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ABSTRACT
In this article we present and study a scaling law of the m�m cosmic microwave background
Fourier spectrum on rings that allows us to (i) combine spectra corresponding to different
colatitude angles (e.g. several detectors at the focal plane of a telescope) and (ii) recover the
C� power spectrum once the �m coefficients have been measured. This recovery is performed
numerically below the 1 per cent level for colatitudes � > 80◦. In addition, taking advantage
of the smoothness of C� and of �m , we provide analytical expressions that allow the recovery
of one of the spectra at the 1 per cent level, the other one being known.

Key words: cosmic microwave background.

1 F O U R I E R A NA LY S I S O F C I R C L E S
O N T H E S K Y V E R S U S S P H E R I C A L
H A R M O N I C S E X PA N S I O N

Cosmic microwave background (CMB) exploration has re-
cently made great progress thanks to balloon-borne experiments
(BOOMERANG, Mauskopf et al. 2000; MAXIMA, Hanany et al.
2000; Archeops, Benoı̂t et al. 2003) and ground-based interfer-
ometers (CBI, Contaldi et al. 2002; DASI, Halverson et al. 2002;
VSA, Taylor et al. 2003). MAP,1 the first results from which will
be available at the beginning of 2003, and the forthcoming Planck
satellite,2 the launch of which is scheduled for the beginning of 2007
will scan the entire sky with resolutions of 20 and 5 arcmin, respec-
tively. These CMB observation programmes yield a large amount
of data, the reduction of which is usually performed through a map-
making process and then by expanding the temperature inhomo-
geneities on the spherical harmonics basis:

�T (n)

T
=

∑
�

�∑
m=−�

a�mY�m(n). (1)

The outcome of the measurements is given in the form of the an-
gular power spectrum C� ≡ 〈|a�m |2〉. The set of C� coefficients
completely characterizes the CMB anisotropies in the case of un-
correlated Gaussian inhomogeneities (Bond & Efstathiou 1987; Hu
& Dodelson 2002).

Several of the current or planned CMB experiments (Archeops,
MAP, Planck) perform or will perform circular scans on the sky. Car-

�E-mail: perderos@lal.in2p3.fr
1 MAP home page: http://map.gsfc.nasa.gov/
2 Planck home page: http://astro.estec.esa.nl/SA-general/Projects/Planck/

rying out a one-dimensional analysis of the CMB inhomogeneities
on rings provides a valuable alternative to characterize its statis-
tical properties (Delabrouille et al. 1998). A ring-based analysis
looks promising, for example, for the Planck experiment where
repeated (∼60 times) scans of large circles with a colatitude an-
gle � ∼ 85◦ are being planned. This approach differs in several
ways from that based on spherical harmonics. In particular, it does
not require the construction of sky maps and some systematic ef-
fects could be easier to treat in the time domain rather than in
two-dimensional (�, ϕ) space (1/f noise for instance), since the
map-making procedure involves a complex projection on to this
space.

For a circle of colatitude �, one writes

�T (�, ϕ)

T
=

+∞∑
m=−∞

αm(�)eimϕ (2)

and the �m Fourier spectrum is defined by〈
αmα∗

m′
〉 = �m(�)δmm′ . (3)

These �m coefficients are thus specific to a particular colatitude
angle �. Below, we propose a simple way of combining sets of
such coefficients corresponding to different � values (i.e. different
detectors).

Fig. 1 shows an example of the C� power spectrum for � < 1500,
together with two Fourier spectra,3 which describe the same sky for
two quite distinct cases, one for � = 90◦ and one for � = 40◦.

Note that for this figure and throughout the article the C0 and C1

coefficients have been set equal to 0.

3 Note that we have chosen the following normalizations: the C� coefficients
have been multiplied by �(2� + 1)/4π and �m by 2m.
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Figure 1. ‘Typical’ power spectra. The inset shows a �(2� + 1)C�/4π
spectrum up to � = 1500. The main graphs are two Fourier spectra (2m�m )
calculated exactly using equation (4): one for � = 90◦ (darker curve) and
the other for � = 40◦ (lighter curve). The triangles represent a subsample
of the 2m�m (� = 40◦) coefficients after having rescaled their abscissa by a
factor 1/sin 40◦ = 1.556.

The relation that gives �m(�) from C� was obtained by
Delabrouille et al. (1998):

�m(�) =
∞∑

�=|m|
C� B2

�P2
�m(cos �), (4)

where the set of B� coefficients characterizes the beam function
and P2

�m are the normalized associated Legendre functions. This
relation assumes that a�m introduced in equation (1) are uncorrelated
Gaussian random variables and that the scan is performed with a
symmetric beam.

In this article, we present the scaling law and the inverse transfor-
mation that consists in the calculation of C� from �m . In Section 2,
we demonstrate that this simple scaling law, displayed by the m�m

spectrum for different colatitude angles, is accurate. Section 3 is
dedicated to the description of two different methods proposed to
invert equation (4) in the case where � = 90◦. While a simple ma-
trix inversion leads to the result, we also present an approximate
analytic method. In Section 4 these two methods are extended to the
general case where � < 90◦.

2 S C A L I N G O F T H E mΓm(Θ) S P E C T RU M

Our study was triggered by one of us noticing that the product
m�m(�) is only a function of the reduced variable µ ≡ m/sin �,
i.e. this product is independent (to a very good approximation) of
the colatitude angle �.

This scaling is illustrated in Fig. 1, where a 2m�m spectrum com-
puted for a colatitude angle of � = 40◦ is scaled to match the corre-
sponding �= 90◦ one. To quantify the precision of this approximate
scaling law, we have computed the differences between the scaled
2m�m(�) and the interpolated 2m�m(� = 90◦) spectrum (at m/sin
�). Examples are shown in Fig. 2 for five � values ranging between

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400

∆(2mΓm) (µK2)

m

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2.5 5 7.5 10 12.5 15 17.5 20

Figure 2. Absolute differences (in µK2) between 2m�m (�) spectra scaled
to � = 90◦ and the interpolated 2m�m (� = 90◦) spectrum. All spectra are
based on the C� spectrum of Fig. 1. We have worked out these differences for
�= 60◦ (smallest amplitude curve), 40◦, 30◦, 20◦ and 10◦ (largest amplitude
curve). The inset displays the low-m part, showing that the difference has a
meaningful value only above m = 2/sin �.

60◦ and 10◦. The absolute values of these differences are lower than
2 µK2 over the whole m range for the particular spectrum given in
Fig. 1. They are only defined for m values greater than 2/sin �,
as shown in the inset. Oscillations are observed in the difference.
They present the same period but their amplitudes increase as the
colatitude angle � decreases.

Different 2m�m(�) sets obtained from several detectors over a
small range of colatitude angles � (a few degrees) may be combined
using this scaling law, with a precision better than 0.01 per cent.
Several experiments, spanning a wider range of colatitude angles,
may also be combined likewise, however, with a slightly worse
precision.

In the following, we explain this scaling law using a geometrical
and a mathematical argument.

2.1 Geometric interpretation

The power spectrum �m(�) is the Fourier transform of the signal
autocorrelation function A(δφ, �), where δφ is the phase difference
between two points of the scanned ring. Two such points have an
angular separation δψ on the unit sphere, where

δψ = 2 arcsin

(
sin � sin

δφ

2

)
. (5)

This relation between δφ and δψ allows one to express the scaling
law, since the signal autocorrelation function, expressed as a func-
tion of δψ is equal to the autocorrelation function on a large-circle
scan:

A(δψ, π/2) = A(δφ, �). (6)

For small δφ, this relation becomes linear:

δψ = sin �δφ. (7)
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554 R. Ansari et al.

So that, in this linear regime, the autocorrelation function satisfies

A(δφ, �) = A(sin �δφ, π/2). (8)

Since the ring length L on the unit sphere is 2π sin �, the mth har-
monic of the Fourier expansion corresponds to structures on the sky
of angular size

λ ≡ 2π
sin �

m
= 2π

µ
. (9)

In the continuum approximation, taking the Fourier transform of
both sides of equation (8) leads to

�m(�) = 1

sin �
�m/ sin �(π/2), (10)

which, using equation (9) leads to the scaling law

m�m(�) = µ�µ(π/2). (11)

While we are mainly concerned here with circular scanning, the
same reasoning can be made for any kind of trajectory on the sky
as long as it stays ‘close’ to a large circle on angular scales of the
order of λ, and the same scaling law applies to the power density
spectrum expressed as a function of 1/λ.

2.2 Analytic interpretation

To investigate this scaling mathematically, we start from equa-
tion (4), which gives the exact relations that connect �m(�) to C�.
Since B� are, supposedly, well-known quantities for each experi-
mental set-up, we will no longer mention them explicitly and we
will deal with the coefficients C� ≡ C� B2

� .
We calculate the P2

�m(cos �) factors using approximate expres-
sions of the Legendre associated functions given by Robin (1957)
(see Appendix A for some details) which, once normalized, read as
follows.

(i) For � < m/sin �,

P�m(cos �) � 1

2π

√
� + 1/2

M

(
� cos � + M

�

)�+1/2

×
[

m cos � − M

(� − m) sin �

]m m∏
k=1

√
� + k − m

� + k
, (12a)

where M =
√

m2 − �2 sin2 �,
(ii) and for � > m/sin �,

P�m(cos �) � (−1)m

2π

√
2(2� + 1)

N
cos ω, (12b)

where N =
√

l2 sin2 � − m2. The expression for the angle ω is
given in Appendix A. These approximations are illustrated in Fig. 3.

For � < m/sin �, the numerical value ofP2
�m(cos �) is negligible,

while for � > m/sin � equation (12b) implies

P2
�m(cos �) � 1

4π2

2� + 1

(�2 sin2 � − m2)1/2
[1 + cos(2ω)]. (13)

Since the CMB angular power spectrum varies slowly as a func-
tion of �, we may replace the sum over � in equation (4) by an
integral. We thus obtain

m�m(�) = m

4π2

∫ �max

m/sin �

C(�)[2� + 1][1 + cos(2ω)]

(�2 sin2 � − m2)1/2
d� (14)
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Figure 3. Comparison between the exact value of P�800(cos 40◦) as a func-
tion of � (dotted line) and that obtained with the approximate expressions
of equations (12a) and (12b) (solid line). The arrow indicates the � = 800/

sin 40◦ abscissa.

where �max is an � value beyond which the power spectrum van-
ishes, and C(�) is a function of � ∈ [0, �max] that smoothly inter-
polates the C� coefficients (a simple way of proceeding is given in
Appendix B).

The oscillation frequency ν of the cosine term (as a function of �)
in the integrand in the right-hand side of equation (14) is of the order
of �/π (thus ν ∼ 1/2 when � = π/2). Such a frequency is high
enough for this cosine term to contribute only a very small amount to
the integral. This will be checked numerically in Section 3.1 below.
Thus, we may write

m�m(�) � 1

4π2

∫ �max

µ

C(�)
2� + 1

[(�/µ)2 − 1]1/2
d�. (15)

This equation demonstrates – within the approximations that have
been made – that the product m�m(�) depends only on the variable
µ = m/sin �.

Since the variable µ is not constrained to be an integer, one has to
introduce a smooth function, �(m, �), where m is now a real, that
interpolates the �m(�) discrete spectrum. This can be done in the
same way as that indicated for the C� spectrum (cf. Appendix B).

In terms of this �(m, �) function, the scaling law is expressed by
the relation

�(m ′, �′) = sin �

sin �′ �

(
m ′ sin �

sin �′ , �

)
. (16)

This equation follows from the equality m �(m, �) = m ′�(m ′, �′),
which holds true provided that m/sin � = m ′/sin �′.

Assuming that the Fourier spectrum has been obtained for a par-
ticular value � of the colatitude angle, equation (16) allows one to
calculate �(m ′, �′) for m ′ = m sin �′/sin �, m = 1, 2, . . . , mmax =
�max sin �. Then, by interpolation, one obtains �(m ′, �′) for all
integer values of m ′ ranging from sin �′/sin � up to �max sin �′.
Equation (16) can thus be used to compare and combine Fourier
spectra that correspond to different � values.
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3 R E C OV E R I N G T H E C� C O E F F I C I E N T S
F RO M T H E Γm(π/2 ) F O U R I E R S P E C T RU M

3.1 Checking and solving the integral equation that
relates C(�) to Γ (m, π/2)

Since � is assumed to be equal to π/2 in this section, the variable
µ can be identified with m.

In order to facilitate the numerical calculation of the right-hand
side of equation (15), we introduce a new variable of integration x
defined by � = m cosh x . Then equation (15) can be rewritten as

�(m, π/2) = 1

4π2

×
∫ cosh−1(�max/m)

0

(2m cosh x + 1)C(m cosh x) dx .

(17)
The transformation defined by equation (17) is linear: thus one

may insert in the integrand an interpolating function of the C� spec-
trum as defined by equation (B1). The output of equation (17) ap-
plied to the angular power spectrum of Fig. 1 is shown in Fig. 4.
One can see in this figure that for such a spectrum the approxima-
tions made in Section 2 ensure an accuracy of better than 1 per cent
– except at the lower end of the spectrum where the relative error
drops below 2 per cent for m = 14.

Equation (17) can be solved for C(�) by noticing that this integral
equation is similar to Schlömilch’s equation, which reads

F(m) = 2

π

∫ π/2

0

�(m sin x) dx, (18)

where m is real.
The way to solve the latter equation can be found, for example, in

Kraznov et al. (1977). We proceed in a similar way for equation (17)
(the details are given in Appendix C) and we obtain

C(�) = −8π
�

2� + 1

∫ cosh−1(�max/�)

0

�′(� cosh x) dx, (19)
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Figure 4. Comparison between the 2m�m coefficients computed with the
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calculated using equations (17), (B1) and (B2) with σ = 0.5 (solid line). The
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Figure 5. Comparison between the ‘typical’ C� coefficients for � = 90◦
(solid line), used to calculate the �m Fourier spectrum [using the P(0) ma-
trix] and the C(�) function obtained by inserting this Fourier spectrum in
equation (19), (triangles; only some points are shown). We have set σ = 1
in equation (B2). The relative difference (in per cent) is shown by the lower
curve (right-hand scale). Inset: close-up of the low-� region.

where �′ is the derivative of � (m, π/2) with respect to m. Again the
transformation implied by equation (19) is a linear one, allowing the
use of interpolating functions as defined in Appendix B. Fig. 5 illus-
trates the use of this integral equation to calculate the C� coefficients
starting with the set of �m(π/2) values.

3.2 Numerical inversion

In the � = π/2 case, the connection between the set of C� values
and the corresponding �m values is simple since equation (4) can
be written using matrices (Piat et al. 2002):

Γ = P(0) × C, (20)

with

P(0)i j = [P j i (0)]2, (21)

where P j i are the normalized associated Legendre functions. P(0)
is (upper) triangular.

In addition, since the associated Legendre polynomials are de-
fined as

P�m(0) =
{

(−1)p (2� + 2m)!

2� p!(p + m)!
if � − m = 2p, (22a)

0 if � − m = 2p + 1, (22b)

all of the P(0)i i diagonal elements are different from zero – thus
this matrix is invertible.

The inverse of P(0) is also upper triangular and keeps the peculiar
structure of the original matrix: in both P(0) and P(0)−1 only the
� − m = 2p terms differ from zero.

3.3 Comparison between the analytic
and the numerical transformations

One way of comparing the two methods of calculating the Fourier
spectrum is to look at what happens when a single C� coefficient is
different from zero. This is done in Fig. 6 for the case whereC300 = 1.
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Figure 6. Middle curve (solid line): Fourier spectrum obtained using equa-
tion (17) when only C300 �= 0. We have used σ = 0.5 in equation (B2).
Upper and lower set of points: the �m coefficients computed with the P(0)
matrix. Since we assume here that � = π/2, all �m coefficients for which
the indices m are odd vanish.

Note that because we assume that � = π/2 here, equation (22b)
implies that all �m coefficients with an odd index vanish (for a single
non-vanishing C� coefficient with an odd � value, all �m coefficients
with an even index would vanish). One notices that the�(m) function
runs at mid-height of the non-vanishing �m coefficients.

Conversely, one may look at the C(�) function, which corre-
sponds to the case where a single �m Fourier coefficient is different
from zero as shown in Fig. 7 (here we used �300 �= 0). The fact
that the C(�) graph is negative in some domain of � values shows
that no distribution of temperature inhomogeneities which satisfies
the validity conditions of equation (4) (isotropy and Gaussian a�m)
can correspond to a Fourier spectrum with a single non-vanishing
coefficient.

Taken together, Figs 6 and 7 show where we should expect a
strong signal in one spectrum when the other spectrum presents a
high power in some particular bins.

4 WO R K I N G W I T H S M A L L E R R I N G S
O N T H E S K Y (Θ < π/2 )

4.1 General features of the Fourier spectrum

In the preceding section we assumed that the scanned rings are the
largest ones on the sphere (� = π/2). In this case the fact that the
P(0) matrix is invertible establishes that the Fourier spectrum of
such rings contains all the physical information carried by the C�

coefficients.
Scanning smaller circles on the sky implies a higher fundamental

frequency in Fourier angular space and thus a less dense sampling
of this Fourier space.

In fact, the loss of information is then twofold.
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Figure 7. Solid line: the C� spectrum obtained with equation (19) when
only �300 �= 0 (we have set σ = 1 in equation B2). Dots: the C� coefficients
calculated using the P(0)−1 matrix.

(i) First, the G(µ) ≡ m�(m, �) function is no longer measured
for µ = 1: the lowest value of µ that can be reached with the data
is now µ = 1/sin �.

(ii) Secondly, G(µ) is no longer measured for µ values that dif-
fer by one but for µ values that differ by 1/sin �. As a very simple
example: if the scan is performed for � = π/6, then one measures
G(µ) only for µ = 2n with n ∈ [0, �max/2]. Because of the smooth-
ness of the angular spectra, this sparse sampling of the function
G(µ) is not necessarily a drawback as long as the accuracy of the
measurements compensates for it.

4.2 Analytic calculation of the C� spectrum for � > 1/sin �

As far as the analytic calculation of the C� spectrum is concerned, it
can be performed with the same formalism as above (cf. Section 3.1).
One should merely replace the derivative of �(m, π/2) that appears
in the right-hand side of equation (19) by the derivative (with respect
to m) of

�̃(m) = sin �

�max sin �∑
i=1

�i f (m sin � − i). (23)

�̃(m) is just the rescaled version (cf. equation 16) of �(m, �) defined
by equation (B3) (this rescaling translates the �(m, �) Fourier spec-
trum into that corresponding to � = π/2). Furthermore, the width
of the interpolating function f (x) of Appendix B (see equation B2)
should be increased by a factor of 1/sin �.

4.3 Numerical calculation of the C� spectrum for � > 1/sin �

It follows from Section 4.1 above that the �m(�) coefficients differ
significantly from zero in the range 1 � m � �max sin �. Then
using the �(m, �) function that interpolates these coefficients and
equation (16) one can calculate the following set of �max − �min +
1 values:

�̃m′ = sin ��(m ′ sin �, �), (24)
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Figure 8. The input C� spectrum (solid curve) and the one reconstructed
by the numerical method in the � = 40◦ case (only some points are shown).
The relative difference between the two spectra is shown by the lower curve
(in per cent, right-hand scale). Inset: close-up of the low-� region.

with m ′ = �min, �min + 1, . . . , �max, where �min is the first integer
larger than 1/sin �. These �̃m′ coefficients are those of the Fourier
spectrum for � = π/2. Once obtained, the C� spectrum is simply
given by

C = P(0)−1Γ̃ (25)

for � � �min. The P(0) matrix and its inverse have been discussed in
Section 3.2. The first �min − 1 rows and columns of P(0)−1 should
be omitted in equation (25) since the lowest value of the m′ index
is �min.

Fig. 8 shows a numerical example: we use the ‘typical’ C� spec-
trum of Fig. 1 to produce a set of �m values in the � = 40◦ case
(equation 4). Then we apply the method described above and com-
pare the input spectrum with the obtained one. In this example we
used a simple linear interpolation of the �m spectrum. The agree-
ment is excellent and better than that obtained with the analytic
method (cf. Fig. 5) as the latter involves some approximations (cf.
Section 2) in addition to those stemming from the scaling and the
interpolation procedures.

The excellent agreement of Fig. 8 breaks down for low values
of �. Nevertheless, for � � 3 in the � = 40◦ case, one obtains an
agreement of better than 10 per cent (far above the cosmic variance).
For the case of � = 80◦ our simple scaling method can be used up
to an accuracy of better than 1 per cent for any � values.

5 C O N C L U S I O N

We have shown how data taken on circles with different colatitude
angles � can be combined using a scaling law that is satisfied by
the m�m(�) coefficients at the 0.1 per cent level over a wide range
of m and � values.

We have derived this scaling property from both geometrical con-
siderations and linear expressions of the �m coefficients in terms of
the C� ones by introducing analytic approximations of the normal-
ized Legendre associated polynomials P�m(cos �) that enter these
relations.

Integral equations were obtained that relate to a good approxima-
tion interpolating functions of the two sets of coefficients (�m and
C�). These analytic relations give a simple picture of the connection
between the two types of spectra and are easy to use.

Finally, we have investigated ways of calculating the C� coef-
ficients when the �m Fourier spectrum is known. We have shown
how the inverse of the P2

�m(0) matrix can be used to perform this
calculation not only for � = π/2 but also in the general case where
� < π/2. This was achieved by, on the one hand, taking advantage
of the scaling of the m�m spectrum and of its smoothness on the
other hand.

This set of results provides a basis for further investigation of
the connection between the measured C� and �m spectra altered by
noise and errors.
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A P P E N D I X A : A P P ROX I M AT E E X P R E S S I O N S
O F T H E N O R M A L I Z E D L E G E N D R E
A S S O C I AT E D P O LY N O M I A L S

We start with asymptotic expressions of the Legendre functions
obtained by Robin (1957) in the limit of large �, with m/� being
kept constant. These asymptotic expressions depend on the relative
value of m and � sin �.

(i) For � < m/sin �,

P�m(cos �) � (−1)m�!√
2π(� − m)!

(� cos � + M)�+
1
2 (m cos � − M)m

��+ 1
2 (� − m)m M1/2 sinm �

,

(A1)

where M =
√

m2 − l2 sin2 �,

(ii) while for � > m/sin �,

P�m(cos �) � (−1)m

√
2

π

×�!(� − m)
�−m

2 + 1
4 (� + m)

�+m
2 + 1

4

(� − m)!��+ 1
2 N 1/2

cos ω, (A2)

where

N =
√

�2 sin2 � − m2, (A3)

ω =
(

� + 1

2

)
α − mβ − π

4
, (A4)

α = arg(� cos � + iN ), (A5)

β = arg(m cos � + iN ). (A6)
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To ‘normalize’ these polynomials and obtain the P�m values, they
must be multiplied by√

2� + 1

4π

(� − m)!

(� + m)!
. (A7)

Then the last step consists in using Stirling’s formula (n! �√
2πnn+1/2e−n) to replace the factorials by analytic functions. A

few simplifications can then be made that lead to the approximate
expressions used in Section 2.

A P P E N D I X B : I N T E R P O L AT I N G F U N C T I O N S
O F T H E D I S C R E T E P OW E R S P E C T R A

Since the calculation of the C� coefficients involves integrals over
spherical Bessel j � functions (see e.g. Seljak & Zaldarriaga 1996),
one may try and use an expression for these functions that extends
them to non-integer values of j. However, here we will adopt a much
simpler procedure and write

C(�) ≡
�max∑
i=1

Ci f (� − i), (B1)

where � is now real, for which the value ranges between 2 (recall that
we ignore the dipole term) and �max, and f (x) is a positive, infinitely
differentiable function ( f ∈ C∞), which differs significantly from
0 in an |x | range which is of the order of unity, and the integral of
which over x is unity. In practice we used

f (x) = 1√
2πσ

exp

(−x2

2σ 2

)
(B2)

with σ ∼ 1.
Similarly, we define an interpolating function for the �m(�) co-

efficients in the following way:

�(m, �) ≡
�max sin �∑

i=1

�i f (m − i), (B3)

where m is a real and f (x) is chosen as above.

A P P E N D I X C : I N V E R S I O N O F T H E I N T E G R A L
E QUAT I O N R E L AT I N G C(�) TO Γ( m )

Since C(�) vanishes for � > �max, the integral equation (17) is of the
form

�(m) =
∫ ∞

0

h(m cosh x) dx . (C1)

We differentiate both sides of this equation with respect to m, sub-
stitute for this variable m the product u cosh ψ , and integrate both
sides over ψ between the limits 0 and ∞. We thus obtain∫ ∞

0

�′(u cosh ψ) dψ =
∫ ∞

0

dx

∫ ∞

0

h′(u coshψ cosh x) cosh x dψ.

(C2)

Then a new integration variable ξ is used in the second integral
of the right-hand side of this equation, defined by cosh ξ = cosh ψ

cosh x . Some simple algebra then leads to∫ ∞

0

�′(u cosh ψ) dψ =
∫ ∞

0

dx

∫ ∞

x

h′(u cosh ξ ) sinh ξ cosh x√
sinh2 ξ − sinh2 x

dξ.

(C3)

Once the integration order is reversed in the right-hand side of this
equation one obtains∫ ∞

0

�′(u cosh ψ) dψ =
∫ ∞

0

h′(u cosh ξ ) sinh ξ dξ∫ ξ

0

cosh x dx√
sinh2 ξ − sinh2 x

. (C4)

The integral over x is simply π/2. Furthermore, h(∞) = 0 in our
case, so that

h(u) = −2u

π

∫ ∞

0

�′(ξ cosh ψ) dψ. (C5)
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