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The universal over of an algebra without doublebypassesPatrik Le MeurAbstratLet A be a �nite dimensional onneted algebra over a �eld k of harateristi zero.We show that if the quiver of A has no double bypasses then the fundamental group(as de�ned in [14℄) of any presentation of A by quiver and relations is the quotient ofthe fundamental group of a privileged presentation of A. We then show that the Galoisovering of A assoiated with this privileged presentation satis�es a universal propertywith respet to the onneted Galois overings of A in a similar fashion to the universalover of a topologial spae.IntrodutionLet A be a �nite dimensional algebra over a �eld k. In order to study left A-modules wemay assume that A is basi and onneted, where basi means that A is the diret sumof pairwise non isomorphi projetive left A-modules. For suh an algebra, the studyof the Galois overings of A gives some information on the representation theory of A(see [6℄, [10℄ and [14℄) and is a partiular ase of the overing tehniques introdued in[5℄, [9℄ and [15℄. Reall that in order to manipulate overings of A we onsider (and wealways will unless otherwise stated) A as a k-ategory with set of objets a omplete set
{ei}i of primitive pairwise orthogonal idempotents and with morphisms spae ei → ejthe vetor spae ejAei. The overing tehniques have led to the de�nition (see [10℄and [14℄) of a fundamental group assoiated with any presentation of A by quiver andadmissible relations, and whih satis�es many topologial �avoured properties (see [1℄,[10℄ and [14℄). This onstrution and its assoiated properties depend on the hoie ofa presentation of A. In partiular, one an �nd algebras for whih there exist di�erentpresentations giving rise to non isomorphi fundamental groups. In this text we om-pare the fundamental groups of the presentations of A as de�ned in [14℄, and we studythe overings of A with the following question in mind: does A have a universal Galoisovering? i.e. does A admit a Galois overing whih is fatorised by any other Galoisovering? This question has been suessfully treated in the ase A is representation�nite (see [5℄ and [9℄). The present study will involve quivers �without double bypasses�.In simple terms, a quiver without double bypasses is a quiver whih has no distint par-allel arrows, no oriented yles and has no subquiver of the following formwhere ontinued (resp. dotted) arrows represent arrows (resp. oriented paths) of thequiver. Assuming that k is a harateristi zero �eld and that the ordinary quiver Q of
A has no double bypasses, we prove the following result announed in [13℄:1



Theorem 1. Assuming the above onditions, there exists a presentation kQ/I0 ≃ A byquiver and relations suh that for any other presentation kQ/I ≃ A, the identity mapon the walks of Q indues a surjetive group morphism π1(Q, I0) ։ π1(Q, I).The proof of the above Theorem allows us to reover the following fat that was provenin [4℄: if A is a basi triangular onneted and onstrited �nite dimensional k-algebra,then di�erent presentations of A give rise to isomorphi fundamental groups. Un-der the hypotheses made before stating Theorem 1 and with the same notations, if
kQ̃/Ĩ0

F0−→ kQ/I0 is the Galois overing with group π1(Q, I0) indued by the universalGalois overing of (Q, I0) (see [14℄), we show the following result.Theorem 2. For any onneted Galois overing F : C′ → A with group G there existan isomorphism kQ/I0
∼
−→ A, a Galois overing p : kQ̃/Ĩ0 → C′ with group a normalsubgroup N of π1(Q, I0) and a ommutative diagram:

kQ̃/Ĩ0
p //

F0

��

C′

F

��
kQ/I0

∼ // Atogether with an exat sequene of groups: 1 → N → π1(Q, I0) → G→ 1Hene the Theorem 2 partially answers the question onerning the existene ofa universal Galois overing. The text is organised as follows: in setion 1 we de�nethe notions we will use, in setion 2 we prove Theorem 1, in setion 3 we give usefulresults on overing funtors, these results will be used in the proof of Theorem 2 towhih setion 4 is devoted. The setion 2 gives the proofs of all the results that havebeen announed by the author in [13℄. This text is part of the author's thesis made atUniversité Montpellier 2 under the supervision of Claude Cibils.1 Basi de�nitions
k-ategories, overing funtors, Galois overingsA k-ategory is a ategory C suh that the objets lass C0 of C is a non empty set andeah set yCx of morphisms x → y of C is a k-vetor spae with k-bilinear omposition.Let C be a k-ategory. We will say that C is loally bounded if the following propertiesare satis�ed:a) distint objets are not isomorphi,b) for eah x ∈ C0, the k-algebra xCx is loal,) ⊕y∈C0 yCx is �nite dimensional for any x ∈ C0,d) ⊕x∈C0 yCx is �nite dimensional for any y ∈ C0.Unless otherwise stated, all the k-ategories we will introdue will be loally bounded.As an example, let A be a basi �nite dimensional k-algebra, where basi means that A isthe diret sum of pairwise non isomorphi projetive left A-modules. If 1 =

∑n
i=1 ei is adeomposition of the unit into a sum of pairwise orthogonal primitive idempotents, then

A = ⊕i,jejAei and A is a loally bounded k-ategory with set of objets {e1, . . . , en}and with morphisms spae ei → ej equal to ejAei. We will say that the k-ategory Cis onneted if for any x, y ∈ C0 there exists a sequene x0 = x, . . . , xn = y in C0 suhthat xi
Cxi+1

6= 0 or xi+1
Cxi

6= 0 for any i. Reall that an ideal I of C is the data ofvetor subspaes yIx ⊆ yCx for eah x, y ∈ C0, suh that the omposition of a morphism2



in I with any morphism of C lies in I. The radial (see [5℄) of C is the ideal RC of
C suh that yRCx is the set of non invertible morphisms x → y for any x, y ∈ C0. If
n > 2 we set RnC = (RC)n. The ordinary quiver of C has set of verties C0, and for
x, y ∈ C0 the number of arrows x→ y is exatly dimk yRCx/yR

2Cx. Finally, we say C istriangular if Q has no oriented yles. All funtors are assumed to be k-linear funtorsbetween k-ategories.A funtor F : E → B is alled a overing funtor (see [5℄) if the following propertiesare satis�ed:a) F−1(x) 6= ∅ for any x ∈ B0,b) for any x0, y0 ∈ C and any x̂0, ŷ0 ∈ E0 suh that F (x̂0) = x0 and F (ŷ0) = y0, thefollowing maps indued by F are isomorphisms:
⊕

F (ŷ)=y

ŷEx̂0
→ y0Bx0

and ⊕

F (x̂)=x

ŷ0Ex̂ → y0Bx0
.In partiular, if u ∈ y0Bx0

, the inverse images of u by these isomorphisms will be alledthe lifting of u (w.r.t. F ) with soure (resp. target) x̂0 (resp. ŷ0). Reall that if Bis loally bounded then E is loally bounded as well, reall also that if E is onnetedthen so is B.A G-ategory is a k-ategory C endowed with G → Aut(C) a group morphism. Ifmoreover the indued ation of G on C0 is free, then C is alled a free G-ategory.The quotient ategory C/G of a free G-ategory C (see [6℄ for instane) has set ofobjets C0/G. For any α, β ∈ C0/G we set:
β(C/G)α =





⊕

x∈α,y∈β

yCx



 /Gand the omposition is indued by the omposition in C. The natural projetion
C → C/G is a overing funtor. A Galois overing with group G is a funtor
F : E → B with E a free G-ategory and suh that there exists a ommutative diagram:

E

}}||
||

||
||

F

��=
==

==
==

=

E/G
∼ // Bwhere E → E/G is the natural projetion and the horizontal arrow is an isomorphism.In partiular a Galois overing is a overing funtor. A onneted Galois overingis a Galois overing E → B where E is onneted.A G-graded ategory is a k-ategory C suh that eah morphism spae has a deom-position yCx = ⊕g∈G yC

g
x satisfying zC

g
y . yC

h
x ⊆ zC

gh
x . The smash-produt ategory(see [6℄) C♯G has set of objets (C♯G)0 = C0 × G, and (y,t)(C♯G)(x,s) = yC

t−1s
x for

(x, s) and (y, t) in (C♯G)0. The omposition in C♯G is indued by the omposition in
C. The natural projetion F : C♯G → C, de�ned by F (x, s) = x and F (u) = u for
u ∈ (y,t)(C♯G)(x,s) ⊆ yCx, is a Galois overing with group G. It has been shown in [6℄that if p : E → B is a Galois overing with group G, then B is a G-graded ategory andthere exists a ommutative diagram:

E
∼
ϕ

//

p
��>

>>
>>

>>
>

B♯G

}}{{
{{

{{
{{

B3



where B♯G→ B is the natural projetion and ϕ is an isomorphism.Quivers with admissible relationsLet Q be a loally �nite quiver with set of verties Q0, set of arrows Q1 and soureand target map s, t : Q1 → Q0 respetively. Reall that loally �nite means that s−1(x)and t−1(x) are �nite sets for any x ∈ Q0. For simpliity we will write x+ (resp. x−)for the set s−1(x) (resp. t−1(x)). A (non trivial) oriented path in Q is a non emptysequene u1, . . . , un of arrows of Q suh that s(ui+1) = t(ui) for any 1 6 i 6 n − 1.Suh a path is written αn . . . α1, its soure (resp. target) is s(α1) (resp. t(αn)). Foreah x ∈ Q0 we will write ex for the (trivial) path of length 0 and with soure andtarget equal to x. The path ategory kQ has set of objets Q0, the morphism spae
ykQx is the vetor spae with basis the set of oriented paths in Q with soure x andtarget y (inluding ex in ase x = y). The omposition of morphisms in kQ is induedby the onatenation of paths. Notie that kQ is a free k-ategory in the followingsense: for any k-ategory C, a funtor kQ F

−→ C is uniquely determined by by the familyof morphisms {F (α) ∈ F (y)CF (x) | x
α
−→ y ∈ Q1}. We will denote by kQ+ the idealof kQ generated by Q1. Notie also that if Q0 is �nite then kQ is also a k-algebra,

kQ = ⊕x,y ykQx, with unit 1 =
∑

x∈Q0
ex, and kQ+ beomes an ideal of this k-algebra.If r ∈ ykQx we all support of r (denoted by supp(r)) the set of paths in Q whihappear in r with a non zero oe�ient, and we all a normal form of r an equality ofthe type r =

∑

i λi ui suh that λi ∈ k∗ for any i and where the paths ui are pairwisedistint. An admissible ideal of kQ is an ideal I ⊆ kQ suh that I ⊆ (kQ+)2 andsuh that for any x ∈ Q0 there exists n > 2 suh that I ontains all the paths withlength at least n and with soure or target x. The ouple (Q, I) is then alled a quiverwith admissible relations and the quotient ategory kQ/I is loally bounded. When
Q0 is �nite, an admissible ideal I of kQ is exatly an ideal I of the k-algebra kQ suhthat (kQ+)n ⊆ I ⊆ (kQ+)2 for some integer n > 2. Reall from [5℄ that if C is a loallybounded k-ategory then there exists an admissible ideal I for the ordinary quiver Qof C and there exists an isomorphism kQ/I

∼
−→ C. Suh an isomorphism is alled apresentation of C with quiver and (admissible) relations (or an admissiblepresentation for short). Similarly, if A is a �nite dimensional and basi k-algebra, anadmissible presentation of A is an isomorphism of k-algebras kQ/I ∼

−→ A where (Q, I)is a bound quiver.Transvetions, dilatationsA bypass (see [3℄) of kQ is a ouple (α, u) where α ∈ Q1 and u 6= α is a path in Qparallel to α (this means that α and u share the same soure and the same target).A double bypass is a 4-tuple (α, u, β, v) suh that (α, u) and (β, v) are bypasses andsuh that the arrow β appears in the path u. Notie that if α, β are distint parallelarrows of Q, then (α, β, β, α) is a double bypass. Notie also that if u = va is anoriented yle in Q with �rst arrow a, then (a, au, a, au) is a double bypass. Hene,if Q has no double bypassses, then Q has no distint parallel arrows and no orientedyles. If A is a basi k-algebra with quiver Q, we will say for short that A has nodouble bypasses if Q has no double bypasses. A transvetion is an automorphism
ϕα,u,τ of the k-ategory kQ where (α, u) is a bypass, τ ∈ k and ϕα,u,τ is given by
ϕα,u,τ (α) = α+ τ u and ϕα,u,τ (β) = β for any arrow β 6= α (this uniquely de�nes ϕα,u,τsine kQ is a free k-ategory). Notie that Q has no double bypasses if and only if anytwo transvetions ommute. A dilatation is an automorphism D : kQ

∼
−→ kQ suh that

D(α) ∈ k∗α for any arrow α. Notie that the de�nition of transvetions and dilatations4



are analogous to the one of transvetion and dilatation matries (see [12, Chap. XIII, �9℄ for instane). Reall that a dilatation matrix of Gln(k) is a diagonal invertible matrixand a transvetion matrix is a matrix with diagonal entries equal to 1 and whih has atmost one non diagonal entry di�erent from 0.Fundamental group, overings of quivers with relationsLet (Q, I) be a quiver with admissible relations. For eah arrow α ∈ Q1 we will write α−1for its formal inverse with soure (resp. target) s(α−1) = t(α) (resp. t(α−1) = s(α)). Awalk is an unoriented path in Q, more preisely it is a formal produt un . . . u1 of arrowsand of formal inverse of arrows suh that s(ui+1) = t(ui) for any 1 6 i 6 n − 1. Let
r = t1u1+. . .+tnun ∈ yIx where ti ∈ k∗ and the ui's are distint paths. Then r is alleda minimal relation if n > 1 and if for any non empty proper subset E of {1, . . . , n}we have ∑

i∈E tiui 6∈ yIx. With this de�nition, any r ∈ I an be written as the sum ofminimal relations with pairwise disjoint supports. Notie that in this de�nition we donot ask that n > 2 as done usually (see [14℄). This hange is done for simpliity anddoes not a�et the onstrutions whih follow. The homotopy relation of (Q, I) isthe smallest equivalene relation ∼I on the set of walks (of Q) whih is ompatible withthe onatenation of walks and suh that:. αα−1 ∼I ey and α−1α ∼I ex for any arrow x
α
−→ y,. u1 ∼I u2 for any minimal relation t1u1 + . . . + tnun.Notie that in order to ompute ∼I we may restrit ourselves to any set of minimalrelations generating the ideal I (see [7℄). Assume Q is onneted (i.e. Q is onneted asan unoriented graph) and let x0 ∈ Q0. The fundamental group (see [14℄) π1(Q, I, x0)of (Q, I) at x0 is the set of ∼I-lasses of walks starting and ending at x0. The om-position is indued by the onatenation of walks and the unit is the ∼I -lass of ex0

.Sine di�erent hoies for x0 give rise to isomorphi fundamental groups (sine Q isonneted) we will write π1(Q, I) for short.Example 1. (see [1℄) Assume Q is the following quiver:
c

��?
??

??
??

a
//

b
??������� d //and set I =< da > and J =< da−dcb >. Then kQ/I ≃ kQ/J whereas π1(Q, I) ≃ Zand π1(Q,J) = 0.A overing (Q′, I ′)

p
−→ (Q, I) of quivers with admissible relations (see [14℄) is a quivermorphism Q′ p

−→ Q suh that p(I ′) ⊆ I and suh that:a) p−1(x) 6= ∅ for any x ∈ Q0,b) x+ p
−→ p(x)+ and x− p

−→ p(x)− are bijetive for any x ∈ Q′
0,) for any minimal relation r ∈ yIx and for any x′ ∈ p−1(x) there exist y′ ∈ p−1(y)and r′ ∈ y′I

′
x′ suh that p(r′) = r,d) same statement as ) after interhanging x and y.Reall that the automorphism group Aut(Q, I) of a bound quiver (Q, I) is the groupof automorphisms g : Q

∼
−→ Q of the quiver Q suh that g(I) ⊆ I. Assume that

p : (Q′, I ′) → (Q, I) is a overing, then the group of automorphisms Aut(p) of
p is de�ned by Aut(p) = {g ∈ Aut(Q′, I ′) | p ◦ g = p}. With this de�nition, if
p : (Q′, I ′) → (Q, I) is a overing and if G is a subgroup of Aut(p), then p is alleda Galois overing with group G if Q and Q′ are onneted and if G ats transi-tively on p−1(x) for any x ∈ Q0. If p : (Q′, I ′) → (Q, I) is a overing (resp. a Galois5



overing with group G) then the indued funtor kQ′/I ′
p̄
−→ kQ/I is a overing funtor(resp. a Galois overing with group G). Let (Q, I) be a onneted quiver with admis-sible relations and let x0 ∈ Q0. The universal over of (Q, I) is a Galois overing

(Q̃, Ĩ)
π
−→ (Q, I) with group π1(Q, I, x0) de�ned in [14℄. One an desribe it as follows:

Q̃0 is the set of ∼I -lasses [w] of walks w starting from x0. The arrows of Q̃ are theouples (α, [w]) where α ∈ Q1 and [w] ∈ Q̃0 are suh that s(α) = t(w). The soure(resp. target) of the arrow (α, [w]) is [w] (resp. [αw]). The map Q̃ p
−→ Q is de�ned by

p([w]) = t(w) and p(α, [w]) = α. The ideal Ĩ is equal to p−1(I). Finally, the ation of
π1(Q, I) on (Q̃, Ĩ) is the following: if g ∈ π1(Q, I) we may write g = [γ] with γ somewalk with soure and target equal to x0. Then for any [w] ∈ Q̃0 (resp. (α, [w]) ∈ Q̃1)we have g.[w] = [wγ−1] (resp. g.(α, [w]) = (α, [wγ−1])).Some linear algebraWe introdue here some notions that will be useful in the sequel and freely used withoutreferene. Let E be a �nite dimensional k-vetor spae with a basis (e1, . . . , en). We willdenote by (e∗1, . . . , e

∗
n) the basis of E∗ dual of (e1, . . . , en) (i.e. e∗i (ei) = 1 and e∗i (ej) = 0if j 6= i). If {rt}t∈T ∈ ET is a family in E, then Span(rt ; t ∈ T ) will the denote thesubspae of E generated by this family. If r ∈ E we will write supp(r) (the support of r)for the set of those e′is appearing in r with a non zero oe�ient. Therefore ei ∈ supp(r)is equivalent to e∗i (r) 6= 0. Let F ⊆ E be a subspae. A non zero element r ∈ F isalled minimal if it annot be written as the sum of two non zero elements of F withpairwise disjoint supports. We will denote by ≡F the smallest equivalene relation on

{e1, . . . , en} suh that ei ≡F ej for any r ∈ F minimal and any ei, ej ∈ supp(r). Likein the situation of the homotopy relation of a bound quiver, the equivalene relation
≡F is determined by set of the supports of a generating family of F . Notie that if
E is the vetor spae with basis the set of oriented paths in a �nite quiver Q and if Iis an admissible ideal of kQ, then for any paths u and v we have: u ≡I v ⇒ u ∼I v.The onverse is usually false as one an see in Example 1 where a ∼J cb and a 6≡J cb.Assume now that the basis of E is totally ordered: e1 < . . . < en. A Groebner basisof F is a basis (r1, . . . , rt) of F suh that:. for any j there is some ij suh that rj ∈ eij + V ect(ei ; i < ij).. eij 6∈ supp(rj′) unless j = j′.. if r = el +

∑

i<l τi ei ∈ F then el = eij for some j.With this de�nition, F has a unique Groebner basis whih has a natural total order:
r1 < . . . < rt if we assume that i1 < . . . < it. Moreover, if ei, ej ∈ supp(rl) for some
l then ei ≡I ej . This last property implies in partiular that ei ≡F ej if and only ifthere exists a sequene of integers m1, . . . ,mp suh that ei ∈ supp(rm1

), ej ∈ supp(rmp)and supp(rmj
)∩ supp(rmj+1

) 6= ∅ for eah j. Notie that our de�nition of the Groebnerbasis is weaker than the usual one sine we do not assume that E has a multipliativestruture. For a general introdution to Groebner bases we refer the reader to [2℄. Notiealso that a study of Groebner bases in path algebras of quivers has been made in [8℄.We end this paragraph with a reminder on the exponential and on the logarithm of anendomorphism. If u : E → E is a nilpotent endomorphism, we de�ne the exponential of
u to be exp(u) =

∑

l>0
1
l! u

l. Thus, exp(u) : E → E is a well de�ned linear isomorphismsuh that exp(u) − Id is nilpotent. If v : E → E is an isomorphism suh that v − Id isnilpotent, we de�ne the logarithm of v to be log(v) =
∑

l>0(−1)l+1 1
l (v− Id)l. Reallthat if u : E → E is a nilpotent endomorphism, then log(exp(u)) = u.6



2 Proof of Theorem 1In this setion we provide the proof of Theorem 1 (see also [13, thm 1.1℄). We �x A a�nite dimensional basi and onneted k-algebra with quiver Q. Until the end of thesetion we will assume that Q has no oriented yles. The proof of Theorem 1deomposes into 4 steps as follows, and we will devote a subsetion to eah step:a) If kQ/I and kQ/J are isomorphi to A as k-algebras, then there exists ϕ : kQ
∼
−→

kQ a produt of transvetions and of a dilatation suh that ϕ(I) = J .b) If ϕ(I) = J and if ϕ is a dilatation then π1(Q, I) ≃ π1(Q,J). If ϕ is a transvetion,then there exists a surjetive group morphism π1(Q, I) → π1(Q,J) or π1(Q,J) →
π1(Q, I), indued by the identity map on the walks of Q.) The homotopy relations ∼I of the admissible presentations kQ/I of A an bedisplayed as the verties of a quiver Γ suh that for any arrow ∼I→∼J the identity mapon walks indues a surjetive group morphism π1(Q, I) ։ π1(Q,J).d) If k has harateristi zero and if Q has no double bypasses, then the quiver Γhas a unique soure, and if ∼I0 is the soure of Γ then I0 �ts Theorem 1.2.1 Di�erent presentations of an algebra are linked by produts oftransvetions and dilatationsIn order to onsider A as a k-ategory we need to hoose a deomposition of the unitinto a sum of pairwise orthogonal primitive idempotents. The following Propositionshows that for the study the presentations of A, this hoie is irrelevant and that wemay �x these idempotents one and for all. We will omit the proof whih is basi linearalgebra.Proposition 2.1. [13, 3.1℄ Let I and J be admissible ideals of kQ. If kQ/I ≃ kQ/Jas k-algebras then there exists ϕ : kQ

∼
−→ kQ an automorphism equal to the identity mapon Q0 and suh that ϕ(I) = J .Reall that GLn(k) is generated by transvetions and dilatations matries. Thefollowing Proposition states an analogous result for the group of automorphisms of kQthat are equal to the identity map on Q0.Proposition 2.2. Let G be the group of automorphisms of kQ that equal the identitymap on Q0. Let D ⊆ G be the subgroup of the dilatations of kQ and let T ⊆ G be thesubgroup generated by the transvetions. Then T is a normal subgroup and G is thesemi-diret produt T ⋊ D.Remark 1. The group of automorphism of an algebra was already studied. More pre-isely the reader an �nd in [11℄, [17℄ and [18℄ a study of the group of outer automor-phisms of an algebra.Proof of Proposition 2.2: Obviously we have T ∩D = 1. Moreover, for any transve-tion ϕ = ϕα,u,τ and any dilatation D we have DϕD−1 = ϕα,u, τλ

µ

where λ ∈ k∗ and
µ ∈ k∗ are suh that D(u) = λ u and D(α) = µ α. Hene, in order to prove theProposition, it is enough to prove that G = T D. To do this, let us �x some notation:for any ψ ∈ G we set n(ψ) to be the number of arrows α ∈ Q1 suh that ψ(α) 6∈ k∗α.Notie that n(ψ) = 0 if and only if ψ ∈ D. Let us prove by indution on n > 0 that
Rn is true where Rn =�if ψ ∈ G and n(ψ) 6 n then there exists g ∈ T suh that7



gψ ∈ D�. Obviously R0 is true. Let n > 1, assume that Rn−1 is true, and let ψ ∈ Gsuh that n(ψ) = n. Hene there exists x α1−→ y ∈ Q1 suh that ψ(α1) 6∈ k∗α1. Let
α1, . . . , αd be the arrows x → y of Q and let E = V ect(α1, . . . , αd). Sine kQ ψ

−→ kQis an automorphism, ψ indues an automorphism of kQ+/(kQ+)2 and the omposition
f : E →֒ ykQx

ψ
−→ ykQx ։ E of ψ with the natural inlusion E →֒ ykQx (resp. thenatural projetion ykQx ։ E) is a k-linear isomorphism hene an element of GLd(k).Reall (see [12, Chap. XIII Prop. 9.1℄) that the group GLd(k) is generated by transve-tions and dilatations matries. Thus there exist transvetions f1, . . . , fl of GLd(k) suhthat f1 . . . flf(αi) ∈ k∗αi for eah i ∈ {1, . . . , d}. For eah fj, let f̄j : kQ → kQ be theautomorphism suh that f̄j(αi) = fj(αi) for eah i ∈ {1, . . . , d} and suh that f̄j(β) = βfor any arrow β not parallel to α1. In partiular, f̄j is a transvetion with respet tosome αij . Let g1 = f̄1 . . . f̄d, then g1ψ(αi) ∈ k

∗αi+(kQ+)2, and if β ∈ Q1 is not parallelto α1 and satis�es ψ(β) ∈ k∗β then g1ψ(β) ∈ k∗β. Let ψ1 = g1ψ. By onstrution, foreah i ∈ {1, . . . , d}, we have ψ1(αi) = λi αi +
∑ni

j=1 τi,j ui,j with ui,j paths of lengthat least 2. Let ϕi,j be the transvetion ϕαi,ui,j ,−τi,j/λi
for eah i ∈ {1, . . . , d} and eah

j ∈ {1, . . . , ni}, and let g2 ∈ T be the produt of the ϕi,j's (for any i ∈ {1, . . . , d}and any j ∈ {1, . . . , ni}). It is easy to hek that the ϕi,j 's are pairwise ommutinghene the de�nition of g2 is unambiguous. Sine Q has no oriented yles, for eah i wehave g2ψ1(αi) = λiαi and g2ψ1(β) ∈ k∗β if β ∈ Q1 is not parallel to α1 and satis�es
ψ1(β) ∈ k∗β. In partiular n(g2g1ψ) < n(ψ) = n. Sine Rn−1 is true, there exists
g3 ∈ T suh that g3g2g1ψ ∈ D. Hene Rn is true for any n > 0. This ahieves the proofof Proposition 2.2. �Remark 2. Propositions 2.1 and 2.2 imply that if I and J are admissible ideals of kQsuh that kQ/I ≃ kQ/J as k-algebras, then there exist ϕ1, . . . , ϕn (resp. ϕ′

1, . . . , ϕ
′
n) asequene of transvetions of kQ, together with D a dilatation suh that J = Dϕn . . . ϕ1(I)(resp. J = ϕ′

n . . . ϕ
′
1D(I)).2.2 Comparison of the fundamental group of two presentations of analgebra linked by a transvetion or a dilatationIf I is an ideal and ϕ is a dilatation or a transvetion, then I and ϕ(I) are lose enoughin order to ompare the assoiated homotopy relations. Before stating this omparisonwe prove two useful Lemmas.Lemma 2.1. Let I be an admissible ideal of kQ, let ϕ = ϕα,u,τ be a transvetionand set J = ϕ(I). Assume that α 6∼I u and let r ∈ yIx be a minimal relation withnormal form r =
∑

C λc θc +
∑

B λb vbαub suh that α does not appear in the path
θc for any c ∈ C. Then there exists a minimal relation r′ ∈ yJx with normal form
r′ =

∑

C λc θc +
∑

B λb vbαub +
∑

B′ λbτ vbuub where B′ ⊆ B.Proof: Let us assume B 6= ∅ (if B = ∅, the onlusion is immediate). Sine Q has nooriented yles, the paths vb and ub do not ontain α. Sine r is a minimal relation of
I and sine α 6∼I u, we have θc 6= vbuub for any c ∈ C, b ∈ B. Therefore, ϕ(r) has anormal form ϕ(r) =

∑

C λc θc +
∑

B λb vbαub +
∑

B λbτ vbuub ∈ yJx\{0}. Thus thereexists a minimal relation r′ ∈ yJx with normal form r′ =
∑

C′ λc θc +
∑

B′

1
λb vbαub +

∑

B′ λbτ vbuub suh that ∅ 6= B′
1 ⊆ B, C ′ ⊆ C and B′ ⊆ B. Hene ϕ−1(r′) has a normalform ϕ−1(r′) =

∑

C′ λc θc +
∑

B′

1
λb vbαub +

∑

B′\B′

1
λbτ vbuub −

∑

B′

1
\B′ λbτ vbuub ∈8



yIx\{0}. Sine r ∈ yIx is a minimal relation and sine α 6∼I u we infer that there existsa minimal relation r′′ ∈ yIx with normal form r′′ =
∑

C′′ λc θc +
∑

B′′ λb vbαub suhthat C ′′ ⊆ C ′ ⊆ C and ∅ 6= B′′ ⊆ B′
1. This fores C ′′ = C and B′′ = B beause r ∈ yIxis a minimal relation. Thus C ′ = C and B′

1 = B. Hene we have a minimal relation
r′ ∈ yJx with normal form r′ =

∑

C λc θc+
∑

B λb vbαub+
∑

B′ λbτ vbuub as announed.
�Lemma 2.2. Let I be an admissible ideal of kQ, let ϕ = ϕα,u,τ be a transvetion andset J = ϕ(I). Assume that α ∼J u and let r ∈ yIx be a minimal relation. Then v ∼J wfor any v,w ∈ supp(r).Proof: We may write r =

∑

C λc θc +
∑

B λb vbαub + µb vbuub so as:. λc, λb ∈ k∗ and µb ∈ k for any c ∈ C and b ∈ B,. the paths θc, vbαub, vb′uub′ (c ∈ C, b, b′ ∈ B) are pairwise distint,. for any c ∈ C, the path θc does not ontain α.Hene ϕ(r) =
∑

C λc θc +
∑

B λb vbαub + (µb + τλb) vbuub ∈ yJx and there exists adeomposition ϕ(r) = r1 + . . .+ rn where ri ∈ yJx is a minimal relation and supp(ri)∩
supp(rj) = ∅ if i 6= j. If B = ∅ then ϕ(r) = r ∈ yJx is a minimal relation andthe Lemma is proved. Hene we may assume that B 6= ∅. This implies that for any
i ∈ {1, . . . , n} there exists b ∈ B suh that vbαub ∈ supp(ri) or vbuub ∈ supp(ri)(if this is not the ase then ri =

∑

C′ λc θc for some non empty subset C ′ of C, thus
ϕ−1(ri) =

∑

C′ λc θc ∈ yIx whih ontradits the minimality of r). Let ≡ be the smallestequivalene relation on the set {1, . . . , n} suh that: i ≡ j if there exists b ∈ B suhthat vbαub ∈ supp(ri) and vbuub ∈ supp(rj). Sine the ri's are minimal relations of Jand sine α ∼J u, we get: if i ≡ j then v ∼J w for any v,w ∈ supp(ri) ⊔ supp(rj).Let O ⊆ {1, . . . , n} be a ≡-orbit and let r′ =
∑

i∈O ri ∈ yJx. Hene r′ =
∑

C′ λc θc +
∑

B′ λb vbαub + (µb + τλb) vbuub where C ′ ⊆ C and ∅ 6= B′ ⊆ B. This implies that
ϕ−1(r′) =

∑

C′ λc θc +
∑

B′ λb vbαub + µb vbuub ∈ yIx and the minimality of r yields
C ′ = C, B′ = B, r′ = ϕ(r) and O = {1, . . . , n}. Hene {1, . . . , n} is an ≡-orbit.Therefore v ∼J w for any v,w ∈ supp(ϕ(r)). And sine α ∼J u we infer that v ∼J wfor any v,w ∈ supp(r). �We an now state the announed omparison. For the sake of simpliity, the wordgenerated for an equivalene relation on the set of walks in Q stands for: generated asan equivalene relation whih is ompatible with the onatenation of walks and whihsatis�es ex ∼ α−1α and ey ∼ αα−1 for any arrow x

α
−→ y.Proposition 2.3. [13, 3.2℄ Let I be an admissible ideal of kQ, let ϕ be an automorphismof kQ and set J = ϕ(I). If ϕ is a dilatation, then ∼I and ∼J oinide. Assume nowthat ϕ = ϕα,u,τ is a transvetion.a) if α ∼I u and α ∼J u then ∼I and ∼J oinide.b) if α 6∼I u and α ∼J u then ∼J is generated by ∼I and α ∼J u.) if α 6∼I u and α 6∼J u then I = J and ∼I and ∼J oinide.Remark 3. The following impliation (symmetri to b)):if α ∼I u and α 6∼J u then ∼I is generated by ∼J and α ∼I uis also satis�ed sine ϕ−1

α,u,τ = ϕα,u,−τProof of Proposition 2.3: If ϕ is a dilatation, then ∼I and ∼J oinide beause forany r ∈ ykQx we have supp(r) = supp(ϕ(r)) and beause r is a minimal relation of I9



if and only if the same holds in J . Let us assume that ϕ = ϕα,u,τ is a transvetion.a) The Lemma 2.2 applied to I, J, ϕ (resp. J, I, ϕ−1 = ϕα,u,−τ ) shows that any twopaths appearing in a same minimal relation of I (resp. J) are ∼J -equivalent (resp.
∼I -equivalent). Hene ∼I and ∼J oinide.b) Let ≡ be the equivalene relation generated by: (v ∼I w ⇒ v ≡ w) and α ≡ u. Ouraim is to show that ∼J and ≡ oinide. Thanks to Lemma 2.2 we have: v ≡ w ⇒ v ∼J

w. Let Min(I) be the set of the minimal relations of I. For eah r ∈ Min(I) let us�x a normal form r =
∑

C λc θc +
∑

B λb vbαub satisfying the hypotheses of Lemma2.1. Hene there exists B′ ⊆ B and a minimal relation r1 of J with normal form
r1 =

∑

C λc θc+
∑

B λb vbαub+
∑

B′ λbτ vbuub. Thus ϕ(r)−r1 =
∑

B\B′ τλb vbuub ∈ Jan be written as a sum r2 + . . . + rnr of minimal relations of J with pairwise disjointsupports. In partiular, ϕ(r) = r1 + . . . + rnr where eah ri ∈ J is a minimal relation.Notie that any two paths appearing in r1 are ≡-equivalent beause of the normalform of r1 and beause of the de�nition of ≡. With these notations, the set {ri | r ∈
Min(I) and 1 6 i 6 nr} is made of minimal relations of J and generates the ideal J .Thus, in order to show that ∼J and ≡ oinide, it is enough to show that any two pathsappearing in some ri are ≡-equivalent. Let r ∈Min(I), let i ∈ {1, . . . , nr}, and let v,wbe two paths appearing in ri. We have already proved that if i = 1 then v ≡ w, thuswe may assume that i > 2. Keeping the above notations for the normal form of r, thereexist b, b′ ∈ B suh that v = vbuub and w = vb′uub′ . Sine α ≡ u and sine any two pathsappearing in r1 are ≡-equivalent we get v = vbuub ≡ vbαub ≡ vb′αub′ ≡ vb′uub′ = w.Hene any two paths appearing in some ri are ≡-equivalent. This implies that ∼J and
≡ oinide. Therefore, ∼J is generated by ∼I and α ∼J u.) Let r ∈ I be a minimal relation of I and apply Lemma 2.1 to r. Sine α 6∼J u, weinfer that r ∈ J . Sine I is generated by its minimal relations we get I ⊆ J . Finally,
I = J beause I and J have the same dimension. �Remark 4. In the situation b) of Proposition 2.3 the identity map on the walks of Qindues a surjetive group morphism π1(Q, I) ։ π1(Q,J).The Proposition 2.3 allows us to prove the following result whih has already beenproved in [4℄. Reall that the algebra kQ/I, where I is admissible, is alled onstritedif dim y(kQ/I)x = 1 for any arrow x→ y of Q.Proposition 2.4 (see also [4℄). Assume that A is onstrited. Then di�erent ad-missible presentations of A yield the same homotopy relation. In partiular, they haveisomorphi fundamental groups.Proof: Notie that if ν : kQ/J

∼
−→ A is any admissible presentation and if (α, u) is abypass in Q then u ∈ J beause A is onstrited and J is admissible. Let us assume thatthe onlusion of the Proposition 2.4 is false. From Remark 2 and Proposition 2.3 wededue that there exist two presentations kQ/I ≃ A and kQ/J ≃ A, and a transvetion

ϕα,u,τ suh that: J = ϕα,u,τ (I), α 6∼I u and α ∼J u. Let r ∈ I be a minimal relation.Thanks to Lemma 2.1 we know that there exist paths vbuub and salars λb ∈ k∗ (b ∈ B)suh that r +
∑

b∈B λb vbuub ∈ J . Sine u ∈ J we get r ∈ J for any minimal relation rof I. Hene I ⊆ J , and I = J beause dimk I = dimk J . This ontradits the property:
α 6∼I u and α ∼J u. Hene the homotopy relation does not depend on the presentationof A. �If ∼ and ∼′ are homotopy relations, we will say that ∼′ is a diret suessor (seealso [13, set. 3℄) of ∼ if there exist admissible ideals I and J of kQ, together with10



a transvetion ϕ = ϕα,u,τ suh that ∼=∼I , ∼′=∼J , J = ϕ(I), α 6∼I u and α ∼J u.Notie that I, J, ϕ need not be unique.2.3 The quiver Γ of the homotopy relations of the presentations ofthe algebraDe�nition 2.1. [13, 4.1℄ We de�ne the quiver Γ as follows:. Γ0 is the set of homotopy relations of the admissible presentations of A:
Γ0 = { ∼I | I is admissible and kQ/I ≃ A}. there is an arrow ∼→∼′ if and only if ∼′ is a diret suessor of ∼.Example 2. Assume that A = kQ/I where Q is

c

��?
??

??
??

a
//

b
??������� d //and I =< da >. Let J =< da − dcb >. Using Proposition 2.3 one an show that Γis equal to: ∼I // ∼J . Notie that the identity map on walks indues a surjetivegroup morphism Z ≃ π1(Q, I) ։ π1(Q,J) ≃ 1.The author thanks Mariano Suárez-Alvarez for the following remark:Remark 5. A homotopy relation is determined by its restrition to the paths in Q withlength at most the radial length of A. Thus there are only �nitely many homotopyrelations. This argument shows that Γ is �nite.The following Proposition states some additional properties of Γ and is a diretonsequene of Remark 2 and Proposition 2.3.Proposition 2.5. Assume Q has no oriented yles and let m be the number of bypassesin Q. Then Γ is onneted and has no oriented yles. Any vertex of Γ is the soure ofat most m arrows and any oriented path in Γ has length at most m.Remark 6. Aording to Remark 4, if there is a path in Γ with soure ∼I and target ∼J ,then the identity map on the walks in Q indues a surjetive group morphism π1(Q, I) ։

π1(Q,J). Moreover, sine Γ is �nite, any vertex of Γ is the target of a (�nite) path thesoure of whih is a soure of Γ (i.e. a vertex with no arrow arriving at it). As aonsequene, if Γ has a unique soure ∼I0 then the fundamental group of any admissiblepresentation of A is a quotient of π1(Q, I0).2.4 The uniity of the soure of Γ and the proof of Theorem 1Notie that up to now we have used neither the harateristi of k nor the possible nonexistene of double bypasses in Q. These hypotheses will be needed in order to provethe uniqueness of the soure of Γ. The omplete proof of the uniity of the soure of Γis somewhat tehnial. For this reason we deal with the tehnial onsiderations in thetwo Lemmas that follow.
11



Lemma 2.3. Let E be a �nite dimensional k-vetor spae endowed with a totally orderedbasis e1 < . . . < en. Assume that k has harateristi zero. Let ν : E → E be a linearmap suh that ν(ei) ∈ Span(ej ; j < i) for any i ∈ {1, . . . , n}, and let I and J be twosubspaes of E suh that the following onditions are satis�ed:a) ψ(I) = J where ψ : E → E is equal to exp(ν).b) if ei ∈ supp(ν(ej)) then ei 6≡I ej and ei 6≡J ej .Then I and J have the same Groebner basis and I = J .Proof: Let us prove Lemma 2.3 by indution on n. If n = 1 the equality is obvious solet us assume that n > 1 and that the onlusion of Lemma 2.3 holds for dimensionsless than n. We will denote by r1 < . . . < rp (resp. r′1 < . . . < r′p) the Groebner basisof I (resp. of J) and we will write i1, . . . , ip (resp. i′1, . . . , i′p) for the integers suh that
rj ∈ eij + Span(ei ; i < ij) (resp. r′j ∈ ei′j + Span(ei ; i < i′j)). In order to prove that
I = J we will prove the following four fats:a) the two sequenes i1 < . . . < ip and i′1 < . . . < i′p oinide,b) ψ(r1) = r′1,) r1 = r′1 and ν(r1) = 0 (using the indution hypothesis on E/k.e1),d) r2 = r′2, . . . , rp = r′p (using the indution hypothesis on E/k.r1).a) For simpliity let us set Ei = Span(ej ; j 6 i). Sine ν(ej) ∈ Ej−1 and rj ∈
eij +Eij−1, and sine ψ = exp(ν), we get ψ(rj) ∈ J∩

(

eij + Eij−1

) for any j. Hene, thede�nition of the Groebner basis of J fores {i1, . . . , ip} ⊆ {i′1, . . . , i
′
p} and the ardinalityand the ordering on these two sets imply that i1 = i′1, . . . , ip = i′pb) Sine i1 = i′1 we infer that ψ(r1) − r′1 ∈ J ∩ Ei1−1. The de�nition of the Groebnerbasis of J then fores ψ(r1) − r′1 = 0.) Let us prove that r1 = r′1. Notie that the de�nition of a Groebner basis and theequalities ψ(r1) = r′1 and ψ(e1) = e1 fore: e1 ∈ I ⇔ r1 = e1 ⇔ r′1 = e1 ⇔ e1 ∈ J .Hene we may assume that e1 6∈ I and e1 6∈ J .Let Ẽ = E/k.e1 and let π : E ։ Ẽ be the natural projetion. We will write x̃ for

π(x). Similarly we set Ĩ = π(I) and J̃ = π(J). In partiular Ẽ has a totally orderedbasis: ẽ2 < . . . < ẽn. Sine ν(e1) = 0 and sine ψ(e1) = e1, the mappings ν and ψindue linear mappings ν̃, ψ̃ : Ẽ → Ẽ. It follows from the properties of ν and ψ that
ψ̃(Ĩ) = J̃ , that ν̃(ẽi) ∈ Span(ẽj ; 2 6 j < i) for any i > 2, that ψ̃ = exp(ν̃), and that
supp(ν̃(ẽi)) = { ẽj| j > 2 and ej ∈ supp(ν(ei))} for any i > 2. Moreover, with thede�nition of the Groebner basis of I we get:. r̃j ∈ ẽij + Span(ẽi ; i < ij) for any j (reall that e1 6∈ I),. supp(r̃j) = {ẽi | i > 2 and ei ∈ supp(rj)} for any j.Therefore r̃1 < . . . < r̃p is the Groebner basis of Ĩ and: ẽi ≡Ĩ ẽj ⇒ ei ≡I ej . Similarly
r̃′1 < . . . < r̃′p is the Groebner basis of J̃ and: ẽi ≡J̃ ẽj ⇒ ei ≡J ej . Using the abovedesription of supp(ν̃(ẽi)) together with the above link between ≡I (resp. ≡J) and ≡Ĩ(resp. ≡J̃) we infer that:

ẽi 6≡Ĩ ẽj and ẽi 6≡J̃ ẽj as soon as ẽj ∈ supp(ν̃(ẽi))For this reason we may apply the indution hypothesis to Ẽ, Ĩ and J̃ . Hene Ĩ and J̃have the same Groebner basis and r̃1 = r̃′1 i.e. r′1 = r1 + λ e1 with λ ∈ k. Therefore12



(ψ−Id)(r1) = λ e1, and sine ψ(e1) = e1 we get ν(r1) = log(ψ)(r1) = λ e1. Assume that
λ 6= 0 i.e. e1 ∈ supp(ν(r1)). Thus there exists ei ∈ supp(r1) suh that e1 ∈ supp(ν(ei)).This implies that e1 6≡I ei, and sine any two elements in supp(r1) are ≡I -equivalent,this fores e1 6∈ supp(r1). Hene ei, e1 ∈ supp(r′1) = supp(r1) ⊔ {e1} and therefore
ei ≡J e1. This ontradits e1 ∈ supp(ν(ei)) and shows that λ = 0, that r1 = r′1 andthat ν(r1) = 0.d) Let us show that r2 = r′2, . . . , rp = r′p. For this purpose we will apply the indutionhypothesis to Ē = E/k.r1. Let q : E ։ Ē be the natural projetion. We will write ēi(resp. Ī, J̄ , r̄j, r̄′j) for q(ei) (resp. q(I), q(J), q(rj), q(r′j)). Hene Ē has a totally orderedbasis: ē1 < . . . < ēi1−1 < ēi1+1 < . . . < ēn. Sine ν(r1) = 0 and sine ψ(r1) = r1, themappings ν and ψ indue linear mappings ν̄, ψ̄ : Ē → Ē. These mappings obviouslysatisfy ψ̄(Ī) = Ī, ν̄(ēi) ∈ Span(ēj ; j 6= i1 and j < i) for any i 6= i1, and ψ̄ = exp(ν̄).Moreover, our hoie for the basis of Ē and the de�nition of the Groebner basis of Iimply that:. supp(r̄j) = {ēi | ei ∈ supp(rj)} for any j > 2,. r̄2 < . . . < r̄p is the Groebner basis of Ī.These two properties imply in partiular that: ēi ≡Ī ēj ⇒ ei ≡I ej for any i, j 6= i1.The orresponding properties hold for J̄ (replae rj by r′j , I by J and Ī by J̄). Thus,in order to apply the indution hypothesis to Ē it only remains to prove that: ēj ∈
supp(ν̄(ēi)) ⇒ ēi 6≡Ī ēj and ēi 6≡J̄ ēj for any i, j 6= i1. Assume that i, j 6= i1 satisfy
ēj ∈ supp(ν̄(ēi)). From the de�nition of Ē and ν̄ we know that:. supp(ν̄(ēi)) = {ēl | el ∈ supp(ν(ei))} if ei1 6∈ supp(ν(ei)),. supp(ν̄(ēi)) ⊆ {ēl | el ∈ supp(ν(ei)) and l 6= i1} ∪ {ēl | l < i1 and el ∈ supp(r1)}if ei1 ∈ supp(ν(ei)).Let us distinguish the ases ej ∈ supp(ν(ei)) and ej 6∈ supp(ν(ei)):

· if ej ∈ supp(ν(ei)) then ei 6≡I ej and ei 6≡J ej and the above omparison between
≡I (resp. ≡J) and ≡Ī (resp. ≡J̄) yields ēi 6≡Ī ēj and ēi 6≡J̄ ēj .

· if ej 6∈ supp(ν(ei)) then neessarily ei1 ∈ supp(ν(ei)) and ej ∈ supp(r1). Sine
r1 = r′1, the property ej ∈ supp(r1) implies that ej ≡I ei1 and ej ≡J ei1 . On the otherhand, the property ei1 ∈ supp(ν(ei)) implies that ei1 6≡I ei and ei1 6≡J ei. Therefore
ej 6≡I ei and ej 6≡J ei and �nally ēj 6≡Ī ēi and ēj 6≡J̄ ēi.Thus all the onditions of Lemma 2.3 are satis�ed for Ē, Ī, J̄ , ν̄. For this reason we anapply the indution hypothesis whih gives: Ī and J̄ have the same Groebner basis. Weinfer that q(ri) = q(r′i) for eah i = 2, . . . , p. Hene for eah i > 2 there exists λi ∈ ksuh that ri = r′i + λi r1, and λi is neessarily zero beause e∗i1(ri) = e∗i1(ri) = 0 (f thede�nition of a Groebner basis). Therefore ri = r′i for eah i = 1, . . . , p and I = J asannouned. �Lemma 2.4. Let ϕ : kQ → kQ be an automorphism equal to the identity map on Q0.Let I be an admissible ideal of kQ and set J = ϕ(I). Suppose that k has harateristizero. Suppose that for any arrow α there is a normal form ϕ(α) = α +

∑

i λi ui whereeah ui satis�es: α 6∼I ui and α 6∼J ui, and ϕ(a) = a for any arrow appearing in ui (inpartiular ϕ(ui) = ui). Then I and J oinide.Proof: Let E be the vetor spae ⊕x 6=y ykQx. Hene E is �nite dimensional sine Qhas no oriented yles, and I and J an be onsidered as subspaes of E. In order to13



apply Lemma 2.3 to E, I, J , we need to exhibit a totally ordered basis of E togetherwith a mapping ν : E → E. Let us take the non trivial paths in Q for the basis of E.For short, we will write path for non trivial path. The following onstrution of a totalorder < on this basis is taken from [8℄. Let us �x a total order on Q1 (whih is �nite)and let ≺ be the indued lexiographial order on the paths in Q. If u is a path we let
W (u) be the number of arrows α ∈ Q1 appearing in u and suh that ϕ(α) 6= α. Hene,for any α ∈ Q1, we have W (α) = 0 if ϕ(α) = α and W (α) = 1 if ϕ(α) 6= α. The totalorder < is then de�ned as follows:

u < v ⇔







W (u) < W (v)
or
W (u) = W (v) and u ≺ vThis yields: e1 < . . . < en a totally ordered basis of E made of the non trivial paths in

Q. Notie that with this basis, the equivalene relations ≡I and ∼I (resp. ≡J and ∼J)satisfy the following property: ei ≡I ej ⇒ ei ∼I ej (resp. ei ≡J ej ⇒ ei ∼J ej). Let
ν : kQ → kQ be the derivation (i.e. the funtor suh that ν(vu) = ν(v)u + vν(u) forany u and v) suh that ν(α) = ϕ(α)−α for any arrow α ∈ Q1. We will write ν : E → Efor the indued map on E. Thus, for any path u and any v ∈ supp(ν(u)) there existan arrow α ∈ Q1 together with paths u1, u2, u3 suh that u = u3αu1, v = u3u2u1and u2 ∈ supp(ν(α)). Notie that with the assumptions made on ϕ, this implies that
ei 6≡I ej and ei 6≡J ej as soon as ej ∈ supp(ν(ei)). Moreover, for any α ∈ Q1 andany u ∈ supp(ν(α)) we have W (u) = 0 hene ν ◦ ν(α) = 0. Sine ν : kQ → kQ isa derivation, we infer that: ej ∈ supp(ν(ei)) ⇒ W (ej) < W (ei) ⇒ ej < ei. Hene
ν(ei) ∈ Span(ej ; j < i) for any i. In order to apply Lemma 2.3, it only remains toprove that J = exp(ν)(I). To do this it su�es to prove that ϕ = exp(ν). This equalityis easily heked on any path in Q by indution on the length of the path using thefat that ν is a derivation, that ϕ(α) = α + ν(α) and that ν ◦ ν(α) = 0 for any arrow
α. Hene, the data E, I, J, ν together with the ordered basis e1 < . . . < en satisfy thehypotheses of Lemma 2.3 whih implies that I = J . �The uniqueness of the soure of Γ is given by the following result.Proposition 2.6. [13, 4.3℄ Assume that A satis�es the hypotheses made before statingTheorem 1, then Γ has a unique soure.Proof: Notie that any two transvetions of kQ ommute sine Q has no double by-passes. Let ∼ and ∼′ be soures of Γ. Let I and J be admissible ideals of kQ suhthat kQ/I ≃ A ≃ kQ/J and suh that ∼=∼I and ∼′=∼J . Aording to Remark 2there exist a sequene of transvetions ϕ1 = ϕα1,u1,τ1 , . . . , ϕn = ϕαn,un,τn of kQ anda dilatation D suh that J = ϕn . . . ϕ1D(I). Thanks to Lemma 2.3 we know that
∼I=∼D(I). Thus, in order to prove that ∼=∼′, we may assume that D = IdkQ and
J = ϕn . . . ϕ1(I). Moreover we may assume that n is the smallest non negative integersuh that there exist I, J and a sequene of transvetions ϕ1, . . . , ϕn satisfying ∼=∼I ,
∼′=∼J and J = ϕn . . . ϕ1(I). Let us prove that αi 6∼I ui for any i ∈ {1, . . . , n}. If iis suh that αi ∼I ui then Proposition 2.3 implies that ∼I=∼ϕi(I) sine ∼I is a soureof Γ. Hene ∼=∼ϕi(I), ∼′=∼J and J = ϕn . . . ϕi+1ϕi−1 . . . ϕ1(ϕi(I)) whih ontraditsthe minimality of n. Thus αi 6∼I ui for any i and the same arguments apply to J sine
I = ϕ−1

1 . . . ϕ−1
n (J) and ∼J is a soure of Γ. Hene αi 6∼J ui for any i. This shows thatthe data I, J, ϕn . . . ϕ1 satisfy the hypotheses of Lemma 2.4. We infer that I = J andthat ∼=∼′ oinide. This shows that Γ has a unique soure. �14



The Proposition 2.6 and the Remark 6 prove the Theorem 1:Theorem 1. (see also [13, thm 1.1℄) Let A be a basi onneted �nite dimensionalalgebra over a �eld of harateristi zero. If the quiver Q of A has no double bypasses,then there exists a presentation kQ/I0 ≃ A with quiver and admissible relations suhthat for any other admissible presentation kQ/I ≃ A, the identity map on walks induesa surjetive group morphism π1(Q, I0) ։ π1(Q, I).The following example shows that one annot remove the hypothesis on the hara-teristi of k in Proposition 2.6:Example 3. Let Q be the following quiver without double bypasses:
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e
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//Set u = cb and v = fe. Set A = kQ/I0 where I0 =< da + vu, va + du >. Then
π1(Q, I1) = Z/2. Let I1 and I2 be the ideals de�ned below:

• I1 = ϕa,u,1(I0) =< da+ du+ vu, va+ du+ vu >,
• I2 = ϕa,u,−1 ◦ ϕd,v,−1(I1) =< da, va+ du− 2vu >.Hene A ≃ kQ/I1 ≃ kQ/I2. If car(k) = 0, then π1(Q, I1) = π1(Q, I2) = 1 and Γ isequal to ∼I0 // ∼I1 . Suppose now that car(k) = 2. Then I2 =< da, va + du >,

π1(Q, I0) ≃ Z/2, π1(Q, I1) = 1, π1(Q, I2) ≃ Z and Γ is equal to:
∼I0
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FF
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∼I1Hene Γ has two soures. Notie that the identity map on walks indues a surjetivegroup morphism π1(Q, I2) ։ π1(Q, I0). Notie also that one an build similar examplesfor any non zero value p of car(k) by taking for Q a sequene of p bypasses.3 Preliminaries on overing funtorsIn this setion we give some useful fats on overing funtors.Lemma 3.1. Let p : E → B and q : E ′ → B be funtors where E is onneted. Let
r, r′ : E → E ′ be suh that q◦r = q◦r′ = p. If there exists x0 ∈ E0 suh that r(x0) = r′(x0)then r = r′.Proof: Sine q is a overing funtor, for any u ∈ yEx\{0} we have:

(r(x) = r′(x) or r(y) = r′(y)) ⇒ (r(u) = r′(u), r(x) = r′(x) and r(y) = r′(y)) (⋆)Assume that there exists x0 ∈ E0 suh that r(x0) = r′(x0). Sine E is onneted, for any
x ∈ E0 there exists a sequene x0, . . . , xn = x of objets of E together with a non zeromorphism between xi and xi+1 for any i. This implies (thanks to (⋆)) that r(x) = r′(x).Thus r and r′ oinide on E0 and (⋆) implies r = r′. �The following Proposition generalises the result [14, Prop. 3.3℄. Using Lemma 3.1its proof is immediate.Proposition 3.1. Let F : E → B be a overing funtor where E is onneted. Then
E is an Aut(F )-ategory. Moreover, F is a Galois overing if and only if Aut(F )15



ats transitively on eah F−1(x). Finally if F is Galois overing with group G, then
G = Aut(F ).Proposition 3.2. Let p : E → B and q : F → E be funtors where E is onneted andset r = p ◦ q : F → B. Then p, q, r are overing funtors as soon as two of them are so.Proof: We only need to prove that if p and r are overing funtors then q−1(x) 6= ∅for any x ∈ E0 (the other properties are basi linear algebra). Assume that p and rare overing funtors. Sine q is a overing funtor, for any u ∈ yEx\{0} we have:
q−1(x) 6= ∅ ⇔ q−1(y) 6= ∅ (⋆). Fix x̂0 ∈ F0 and set x0 = q(x̂0), thus q−1(x0) 6= ∅. Theonnetedness of E and (⋆) imply that q−1(x) 6= ∅ for any x ∈ E0. �Proposition 3.3. Let p : C → B (resp. q : C′ → B) be a onneted Galois overing withgroup G (resp. G′) and assume there exists a ommutative diagram of k-ategories and
k-linear funtors where ϕ is an isomorphism equal to the identity map on B0:

C
r //

p

��

C′

q

��
B

∼
ϕ

// BThen there exists a unique mapping λ : G→ G′ suh that r ◦ g = λ(g) ◦ r for any g ∈ G.Moreover λ is a surjetive morphism of groups and r is a Galois overing with group
Ker(λ).Proof: Thanks to Proposition 3.2, r is a overing funtor. Fix x̂0 ∈ C and set x0 =
p(x̂0). For any g ∈ Aut(p) we have q(r(x̂0)) = x0 = q(r(g(x̂0))). Sine q is Galois withgroup G′, there exists a unique λ(g) ∈ G′ suh that λ(g)(r(x̂0)) = r(g(x̂0)), and Lemma3.1 yields λ(g) ◦ r = r ◦ g. Hene: (∀g ∈ G) (∃!λ(g) ∈ G′) λ(g) ◦ r = r ◦ g. This lastproperty shows the existene and the uniqueness of λ. It also shows that λ : G→ G′ isa group morphism and that Aut(r) = Ker(λ). Moreover, λ is surjetive beause of itsde�nition and beause p is Galois with group G. Finally Proposition 3.1 shows that ris a Galois overing with group Ker(λ). �4 The universal over of an algebraIn this setion we will prove Theorem 2. Let Q be a onneted quiver without orientedyles and let x0 ∈ Q0 for the omputation of the groups π1(Q, I). If there is noambiguity we will write [w] for the homotopy lass of a walk w.Lemma 4.1. Let I be an admissible ideal of kQ, let D be a dilatation of kQ and set
J = D(I). Let λ : π1(Q, I)

∼
−→ π1(Q,J) be the isomorphism given by Proposition 2.3.Let p : (Q̃, Ĩ) → (Q, I) (resp. q : (Q̂, Ĵ) → (Q,J)) be the universal Galois overing withgroup π1(Q, I) (resp. π1(Q,J)). Then there exists an isomorphism ψ : kQ̃/Ĩ

∼
−→ kQ̂/Ĵsuh that the following diagram ommutes:

kQ̃/Ĩ
ψ //

p̄

��

kQ̂/Ĵ

q̄

��
kQ/I

D̄ // kQ/J16



where D̄, p̄ and q̄ are indued by D, p and q respetively.Moreover, ψ satis�es: ψ ◦ g = λ(g) ◦ ψ for any g ∈ π1(Q, I).Proof: We have Q̂ = Q̃ sine ∼I and ∼J oinide (see Proposition 2.3). Set D̂ : kQ̃→
kQ̂ to be de�ned by: D̂(a, [w]) = (D(a), [w]) for any arrow (a, [w]) ∈ Q̃1. By onstru-tion D̂ is an automorphism of kQ and D̂(Ĩ) = Ĵ . Set ψ : kQ̃/Ĩ

∼
−→ kQ̂/Ĵ to be induedby D̂. It is then easy to hek all announed properties. �Lemma 4.2. Let I be an admissible ideal of kQ, let ϕ = ϕα,u,τ be a transvetion,set J = ϕ(I) and assume that α ∼J u. Let λ : π1(Q, I) ։ π1(Q,J) be the surjetiongiven by Proposition 2.3. Denote by p : (Q̃, Ĩ) → (Q, I) (resp. by q : (Q̂, Ĵ) → (Q,J))the universal Galois overing with group π1(Q, I) (resp. π1(Q,J)). Then there existsa Galois overing ψ : kQ̃/Ĩ

∼
−→ kQ̂/Ĵ with group Ker(λ) and suh that the followingdiagram ommutes:

kQ̃/Ĩ
ψ //

p̄

��

kQ̂/Ĵ

q̄

��
kQ/I

ϕ̄ // kQ/Jwhere ϕ̄, p̄ and q̄ are indued by ϕ, p and q respetively.Moreover, ψ satis�es: ψ ◦ g = λ(g) ◦ ψ for any g ∈ π1(Q, I).Proof: Let ϕ′ : kQ̃ → kQ̂ be de�ned by: ϕ′([w]) = [w] for any [w] ∈ Q̃0, ϕ′(β, [w]) =
(β, [w]) for any (β, [w]) ∈ Q̃1 suh that β 6= α, and ϕ′(α, [w]) = (α, [w]) + τ(u, [w]) forany (α, [w]) ∈ Q̃1. Then ϕ′ is well de�ned sine α ∼J u. Moreover, ϕ ◦ p(a) = q ◦ ϕ′(a)for any a ∈ Q̃1, and ϕ′(Ĩ) ⊆ Ĵ . Let ψ : kQ̃/Ĩ → kQ̂/Ĵ be indued by ϕ′. Thus
q̄ ◦ ψ = ϕ̄ ◦ p̄. Let g = [γ] ∈ π1(Q, I) and let [w] ∈ Q̃0. Then ψ ◦ g([w]) = ψ([wγ−1]) =
[wγ−1] = λ(g)([w]) = λ(g)◦ψ([w]). The Lemma 3.1 implies that ψ◦g = λ(g)◦ψ for any
g ∈ π1(Q, I). Finally, Proposition 3.3 gives: ψ is a Galois overing with group Ker(λ).
�Lemma 4.3. Let A be a �nite dimensional basi k-algebra with ordinary quiver Q.Assume that k has harateristi zero and that Q no double bypasses. Let kQ/I0 ≃ Aand kQ/I ≃ A be two presentations with quiver and relations suh that ∼I0 is theunique soure of Γ. Then there exist a sequene ϕ1, . . . , ϕn of transvetions of kQ (with
ϕi = ϕαi,ui,τi) and a dilatation D suh that:a) I = Dϕn . . . ϕ1(I0),b) if Ii is the ideal ϕi . . . ϕ1(I0) then αi ∼Ii ui for 0 6 i 6 n.Proof: We will write [n] for the set {1, . . . , n}. The Remark 2 implies that there exista dilatation D and a sequene ϕ1, . . . , ϕn of transvetions (ϕi = ϕαi,ui,τi) suh that
I = Dϕn . . . ϕ1(I0). Let us set J = D−1(I). For n > 0 let Rn be the following property:�if J = ϕn . . . ϕ1(I0) with ϕi = ϕαi,ui,τi , there exist r > 0 and a bijetion [n]

σ
−→ [n]suh that I0 = ϕσ(r−1) . . . ϕσ(1)(I0), and suh that if Ii is the ideal ϕσ(i) . . . ϕσ(1)(I0)then ασ(i) ∼Ii uσ(i) for any r 6 i 6 n�. Notie that if Rn is true, then the sequene

ϕr, . . . , ϕn and the dilatation D satisfy the onlusion of Lemma 4.3. Hene we onlyneed to show that Rn is true for n > 0. Obviously R0 is true. Let n > 1 be suhthat Rn−1 is true. Assume �rst that there exists i0 ∈ [n] suh that αi0 ∼J ui0 . Let
[n]

ν
−→ [n] be the transposition (i0, n) and set I ′ = ϕν(n−1) . . . ϕν(1)(I0). Applying Rn−1to this last equality gives rise to a bijetion [n− 1]

µ
−→ [n− 1] together with r > 0, suh17



that I0 = ϕµν(r−1) . . . ϕµν(1)(I0), and suh that if Ii is the ideal ϕµν(i) . . . ϕµν(1)(I0) then
αµν(i) ∼Ii uµν(i) for r 6 i 6 n − 1. Set µ(n) = n, then [n]

µ
−→ [n] is a bijetion and theouple (σ = µν, r) shows that Rn is true when suh an i0 exists. Assume now that forany i ∈ [n] we have αi 6∼J ui. Let ϕ = ϕn . . . ϕ1. The Lemma 2.4, applied to the data

I0, J, ϕ, shows that J = I0. Hene Rn is true (with r = n+ 1) in this situation as well.This ahieves the proof of the Lemma 4.3. �The following Proposition shows how a Galois overing of k-ategories is indued bya overing of quivers with relations. It generalises the results [14, prop 3.4, 3.5℄. Theproof uses the ideas presented in [10, set. 3℄.Proposition 4.1. Let F : Ĉ → C be a Galois overing with group G where C is a loallybounded and triangular k-ategory. Fix ϕ0 : kQ/I
∼
−→ C be an admissible presentation.Then, there exist admissible presentations ϕ : kQ/I ′

∼
−→ C and ψ : kQ̂/Î

∼
−→ Ĉ and aovering of quiver with relations p : (Q̂, Î) → (Q, I ′), suh that ϕ and ϕ0 oinide on Q0and suh that the following diagram is ommutative:

kQ̂/Î
ψ //

p̄

��

Ĉ

F

��
kQ/I ′

ϕ // Cwhere p̄ is indued by p. If Ĉ is onneted, then p is Galois with group G.Proof: Using [6, thm 3.8℄ we may assume that C is G-graded, that C′ = C♯G andthat C′ = C♯G
F
−→ C is the natural projetion. Sine C is triangular, the ideals RCand R2C are homogeneous. Thus, for any x 6= y ∈ Q0 there exist homogeneouselements yu

(1)
x , . . . , yu

( ynx)
x of ϕ0(y)RCϕ0(x) = ϕ0(y)Cϕ0(x) giving rise to a basis of

ϕ0(y)

(

RC/R2C
)

ϕ0(x)
. In partiular, ynx is equal to the number of arrows x → y in Q.Let µ : kQ → C be de�ned as follows: µ(x) = ϕ0(x) for any x ∈ Q0, and µ indues abijetion between the arrows x→ y of Q and {yu

(1)
x , . . . , yu

( ynx)
x } for any x 6= y ∈ Q0.Set I ′ = Ker(µ). Hene I ′ is admissible and µ indues an isomorphism ϕ : kQ/I ′

∼
−→ C.The following onstrution of p uses the ideas of Green in [10, set. 3℄. The k-ategory

kQ is a G-graded as follows: a path u in Q is homogeneous of degree the degree of
µ(u). By using the G-grading on C, it is easy to hek that I ′ is homogeneous andthat ϕ : kQ/I ′ → C is homogeneous of degree 1G. Let Q̂ be the quiver as follows:
Q̂0 = Q0 ×G, and the arrows (x, s)

α
−→ (y, t) in Q̂1 are exatly the arrows x α

−→ y in Q1with degree t−1s. Let p : Q̂ → Q be de�ned by: p(x, s) = x and p((x, s) α
−→ (y, t)) = αfor any (x, s) ∈ Q̂0 and any (x, s)

α
−→ (y, t) ∈ Q̂1. Let Î ⊆ Q̂ be the admissible ideal

p−1(I ′) of kQ̂. Aording to [10, set. 3℄, p is a overing, and if Q̂ is onneted then
p is Galois with group G. In partiular p̄ : kQ̂/Î → kQ/I ′ is a overing funtor. Let
ν : kQ̂/ → C′ = C♯G be as follows: ν(x, s) = (ϕ(x), s) for any (x, s) ∈ Q̂0, and if
(x, s)

α
−→ (y, t) ∈ Q̂1 then ν(α) = µ(p(α)) ∈ ϕ(y)C

t−1s
ϕ(x) = (ϕ(y),t)C

′
(ϕ(x),s). Therefore

F ◦ ν = ϕ ◦ p, and sine ϕ is an isomorphism, we have Î = Ker(ν). Let ψ : kQ̂/Î → C′be indued by ν. Hene ψ : Q̂0 → Ĉ0 is bijetive, ψ is faithful and ϕ◦p̄ = F ◦ψ. Moreover
ψ is full beause p̄ and F are overing funtors. Thus, ψ is an isomorphism. Finally,if C′ is onneted then Q̂ is onneted and this implies that p is a Galois overing withgroup G. �Remark 7. The Proposition 4.1 does not neessarily hold when F is a overing funtorand not a Galois overing. As an example, set C = kQ where Q is equal to:18
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σa
// 3Set F : C′ → C to be de�ned by: F (b) = F (σb) = b, F (c) = F (σc) = c, F (a) = a and

F (σa) = a+ cb. Then F is a overing funtor. The group Aut(F ) is trivial therefore Fis not Galois, and F annot be indued by any overing of bound quivers. Notie that if
F : C′ → C is a overing funtor and if the ordinary quiver of C has no bypasses, then
F is indued by a overing of bound quivers.Theorem 2. Assume that A satis�es the hypotheses made before stating Theorem 1.Let ϕ0 : kQ/I0 ≃ A be an admissible presentation suh that ∼I0 is the soure of Γ.Let (Q̃, Ĩ0)

p0
−→ (Q, I0) be the universal Galois overing with group π1(Q, I0) and let

kQ̃/Ĩ0
p̄0
−→ kQ/I be indued by p0. For any onneted Galois overing F : C′ → Awith group G there exist an isomorphism kQ/I0

∼
−→ A equal to ϕ0 on objets, a Galoisovering F ′ : kQ̃/Ĩ0 → C′ with group N a normal subgroup of π1(Q, I0) suh that thefollowing diagram ommutes:

kQ̃/Ĩ0
F ′

//

p̄0
��

C′

F

��
kQ/I0

∼ // AMoreover, there is exat sequene of groups: 1 → N → π1(Q, I0) → G→ 1.Proof: Let C′ F
−→ A be a onneted Galois overing with group G. The Proposition4.1 implies there exist admissible presentations ϕ : kQ/I

∼
−→ A and ψ : kQ′/I ′

∼
−→ C′together with (Q′, I ′)

q
−→ (Q, I) a Galois overing with group G suh that ϕ and ϕ0oinide on objets and suh that F ◦ ψ = ϕ ◦ q̄ (where kQ′/I ′

q̄
−→ kQ/I is indued by

q). Let (Q̂, Î)
p
−→ (Q, I) be the universal Galois overing with group π1(Q, I). Thus (see[14℄) there exists a Galois overing (Q̂, Î)

r
−→ (Q′, I ′) with group π1(Q

′, I ′) and suh that
q ◦ r = p. Hene we have a ommutative diagram (denoted by D):

kQ̂/Î

p̄

��

r̄ // kQ′/I ′

q̄

��

ψ

∼ // C′

F

��
kQ/I

Id
kQ/I

∼
ϕ

// ASine ∼I0 is the soure of Γ, the Lemma 4.3 implies that there exist a sequene oftransvetions ϕ1 = ϕα1,u1,τ1 , . . . , ϕn = ϕαb,un,τn of kQ and a dilatation D suh that
I = Dϕn . . . ϕ1(I0) and suh that αi ∼Ii ui if Ii = ϕi . . . ϕ1(I0) for any i. The Lemmas4.1 and 4.2 applied to D, I, In and ϕi, Ii−1, Ii respetively yield the following ommuta-tive diagrams denoted by D′ and Ti respetively:19



kQ(n)/I(n)

p̄n

��

// kQ̂/Î

p̄

��

kQ(i−1)/I(i−1)

p̄i−1

��

// kQ(i)/I(i)

p̄i

��
kQ/In

D̄ // kQ/I kQ/Ii−1
ϕ̄i // kQ/Iiwhere ϕ̄i (resp. D̄) is indued by ϕi (resp. D) and kQ(i)/I(i) p̄i−→ kQ/Ii is indued bythe universal Galois overing (Q(i), I(i))

pi−→ (Q, Ii) with group π1(Q, Ii). If we onnet
T1, . . . ,Tn,D

′ and D we get the announed ommutative diagram:
kQ̃/Ĩ0

p̄0
��

F ′

// C′

F

��
kQ/I0

∼ // Awhere the bottom arrow is an isomorphism equal to ϕ0 on objets. Finally the an-nouned properties of F ′ are given by Proposition 3.3. �Remark 8. Using the universal property in Theorem 2 it is quikly heked that if thereexists a Galois overing C′ → C suh that C′ is simply onneted (i.e. the fundamentalgroup of any presentation of C′ is trivial), then C′ ≃ kQ̃/Ĩ0.One may wish to use the more general framework of Galois ategories (see [16℄)in order to reover Theorem 1 and Theorem 2. Unfortunately this annot be done ingeneral beause the ategory of overing funtors with �nite �bre of A may not haveproduts as explained in the following example:Example 4. Let A = kQ/I where Q is equal to
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>>|||||||||||||||||||and set I ′ =< σd a, d σa, dcb + σf σe a, σd σe σb + fea, fecb, σf σe σc σb >. Henethe natural mapping p : (Q′, I ′) → (Q, I) (x, σx 7→ x) is a Galois overing with group
G. Therefore, if we set A′ = kQ′/I ′, then p indues a Galois overing F : A′ → A withgroup G. Let us set F ′ : A′ → A to be the Galois overing with group G as well andde�ned as follows:. F ′(a mod I ′) = F ′(σa mod I ′) = a+ cb mod I,20



. F ′(x mod I ′) = F ′(σx mod I ′) = x mod I for any arrow x 6= a.Assume that the ategory of the overings of A with �nite �bre is a Galois ategory.Hene this ategory admits �nite produts and the produt of F with F ′ gives rise to adiagram:
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Asuh that F ′′ = F ◦p1 = F ′◦p2 is a overing funtor with �bre the produt of the �bres of
F and F ′. In partiular, we may assume that C0 = Q′

0×Q0
Q′

0 =
⋃

x∈Q0
{(x, x), (x, σx), (σx, x), (σx, σx)}.Moreover, the Proposition 3.2 implies that p1 and p2 are overing funtors as well. Letus ompute the lifting u of a mod I ∈ 3A1 w.r.t. F ′′ and with soure (1, 1). Using thelifting property of p1 and p2 we get:

· u1 +u2 ∈ (σ3,3)C(1,1)⊕ (σ3,σ3)C(1,1) the lifting of a mod I ′ w.r.t. p1 and with soure
(1, 1),

· v1 +v2 ∈ (3,σ3)C(1,1)⊕ (σ3,σ3)C(1,1) the lifting of a mod I ′ w.r.t. p2 and with soure
(1, 1),

· v3 + v4 ∈ (σ3,3)C(1,1) ⊕ (3,3)C(1,1) the lifting of cb mod I ′ w.r.t. p2 and with soure
(1, 1),Sine a mod I = F (a mod I ′) and a mod I = F ′(a mod I ′ − cb mod I ′), we infer that

u1 + u2 and v1 + v2 − v3 − v4 both lift a mod I w.r.t. F ◦ p1 = F ′ ◦ p2 and have theirsoure equal to (1, 1). Therefore u = u1 +u2 = v1 + v2 − v3 − v4. Using the target of theinvolved morphims we get v1 = v4 = 0, u1 = v3 and u2 = v2. Notie that v3 6= 0 and
v2 6= 0 sine a mod I ′ 6= 0 and cb mod I ′ 6= 0. Hene (σ3,σ3)C(1,1) and (σ3,3)C(1,1) arenon zero spaes. Moreover, p1 indues an inlusion (σ3,σ3)C(1,1) ⊕ (σ3,3)C(1,1) →֒ σ3A

′
1.Therefore σ3A

′
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