1(I0). Let us set J = D−1(I). For n > 0 let Rn be the following property:�if J = ϕn . . . ϕ1(I0) with ϕi = ϕαi,ui,τi , there exist r > 0 and a bije
tion [n]

σ
−→ [n]su
h that I0 = ϕσ(r−1) . . . ϕσ(1)(I0), and su
h that if Ii is the ideal ϕσ(i) . . . ϕσ(1)(I0)then ασ(i) ∼Ii uσ(i) for any r 6 i 6 n�. Noti
e that if Rn is true, then the sequen
e

ϕr, . . . , ϕn and the dilatation D satisfy the 
on
lusion of Lemma 4.3. Hen
e we onlyneed to show that Rn is true for n > 0. Obviously R0 is true. Let n > 1 be su
hthat Rn−1 is true. Assume �rst that there exists i0 ∈ [n] su
h that αi0 ∼J ui0 . Let
[n]

ν
−→ [n] be the transposition (i0, n) and set I ′ = ϕν(n−1) . . . ϕν(1)(I0). Applying Rn−1to this last equality gives rise to a bije
tion [n− 1]

µ
−→ [n− 1] together with r > 0, su
h17



that I0 = ϕµν(r−1) . . . ϕµν(1)(I0), and su
h that if Ii is the ideal ϕµν(i) . . . ϕµν(1)(I0) then
αµν(i) ∼Ii uµν(i) for r 6 i 6 n − 1. Set µ(n) = n, then [n]

µ
−→ [n] is a bije
tion and the
ouple (σ = µν, r) shows that Rn is true when su
h an i0 exists. Assume now that forany i ∈ [n] we have αi 6∼J ui. Let ϕ = ϕn . . . ϕ1. The Lemma 2.4, applied to the data

I0, J, ϕ, shows that J = I0. Hen
e Rn is true (with r = n+ 1) in this situation as well.This a
hieves the proof of the Lemma 4.3. �The following Proposition shows how a Galois 
overing of k-
ategories is indu
ed bya 
overing of quivers with relations. It generalises the results [14, prop 3.4, 3.5℄. Theproof uses the ideas presented in [10, se
t. 3℄.Proposition 4.1. Let F : Ĉ → C be a Galois 
overing with group G where C is a lo
allybounded and triangular k-
ategory. Fix ϕ0 : kQ/I
∼
−→ C be an admissible presentation.Then, there exist admissible presentations ϕ : kQ/I ′

∼
−→ C and ψ : kQ̂/Î

∼
−→ Ĉ and a
overing of quiver with relations p : (Q̂, Î) → (Q, I ′), su
h that ϕ and ϕ0 
oin
ide on Q0and su
h that the following diagram is 
ommutative:

kQ̂/Î
ψ //

p̄

��

Ĉ

F

��
kQ/I ′

ϕ // Cwhere p̄ is indu
ed by p. If Ĉ is 
onne
ted, then p is Galois with group G.Proof: Using [6, thm 3.8℄ we may assume that C is G-graded, that C′ = C♯G andthat C′ = C♯G
F
−→ C is the natural proje
tion. Sin
e C is triangular, the ideals RCand R2C are homogeneous. Thus, for any x 6= y ∈ Q0 there exist homogeneouselements yu

(1)
x , . . . , yu

( ynx)
x of ϕ0(y)RCϕ0(x) = ϕ0(y)Cϕ0(x) giving rise to a basis of

ϕ0(y)

(

RC/R2C
)

ϕ0(x)
. In parti
ular, ynx is equal to the number of arrows x → y in Q.Let µ : kQ → C be de�ned as follows: µ(x) = ϕ0(x) for any x ∈ Q0, and µ indu
es abije
tion between the arrows x→ y of Q and {yu

(1)
x , . . . , yu

( ynx)
x } for any x 6= y ∈ Q0.Set I ′ = Ker(µ). Hen
e I ′ is admissible and µ indu
es an isomorphism ϕ : kQ/I ′

∼
−→ C.The following 
onstru
tion of p uses the ideas of Green in [10, se
t. 3℄. The k-
ategory

kQ is a G-graded as follows: a path u in Q is homogeneous of degree the degree of
µ(u). By using the G-grading on C, it is easy to 
he
k that I ′ is homogeneous andthat ϕ : kQ/I ′ → C is homogeneous of degree 1G. Let Q̂ be the quiver as follows:
Q̂0 = Q0 ×G, and the arrows (x, s)

α
−→ (y, t) in Q̂1 are exa
tly the arrows x α

−→ y in Q1with degree t−1s. Let p : Q̂ → Q be de�ned by: p(x, s) = x and p((x, s) α
−→ (y, t)) = αfor any (x, s) ∈ Q̂0 and any (x, s)

α
−→ (y, t) ∈ Q̂1. Let Î ⊆ Q̂ be the admissible ideal

p−1(I ′) of kQ̂. A

ording to [10, se
t. 3℄, p is a 
overing, and if Q̂ is 
onne
ted then
p is Galois with group G. In parti
ular p̄ : kQ̂/Î → kQ/I ′ is a 
overing fun
tor. Let
ν : kQ̂/ → C′ = C♯G be as follows: ν(x, s) = (ϕ(x), s) for any (x, s) ∈ Q̂0, and if
(x, s)

α
−→ (y, t) ∈ Q̂1 then ν(α) = µ(p(α)) ∈ ϕ(y)C

t−1s
ϕ(x) = (ϕ(y),t)C

′
(ϕ(x),s). Therefore

F ◦ ν = ϕ ◦ p, and sin
e ϕ is an isomorphism, we have Î = Ker(ν). Let ψ : kQ̂/Î → C′be indu
ed by ν. Hen
e ψ : Q̂0 → Ĉ0 is bije
tive, ψ is faithful and ϕ◦p̄ = F ◦ψ. Moreover
ψ is full be
ause p̄ and F are 
overing fun
tors. Thus, ψ is an isomorphism. Finally,if C′ is 
onne
ted then Q̂ is 
onne
ted and this implies that p is a Galois 
overing withgroup G. �Remark 7. The Proposition 4.1 does not ne
essarily hold when F is a 
overing fun
torand not a Galois 
overing. As an example, set C = kQ where Q is equal to:18
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σa
// 3Set F : C′ → C to be de�ned by: F (b) = F (σb) = b, F (c) = F (σc) = c, F (a) = a and

F (σa) = a+ cb. Then F is a 
overing fun
tor. The group Aut(F ) is trivial therefore Fis not Galois, and F 
annot be indu
ed by any 
overing of bound quivers. Noti
e that if
F : C′ → C is a 
overing fun
tor and if the ordinary quiver of C has no bypasses, then
F is indu
ed by a 
overing of bound quivers.Theorem 2. Assume that A satis�es the hypotheses made before stating Theorem 1.Let ϕ0 : kQ/I0 ≃ A be an admissible presentation su
h that ∼I0 is the sour
e of Γ.Let (Q̃, Ĩ0)

p0
−→ (Q, I0) be the universal Galois 
overing with group π1(Q, I0) and let

kQ̃/Ĩ0
p̄0
−→ kQ/I be indu
ed by p0. For any 
onne
ted Galois 
overing F : C′ → Awith group G there exist an isomorphism kQ/I0

∼
−→ A equal to ϕ0 on obje
ts, a Galois
overing F ′ : kQ̃/Ĩ0 → C′ with group N a normal subgroup of π1(Q, I0) su
h that thefollowing diagram 
ommutes:

kQ̃/Ĩ0
F ′

//

p̄0
��

C′

F

��
kQ/I0

∼ // AMoreover, there is exa
t sequen
e of groups: 1 → N → π1(Q, I0) → G→ 1.Proof: Let C′ F
−→ A be a 
onne
ted Galois 
overing with group G. The Proposition4.1 implies there exist admissible presentations ϕ : kQ/I

∼
−→ A and ψ : kQ′/I ′

∼
−→ C′together with (Q′, I ′)

q
−→ (Q, I) a Galois 
overing with group G su
h that ϕ and ϕ0
oin
ide on obje
ts and su
h that F ◦ ψ = ϕ ◦ q̄ (where kQ′/I ′

q̄
−→ kQ/I is indu
ed by

q). Let (Q̂, Î)
p
−→ (Q, I) be the universal Galois 
overing with group π1(Q, I). Thus (see[14℄) there exists a Galois 
overing (Q̂, Î)

r
−→ (Q′, I ′) with group π1(Q

′, I ′) and su
h that
q ◦ r = p. Hen
e we have a 
ommutative diagram (denoted by D):

kQ̂/Î

p̄

��

r̄ // kQ′/I ′

q̄

��

ψ

∼ // C′

F

��
kQ/I

Id
kQ/I

∼
ϕ

// ASin
e ∼I0 is the sour
e of Γ, the Lemma 4.3 implies that there exist a sequen
e oftransve
tions ϕ1 = ϕα1,u1,τ1 , . . . , ϕn = ϕαb,un,τn of kQ and a dilatation D su
h that
I = Dϕn . . . ϕ1(I0) and su
h that αi ∼Ii ui if Ii = ϕi . . . ϕ1(I0) for any i. The Lemmas4.1 and 4.2 applied to D, I, In and ϕi, Ii−1, Ii respe
tively yield the following 
ommuta-tive diagrams denoted by D′ and Ti respe
tively:19



kQ(n)/I(n)

p̄n

��

// kQ̂/Î

p̄

��

kQ(i−1)/I(i−1)

p̄i−1

��

// kQ(i)/I(i)

p̄i

��
kQ/In

D̄ // kQ/I kQ/Ii−1
ϕ̄i // kQ/Iiwhere ϕ̄i (resp. D̄) is indu
ed by ϕi (resp. D) and kQ(i)/I(i) p̄i−→ kQ/Ii is indu
ed bythe universal Galois 
overing (Q(i), I(i))

pi−→ (Q, Ii) with group π1(Q, Ii). If we 
onne
t
T1, . . . ,Tn,D

′ and D we get the announ
ed 
ommutative diagram:
kQ̃/Ĩ0

p̄0
��

F ′

// C′

F

��
kQ/I0

∼ // Awhere the bottom arrow is an isomorphism equal to ϕ0 on obje
ts. Finally the an-noun
ed properties of F ′ are given by Proposition 3.3. �Remark 8. Using the universal property in Theorem 2 it is qui
kly 
he
ked that if thereexists a Galois 
overing C′ → C su
h that C′ is simply 
onne
ted (i.e. the fundamentalgroup of any presentation of C′ is trivial), then C′ ≃ kQ̃/Ĩ0.One may wish to use the more general framework of Galois 
ategories (see [16℄)in order to re
over Theorem 1 and Theorem 2. Unfortunately this 
annot be done ingeneral be
ause the 
ategory of 
overing fun
tors with �nite �bre of A may not haveprodu
ts as explained in the following example:Example 4. Let A = kQ/I where Q is equal to
2

c

��>
>>

>>
>>

4
f

��>
>>

>>
>>

1

b
@@�������
a

// 3

e
@@�������

d
// 5and I =< da, dcb+ fea, fecb >. Set G = Z/2 =< σ|σ2 >. Let Q′ be the quiver:

1

b

~~||
||

||
||

||
||

||
||

||
|

a // σ3

σe

��1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

σd

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

σ2

σc

=={{{{{{{{

2

c

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

σ1
σb

=={{{{{{{{

σa

��1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 σ4

σf

}}{{
{{

{{
{{

5

σ5

3

d
=={{{{{{{{

e
// 4

f

>>|||||||||||||||||||and set I ′ =< σd a, d σa, dcb + σf σe a, σd σe σb + fea, fecb, σf σe σc σb >. Hen
ethe natural mapping p : (Q′, I ′) → (Q, I) (x, σx 7→ x) is a Galois 
overing with group
G. Therefore, if we set A′ = kQ′/I ′, then p indu
es a Galois 
overing F : A′ → A withgroup G. Let us set F ′ : A′ → A to be the Galois 
overing with group G as well andde�ned as follows:. F ′(a mod I ′) = F ′(σa mod I ′) = a+ cb mod I,20



. F ′(x mod I ′) = F ′(σx mod I ′) = x mod I for any arrow x 6= a.Assume that the 
ategory of the 
overings of A with �nite �bre is a Galois 
ategory.Hen
e this 
ategory admits �nite produ
ts and the produ
t of F with F ′ gives rise to adiagram:
C

p2

  @
@@

@@
@@

@
p1

~~~~
~~

~~
~~

A′

F   @
@@

@@
@@

A′

F ′

~~~~
~~

~~
~

Asu
h that F ′′ = F ◦p1 = F ′◦p2 is a 
overing fun
tor with �bre the produ
t of the �bres of
F and F ′. In parti
ular, we may assume that C0 = Q′

0×Q0
Q′

0 =
⋃

x∈Q0
{(x, x), (x, σx), (σx, x), (σx, σx)}.Moreover, the Proposition 3.2 implies that p1 and p2 are 
overing fun
tors as well. Letus 
ompute the lifting u of a mod I ∈ 3A1 w.r.t. F ′′ and with sour
e (1, 1). Using thelifting property of p1 and p2 we get:

· u1 +u2 ∈ (σ3,3)C(1,1)⊕ (σ3,σ3)C(1,1) the lifting of a mod I ′ w.r.t. p1 and with sour
e
(1, 1),

· v1 +v2 ∈ (3,σ3)C(1,1)⊕ (σ3,σ3)C(1,1) the lifting of a mod I ′ w.r.t. p2 and with sour
e
(1, 1),

· v3 + v4 ∈ (σ3,3)C(1,1) ⊕ (3,3)C(1,1) the lifting of cb mod I ′ w.r.t. p2 and with sour
e
(1, 1),Sin
e a mod I = F (a mod I ′) and a mod I = F ′(a mod I ′ − cb mod I ′), we infer that

u1 + u2 and v1 + v2 − v3 − v4 both lift a mod I w.r.t. F ◦ p1 = F ′ ◦ p2 and have theirsour
e equal to (1, 1). Therefore u = u1 +u2 = v1 + v2 − v3 − v4. Using the target of theinvolved morphims we get v1 = v4 = 0, u1 = v3 and u2 = v2. Noti
e that v3 6= 0 and
v2 6= 0 sin
e a mod I ′ 6= 0 and cb mod I ′ 6= 0. Hen
e (σ3,σ3)C(1,1) and (σ3,3)C(1,1) arenon zero spa
es. Moreover, p1 indu
es an in
lusion (σ3,σ3)C(1,1) ⊕ (σ3,3)C(1,1) →֒ σ3A

′
1.Therefore σ3A

′
1 = k.(a mod I ′) 
ontains a 2 dimensional subspa
e. This 
ontradi
tionshows that F and F ′ do not have a produ
t and that the 
ategory of the 
overings of Awith �nite �bre need not be a Galois 
ategory.A
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