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Abstract. The cancellation problem asks if two complex algebraic varieties X and Y of the
same dimension such that X × C and Y × C are isomorphic are isomorphic. Iitaka and Fujita
[15] established that the answer is positive for a large class of varieties of any dimension. In
1989, Danielewski [4] constructed a famous counter-example using smooth affine surfaces with
additive group actions. His construction was further generalized by Fieseler [10] and Wilkens
[20] to describe a larger class of affine surfaces. Here we construct higher dimensional analogues
of these surfaces. We study algebraic actions of the additive group C+ on certain of these
varieties, and we obtain counter-examples to the cancellation problem in any dimension n ≥ 2.

Introduction

The Cancellation Problem, which is sometimes referred to a Zariski’s Problem although Zariski’s
original question was different, has been already discussed in the early seventies as the question
of uniqueness of coefficients rings. The problem at that time was to decide for which rings A and
B an isomorphism of the polynomials rings A [x] and B [x] implies that A and B are isomorphic
(see e.g. [8]). Using the fact that the tangent bundle of the real n-sphere is stably trivial but not
trivial, Hochster [13] showed that this fails in general.

A geometric formulation of the Cancellation Problem asks if two algebraic varieties X and
Y such that Y × A1 is isomorphic to X × A1 are isomorphic. Clearly, if either X or Y does
not contain rational curves, for instance X or Y is an abelian variety, then every isomorphism
Φ : X × A

∼
→ Y × A1 induces an isomorphism of X and Y . So the Cancellation Problem leads to

decide if a given algebraic variety X contains a family of rational curves, where by a rational curve
we mean the image of a nonconstant morphism f : C → X , where C is isomorphic to A1 or P1.
Iitaka and Fujita [15] carried a geometric attack to this question using ideas from the classification
theory of noncomplete varieties. Every complex algebraic variety X embeds as an open subset
of complete variety X̄ for which the boundary D = X̄ \X is a divisor with normal crossing. By
replacing the usual sheaves of forms Ωq

(

X̄
)

on X̄ by the sheaves Ωq (logD) of rational q-forms
having at worse logarithmic poles along D, Iitaka [14] introduced, among others invariants, the
notion of logarithmic Kodaira dimension κ̄ (X) of a noncomplete variety X , which is an analogue
of the usual notion of Kodaira for complete varieties. They established the following result.

Theorem. Let X and Y be two nonsingular algebraic varieties and assume that either κ̄ (X) ≥ 0

or κ̄ (Y ) ≥ 0. Then every isomorphism Φ : X × C
∼
→ Y × C induces an isomorphism between X

and Y .

The hypothesis κ̄ (X) ≥ 0 above guarantees that X cannot contain too many rational curves. For
instance, there is no cylinder-like open subset U ≃ C × A1 in X , for otherwise we would have
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2 ADDITIVE GROUP ACTIONS ON DANIELEWSKI VARIETIES AND THE CANCELLATION PROBLEM

κ̄ (X) = −∞1. It turns out that this additional assumption is essential, as shown by the following
example due to Danielewski [4].

Example. The surfaces S1, S2 ⊂ C3 with equations xz− y2 + 1 = 0 and x2z− y2 + 1 = 0 are not
isomorphic but S1 × C and S2 × C are. In the construction of Danielewski, these surfaces appear
as the total spaces of principal homogeneous C+-bundles over Ã, the affine line with a double
origin, obtained by identifying two copies of A1 along A1 \ {0}. The isomorphism S1×C ≃ S2×C

is obtained by forming the fiber product S1 ×Ã
S2, which is a principal C+-bundle over both S1

and S2, and using the fact that every such bundle over an affine variety is trivial. On the other
hand, S1 and S2 are not homeomorphic when equipped with the complex topology. More precisely,
Danielewski established that the fundamental groups at infinity of S1 and S2 are isomorphic to
Z/2Z and Z/4Z respectively. Fieseler [10] studied and classified algebraic C+-actions normal affine
surfaces. As a consequence of his classification, he obtained many new examples of the same kind
(see also [20]).

Here we construct higher dimensional analogues of Danielewski’s counter-example. The paper
is organized as follows. In the first section, we introduce a natural generalization of the surfaces
S1 and S2 above in the form of certain affine varieties which are the total spaces of certain
principal homogeneous C+-bundle over Ãn, the affine n-space with a multiple system of coordinate
hyperplanes. We call them Danielewski varieties. For instance, for every multi-index [m] =
(m1, . . . ,mn) ∈ Zn

>0 the nonsingular hypersurface X[m] ⊂ Cn+2 with equation xm1

1 · · ·xmn
n z =

y2 − 1 is a Danielewski variety. As a generalization of a result of Danielewski (see also [10]), we

establish that the total space of a principal homogeneous C+-bundle over Ãn is a Danielewski
variety if and only if it is separated. This leads to simple description of these varieties in terms of
Čech cocycles (see Theorem (1.17)).

In a second part, we study algebraic C+-actions on a certain class of varieties which contains
the Danielewski varieties X[m] as above. In particular we compute the Makar-Limanov invariant
of these varieties, i.e. the set of regular functions invariant under all C+-actions. We obtain
the following generalisation of a result due to Makar-Limanov [18] for the case of surfaces (see
Theorem (2.8) ).

Theorem. If (m1, . . . ,mn) ∈ Zn
>1 then the Makar-Limanov of a variety X ⊂ Cn+2 with equation

xm1

1 · · ·xmnz = yr +
∑

ai (x1, . . . , xn) yi, where r ≥,

is isomorphic to C [x1, . . . , xn].

As a consequence, we obtain infinite families of counter-examples to the Cancellation Problem in
every dimension n ≥ 2.

Theorem. Let [m] = (m1, . . . ,mn) ∈ Zn
>1 and [m′] = (m′

1, . . . ,m
′
n) ∈ Zn

>1 be two multi-index
for which the subsets {m1, . . . ,mn} and {m′

1, . . . ,m
′
n} of Z are distint, and let λ1, . . . , λr, where

r ≥ 2 be a collection of pairwise distinct complex numbers. Then the Danielewski varieties X and
X ′ in Cn+2 with equations

xm1

1 · · ·xmn
n z −

r
∏

i=1

(y − λi) = 0 and x
m′

1

1 · · ·x
m′

n
n z −

r
∏

i=1

(y − λi) = 0

are not isomorphic, but the varieties X × C and X ′ × C are isomorphic.

1. Danielewski varieties

Danielewski’s construction can be easily generalized to produce examples of affine varieties X
and Y such that X × C and Y × C are isomorphic. Indeed, if we can equip two affine varieties X
and Y with structures of principal homogeneous C+-bundle ρX : X → Z and ρY : Y → Z over
a certain scheme Z, then the fiber product X ×Z Y will be a principal homogeneous C+-bundle

1Actually, a nonsingular affine surface has logarithmic Kodaira dimension −∞ if and only if its contains a
cylinder-like open set (see e.g. [19]).
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over X and Y , whence a trivial principal bundle X × C ≃ X ×Z Y ≃ Y × C as X and Y are
both affine. The base scheme Z which arises in Danielewski’s counter-example is the affine with
a double origin. The most natural generalization is to consider an affine space Cn with a multiple
system of coordinate hyperplanes as a base scheme.

Notation 1.1. In the sequel we denote the polynomial ring C [x1, . . . , xn] by C [x], and the algebra
C
[

x1, x
−1
1 . . . , xn, x

−1
n

]

of Laurent polynomials in the variables x1, . . . , xn by C
[

x, x−1
]

. For

every multi-index [r] = (r1, . . . , rn) ∈ Zn, we let x[r] = xr1

1 · · ·xrn
n ∈ C

[

x, x−1
]

. We denote by
Hx = V (x1 · · ·xn) the closed subvariety of Cn consisting of the disjoint union of the n coordinate
hyperplanes. Its open complement in Cn, which is isomorphic to (C∗)

n
, will be denoted by Ux.

Definition 1.2. We let Zn,r be the scheme obtained by gluing r copies δi : Zi
∼
−→ Cn of the affine

space Cn = Spec (C [x1, . . . , xn]) by the identity along (C∗)
n
. We call Zn,r the affine n-space with

an r-fold system of coordinate hyperplanes. We consider it as a scheme over Cn via the morphism
δ : Zn,r → Cn restricting to the δi’s on the canonical open subset Zi of Zn,r, i = 1, . . . , n.

1.3. We recall that a principal homogeneous C+-bundle over a base scheme S is an S-scheme
ρ : X → S equipped with an algebraic action of the additive group C+, such that there exists an
open covering U = (Si)i∈I of S for which ρ−1 (Si) is equivariantly isomorphic to Si × C, where
C+ acts by translations on the second factor, for every i ∈ I. In particular, the total space of a
principal homogeneous C+-bundle has the structure of an A

1-bundle over S. The set H1 (S,C+)
of isomorphism classes of principal homogeneous C+-bundles over S is isomorphic to the first
cohomology group Ȟ1 (S,OS) ≃ H1 (S,OS).

Definition 1.4. A Danielewski variety is a nonsingular affine variety of dimension n ≥ 2 which is
the total space ρ : X → Zn,r of a principal homogeneous C+-bundle over Zn,r for a certain r ≥ 1.

Example 1.5. The Danielewski surfaces S1 =
{

xz − y2 + 1 = 0
}

and S2 =
{

x2z − y2 + 1 = 0
}

above are Danielewski varieties. Indeed, the projections prx : Si → C, i = 1, 2, factor through
structural morphisms ρi : Si → Z2,1 of principal C+-bundles over the affine line with a double
origin. More generally, the Makar-Limanov surfaces S ⊂ C3 with equations xnz − Q (x, y) = 0,
where n ≥ 1 and Q (x, y) is a monic polynomial in y, such that Q (0, y) has simple roots are
Danielewski varieties.

Remark 1.6. The scheme Zn,r over which a Danielewski variety X becomes the total space of
a principal homogeneous C+-bundle is unique up to isomorphism. Indeed, we have necessarily
n = dimZ = dimX − 1. On the other hand, it follows from (1.7) below that X is obtained
by gluing r copies of Cn × C along (C∗)

n
× C. So we deduce by induction that Hn+1 (X,Z) is

isomorphic to the direct sum of r copies of Hn ((C∗)
n
× C,Z) ≃ Hn ((C∗)

n
,Z) ≃ Z, whence to

Zr. Therefore, if X admits another structure of principal homogeneous C+-bundle ρ′ : X → Zn′,r′

then (n′, r′) = (n, r). However, we want to insist on the fact that this does not imply that the
structural morphism ρ : X → Zn,r on a Danielewski variety is unique, even up to automorphisms
of the base. This question will be discussed in (1.12) below.

1.7. A principal homogeneous C+-bundle ρ : X → Zn,r becomes trivial on the canonical open
covering U of Zn,r be means of the open subsets Zi ≃ Cn, i = 1, . . . , r (see definition (1.2) above).

So there exists a Čech 1-cocycle

g = {gij}i,j=1,...,g
∈ C1

(

U ,OZn,r

)

≃

r
⊕

i=1

C
[

x, x−1
]

representing the isomorphism class [g] ∈ H1
(

Zn,r,OZn,r

)

≃ Ȟ1
(

U ,OZn,r

)

of X such that X is
equivariantly isomorphic to the scheme obtained by gluing r copies Zi × C = Spec (C [x] [ti]) of
Cn ×C, equipped with C+-actions by translations on the second factor, outside Hx ×C ⊂ Zi ×C

by means of the equivariant isomorphisms

φij :
(

Zj \Hx

)

× C
∼
−→

(

Zi \Hx

)

× C, (x, tj) 7→
(

x, tj + gij

(

x, x−1
))

, i 6= j.

Since a Danielewski variety X is affine, the corresponding transition cocycle is not arbitrary. For
instance, the trivial cocycle corresponds to the trivial C+-bundle Zn,r × C which is not even
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separated if r ≥ 2. More generally, if one of the rational functions gij is regular at a point
λ = (λ1, . . . , λn) ∈ Hx ⊂ Cn, then for every germ of curve C ⊂ Cn intersecting Hx transversely in

λ, (ρ ◦ δ)−1 (C) ⊂ X is a nonseparated scheme. On the other hand, it follows from a very general
result of Danielewski that the total space of a principal homogeneous C+-bundle ρ : X → Zn,2

defined by a cocycle g12 = x−[r]a (x), where [r] ∈ Zn
≥1, such that x[r]C [x] + a (x) C [x] = C [x] is

affine, isomorphic to the variety X ⊂ C
n+2 with equation x[r]z− y2 − a (x) y = 0. More generally,

we have the following result.

Theorem 1.8. For the total space of a principal C+-bundle ρ : X → Zn,r defined by a transition
cocycle g =

{

gij

(

x, x−1
)}

i,j=1,...,r
the following are equivalent.

(1) For every i 6= j, gij = x−[mij ]aij (x) for a certain multi-index [mij ] ∈ Zn
>0 and a polynomial

aij (x) such that aij (x) C [x] + x(1,...,1)C [x] = C [x],
(2) X is separated
(3) X is affine.

Proof. We deduce from I.5.5.6 in [12] that X is separated if and only if gij ∈ C
[

x, x−1
]

generates

C
[

x, x−1
]

as a C [x]-algebra for every i 6= j . Letting gij = x−[m]a (x), where [m] ∈ Zn
≥0 and

where a (x) ∈ C [x], this is the case if and only if x−[m] generates C
[

x, x−1
]

as a C [x]-algebra and

a (x) C [x]+x[m]
C [x] = C [x]. Indeed, the condition is sufficient as it guarantees that C

[

x, x−1
]

=

C [x]
[

x−[m]
]

⊂ C [x] [gij ]. Conversely, if C
[

x, x−1
]

= C [x] [gij ] then gij = x−[m]a (x) for a certain
multi-index [m] = (m1, . . . ,mn) ∈ Zn

≥1 and a polynomial a ∈ C [x] not divisible by xi for every i =

1, . . . , r. Indeed, if there exists an indice i such that mi ≤ 0 then x−1
i 6∈ C [x] [gij ] which contradicts

our hypothesis. Furthermore, since x−[m] ∈ C [x] [gij ], there exists polynomials b1, . . . , bs ∈ C [x]

such that x−[m] = b0 + b1ax
−[m] + . . . + bsa

−s[m] ∈ C [x] [gij ]. This means equivalently that

x(s−1)[m] = b0x
s[m] + ca for a certain c ∈ C [x]. If s 6= 1 then c ∈ x(s−1)[m]

C [x] as the xi’s do not
divide a, and so, there exists c′ ∈ C [x] such that 1 = b0x

−[m] + c′a. This proves that (1) and (2)
are equivalent.

Now it remains to show that if the gij = x−[mij ]aij (x) satisfy (1), then X is affine. We first
observe that there exists an indice i0 such that m1i0,k = max {m1i,k} for every i = 2, . . . , r and
every k = 1, . . . , n. Indeed, suppose on that there exists two indices i 6= j, say i = 2 and j = 3, and
two indices l 6= k such that m12,k < m13,k but m12,l > m13,l. We let [µ] ∈ Zn

≥0 be the multi-index

with components µs = max (m12,s,m13,s), so that µk −m13,k = 0 and µk −m12,k > 0 whereas
µl −m12,l = 0 and µl −m13,l > 0. It follows from the cocycle relation g23 = g13 − g12 that

x[µ]−[m23]a23 (x) = x[µ]−[m13]a13 (x) − x[µ]−[m12]a12 (x) ∈ (xk, xl) C [x] ⊂ C [x] .

Since the xi’s do not divide the aij ’s, it follows that neither xk nor xl divides the polynomial
on the right. Thus m23,l = µl and m23,k = µk. This implies that a23 (x) ∈ (xk, xl) C [x] which
contradicts (1) above. Therefore, the subset of Zn consisting of the multi-indices [m1i], i = 2, . . . , r,
is totally ordered for the restriction of the product ordering of Zn, and so, there exists an indice
i0 such that m1i0,k = max {m1i,k} for every i = 2, . . . , r and every k = 1, . . . , n. By construction,

σi (x) = x[m1i0 ]g1i

(

x, x−1
)

is a polynomial every i = 2, . . . , r, and σi0 (x) restricts to a nonzero
constant λ ∈ C∗ on Hx ⊂ Cn. Letting σ1 (x) = 0, we deduce from the cocycle relation that

x[m1i0 ]gij = (σj (x) − σi (x)) for every i 6= j. In turn, this implies that the local morphisms

ψi : Zi × C = Spec (C [x] [ti]) −→ C
n × C, (x, ti) 7→

(

x, x[m1i0 ]ti + σi (x)
)

, i = 1, . . . , r

glue to a birational morphism ψ : X → Cn × C. By construction, the images by ψ of Hx × C ⊂
Zi0 ×C and Hx ×C ⊂ Z1×C are disjoint, contained respectively in the closed subsets V (x, t− λ)
and V (x, t) of Cn × C = Spec (C [x] [t]). Therefore, ψ−1 (Cn × C \ V (x, t)) is contained in the
complement V1 in X of Hx ×C ⊂ Z1 ×C, whereas ψ−1 (Cn × C \ V (x, t− λ)) is contained in the
complement Vi0 in X of Hx × C ⊂ Zi0 × C. Clearly, ρ : X → Zn,r restricts on V1 and Vi0 to
the structural morphisms ρ1 : V1 → Zn,r−1 and ρi0 : Vi0 → Zn,r−1 of the principal homogeneous

C+-bundles corresponding tho the Čech cocycles {gij}i,j=2,...,r
and {gij}i,j 6=i0,i,j=1,...,r

. So we
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conclude by a similar induction argument as in Proposition 1.4 in [10] that V1 and Vi0 are affine.
In turn, this implies that ψ : X → Cn × C is an affine morphism, and so, X is affine. �

The following example introduce a class of Danielewski varieties, which contains for instance the
Makar-Limanov surfaces of example (1.5).

Example 1.9. Suppose given a collection σ of polynomials σi (x) ∈ C [x], i = 1, . . . , r, with the
following properties.

(1) σi (0, . . . , 0) 6= σj (0, . . . , 0) for every i 6= j,

(2) σi (x) − σi (0, . . . , 0) ∈ x(1,...,1)C [x] for every i = 1, . . . , r.
Then for every multi-index [m] = (m1, . . . ,mn) ∈ Zn

>0 the variety X[m],σ ⊂ Cn+2 with equation

x[m]z −

r
∏

i=1

(y − σi (x)) = 0

is a Danielewski variety.

Proof. Similarly as the Danielewski surfaces, a variety X[m],σ comes naturally equipped with a

surjective morphism π = prx : X[m],σ → Cn, (x, y, z) 7→ x restricting to a trivial A1-bundle

π−1 ((C∗)n) ≃ (C∗)n × C over Ux = (C∗)n, with coordinate y on the second factor. On the other
hand, it follows from our assumptions that the fiber

π−1
(

Hx

)

≃ Spec

(

C [x, y, z] /

(

x(1,...,1), x[m]z −

r
∏

i=1

(y − σi (x))

))

decomposes as the disjoint union of r copiesDi ofHx×C, with equations {x1 · · ·xn = 0, y = σi (0)},

and with coordinate z on the second factor. The open subsets π−1
(

Ux

)

∪Ci of X[m],σ are isomor-
phic to Cn × C with natural coordinates x and

ti =
y − σi (x)

x[r]
=

z
∏

j 6=i

(y − σj (x))
, i = 1, . . . , r,

and so, X[m],σ is isomorphic to the total space of the principal homogeneous C+-bundle defined

by the transition cocycles gij = x−[r] (σj (x) − σi (x)), i, j = 1, . . . , r. �

As a consequence of the general principle discussed at the beginning of this section, Danielewski
varieties are natural candidates for being counter-examples to the Cancellation problem.

Proposition 1.10. If two Danielewski varieties X1 and X2 are the total spaces of C+-principal
bundles over the same base Zn,r then X1 × C and X2 × C are isomorphic.

Example 1.11. Given a polynomial P (y) ∈ C [y] with r ≥ 2 simple roots, the varieties X̃[m],P ⊂

Cn+3 = Spec (C [x, y, z, u]) with equations x[m]z − P (y) = 0, where [m] ∈ Zn
≥1 is an arbitrary

multi-index, are all isomorphic. Indeed X̃[m],P is isomorphic to X[m],P × C, where X[m],P ⊂

Cn+2 = Spec (C [x, y, z]) denotes the Danielewski variety with equation x[m]z − P (y) = 0, which
has the structure of a principal homogeneous C+-bundle over Zn,r (see example (1.9)).

1.12. This leads to the difficult problem of deciding which Danielewski varieties are isomorphic
as abstract varieties. Things would be simpler if the structural morphism ρ : X → Zn,r on a
Danielewski variety were unique up to automorphisms of the base. However, this is definitely not
the case in general, as shown by the Danielewski surface S1 =

{

xz − y2 + 1 = 0
}

⊂ C3, which
admits two such structures, due to the symmetry between the variables x and z. Actually, the
situation is even worse since in general, a Danielewski variety admitting a second C+-action,
whose general orbits are distinct from the general fibers of the structural morphism ρ : X → Zn,r,
comes equipped with a one parameter family of distinct structures of principal homogeneous C+-
bundles. Indeed, let G1 ≃ C+ and G2 ≃ C+ be one-parameter subgroups of Aut (X) corresponding
respectively to a principal homogeneous C+-bundle structure on ρ : X → Zn,r and another
nontrivial C+-action on X with general orbits distinct from the ones of G1. Then the subgroups
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φ−1
t G1φt ≃ C+ of Aut (X), where φt ∈ G2, correspond to principal homogeneous C+-bundle

structures on X , with pairwise distinct general orbits provided that the generators of G1 and G2

do not commute.

1.13. There exists a useful geometric criterion to decide if a smooth affine surface admits two
C+-actions with distinct general orbits. As is well-known, there exists a correspondence between
algebraic C+-actions on a normal affine surface S and surjective flat morphisms q : S → C
with general fiber isomorphic to C, over nonsingular affine curves C, the latter corresponding to
algebraic quotient morphisms associated with these actions. In this context, Gizatullin [11] and
Bertin [2] (see also [5] for the normal case) established successively that if a smooth surface S
admits an A1-fibration q : S → C as above then this fibration is unique up to isomorphism of the
base if and only if S does not admit a completion S →֒ S̄ by a smooth projective surface S̄ for
which the boundary divisor B = S̄ \ S is zigzag, that is, a chain of nonsingular rational curves.
For instance, the fact that the Danielewski surface S1 =

{

xz − y2 + 1 = 0
}

admits two C+-actions
with distinct general orbits can be recovered from this result, as S1 embeds as the complement of
a diagonal in P1 × P1 via the morphism

S1 →֒ P
1 × P

1, (x, y, z) 7→ ([x : y + 1] , [y + 1 : z]) = ([z : y − 1] , [x : y − 1]) .

Bandman and Makar-Limanov [1] (see also [6] for a more general result) deduced from this criterion
that a Danielewski surface ρ : S → Z1,r admits two independent C+-actions if and only if it is
isomorphic to a surface in C3 with equation xz−P (y) = 0, where P is a polynomial with r simple
roots. Latter on, Daigle [3] established that all C+-actions on such a surface S are conjugated
to a one whose general orbits coincides with the ones of the principal homogeneous C+-bundle
structure ρ : S → Z1,r factoring the projection prx : S → C.

1.14. Unfortunately, there is no obvious generalization of Gizatullin criterion for higher dimen-
sional variety with C+-actions. However, it turns out that in certain situations such as the one
described in (2.8) below, one can establish by direct computations that the structural mor-
phism ρ : X → Zn,r on a Danielewski variety is unique up to automorphisms of the base.
If this holds, then it becomes easier to decide if another Danielewski variety is isomorphic to
X as an abstract variety. Indeed, the group Aut (Zn,r) × Aut (C+) ≃ Aut (Zn,r) × C∗ acts
on the set H1

(

Zn,r,OZn,r

)

by sending a class [g] ∈ H1
(

Zn,r,OZn,r

)

represented by a bundle
ρ : X → Zn,r with C+-action µ : C+ × X → X to the isomorphism class (φ, λ) · [g] of the
fiber product bundle pr2 : φ∗X = X ×Zn,r

Zn,r → Zn,r equipped with the C+-action defined by

µλ (t, (x, z)) 7→
(

µ
(

λ−1t, x
)

, z
)

. Similar arguments as in Theorem 1.1 in [20] imply the following
characterization.

Proposition 1.15. Let ρ1 : X1 → Zn,r and ρ2 : X2 → Zn,r be two Danielewski varieties. If ρ1 is
a unique A1-bundle structure on X1 up to automorphisms of Zn,r, then X1 and X2 are isomorphic
as abstract varieties if their isomorphism classes as principal C+-bundles belong to the same orbit
under the action of Aut (Zn,r) × Aut (C+).

1.16. Let us again consider the Danielewski varieties X[m],σ ⊂ Cn+2 with equations x[m]z −
∏r

i=1 (y − σi (x)) = 0, where [m] = (m1, . . . ,mn) ∈ Zn
>0 is a multi-index and where σ = {σi (x)}i=1,...,r

is collection of polynomials satisfying (1) and (2) in example (1.9). Again, we denote by π = prx :
X[m],σ → Cn, (x, y, z) 7→ x the fibration which factors through the structural morphism of the
principal homogeneous C+-bundle ρ : X[m],σ → Zn,r described in (1.9) above. Suppose that one
of the mi’s, say m1 is equal to 1. Then X[m],σ admits a second fibration

π1 : X[m],σ → C
n, (x1, . . . , xn, y, z) 7→ (x2, . . . , xn, z)

restricting to the trivial A1-bundle over (C∗)
n

and the same argument as in (1.9) above shows
that π1 factors through the structural morphism of another principal homogeneous C+-bundle
ρ1 : X[m],σ → Zn,r. On the hand, Makar-Limanov [18] established that for every integer m ≥ 2

the A1-bundle structure ρ : S → Z1,r above on a Danielewski surface S ⊂ C3 with equation
xmz − P (y) = 0, where degP (y) = r ≥ 2, is unique up to isomorphism of the base. More
generally, we have the following result.
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Theorem 1.17. Let σ = {σi (x)}i=1,...,r be a collection of r ≥ 2 polynomials satisfying (1) and (2)

in example (1.9). Then for every multi-index [m] ∈ Zn
>1, ρ : X[m],σ → Zn,r is a unique structure

of principal homogeneous C+-bundle structure on X[m],σ up to action of the group Aut (Zn,r) ×
Aut (C+).

Proof. This follows from Theorem (2.8) below which guarantees more generally that the algebraic
quotient morphism q : X[m],σ → X[m],σ//C+ associated with an arbitrary nontrivial C+-action on
X[m],σ coincides with the projection π = prx : X[m],σ → Cn. �

It follows from (1.16) that every Danielewski variety X[m],σ ⊂ Cn+2 defined by a multi-index
[m′] ∈ Zn

≥1 \ Zn
>1 admits a second C+-action whose general orbits are distinct from the general

fibers of the A1-bundle ρ : X[m],σ → Zn,r. This leads to the following result.

Corollary 1.18. For every collection σ = {σi (x)}i=1,...,r of r ≥ 2 polynomials satisfying (1) and

(2) in example (1.9) and every pair of multi-index [m] ∈ Zn
>1 and [m′] ∈ Zn

≥1\Zn
>1 the Danielewski

varieties X[m],σ and X[m′],σ are not isomorphic.

1.19. More generally, let [m] = (m1, . . . ,mn) ∈ Zn
>1 and [m′] = (m′

1, . . . ,m
′
n) ∈ Zn

>1 be two
multi-index for which the subsets {m1, . . . ,mn} and {m′

1, . . . ,m
′
n} of Z are distint. Then for

every collection σ = {σi (x)}i=1,...,r of r ≥ 2 polynomials satisfying (1) and (2), the Čech cocycles

gij = x−[m] (σj (x) − σi (x)) and g′ij = x−[m′] (σj (x) − σi (x))

in C1
(

U ,OZn,r

)

≃ C
[

x, x−1
]r

are not cohomologous and do not belong to the same orbit under

the action of Aut (Zn,r)×Aut (C+) on C1
(

U ,OZn,r

)

. As a consequence of Proposition (1.15) and
Theorem (1.17) above, we obtain the following result.

Corollary 1.20. Under the hypothesis above, the Danielewski variety X[m],σ and X[m′],σ are not
isomorphic. In particular, there exists an infinite countable family of pairwise nonisomorphic
Danielewski variety X[m],σ with the property that all the varieties X[m],σ × C are isomorphic.

Remark 1.21. Given a multi-index [m] ∈ Zn
>1, the problem of characterizing explicitly the col-

lections σ = {σi (x)}i=1,...,r which lead to isomorphic Danielewski varieties X[m],σ is more subtle

in general. By virtue of proposition (1.15), it is equivalent to describe the orbits of the asso-
ciated cocycles gij = x−[m] (σj (x) − σi (x)) under the action of Aut (Zn,r) × Aut (C+). In the
case of surfaces, the question becomes simpler as Aut (Z1,r) ≃ C

∗ × Z/rZ. For instance, Makar-
Limanov [18] obtained a complete classification of the Danielewski surfaces S ⊂ C3 with equation
xnz − P (y) = 0, where n ≥ 2. More generally, we refer the interested reader to the forthcoming
paper [7], in which we study Danielewski surfaces with equations xnz −Q (x, y) = 0.

2. Additive group actions on Danielewski varieties

Makar-Limanov [17] observed that it is sometimes possible to obtain information on algebraic

C+-actions on an affine varietyX by considering homogeneous C+-actions on certain affine cones X̂
associated with X . We recall that the Makar-Limanov invariant of an affine variety X = Spec (B)
is the subring ML (X) of B consisting of regular functions on B which are invariant under all
C+-actions on X . Using associated homogeneous objects, he established in [17] that the Makar-
Limanov invariant of the Russell cubic threefold, i.e. the hypersurface X ⊂ C4 with equation
x + x2y + z2 + t3 = 0, is not trivial. He also computed in [18] the Makar-Limanov invariant
of affine surfaces S = {xnz − P (y) = 0}, where deg (P ) > 1and n > 1. Here we use a similar
method, based on real-valued weight degree functions, to compute the Makar-Limanov invariant
of the Danielewski varieties X[m],σ, where [m] ∈ Zn

>1.

2.1. Basic facts on locally nilpotent derivations.

He we recall results on locally nilpotent derivations that will be used in the following subsections.
We refer the reader to [9] and [16] for more complete discussions.
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2.1. Algebraic C+-actions on a complex affine variety X = Spec (B) are in one-to-one correspon-
dence with locally nilpotent C-derivations of B, that is, derivations ∂ : B → B such that every b
belongs to the kernel of ∂m for a suitable m = m (b). Indeed, for every algebraic C+-action on S

with comorphism µ∗ : B → B⊗C C [t], ∂µ =
d

dt
|t=0 ◦µ∗ : B → B is a locally nilpotent derivation.

Conversely, for every such derivation ∂ : B → B the exponential map

exp (t∂) : B → B [t] , b 7→
∑

n≥0

∂nb

n!
tn

coincides with the comorphism of an algebraic C+-action on X . To every locally nilpotent deriva-
tion ∂ of B, we associate a function

deg∂ : B → N ∪ {−∞} , defined by deg∂ (b) =

{

−∞ if b = 0

max {m, ∂mb 6= 0} otherwise,

which we call the degree function generated by ∂. We recall the following facts.

Proposition 2.2. Let ∂ be a nontrivial locally nilpotent derivation of B. Then the following hold.
(1) B has transcendence degree one over Ker (∂). The field of fraction Frac (B) of B is a purely

transcendental extension of Frac (Ker (∂)), and Ker (∂) is algebraically closed in B.
(2) For every f ∈ Ker

(

∂2
)

\ Ker (∂), the localization Bf of B at f is isomorphic to the poly-
nomial ring in one variable Ker (∂)∂(f) [f ] over the localization Ker (∂)∂(f) of Ker (∂) at ∂ (f).

In particular, for every b ∈ Ker
(

∂m+1
)

\ Ker (∂m), there exists a′, a0, . . . , am ∈ Ker (∂), where

a′, am 6= 0, such that a′b =
∑m

j=0 ajf
j.

(3) deg∂ : B → N ∪ {−∞} is a degree function, i.e. deg∂ (b+ b′) ≤ max (deg∂ (b) , deg∂ (b′))
and deg∂ (bb′) = deg∂ (b) + deg∂ (b′).

(4) If b, b′ ∈ B \ {0} and bb′ ∈ Ker (∂), then b, b′ ∈ Ker (∂).

2.2. Equivariant deformations to the cone following Kaliman and Makar-Limanov.

Here we review a procedure due to Makar-Limanov [17] which associates to filtered algebra
(B,F) equipped with a locally nilpotent derivation ∂ a graded algebra equipped with an homo-
geneous locally nilpotent derivation induced by ∂.

2.3. We let B be a finitely generated algebra, equipped with an exhaustive, separated, ascending
filtration F = {F tB}t∈R

by C-linear subspaces F tB of B. For every t ∈ R, we let F t
0B =

⋃

s<t F
sB. We denote by

grFB =
⊕

t∈R

(grFB)t , where (grFB)t = F tB/F t
0B

the R-graded algebra associated to the filtered algebra (B,F), and we let gr : B → grFB the
natural map which sends an element b ∈ F tB ⊂ B to its image gr (b) under the canonical map
F tB → F tB/F t

0B ⊂ grFB. Suppose further that 1 ∈ F 0B \ F 0
0B and that

(

F t1B \ F t1
0 B

) (

F t2B \ F t2
0 B

)

⊂
(

F t1+t2B \ F t1+t2
0 B

)

for every t1, t2 ∈ R.

Then the filtration F is induced by a degree function dF : B → R ∪ {−∞} on B. Indeed, the
formulas dF (0) = −∞ and dF (b) = t if b ∈ F tB \ F t

0B ⊂ B define a degree function on B
such that F tB = {b ∈ B, d (b) ≤ t} for every t ∈ R. In what follows, we only consider filtrations
induced by degree functions.

2.4. Given a nontrivial locally nilpotent derivation ∂ of B and a nonzero b ∈ B, we let t (b) =

dF (∂b)−dF (b) ∈ R. By definition, if b ∈ F tB\(Ker∂ ∩ F t
0B) then ∂b ∈ F t+t(b)B\F

t+t(b)
0 B. Since

B is finitely generated, it follows that there exists a smallest t0 ∈ R such that ∂F tB ⊂ F t+t0B.
So ∂ induces a locally nilpotent derivation gr∂ of the associated graded algebra grFB of (B,F),
defined by

gr∂ (gr (b)) =

{

gr (∂b) if dF (∂ (b)) − dF (b) = t0

0 otherwise.
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By construction, gr∂ sends an homogeneous component F tB/F t
0B of grFB into the homogeneous

component F t+t0B/F t+t0
0 B. We say that gr∂ is the homogeneous locally nilpotent derivation of

grFB associated with ∂. By construction, if grFB is a domain, then

deg∂ (b) ≥ deggr∂ (gr (b))(2.1)

for every b ∈ B. We will see below that this inequality plays a crucial role in the computation of
the Makar-Limanov invariant of certain Danielewski varieties.

Remark 2.5. For integral-valued degree functions d : B → Z ∪ {−∞}, the above construction ad-
mits a simple geometric interpretation. Indeed, letting F = {FnB}n∈Z

be the filtration generated
by d, we consider the Rees algebra

R (B,F) =
⊕

n∈Z

Fns−n ⊂ B
[

s, s−1
]

.

Every locally nilpotent derivation ∂ of B canonically extends to a locally nilpotent derivation ∂̃ of
R (B,F) with the property that ∂̃ (s) = 0. By construction, the inclusion C [s] →֒ R (B,F) gives
rise to a flat family ρ : X = Spec (R (B,F)) → C of affine varieties with C+-actions, such that for
every s ∈ C∗, the fiber Xs is isomorphic to X equipped with the C+-action defined by ∂, whereas
the fiber X0 ≃ Spec (R (B,F) /sR (B,F)) is isomorphic to the spectrum of the graded algebra
grFB, equipped with C+-action corresponding to the homogeneous locally nilpotent derivation
gr∂ of grFB defined above.

2.3. On the Makar-Limanov invariants of Danielewski varieties X[m],σ.

Here we consider a class of affine varieties with C+-actions which contains the Danielewski
varieties X[m],σ of example (1.9). We construct certain filtrations Fd of their coordinate rings
induced by weight degree functions, and we determine the structure of the associated homogeneous
objects. Finally we compute their Makar-Limanov invariants.

Definition 2.6. Given a monic polynomial Q (x, y) = yr +
∑r−1

i=0 ai (x) yi ∈ C [x] [y] of degree
r ≥ 2 and a multi-index [m] = (m1, . . . ,mn) ∈ Zn

≥1, we denote by X[m],Q ⊂ Cn+2 the affine

variety with equation x[m]z −Q (x, y) = 0.

2.7. Clearly, the above class of affine varieties contains the Danielewski varieties X[m],σ ⊂ Cn+2

with equations x[m]z −
∏r

i=1 (y − σi (x)) = 0. Again, the projection

π = prx : X[m],Q → C
n, (x, y, z) 7→ x

restricts to a trivial A
1-bundle (C∗)

n
× C = Spec

(

C
[

x, x−1
]

[y]
)

over (C∗)
n
⊂ C

n. On the other

hand π−1
(

Hx

)

red
is the disjoint union of r̃ copies of Hx×C with equations {x1 · · ·xn = 0, y = λi},

where λ1, . . . , λr̃ denote the distinct roots of the polynomial P (y) = Q (0, y). The locally nilpotent
derivation ∂ of C [x, y, z] defined by

∂ (xi) = 0, i = 1, . . . , r, ∂ (y) = x[m] ∂ (z) =
∂Q (x, y)

∂y

annihilates the definning ideal I =
(

x[m]z −Q (x, y)
)

ofX[m],Q, whence induces a nontrivial locally
nilpotent derivation of the coordinate ring B of X[m],Q. The general orbits of the corresponding
C+-action coincide with the general fibers of π. Hence π coincides with the algebraic quotient
morphism q : X[m],Q → X[m],Q//C+ = Spec

(

BC+

)

. This shows that ML
(

X[m],Q

)

⊂ C [x]. Actu-

ally, a similar argument as in (1.16) above shows that ML
(

X[m],Q

)

is a subring of C [xi1 , . . . , xis
],

where i1, . . . , is denote the indices for which mik
= 1. In particular, if [m] = (1, . . . , 1), then

ML
(

X[m],Q

)

= C. In contrast, we have the following result.

Theorem 2.8. If [m] ∈ Zn
>1 then the Makar-Limanov invariant of a variety X[m],Q is isomorphic

to C [x].

2.9. It suffices to shows Ker
(

∂2
)

⊂ C [x, y] ⊂ B for every nontrivial locally nilpotent derivation ∂
on the coordinate ring B ofX[m],Q. Indeed, if ∂ is nontrivial, then it follows from (2) in Proposition

(2.2) that there exists f ∈ Ker
(

∂2
)

\ Ker (∂) such that z = x−[m]
(

y2 − 1
)

∈ B ⊂ C
[

x, x−1, y
]
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satisfies a relation of the form a′z =
∑m

j=1 ajf
j for suitable elements a′, a0, . . . , am ∈ Ker (∂), where

a′, am 6= 0. Therefore, if Ker
(

∂2
)

⊂ C [x, y] then z = r (x, y) /q (x, y) for a certain polynomial

q (x, y) ∈ Ker (∂). This implies that x[m] divides q (x, y) and so, by virtue of (3) in (2.2), C [x] ⊂
Ker (∂) as mi ≥ 1 for every i = 1, . . . , n. To show that the inclusion Ker

(

∂2
)

⊂ C [x, y] holds for
every nontrivial locally nilpotent derivation onB, we study in (2.10)-(2.16) below the homogeneous
objects associated with certain filtrations on B induced by weight degree functions.

Definition 2.10. A weight degree function on a polynomial ring C [x] is a degree function d :
C [x] → R defined by real weights di = d (xi), i = 1, . . . , n. The d-degree of monomial m = x[α] is
α1d1 + . . .+αdn, and the d-degree d (p) of a polynomial p ∈ C [x] is defined as the suppremum of
the degrees d (m), where m runs through the monomials of p. A weight degree function d defines
a grading C [x] =

⊕

t∈R
C [x]t, where C [x]t \ {0} consists of all the d-homogeneous polynomials of

d-degree t. In what follows, we denote by p̄ the principal d-homogeneous component of p, that is,
the homogeneous component of p of degree d (p). A degree function d on C [x] naturally extends
to a degree function on the algebra C

[

x, x−1
]

of Laurent polynomials.

2.11. Given a multi-index [m] ∈ Zn
>1 and a monic polynomial Q (x, y) ∈ C [x] [y] as in definition

(2.6), we denote by B = C [x, y, z] /I, where I =
(

x[r]z −Q (x, y)
)

, the coordinate ring of the
corresponding variety X[m],Q, and we denote by σ : C [x, y, z] → B the natural morphism. The
polynomial ring C [x, y] is naturally a subring of B. Moreover, by means of the localization ho-
momorphism B →֒ Bx = B⊗C[x] C

[

x, x−1
]

≃ C
[

x, x−1, y
]

, B is itself identified to the subalgebra

C
[

x, y, x−[m]Q (x, y)
]

of C
[

x, x−1, y
]

. Hence every weight degree function d on C
[

x, x−1, y
]

in-

duces an exhaustive separated ascending filtration Fd = {F tB}t∈R
of B ⊂ C

[

x, x−1, y
]

by means

of the subsets F tB = {p ∈ B, d (p) ≤ t}, t ∈ R.

2.12. Since Q (x, y) = yr +
∑r−1

i=0 ai (x) yi is monic, it follows that if the weight dy of y is positive
and sufficiently bigger that the weights di of the xi’s, then the principal d-homogeneous component
of Q (x, y) is simply Q̄ (x, y) = yr. If this holds, then grFB is generated by gr (x) = x, gr (y) = y

and gr (z) = x−[m]yr, with the unique relation x[m]gr (z) = yr. Hence, letting d̃ : C [x, y, z] → R

be the unique weight degree function restricting to d on C [x, y] ⊂ C [x, y, z] and such that d̃ (z) =
rdy − (m1d1 + · · · +mndn) ∈ R, we obtain an isomorphism of graded algebras

φ : B̂ = C [x, y, z]/Î =
⊕

t∈R

B̂t ∼
−→ grFd

B =
⊕

t∈R

F tB/F t
0B,

where Î =
(

x[m]z − yr
)

⊂ C [x, y, z] denotes the d̃-homogeneous ideal generated by the principal

components of the polynomials in I =
(

x[r]z −Q (x, y)
)

, and where B̂t = B̂t = C [x, y, z]t /Î ∩
C [x, y, z]t for every t ∈ R.

2.13. It follows from (1) and (4) in Proposition (2.2), that the kernel of an associated homoge-
neous locally nilpotent derivations gr∂ of grFd

B contains n algebraically independent irreducible
homogeneous elements. To make the study of these derivations easier, we need to make the set of
these irreducible homogeneous elements as small as possible. For this purpose, we consider weight
functions d : C [x, y] → R satisfying the following properties :

(1) The weight dy of y is positive, and Q̄ (x, y) = yr.
(2) The real weights di = d (xi) and dy are linearly independent over Z.

According to (2.12) above, the first condition guarantees that the graded algebra grFB of the

filtered algebra (B,Fd) is isomorphic to the quotient B̂ of C [x, y, z] by the d̃-homogeneous ideal

Î =
(

x[m]z − yr
)

. The second one is motivated by the following result.

Lemma 2.14. Under the hypothesis above, every homogeneous element of B̂ is the image by the
natural morphism σ̂ : C [x, y, z] → B̂ of a unique monomial of C [x, y, z] not divisible by x[m]z. In

particular, every irreducible homogeneous element of B̂ is the image of a variable of C [x, y, z].
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Proof. Since Î =
(

x[m]z − yr
)

, every nonzero homogeneous element of B̂ is the image by σ̂ of a

unique homogeneous polynomial p̄ ∈ C [x, y, z] whose monomials are not divisible by x[m]z. On

the other hand, the hypothesis on d, together with the fact that d̃ (z) = 2dy−(m1d1 + . . .+mndn)
implies that if p̄ contains a pair of monomials µ1 6= µ2, then there exists λ ∈ C and k ∈ Z such

that µ1µ
−1
2 = λ

(

x[m]zy−r
)k

. If k 6= 0, then x[m]z divides one of the µi, which is impossible. Thus
p̄ is a monomial. �

Proposition 2.15. If [m] ∈ Zn
>1 then Ker

(

∂̂
)

= C [x] for every associated homogeneous locally

nilpotent derivation ∂̂ on B̂. Furthermore deg
∂̂

(σ̂ (z)) ≥ 2.

Proof. By virtue of (1) and (4) in (2.2), the kernel of ∂̂ contains n algebraically independent
irreducible homogeneous elements ξ1, . . . , ξn. So it follows from lemma (2.14) above that the ξi’s
are the images by σ̂ of n distinct variables of C [x, y, z]. These functions ξi, i = 1, . . . , n, define a

morphism q : X̂ = Spec
(

B̂
)

→ Cn which invariant for the C+-action defined by ∂̂. In particular,

for a general point λ = (λ1, . . . , λn) ∈ Cn, the C+-action on X̂ specializes to a nontrivial C+-action
on the fiber q−1 (λ). Suppose that one of the ξi’s, say ξ1, is the image of y. Then, depending on the
other variables inducing the ξi’s, i = 2, . . . , n, we would obtain, for a general µ ∈ C, a nontrivial
C+-action on one of the curves C ⊂ C2 with equations x

mi1

i1
x

mi2

i2
− µ = 0 or x

mi1

i1
z− µ = 0, which

is absurd. Similarly, is ξ1 is the image of z then, for a general µ ∈ C, the C+-action on X̂ would
specialize to a nontrivial action on the curve with equation µxmi

i − yr = 0 for certain i = 1, . . . , n.

This impossible as r > 1 andmi > 1 for every i = 1, . . . , n by hypothesis. This proves that Ker
(

∂̂
)

contains C [x]. Thus ∂̂ naturally extends to a locally nilpotent derivation of B̂x ≃ C
[

x, x−1, y
]

. In

turn, this implies that deg
∂̂

(y) = 1 and deg
∂̂

(σ̂ (z)) ≥ 2 as σ̂ (z) ∈ B̂ coincides with x−[m]yr ∈ B̂x

via the canonical injection B̂ →֒ B̂x. Therefore, the projection prx : X̂ → Cn coincides with the

algebraic quotient morphism of the associated C+-action. This proves that Ker
(

∂̂
)

= C [x]. �

The following result completes the proof of Theorem (2.8).

Corollary 2.16. For every nontrivial locally nilpotent ∂ of B, Ker
(

∂2
)

is contained in C [x, y].

Proof. Recall that b ∈ Ker
(

∂2
)

if and only if deg∂ (b) ≤ 1. Since I is generated by the polynomial

x[m]z−Q (x, y), every b ∈ Ker
(

∂2
)

is the restriction to X[m],Q of a unique polynomial p ∈ C [x, y, z]

whose monomials are not divisible by x[m]z. Suppose that p 6∈ C [x, y]. Then there exists a weight
degree function d on C [x, y, z] as in (2.13) for which the principal d-homogeneous component p̄
belongs to C [x, y, z] \ C [x, y]. We deduce from lemma (2.14) above that p̄ = x[α]yβzγ , where

γ ≥ 1 and x[m]z does not divide x[α]zγ . Letting ∂̂ = gr∂ be the homogeneous locally nilpotent
derivation of B̂ = grFB associated with ∂, we have deg

∂̂
(σ̂ (p̄)) ≥ deg

∂̂
(σ̂ (z)) and so (see (2.1)),

deg∂ (b) ≥ deg
∂̂

(σ̂ (z)) as σ̂ (p̄) coincides via the isomorphism φ of (2.12) with the image gr (b) ∈
grFB of b. This is absurd as deg

∂̂
(σ̂ (z)) ≥ 2 by virtue of lemma (2.15). �
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