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ABSTRACT
We integrate the Vlasov–Poisson equations giving the evolution of a dynamical system in phase
space using a continuous set of local basis functions. In practice, the method decomposes the
density in phase space into small smooth units having compact support. We call these small
units ‘clouds’ and choose them to be Gaussians of elliptical support. Fortunately, the evolution
of these clouds in the local potential has an analytical solution that can be used to evolve
the whole system during a significant fraction of dynamical time. In the process, the clouds,
initially round, change shape and become elongated. At some point, the system needs to be
remapped on round clouds once again. This remapping can be performed optimally using a
small number of Lucy iterations. The remapped solution can be evolved again with the cloud
method, and the process can be iterated a large number of times without showing significant
diffusion. Our numerical experiments show that it is possible to follow the two-dimensional
phase-space distribution during a large number of dynamical times with excellent accuracy.
The main limitation to this accuracy is the finite size of the clouds, which results in coarse-
graining the structures smaller than the clouds and induces small aliasing effects at these scales.
However, it is shown in this paper that this method is consistent with an adaptive refinement
algorithm which allows one to track the evolution of the finer structure in phase space. It is also
shown that the generalization of the cloud method to four-dimensional and six-dimensional
phase space is quite natural.

Key words: gravitation – methods: numerical – galaxies: kinematics and dynamics – dark
matter.

1 I N T RO D U C T I O N

By solving the Vlasov–Poisson equations, one can integrate in phase
space the evolution of a self-gravitating, collisionless system of
particles in the fluid limit. Assuming that the density of the system
in phase space is given by the function f (x, v, t), the Vlasov–Poisson
system is, in the proper choice of units,

∂ f

∂t
+ v.∇x f − ∇xφ.∇v f = 0, (1)

�φ = 2

∫
f (x, v, t) dv. (2)

Due to the high dimensionality, 2D, of phase space, where D is the
dimension of the space, this problem is usually approached with the
traditional N-body method, i.e. by approximating the distribution
function by a discrete set of particles. However, with modern su-
percomputers, it now becomes possible to start envisaging a direct
phase-space approach with D = 2 and D = 3. In this paper, we are

�E-mail: alard@iap.fr (CA); colombi@iap.fr (SC)

thus interested in solving the Vlasov–Poisson equations directly in
phase space. We consider a new implementation in one dimension,
D = 1, but we shall discuss its extension to higher numbers of di-
mensions. We now review phase-space methods already studied in
the past. After that, we give a sketch of our ‘clouds’ implementation
and explain what is new compared to earlier work. At the end of this
introduction, we shall detail the plan of our paper, which is mostly
devoted to the actual technical details involved in the implementa-
tion of our method.

A fundamental property of the Vlasov equation is the Liouville
theorem, which states that the phase-space distribution function is
conserved along trajectories of matter elements in phase space:

f [x(t), v(t), t] = constant. (3)

The first numerical methods used in astrophysics to solve the
Vlasov–Poisson equations in phase space exploited this property
directly, using the so-called water-bag model (DePackh 1962; Hohl
& Feix 1967). The idea of the water-bag model is the following.
If one assumes that the distribution function is constant within a
patch in phase space, it is enough to follow dynamically the bound-
ary of the patch. Numerical implementation of the water-bag model
is therefore rather straightforward (Hohl & Feix 1967; Roberts &
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Berk 1967; Cuperman, Harten & Lecar 1971; Janin 1971). Even
though this isocontour method is quite efficient and accurate, it is in
fact very costly. Indeed, the distribution function develops increas-
ing filamentary details during evolution by the effects of rolling
up in phase space due to differential orbital speeds. Therefore, it
is in principle necessary to add more and more points to sample
the boundary of the patches as time passes. This is one of the ma-
jor weaknesses of the water-bag method, which is fine grained in
essence, except for initial conditions.

Other approaches for solving the Vlasov–Poisson equation are
grid based, and a large part of the technical developments come
from plasma physics. One of the most famous numerical imple-
mentations, since it inspired much subsequent work, is the splitting
algorithm of Cheng & Knorr (1976). The splitting scheme consists
in exploiting the Liouville theorem in two steps, while evolving the
system during a time-step �t :

f ∗(x, v) = f (x − v�t/2, v, t),

f ∗∗(x, v) = f ∗(x, v + ∇xφ�t),

f (x, v, t + �t) = f ∗∗(x − v�t/2, v). (4)

In the method of Cheng & Knorr, the distribution function is inter-
polated on a grid using either Fourier methods or/and splines. It is
semi-Lagrangian in the sense that, to compute the value of the dis-
tribution function at a grid site, test-particle trajectories are resolved
backwards up to the previous time-step, where the interpolation is
performed. If the original implementation of Cheng & Knorr is one
dimensional, the generalization to higher numbers of dimensions
is straightforward (e.g. Gagné & Shoucri 1977; see Sonnendrücker
et al. 1999 for a more recent perspective). The method of Cheng &
Knorr was first applied in astrophysics by Fujiwara (1981), Nishida
et al. (1981) and Watanabe et al. (1981).

In principle the algorithm of Cheng & Knorr can be used as it is,
even when the filamentation effects discussed above occur at resolu-
tion scale, although it has to be adapted, e.g. by using an appropriate
interpolation procedure to guarantee positivity of the distribution
function and mass conservation (e.g. Besse & Sonnendrücker 2003,
for latest state-of-the-art developments). However, an elegant solu-
tion was proposed by Klimas (1987) to overcome the problem of
filamentation. It consists in writing the exact equation of evolution of
the coarse-grained distribution function in velocity space. For that,
he assumes a Gaussian smoothing window. The modified Vlasov
equation giving the evolution of the smoothed distribution function
includes a new source term. This method was applied to a splitting
algorithm using Fourier decomposition (Klimas & Farrell 1994).

Other grid-based methods include hydrodynamic advection
schemes: the Lax–Wendroff integration method (Shlosman,
Hoffman & Shaviv 1979) or other finite difference methods, us-
ing, for the interpolation of the fluxes, standard ‘upwind’ and total
variation diminishing (TVD) algorithms, convenient to deal with fil-
amentation, such as the van Leer limited scheme and the piecewise
parabolic method (PPM), or other schemes such as flux-corrected
transport, the flux balanced method (see Arber & Vann 2002, for
a review and a comparison between these last four methods), or
the positive and flux conservative method (Filbet, Sonnendrücker &
Bertrand 2001). A finite element method was also proposed (Zaki,
Gardner & Boyd 1988), but no further development in that direc-
tion was performed, probably because this method involves the
inversion of coarse but large matrices, a very costly operation in
six-dimensional phase space.

It is now worth mentioning two interesting special cases: the
lattice method (e.g. Syer & Tremaine 1995), and the solver of Rasio,

Shapiro & Teukolsky (1989). In the lattice method, the motion of
elements of phase-space density is restricted to a set of discrete
points: the time, positions and velocities of ‘particles’ are restricted
to integer values, and forces are rounded to the nearest integer. Such
an algorithm has the advantage of solving simplectic equations of
motion, which guarantees conservation of geometrical properties
of the system and, in the limit of infinite resolution, converges to
the ‘smooth’ solution and naturally enforces the Liouville theorem.
The second solver is the spherical code of Rasio et al. (1989, see
also Merrall & Henriksen 2003), which works in the fully general
case. The principle of this code is to take full advantage of the
perfect knowledge of initial conditions: whenever f (x, v, t) has to be
determined at some point of space, e.g. to compute accurately the
potential, a test particle is followed back in time to find its initial
position and the value of f associated to it. The necessary sampling
at each time-step is estimated by a self-adaptive quadrature routine.
This code is therefore quite costly, since at each time-step a full set
of backward trajectories has to be recomputed. It has, however, the
advantage of following with very good accuracy all the details of
the distribution function and it is probably the most accurate code
of this kind available. It presents theoretically the same advantages
as the water-bag method, but at variance with the latter, it is able to
preserve the smoothness of the distribution function.

Finally, alternative ways of solving the Vlasov–Poisson equations
consist in computing the moments of the phase-space density with
respect to velocity space and position space, and writing partial
differential equations for these moments up to some order, with
some recipe to close the hierarchy (e.g. White 1986; Channell 1995).

A good numerical implementation of the Vlasov–Poisson equa-
tions should stick as close as possible to equation (3). In particular,
it should, as a direct consequence of the Liouville theorem, preserve
as much as possible the topology of the distribution function. More
specifically, to render the algorithm TVD, and therefore stable, the
following conditions should be satisfied.

(i) The critical point population, i.e. the number of maxima, min-
ima and saddle points of various kinds should be preserved, and if
this is not possible, should not increase with time. Since all Eulerian
implementations use splitting in x and v, this condition reduces in
the two-dimensional phase space to preservation of monotonicity in
that case.

(ii) The height of the critical points should be preserved, or at
worst, the height of local maxima should decrease and the height
of local minima should increase. This in particular guarantees the
positivity of the distribution function.

These conditions state that if the solution deviates from the true
one, it should only become smoother. This is the essence of mod-
ern advection methods, which try to preserve the features of the
distribution without adding spurious small-scale features, such as
oscillations around regions with very high gradients. For instance,
van Leer and PPM methods are TVD, at variance with most semi-
Lagrangian methods. The higher the order of the scheme, the more
accurate is the resolution of fine features of the distribution. How-
ever, to preserve the TVD nature of the system, the implementations
are lower order in sharp transition regions [condition (i)] and in gen-
eral nearby local extrema [condition (ii)]. As a result this can intro-
duce significant diffusive effects. Clearly, we see that in this respect,
grid-based methods are thus inferior to the water-bag method, which
optimally fulfils conditions (i) and (ii), since it follows isocontours
of the phase-space distribution function, and thus its topology, in
essence. However, the number of sampling points increases with
time in the water-bag model and a fair comparison with grid-based
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methods should allow adaptive mesh refinement. Clearly, the very
particular implementation of Rasio et al. (1989) is very successful
in that sense.

The method we propose here is very different from all the work
discussed above. The basic idea is to decompose the density in phase
space into small local units which can be represented using a con-
tinuous function with compact support. The total density in phase
space is the sum of the local functions, to have a fully analytical and
continuous representation of the phase-space density of the system.
We will call these small units ‘clouds’, which will be chosen here
to be truncated Gaussians. The evolution of the distribution func-
tion will be followed by solving the Vlasov equation for each of
the individual clouds, plunged in the global gravitational potential.
We allow the clouds to change shape during run-time, i.e. to trans-
form from functions with initial round support (with the appropriate
choice of units) into functions with elliptic support. These clouds
also move: their centre-of-mass position in phase space follows stan-
dard Lagrangian equations of motion, as test particles would. If the
potential is locally quadratic, our elliptical shape approximation is
exact, and the Vlasov equation can be solved analytically in that
case. This means that as long as the clouds are small compared to
the radius of curvature of the force, or in other words, to the scales
of variation of the projected density, this approximation, accurate to
second order in space, is very good.

At some point, the local quadratic condition is no longer satisfied,
typically after a fraction of orbital time, and the analytical solution
ceases to be a good approximation of the density of the cloud in
phase space: the whole system has to be remapped on a new basis
of round clouds that give a smooth description of the density in
phase space. To resample the distribution function with a new set
of clouds (including initial conditions), we use a Lucy or van Citter
iterative method. This, combined with the fact that remaps are not
very frequent, eliminates diffusion almost completely, provided that
the resolution limit of the simulation has not been reached, i.e. as
long as filamentation is not a problem. As a time integrator, we use
a second-order predictor–corrector with slowly varying time-step.
Our algorithm is thus fully second order in time and in space, and
nearly simplectic, since in the case that the time-step is constant, it
reduces to standard leap-frog (see, e.g. Hockney & Eastwood 1988).

As a matter of fact and as we shall see, our method deals very
well with filamentation, as it naturally coarse grains the distribution
function at small scales. It is quite close to finite element methods,
except that the elements are of changing shape and that the sam-
pling grid moves with time. It is also close in some sense to the
water-bag method, but in a coarse-grained way, as by construction
equation (3) is satisfied exactly as long as the potential is locally
quadratic. The remap procedure is iterative and costly, and that is
one of the drawbacks of the method, similarly to finite difference
methods. However, we do not need to perform it too often (typically
every 10–20 time-steps). The Lagrangian nature of the method and
the reinterpolation scheme makes our method very weakly diffu-
sive, but it is not TVD: aliasing effects can appear in regions with
high curvature. However, for the numerical cases we studied, these
effects are not critical. Positivity of the distribution is enforced with
Lucy reconstruction, but not with van Citter. Note that our method
can be used only in warm cases, i.e. in cases where the distribution
function is smooth and has some width in velocity space. It is not
appropriate for the cold case, e.g. to describe in phase space the
formation of large-scale structure in standard cosmological models.

This paper is organized as follows. In Section 2, we present the
theoretical background intrinsic to our method, i.e. study the dynam-
ics of a phase-space cloud in a quadratic gravitational potential. We

perform a full perturbative stability study, taking into account small
deviations from quadratic behaviour. In Section 3, we discuss the
actual numerical implementation. In Section 4, we test our code by
performing simulations of a stationary solution, an initially Gaus-
sian profile and an apodized water-bag (a top-hat in phase space). In
Section 5, we compare the results obtained with our code with the
standard N-body method. In Section 6, we propose an adaptive re-
finement procedure, which allows one to increase resolution where
needed, if details of the distribution function need to be followed
at smaller scales. Finally, Section 7 summarizes the results and dis-
cusses some perspectives for the method, in particular its exten-
sion to higher numbers of dimensions and the treatment of the cold
case.

2 T H E M E T H O D : C O N C E P T S

2.1 One-dimensional equations

In this section we will show that for a quadratic potential, the Vlasov
equation for a cloud has an analytical solution. Let φ(x , t) be the
gravitational potential of the system. Locally the quadratic approx-
imation will read:

φ(x, t) = α0(t) x2 + α1(t) x + α2(t). (5)

By taking the following cloud equation it is possible to show that
the Vlasov equation forms a closed system:

f (x, v, t) = G
[
λ0(x, t) + λ1(x, t) v + λ2(t) v2

]
, (6)

where G is any smooth function (with continuous derivatives). The
functions λi (x , t), i = 0, 1, 2, which determine the geometry of
the cloud in phase space, can be obtained by solving the Vlasov
equation:

∂ f

∂t
+ v

∂ f

∂x
− ∂φ

∂x

∂ f

∂v
= 0. (7)

It is interesting at this point to separate the general motion of the
cloud from the evolution of its internal geometry. We will thus use
Lagrangian coordinates, which are defined by (x∗ ≡ x − x G, v∗

≡ v − vG), where (x G, vG) are the phase-space coordinates of the
centre of gravity of the cloud. Assuming that the cloud phase-space
density f (x, v, t) become f (x∗, v∗, t) in this referential defined by
the Lagrangian coordinates, we can write:

∂ f

∂t
+ ∂ f

∂x∗ v∗ − 2α0x∗ ∂ f

∂v∗ = 0, (8)

f (x∗, v∗, t) = G
[
�0(x∗, t) + �1(x∗, t) v∗ + �2(t) v∗2

]
, (9)

d2xG

dt2
= −2α0(t)xG − α1(t). (10)

By inserting equation (9) in equation (8), we obtain a quadratic
polynomial in v∗, which has to cancel for any value of v∗. Hence,
we obtain three equations:

∂

∂t
�0(x∗, t) − 2 �1(x∗, t) α0(t) x∗ = 0, (11)

∂

∂t
�1(x∗, t) + ∂

∂x∗ �0(x∗, t) − 4 �2(t) α0(t) x∗ = 0, (12)
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d

dt
�2(t) + ∂

∂x∗ �1(x∗, t) = 0. (13)

The general solution of equation (13) is

�1(x∗, t) = −d�2

dt
x∗ + ψ1(t). (14)

By inserting the solution for �1 in equation (12) and solving for
�0(x∗, t) we obtain:

�0(x∗, t) = 1

2

[
d2�2

dt2
+ 4 �2(t)α0(t)

]
x∗2

−dψ1

dt
x∗ + ψ2(t), (15)

and finally by substituting equations (14) and (15) into equation (11),
we obtain a quadratic polynomial in x∗, which must be zero for any
value of x∗. The zeroth order approximation of this polynomial gives
ψ 2 = constant. The first order approximation of this polynomial
reads d2ψ 1/dt2 = −2α0ψ 1. However, in the referential of the centre
of gravity, the first moments of f with respect to x∗ and v∗ should
be zero. This implies that the form �0(x∗, t) + �1(x∗, t)v∗ + �2(t)
v∗2, which we know now to be a polynomial of order 2 in x∗ and v∗

with time-dependent coefficients, does not have any term either in
x∗ and v∗: it is a quadratic form in x∗ and v∗, implying ψ 1(t) = 0.
The second order approximation of this polynomial is

1

2

d3�2

dt3
+ 4α0(t)

d�2

dt
+ 2

dα0

dt
�2(t) = 0. (16)

Equation (16) can be solved with respect to α0(t):

α0(t) �2(t)2 = −1

4

∫
d3�2

dt3
�2(t)dt + C . (17)

Since∫
d3�2

dt3
�2(t)dt = d2�2

dt2
�2(t) − 1

2

(
d�2

dt

)2

, (18)

we can write

1

4

d2�2

dt2
�2(t) − 1

8

(
d�2

dt

)2

+ α0(t) �2(t)2 = C . (19)

It is possible to simplify this equation a little more by using the
following substitution: �2(t) = w(t)2 (here we assume that �2(t),
which corresponds to the velocity dispersion, is positive). We obtain
an equation which is easier to use for numerical integration:

1

2

d2w

dt2
+ w(t)α0(t) = C

w(t)3
. (20)

We can now finally rewrite equation (9) as follows:

f (x∗, v∗, t) = G
[
β0(t) x∗2 + β1(t) x∗v∗ + β2(t) v∗2 + β3

]
, (21)

with

β0(t) = 1

2

d2�2

dt2
+ 2 �2(t)α0(t), (22)

β1(t) = −d�2

dt
, (23)

β2(t) = �2(t), (24)

and β 3 can be set to zero without any loss of generality. We then
see that equation (19) has a simple geometric interpretation, since
it can now be rewritten

β0(t) β2(t) − 1

4
β1(t)2 = 2 C, (25)

which says that the area of the elliptical section in phase space
defined by equation (21), proportional to

Ā ≡ πA = π√
β0(t) β2(t) − 1

4 β1(t)2
, (26)

remains constant in time.

2.2 Dynamical properties of the clouds

In this section, we develop a number of simple analytical calcula-
tions which will help to implement the numerical simulations. These
analytical models will also help us to understand the limits of our
approach.

2.2.1 Small-amplitude oscillations

The evolution of the cloud is given by equation (20). In general, the
solution of this highly non-linear equation can be approached only
by numerical means. However, if we consider small-amplitude os-
cillations around an equilibrium position, it is possible to linearize
the equations and find a simple analytical solution. We should con-
sider a stationary equilibrium position with a quadratic potential
given by α0(t) = q 0. In this case, the solution to equation (20) is:

w(t) = w0 =
(

C

q0

)1/4

. (27)

Note that due to the Poisson equation,

d2φ

dx2
= 2ρ, (28)

it is possible to relate the stationary potential q0 to the mean density
ρ 0 around the cloud:

q0 = ρ0. (29)

Now, we introduce a time-dependent perturbation of this stationary
regime:

α0(t) = q0 + εq1(t) and w(t) = w0 + εw1(t). (30)

Then equation (20) reads:

1

2

d2w1

dt2
+ 4q0w1(t) + w0q1(t) = 0. (31)

A general solution to equation (20) can be obtained by using a
Fourier transform. We define the following Fourier transforms:

w̃1(ω) = 1√
2π

∫
w1(t)eiωt dt

q̃1(ω) = 1√
2π

∫
q1(t)eiωt dt . (32)

Using these definitions, the general solution of equation (20) is

w̃1(ω) = 2w0
q̃1(ω)

ω2 − ω0
2

+ k0 δ(ω − ω0) + k1 δ(ω + ω0), (33)

where k0 and k1 are two arbitrary constants and

ω0 = 2
√

2q0. (34)

C© 2005 RAS, MNRAS 359, 123–163

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/359/1/123/983199 by guest on 15 M
arch 2021



A cloudy Vlasov solution 127

Equation (33) shows clearly that a resonance may occur between the
potential and the cloud oscillations at the frequency ω0. However
for this resonance to occur effectively, it would be required that
all the nearby clouds which contribute to the local density resonate
also at this frequency. But, the resonant frequency of the nearby
clouds can be the same only if the local density around these clouds
is identical, which would require a constant density whatever the
position. A resonance happens only in this case, and we will discuss
this very special case later. The dynamical properties of the cloud are
also dictated by the motion of their centre of gravity which is given
by equation (10). The solution to equation (10) can be decomposed
as the solution of the homogeneous equation and a given solution
to the whole equation. The homogeneous equation reads:

d2xG

dt2
+ 2α0(t)xG(t) = 0. (35)

Setting x G(t) = x 0 + εx 1(t) and noting that equation (35) is sim-
ilar to equation (20), we find the general solution in the linearized
regime:

x̃1(ω) = 2w̄0
q̃1(ω)

ω2 − ω̄2
0

+ k̄0δ(ω − ω̄0) + k̄1δ(ω + ω̄0), (36)

with a resonant frequency, ω̄0 = ω0/2. Thus all the dynamical
frequencies of the clouds are multiples of the fundamental frequency√

2q0, and thus, with the help of equation (29), we infer that the
dynamical time of the cloud is:

Tcloud � π
√

2√
ρ0

. (37)

Obviously this dynamical time has little meaning for a cloud expe-
riencing large potential variations on a short time-scale. In this case
the non-linearity is dominant and the linear approximation is not
suitable. However, for most clouds in a given system, this approxi-
mation will give an estimate of the local time-scale.

2.2.2 Resonant self-oscillations

As noted in the previous section, resonances between the cloud
motion and oscillations would require that the frequency ω0 is con-
stant. Using equations (29) and (34), we see that this condition ω0=
constant would require that the density is constant. The simplest
example of a system having constant projected density is a line in
phase space, with a density constant along the line. The oscillation
frequency for any point on the line is the same whatever the position
angle of the line in phase space. Thus such system can have self-
oscillation, and out of this case there is no regime of self-oscillation
of the cloud system. Note that this one-dimensional system is sim-
ilar to the case of a sphere of constant density that has been shown
to have self-pulsation in three dimensions.

2.2.3 Deviation from the quadratic approximation

The cloud approximation assumes that the potential at the scale of
the cloud is quadratic. Even if the quadratic approximation is a good
description of the local potential, when evolving the system, we ex-
pect that the errors to the quadratic approximation will accumulate,
and that at some point the cloud model will deviate from the proper
solution. Our numerical scheme should stop evolving the system
before the deviation is large, and it is the purpose of this section
to estimate the magnitude of this deviation as a function of the dy-
namical time describing the system evolution. We will consider an
additional cubic term in the potential, and we will study the effect

of this term in the linear perturbative regime. The new equation for
the potential reads:

φ(x∗, t) = α0(t)x∗2 + εγ (t)x∗3
. (38)

We introduce the corresponding perturbation for the density in phase
space:

f (x∗, v∗, t) = f0(x∗, v∗, t) + ε f1(x∗, v∗, t). (39)

Using the Vlasov equation (7), we obtain the following equations:

∂ f0

∂t
+ ∂ f0

∂x∗ v∗ − 2 α0x∗ ∂ f0

∂v∗ = 0, (40)

∂ f1

∂t
+ ∂ f1

∂x∗ v∗ − 2 α0x∗ ∂ f1

∂v∗ − 3 γ x∗2 ∂ f0

∂v∗ = 0.

(41)

We already know the solution to equation (40) from Section 2.1.
Since clouds having Gaussian profile are particularly interesting
for numerical applications, we make the following choice in equa-
tion (9):

f0(x∗, v∗, t) = exp
[
β0(t) x∗2 + β1(t) x∗v∗ + β2(t) v∗2

]
. (42)

Now, it is possible to find a general solution to equation (41) by
using the following functional for f 1:

f1 (x∗, v∗, t) = f0 (x∗, v∗, t)

×[
η0(t) + η1(t)x∗3 + η2(t)x∗2v∗

+η3(t)x∗v∗2 + η4(t)v∗3
]
. (43)

By combining equation (43) with equation (41), we obtain a poly-
nomial in v∗ of the order of 3. As the coefficients of this polynomial
must be identically zero, we find the following system of differential
equations:

dη4

dt
+ η3 = 0, (44)

dη3

dt
+ 2 η2 − 6 α η4 = 0, (45)

dη2

dt
− 6 γ β2 + 3 η1 − 4 α η3 = 0, (46)

dη1

dt
− 2 αη2 − 3 γβ1 = 0. (47)

2.2.4 Effect of time-dependent non-quadratic terms:
a practical case

In practice the potential felt by a cloud moving in a given system can
be quite different from quadratic. The Poisson equation (28) shows
that the non-quadratic terms are related to local gradients in the
density distribution. The accurate estimation of the local potential
depends on the details of the density distribution, thus to quantify the
effects we will have to adopt a given density distribution. However,
in general, as the cloud moves, the system evolves and changes its
potential, but this potential variation is slow and can be neglected
for practical purposes. Let us assume that the density distribution is
given by the family of profiles:

ρ(x) = q

(
x

h

)
, (48)

where h is a scaleheight.
Using the properties of this density distribution and the

Poisson equation, it is easy to analyse the scale properties of the
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128 C. Alard and S. Colombi

cloud equation. The coefficients of the local potential α0 and γ in
equation (38) can be rewritten using the scaled variable x̄∗:

α0 = 1

2

d2φ

dx∗2 = ρ(x∗) = q(x̄∗), (49)

εγ = 1

3

dρ(x∗)

dx∗ = 1

3h

dq(x̄∗)

dx̄∗ . (50)

Equation (49) shows that α0 is independent of the scale of the den-
sity distribution. As a consequence, equation (19) is also scale-
independent, and thus the quadratic solution �2(t) is unaffected
by the scale of the density distribution. But the behaviour of
the coefficient γ is different. According to equation (50), γ is
scale-dependent. It is possible to evaluate the effect of this scale-
dependence by forming an equation for η4(t) similar to equa-
tion (19) for �2(t). By combining equations (44), (45), (46) and
(47), it is possible to construct the following equation for η4(t):

−6
dγ

dt
β2 − 15 γ

dβ2

dt
+ 3

d2α0

dt2
η4

+10
dα0

dt

dη4

dt
+ 10 α0

d2η4

dt2
+ 1

2

d4η4

dt4
+ 18 α2

0 η4 = 0. (51)

It is easy to notice that the scaling property of γ and the scale-
invariance of α0 and �2 imply that η4 scales like 1/h, which means
that the correction introduced by the cubic term is inversely pro-
portional to scale. Thus, we may solve the equation for η4 at a
given scale and generalize the result to any scale using the former
scaling rule. The solution for a fixed scale can be calculated using
equations (49), (50) and (51).

For our numerical implementation, we will adopt a fixed Gaussian
density distribution for the system, q(x) = exp(−x2). Given initial
conditions in phase space, the evolution of the cloud crossing this
density distribution can be solved numerically by integrating our
former system of equations. The motion of the centre of gravity of
the cloud itself can be computed easily by estimating the motion of
a point mass in the potential of the system. The orbit of the cloud is
defined by its initial position x0, and its initial velocity. We will study
the case of zero initial velocity and variable position x0. Initially
the cloud will be a round Gaussian of velocity dispersion equal
to 1. The numerical integration of these equations shows that the
deviation from the quadratic approximation is maximal for an initial
position close to 3h (see Fig. 1). The maximum deviation observed
in the system is directly related to the requirement of performing
a Lagrangian remap. Thus we should study the behaviour of the
error to the quadratic approximation near the 3h initial position.
The relevant plot is shown in Fig. 2. As discussed before, the curve
showing the deviation due to the cubic term is generic. The deviation
for another scalelength h of the density distribution can be obtained
by rescaling this curve. Because the scaling is inversely proportional
to h, the error in the quadratic approximation will be dominated by
the crossing of the shorter-scale density structures.

3 T H E M E T H O D : A L G O R I T H M

In this section, we study practical implementations of the method.
We examined two approaches, one assuming constant resolution in
phase space, which will correspond to what we call a ‘cloud in mesh’
(CM) code, and the other one allowing local refinement in phase
space using adaptive refinement trees, which we therefore call tree-
code. There are several issues to be addressed while implementing
the method. We list them here in the same order as they will be
treated below.

Figure 1. The maximum deviation from the quadratic approximation as a
function of the initial position x0. The distribution has a scalelength h 10
times larger than the cloud. The coordinate x0 has been normalized by the
scalelength of the distribution h. Note that the maximum deviation is at about
3h from the centre of the distribution.

(i) Phase-space sampling of the distribution function (Sec-
tion 3.1). The question here is to decide how to chose our set of
clouds such that it reproduces at best a given distribution function
in phase space. This is necessary not only to set up initial conditions,
but also to resample the distribution function during run-time with
a new set of round clouds. Indeed, we know from our perturbative
analysis (Section 2.2) that deviations from local quadratic behaviour
of the potential increase with time, and that at some point the clouds
will have the wrong axis ratio (be too elongated) and wrong orien-
tation. To (re)sample the distribution function, we propose to use
Gaussian clouds located on a (possibly adaptive) grid, with their
masses estimated using either van Citter or Lucy deconvolution al-
gorithms.

(ii) Solving the Poisson equation (Section 3.2). The issue here
is to estimate accurately the forces exerted on each cloud as well
as errors in their determination. These latter will indeed be used to

Figure 2. The shape of the deviation due to the cubic term as a function
of the strength of the cubic term. We chose an initial position x0 which
maximizes the deviation from the quadratic approximation (x 0 � 3h). Note
that in case the distribution has a smaller scalelength the error must be
rescaled accordingly. In practice, the minimum size of the distribution is
about twice the cloud scalelength, for which the deviation can be five times
larger.
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A cloudy Vlasov solution 129

quantify deviations from local quadratic behaviour of the potential.
This is fairly easy in our one-dimensional problem, since the force
exerted on a point of space is simply given by the difference between
the mass at the right of the point and the mass at the left of the point.
However, we will try here to experiment with methods which can
be, in principle, easily generalized to higher numbers of dimensions
without any serious increase in complexity.

(iii) Run-time implementation and diagnostics (Section 3.3). The
choice of the time-step implementation is important. Here we pro-
pose a predictor–corrector of second order, which makes our method
fully second order both in space and in time. We discuss how to com-
pute the slowly varying time-step associated to this integrator. We
also examine when a remap of the distribution with a new set of
round clouds has to be performed, by using a criterion based on the
cumulative errors on the forces due to non-local quadratic behaviour
of the potential.

3.1 Phase-space sampling of the distribution function:
practical implementation

When starting from given initial conditions, f (x, v), it is necessary
to set up an ensemble of round clouds that altogether reproduce, at
best, f . During run-time, these clouds become more and more elon-
gated and the approximation for a local quadratic potential breaks
down: a remapping of the distribution function is needed with a
new set of round clouds. The measured distribution function at this
time becomes new initial conditions that, again, have to be sampled
accurately. Here we explain in detail how we proceed to perform
this remapping. In Section 3.1.1 we discuss the cloud shape and the
mean cloud interspacing. Our choice is a Gaussian cloud of typical
radius R, truncated at 4R and separated from its nearest neighbours
by a distance

√
2R. In Section 3.1.2 we explain how we compute

the cloud masses in order to reproduce at best the distribution func-
tion. The methods proposed are van Citter and Lucy deconvolutions
algorithms. In Section 3.1.3, we propose a weighting scheme for fil-
tering small-scale noise in the estimate of the distribution function
obtained from the clouds. Finally Section 3.1.4 examines possi-
bilities of enforcing conservation of basic quantities such as total
momentum and total mass without adding significant diffusion. In
addition to that, Appendix A details the algorithms used to compute
the distribution function from the clouds. It shows how to speed up
the calculation in the case when the clouds are round, thanks to the
separability of the Gaussian window.

3.1.1 Choice of cloud shape and spacing

To sample the distribution function in phase space at a given time,
we use an ensemble of clouds which are initially round (this can
always be true if an appropriate normalization for positions and
velocities is set). In this section, we assume that they are disposed
on a rectangular grid of spacing �g. The choice of our cloud shape
is entirely determined by specifying the function G (equations 9 and
21), which should present the following features.

(i) It should have compact support. Indeed, we need the cloud
to be the least extended as possible, since we use a local quadratic
expansion of the potential within the cloud to compute the forces
exerted on it.

(ii) It should be sufficiently smooth in order to resample a dis-
tribution function with continuous first and second derivatives (e.g.
for the refinement procedure as discussed later). This is an essential
feature of our method and a condition for it to perform well.

A good choice for the function G is a truncated exponential, which
has the great advantage of being separable and makes the cloud
Gaussian. The smoothness condition (ii) forces us to truncate this
cloud rather far away from its centre. Our practical choice is a 4σ

cut-off, Rmax = 4 R.1 This still induces small discontinuities of the
order of 3 × 10−4, as illustrated in the right-hand panel of Fig. 3.
To minimize their effects we will use a weighted estimator to com-
pute f , as detailed in Section 3.1.3 The remote nature of the cut-off
has another disadvantage, which is one of the main drawbacks of
our method, when it will be extended to higher numbers of dimen-
sions: a large number of clouds contribute to the sampled distribution
function at a given point of phase space, as illustrated by the lower
right-hand panel of Fig. 3.

Finally, we have to determine the radius R (corresponding to a 1σ

deviation) of our cloud as a function of grid spacing for best sampling
of the distribution function. Basically, the choice of R determines
by how much the resampled distribution function, f̃ , will deviate
from the true f . In order to sample smoothly the variations of f
over the sampling grid, R/�g should be of the order of unity. To
minimize the cost of the sampling, it should be kept as small as
possible. To find R, we estimate the quadratic error σ due to the
representation of space by a finite number of Gaussian functions.
As our approximation requires f to be nearly flat at the scale of the
cloud, we will evaluate the residual in the case where the function to
represent is constant, f = 1. For an infinite flat distribution σ reads

σ 2 =
∫ ∞

−∞[ f (x, v) − f̃ (x, v)]2 dx dv∫ ∞
−∞ dx dv

. (52)

For Gaussian clouds, f is represented by the functional:

f̃ (x, v) = �2
g

2π R2

∑
i, j

exp

[
−

[
(x − i�g)2 + (v − j�g)2

]
2R2

]
. (53)

Note that the representation f (x, v) can be rewritten as a convolution
using Dirac series:

f (x, v) = �2
g

2π R2

∑
i, j

∫
exp

[
−

(
u2

1 + u2
2

)
2R2

]

× δ(u1 + x − i�g)δ(u2 + v − j�g) du1 du2. (54)

This rewriting as a convolution suggests that the equations should
be analysed using Fourier transforms. As both the numerator and
denominator in equation (52) are the norm of a function in real space,
the transformation to Fourier space can be done easily by using
Parseval’s theorem. Using the symbol f̄ to represent the Fourier
transform of f , Parseval’s theorem reads:∫ ∞

−∞
[ f (x, v) − f̃ (x, v)]2 dx dv

=
∫ ∞

−∞
| f̄ (kx , kv) − ¯̃f (kx , kv)|2 dkx dkv, (55)

and with the help of the convolution theorem:

f̄ (kx , kv) =
∑

i j

exp
[−2 π2 R2

(
k2

x + k2
v

)]
× δ(kx − i/�g)δ(kv − j/�g).

(56)

Thanks to the rapid fall of the exponential, this sum is well ap-
proximated by a small number of terms. In particular a good

1 More exactly Rmax = 3.95 R, to avoid the circle of radius Rmax intersecting
any of the cloud centres.
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130 C. Alard and S. Colombi

approximation at the typical scale of interest is to consider only
the terms (i, j) satisfying |i | + | j | � 1:∫

| f̄ (kx , kv) − ¯̃f (kx , kv)|2 dkx dkv

� 4 exp
[−(2 π R/�g)2

]
δ(0)2.

(57)

The divergent factor δ(0)2 disappears once we apply the normaliza-
tion by the denominator in equation (52). We thus finally find:

σ 2 � 4 exp
[ − (2πR/�g)2

]
. (58)

Our choice R = √
2/2 corresponds to σ � 10−4, consistent with the

discontinuities brought by our 4σ cut-off for the Gaussian. This is
well illustrated in the lower left-hand panel of Fig. 3, which displays
the deviations of f from unity for our choice of R/�g. Experimen-
tally, we find that their mean square is indeed equal to 10−4, while
the difference between local minima to local maxima is four times
larger. Notice again that the truncation at Rmax adds a source of noise
at very small scales which has the bad property of presenting a sig-
nificant skewness in its distribution. We shall see in Section 3.1.3
that with appropriate reinterpolation of the function f , it is possible
to remove these sources of noise to a great extent, in fact totally in
the case f = constant considered here.

3.1.2 Choice of deconvolution scheme

Once the cloud shape is chosen as well as the size of the sampling
grid, the problem of finding the cloud masses in order to sample
correctly the distribution function remains open. To do that, an iter-
ative procedure is necessary. We adopted in this paper two simple
algorithms, van Citter and Lucy as we discuss now.

The sampled distribution function can be written

f̃ (x, v) = 1

V

∑
i

Mi G
(

x − xi
G, v − vi

G

)
, (59)

where Mi is the mass of the cloud and the function G(x , v) is nor-
malized in such a way that its integral is V . The quantity V is given
by V = �x�v , where �x and �v correspond to the grid site in-
terspacing distance along the x- and v-coordinate, respectively. It is
the area associated to each cloud so that

∫
f (x, v) dx dv = ∑

i Mi .
Note that we used implicitly the following notation:

G(x, y) ≡ G
(
β0x2 + β1xy + β2 y2

)
. (60)

We have to find Mi such that

f̃
(

xi
G, vi

G

) ≡ f̃i = f
(

xi
G, vi

G

) ≡ fi , (61)

for each cloud position (xi
G, vi

G) in phase space. A good first guess
is simply

M0
i = fi V . (62)

However, with that choice of masses, f̃ will basically be equal to the
convolution of f with the function G. Some deconvolution algorithm
has to be applied in order to fit the function f better.

The van Citter algorithm is simply as follows. Given f̃ n
i as com-

puted at iteration n, then iteration n + 1 is

δn
i = fi − f̃ n

i ,

Mn+1
i = Mn

i + δn
i V . (63)

The algorithm is applied until some convergence criterion is ful-
filled, max(|δn

i |) � δc. To maintain the domain of calculation as com-
pact as possible during run-time, only values of fi satisfying fi >

δmin are taken into account. In the simulations shown below, we take
δmin = δc/2, but δmin should in principle be kept as small as possible
to have best conservation of the moments of the phase-space dis-
tribution function, e.g. energy. Similarly, after convergence, clouds
contributing little to the reconstruction are depleted: one uses the
reciprocal of equation (62) to estimate approximately their contribu-
tion, i.e. clouds with |Mi/V | � δmin are eliminated. This procedure
has the defect of augmenting slightly aliasing effects in the neigh-
bourhood of the regions where f cancels.

Given the sources of uncertainties associated with our choice of
function G, δc should be large enough compared to 10−4 f max, where
f max is the maximum value of f , since at this point we would capture
spurious features and convergence would be made difficult due to
the discontinuities brought by the cut-off. Experience shows that
δc/ f max ranging from 0.0005 to 0.002 is a good compromise. Also,
convergence might become difficult due to other aliasing effects. As
well shall see later, the function f builds finer and finer structures
with time, which cannot be reproduced correctly by our mapping
when they appear at scales smaller than ∼ R. Convergence is ren-
dered very difficult in that case: one might choose therefore to stop
iterating when n reaches some value, typically of the order of 10 ac-
cording to our practical experiments. If convergence is not reached
at this point, it is clear anyway that fine structures of the function
f will not be reproduced correctly, even with a large number of
iterations.

The major defect of the van Citter algorithm is that it does not
guarantee positivity of the distribution function. An alternative to
van Citter is the Lucy deconvolution algorithm:

δn
i = fi/ f̃ n

i − 1,

Mn+1
i = Mn

i

∑
j

(
1 + δn

j

)
G

(
xi

G − x j
G, vi

G − v
j
G

)
. (64)

Such an algorithm not only guarantees positivity, it is also in princi-
ple more accurate than van Citter, since the error δn

i is relative instead
of absolute.2 In practice, Lucy does better than van Citter, but is a
little more unstable and is also more subject to aliasing effects. For
our fixed-resolution simulations, we adopted the Lucy algorithm,
but we used van Citter when testing refinement, as discussed later.

To illustrate the methods, Fig. 4 shows some results obtained
when trying to resample the following distribution function, used
later as initial conditions for some of our simulations: it is a top-hat
apodized with a cosine:

f (x, v) = ρ̄, x2 + v2 � R2,

f (x, v) = 1

2
ρ̄

{
cos

[
π

2
(
√

x2 + v2 − R)/Rapo

]
+ 1

}
,

x2 + v2 � (R + 2Rapo)2, (65)

where ρ̄ = 1,R = 0.7 and Rapo = 0.3. The function f (x, v)
is shown and plotted in the top panels of the figure. The middle
panels of the figure are the same but the difference δ f = f̃ − f
between the reconstructed distribution function and the true one is
considered, when a small number of clouds is used, with interspac-
ing �g = �x = �v = 0.2. We used 10 iterations in equations (63)
and (64) and a cut-off value δmin = 0.5 × 10−4. A larger number
of iterations would not change significantly the level of conver-
gence. Because �g is of the same order as Rapo, aliasing effects are
rather significant, particularly for Lucy where they reach a few per
cent magnitude, because of the positivity constraint intrinsic to this

2 In that case, δc is no longer expressed in terms of f max.
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A cloudy Vlasov solution 131

Figure 3. Sampling of f (x , v)= constant =1 by truncated Gaussians. We consider a set of 5 × 5 clouds in a periodic square of size L = 5. With these units,
each Gaussian is of size R = √

2/2 and is truncated at Rmax = 3.95 R. The upper left-hand panel shows the variations of the sampled distribution function f̃
if the clouds had infinite extension (darker and lighter regions correspond to f̃ > 1 and f̃ < 1, respectively). They range with good accuracy from 2σ � 2.1
× 10−4 to −2σ (equation 58). The upper right-hand panel is the same, but the truncation is applied, which explains the discontinuities observed in f̃ . In that
case, fluctuations of f̃ are larger and are not symmetrically distributed, ranging approximately from −3.8 × 10−4 to 2.3 × 10−4. The lower right-hand panel
shows the cloud counts, i.e. for each point of space the number of cloud contributing to it. This count varies significantly, between 21 (dark) and 27 (light).
Finally, the lower left-hand panel displays the values of f̃ (x, v = x) (the diagonal of the images) for the untruncated (thick smooth curve) and truncated case
(thin irregular curve). The truncation adds a significant source of noise with a significant skewness in its distribution, which can become a source of systematic
effects. This effect has to be minimized with the appropriate weighting scheme.

algorithm. The lower panels of the figure are the same as the middle
panels, but a larger number of clouds was used, with interspacing
�g = 0.05 now small compared to Rapo. As a result, aliasing effects
are much less significant, of the order of 0.001 − 0.002 and the
difference between Lucy and van Citter has decreased. This shows

that, to sample correctly variations of f over some length-scale �, we
need �g to be sufficiently small compared to �, typically �/�g∼
a few units. Conversely, we see that in run-time the resampled f
can be fully trusted only at coarse-graining scales of the order of a
few �gs.
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132 C. Alard and S. Colombi

Figure 4. Comparison of the van Citter and Lucy algorithms for reconstructing a distribution in phase space. The upper left-hand panel displays the function
f (x, v) we aim to reproduce, as given by equation (65) [darker regions correspond to larger values of f (x, v)]. The upper right-hand panel shows f (x , 0) as
a function of x. The middle left-hand panel displays δ f ≡ f̃ − f , where f̃ is obtained by using the van Citter algorithm. A very similar result would be
obtained for Lucy. The middle right-hand panel gives δ f (x , 0) as a function of x, both for van Citter (thin black curve) and Lucy (thick grey curve). To sample
the distribution function, an interspacing of �g = 0.2 and a cut-off Rmax = 3.95�x was used. The lower left- and right-hand panels are the same but for
higher resolution, �g = 0.05. Note that, for the four lowest panels, the weighting scheme discussed in Section 3.1.3 has been used to estimate f̃ , following
equation (66).

3.1.3 Filtering small-scale noise

After using either the van Citter or Lucy algorithms, one obtains
from interpolation (59) a function f̃ which by definition reproduces

at best the true values of f at the sampling points (xi
G, vi

G), given some
convergence criteria. We just discussed problems of aliasing, which
are intrinsic to the method and cannot be really avoided. They can be
reduced only by using, e.g. refinement procedures discussed later,
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A cloudy Vlasov solution 133

Figure 5. The difference δ f (x , 0) as a function of x, between the re-
constructed (with van Citter) and true distribution function, whether equa-
tion (59) (thin black curve) or equation (66) is used to compute f̃ . The
function f to sample is the same as in Fig. 4 and the resolution is the same
as in the lower panels of this figure.

or just by decreasing the cloud interspacing. However, it is possible
to reduce the defects discussed in Section 3.1.1, namely small-scale
variations due to the finiteness of phase-space sampling (upper left-
hand panel of Fig. 3) and discontinuities due to the truncation of the
clouds (upper right-hand panel of Fig. 3), to guarantee smoothness
of the sampled distribution function. This is indeed necessary to
avoid propagating this intrinsic noise during run-time, when a large
number of reinterpolations is performed.

To minimize these defects, we perform a weighting different from
equation (59):

f (x, v) = W

V

∑
i G

(
x − xi

G, v − vi
G

)
Mi∑

i G
(

x − xi
G, v − vi

G

) , (66)

where W = ∑
k,l G(�x k, �vl) � 1 to ensure proper normalization.

This weighting procedure is nearly equivalent to equation (59), since
we expect the function

∑
i G(x − xi

G, v − vi
G) to present small vari-

ations with (x , v) as shown by the upper right-hand panel of Fig. 3.
However, it has the advantage of smoothing quite efficiently small-
scale noise as illustrated by Fig. 5. For instance, in regions where
f = constant, it recovers exactly the true value of f within these
regions (with a possible offset due to uncertainties in the conver-
gence of the reconstruction). Hence, our weighting scheme would
give exactly f = 1 everywhere in Fig. 3.

In what follows, when a new mapping with round clouds is nec-
essary to resample an existing cloud distribution, we shall use equa-
tion (66) to compute f from the old set of clouds and equation (59)
to compute f̃ from the new set of clouds in iterative procedures (63)
and (64). We decided to do so in the last case to avoid introducing
a bias in the new cloud-mass estimate.

3.1.4 Enforcing basic conservations

An intrinsic property of deconvolution methods such as Lucy’s or
van Citter’s is that they conserve mass very well. However, we will

have in practice to perform many remaps of the distribution func-
tion: any small but systematic deviation from mass conservation
might have, on the long term, dramatic consequences. As a re-
sult, it might be necessary to enforce mass conservation, but this
is not easy without adding diffusion. In order to reduce as much as
possible this latter we proceed as follows. Suppose that the total
mass of the system should be equal to M, and let M̃ = ∑

i Mi be
the total mass obtained from the reconstructed clouds. If M > M̃ ,
we compute the cumulative positive mass residues:

�M+ =
∑

i,δlast
i >0

δMi , (67)

where δMi = δlast
i V for the van Citter algorithm and δMi = Mi δlast

i

for the Lucy algorithm; these quantities correspond to the remaining
uncertainty on the mass determination for each cloud after the last
iteration, n= last. Then, for each cloud having δlast

i > 0, we increase
its mass by a factor α δMi with α = (M − M̃)/�M+. We proceed
similarly if M < M̃ , but by considering

�M− =
∑

i,δlast
i <0

δMi . (68)

Our mass conservation scheme should minimize as much as possi-
ble diffusion effects, since the correction calculated for each cloud
is proportional to the uncertainty on its mass determination. Fur-
thermore, only clouds for which the mass should be increased (or
decreased) in the direction of M − M̃ are modified. Note that if
α > 1, this means that our correction will tend to be above the
residues. We can clearly fear for diffusion in that case.3 Once total
mass conservation is taken care of, we can pay attention to total
momentum,

Pv ≡
∑

i

Miv
i
G, (69)

which we always force to be zero by appropriate corrections of the
velocities, if needed, since there is no external force exerted on the
system we consider.

3.2 Solving the 1D Poisson equation

In this section, we explain in detail how we solve the Poisson equa-
tion. To do that, one needs first to estimate the local projected den-
sity, which is rather simple with our Gaussian clouds, as discussed
in Section 3.2.1 Then one has to estimate the force exerted on each
cloud, as well as its slope. To do that, we propose two methods: a
tree-code approach based on decomposition of space on a binary
tree (Section 3.2.2) and a ‘cloud in mesh’ (CM) approach based on
sampling of space with a regular grid (Section 3.2.3).

3.2.1 Calculation of projected density

The projected density can be obtained for any value of x by summing
all the individual contributions of the clouds. For a given Gaussian
cloud, with elliptic basis and arbitrary orientation, integration over
velocity space of equation (21) is in fact simple. With the help of
equation (19), we obtain

ρ(x, t) = M

√
2C

π�2(t)
exp

(
− 2C

�2(t)
x2

)
(70)

3 Also, it may be possible but rather unlikely that, e.g. M > M̃ and �M + =
0. It is not worth enforcing mass conservation in this case, since the recon-
struction itself is probably already very biased due, e.g. to strong aliasing
effects.
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134 C. Alard and S. Colombi

Figure 6. Sketch of our tree structure used to compute the forces within each cloud. Here, we consider the case N s = 3, i.e. each cloud must intersect with at
least three cells of the tree at a given refinement level. Note that for computing the forces for cloud A, only cells 7, 8, 9 and 10 of level 3 of refinement will be
used, even if more refinement is available due to cloud B.

for a cloud of mass M. In this equation, we thus neglect the trunca-
tion of the cloud over velocity space, but this should not have any
significant consequence. Indeed, in practice, to make sure that the
total projected mass of each truncated cloud is equal to its true mass,
we renormalize equation (70) by a factor very close to unity.

3.2.2 Practical implementation: a tree-code

Keeping in mind that we want to generalize the code to two and three
dimensions, we experimented with an implementation which can be,
in principle, easily extended to higher numbers of dimensions. The
Poisson equation, in the appropriate units, is simply

∂2φ

∂x2
= 2ρ. (71)

The approximation taken in this paper thus consists in simply as-
suming that ρ= constant within a cloud. The force,4 given by

−∂φ

∂x
=

∫
y�x

ρ(y, t) dy −
∫

y�x

ρ(y, t) dy

= Mright − Mleft, (72)

is then locally fitted by a straight line within the cloud.
To estimate the force, we decompose the x-axis hierarchically on

a binary tree (Fig. 6), by successively dividing segments into two
parts of equal length, until each projected cloud intersects with at
least N s tree cells. Of course, there is an uncertainty on the real
number of intersecting cells, N inter � N s. It should be at least N s �
2 and in fact large compared to that if we want to estimate errors on
the forces. To compute the force within a cloud, given the number
N inter of tree cells intersecting with its projection on the x-axis, we
store (i) the force Fi exerted on each cell centre, xi

C, and (ii) a weight
wi proportional to ρ(xi

C − x G) = ρ(x∗
C

i ) as given by equation (70).

4 In this paper, we indistinctly liken the quantity −∇φ to a force or an
acceleration.

This weight is of course more important when the cell centre is close
to the projected cloud centre. Then, given a list of (xi, Fi), i = 1, . . . ,
N inter, we use a simple weighted least-squares fit to adjust the force
by a local straight line F fit(x) = −2α0x − α1 (see equation 5). Our
estimator for the error on the force then reads(

�F

Fmax

)2

= 1

M2
∑Ninter

i=1 wi

Ninter∑
i=1

wi

[
Fi − Ffit

(
xi

C

)]2
. (73)

This weighted quantity roughly quantifies the deviation of the force
from a straight line within the cloud. It is renormalized by the maxi-
mum force, Fmax, which in the units chosen here is equal to the total
mass M of the system. The error on the force is indirectly related to
the projected size of the cloud along the x-axis. If the cloud becomes
considerably elongated, the error on the force will become larger in
a fixed potential. Therefore, one might use �F/F max� some small
value as a criterion to decide whether a remap of the distribution
function with a new set of round clouds is necessary. However, as
we shall discuss in more detail in Section 3.3.3, what really counts
is the cumulative error,

Ecum ≡
∫

�F(t) dt . (74)

To make sure that the force is estimated consistently the same way
for all clouds (in particular to preserve approximately local smooth-
ness properties), we stop refining the tree locally as soon as N inter

� N s, even if the tree has many branches due to much smaller
clouds at the same location x, as shown by Fig. 6. Since we chose
here Rmax = 4R for the truncation of the cloud, one might think
that N s = 8 should be taken, to have at least two sampling cells
per typical length-scale, R, of the clouds. However, we noticed that
N s = 2 is enough to make a very accurate determination of the force
with our choice of R/�x = √

2/2. This is illustrated by Fig. 7. To
estimate the instantaneous error on the force, a larger value of N s

is necessary, typically N s � 8, while N s � 4 is enough to compute
the cumulative error as used in Section 3.3.3.
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A cloudy Vlasov solution 135

Figure 7. The calculated force for the examples considered in Fig. 4. The left- and right-hand panels correspond to the case �g = 0.2 and �g = 0.05,
respectively. On each panel, there is a smooth thick grey curve: it corresponds to the exact force derived directly from integrating equation (65). There is a
thin step-like dotted curve: it corresponds to the force computed for each cell of the binary tree at the resolution needed to sample each cloud with a least
N s cells. Here we took N s = 2, and in practice we obtain N inter = 2 or 3. There are stars nearly perfectly fitting the smooth thick grey curve: they give the
force calculated at the centre of each selected cloud for doing the figure (a subset of all the clouds). A segment passes through each of these stars: it gives our
weighted least-squares fit F fit(x) = −2 α0x − α1, which trivially reduces to the line passing through the two sampling points when N inter = 2. It is interesting
to note that the estimate we obtain for the force at the cloud centres is very accurate, although one might notice a slight offset between symbols and the thick
smooth grey line in the left-hand panel. The projected length of each segment on the x-axis is equal to the projected length of each cloud (up to cut-off). As we
see, significant deviations from our local quadratic assumption are expected for the potential in the left-hand panel. These deviations are much less visible on
the right-hand panel. The typical weighted deviation calculated from equation (73) by using N s = 8 gives �F/F � 0.03 and 0.002 for left- and right-hand
panels, respectively.

Figure 8. Left-hand panel: the maximum instantaneous error, �F/F max, in the force calculation (equation 73) as a function of initial cloud position, measured
in a simulation without remapping. The initial conditions considered here are a truncated Gaussian of size R as given by equation (84). The initial position,
x ini, of the cloud is expressed in units of h. To reproduce a case similar to the one studied in Fig. 1, the cloud size R is given by R/h = 0.1. Three dynamical
times are considered, t = 0.5 (solid), 1.5 (dots) and 6.0 (dashes). It is difficult to make an exact comparison to Fig. 1, given that fact that our estimate of
�F/F max is a quadratic dispersion. However, the general order of magnitude found on the error agrees with the results of Section 2.2.4. The dotted curve which
corresponds approximately, dynamically, to the parameters chosen to make Fig. 1, agrees well, at least qualitatively with Fig. 1. Middle panel: the maximum
cumulative error, Emax

cum/�v , as a function of time. A remapping should be performed each time this error exceeds some threshold. Right-hand panel: the number
of time-steps, nremap, between each remap as a function of remap count, when the condition (85) is fulfilled, with E max = 0.05. The simulation used to make
this plot is exactly the same as the one used for the left-hand and middle panels, except that Lagrange remap was enforced. The simulation was stopped after
3000 time-steps, at t � 39, corresponding to 35 dynamical times according to equation (37) with ρ0 = ρ̄. Note that the variations of nremap decrease with time:
nremap seems to converge progressively to some fixed value, as expected, while the system relaxes to a stationary state.

3.2.3 Alternative practical implementation: ‘CM’ code

The results presented in this paper use a tree-code. The tree-code
has the advantage of being rather flexible and easily generalizable to
higher numbers of dimensions. It also represents a natural ground
for adaptive refinement in phase space, as we shall see later. To

simplify the approach, it is also possible to assume fixed resolution
in space, which allows one to use a fast Fourier transform (FFT) or
relaxations methods to solve the Poisson equation, similarly as in
particle-in-mesh codes (PM). However, at variance with PM, a much
more accurate ‘cloud-in-mesh’ interpolation (CM) is performed. In
one dimensional case, the resolution of the Poisson equation is rather
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136 C. Alard and S. Colombi

Figure 9. Apparition of a hairy structure after a few dynamical times. The simulation considered is the same as the one in the two left-hand panels of Fig. 8, at
t = 6. The top left-hand panel gives the ‘correct’ answer, i.e. f (x, v) obtained by remapping the density field with new round clouds using condition (85) with
E max = 0.05. The top right-hand panel shows the ‘wrong’ answer obtained without remapping. The bottom panel displays the difference between left- and
right-hand panels, which shows the hairy structure appearing due to the divergence of the axis ratios of the clouds.

trivial. The projected density of the clouds is simply calculated on a
grid of interspacing �s in such a way that the number of intersecting
grid sites is always larger than N s for any cloud. The force is then
estimated exactly the same way as discussed in Section 3.2.2. In the
current implementation, this fixed-resolution code is much faster
than the tree-code, especially at the moment of remap, where a
fast convolution method can be used to estimate the phase-space
distribution function (Appendix A2). However, note that the tree-
code part can still be considerably optimized for the remap part,
since the fast convolution method can in principle be generalized to
a non-structured grid.

3.3 Time-stepping implementation and diagnostics

In this section, we discuss our run-time implementation: a second-
order predictor–corrector, as described in Section 3.3.1 This makes
our approach second order both in time and in space. The determi-
nation of the slowly varying time-step is discussed in Section 3.3.2,
as well as other diagnostics, such as energy conservation. Finally,
Section 3.3.3 examines the critical issue of deciding when to per-
form a new sampling of the distribution function with a set of round
clouds, by studying cumulative errors on the determination of the
forces.
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A cloudy Vlasov solution 137

Figure 10. Left-hand panel: test of energy conservation for a stationary solution: The quantity (Etot − Etot theo)/Etot theo is displayed as a function of time,
where Etot is measured in our simulation according to equation (83) and Etot theo is given by equation (90). The parameters used to do the simulations are
ρ̄ = 2 and σ v = 0.2. The thick and the thin curves correspond to the high- and the low-resolution simulations, respectively. Right-hand panel: deviations from
stationarity: the quantity max | f̃ (x, v, t) − fs(x, v)| is represented as a function of time, where f̃ is the simulated f and f s(x , v) is given by equation (87) with
additional apodization as explained in the text. The continuous and the dotted curve correspond to the high- and the low-resolution simulations, respectively.

Figure 11. Mean projected density, ρ(x) =
∫

f (x, v) dv (left-hand panel) and velocity dispersion, vrms(x), v2
rms(x) ≡ 〈δv2〉 =

∫
f (x, v)v2 dv −

[
∫

f (x, v)v dv]2 (right-hand panel), as functions of position, for the stationary solution examined in Fig. 10. The solid curve corresponds to equation (87) with
apodization as described in the text, which explains the bending of the tails visible in the right-hand panel. The dotted and the dashed curves give the results
obtained from the high- and the low-resolution simulations, respectively.

3.3.1 Time-stepping implementation: global predictor–corrector

In our approach, we need a number of parameters to describe com-
pletely a set of clouds i , i = 1, . . . , N tot, interacting through gravity.
These parameters can be chosen as follows:

(i) the mass of the cloud, Mi: this one does not change with time,
except when a remap with a new set of round clouds is performed;

(ii) the position of the centre of the cloud, xi
G(t);

(iii) the velocity of the centre of the cloud, vi
G(t);

(iv) the acceleration of the centre of the cloud, which we write
Fi(t);

(v) the parameter αi
0(t) in equation (5), which is nothing but the

projected density at position [ xi
G(t), vi

G(t)];

(vi) the function wi (t) =
√

�i
2(t);

(vii) the time derivative of the function wi(t): Dw i (t) ≡ dwi/dt ;
(viii) the area of the elliptical section of the cloud divided by π:

Ai = Āi/π; this does not change with time, except when a remap
with a new set of round clouds is performed.

Recall that the parameters β i
0, β i

1 and β i
2 defining the shape of the

cloud are entirely determined by the function wi, its time-derivative
Dw i , αi

0 and Āi , namely, from equations (22), (23) and (24), with
the help of equation (20):

β i
0 = (Dwi )

2 + 1

(Aiwi )2
, β i

1 = −2wi Dwi , β i
2 = (wi )2. (75)

To evolve the clouds we use a a standard second-order predictor–
corrector algorithm, which is known to preserve simplectic be-
haviour quite well, a feature essential in phase space. To simplify
the algorithm, we take the same global time-step for all the clouds.
Our run-time implementation can be split up into the following six
main parts.

(i) Predictor step:

xi
G(tn+1/2) = xi

G(tn) + 1

2
dtnv

i
G(tn), (76)

wi (tn+1/2) = wi (tn) + 1

2
dtn Dwi (tn). (77)
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138 C. Alard and S. Colombi

Figure 12. Phase-space distribution function at various times, for Gaussian initial conditions. Left- and right-hand panels correspond to the high- and the
low-resolution simulations, respectively. Darker regions correspond to higher values of f .

(ii) Force calculation: the force is calculated as explained in
Section 3.2.2 at the ‘predicted’ positions xi

G(t n+1/2) within each
cloud of ‘predicted’ projected density given by equation (70) using
�2(t n+1/2) = [wi(t n+1/2)]2. This gives, for each cloud, the parame-
ters Fi(t n+1/2) and αi

0(t n+1/2).

(iii) Corrector step:

xi
G(tn+1) = xi

G(tn+1/2) + 1

2
dtnv

i
G(tn) + 1

2
dt2

n Fi (tn+1/2), (78)

vi
G(tn+1) = vi

G(tn) + dtn Fi (tn+1/2), (79)
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A cloudy Vlasov solution 139

Figure 12 – continued
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140 C. Alard and S. Colombi

wi (tn+1) = wi (tn+1/2) + 1

2
dtn Dwi (tn)

+1

2
dt2

n

[
1

A2
i w

3
i (tn+1/2)

− 2α0(tn+1/2)wi (tn+1/2)

]
, (80)

Dwi (tn+1) = Dwi (tn)

+ dtn

[
1

A2
i w

3
i (tn+1/2)

− 2α0(tn+1/2)wi (tn+1/2)

]
. (81)

(iv) Outputs: various quantities such as all the information on the
clouds, the density in phase space, etc. can be output at this point.

(v) Diagnostics: calculation of next time-step, test for Lagrange
remap, energy conservation check: as we are going to describe in
more detail below, we use a time-step constrained by the slope of
the force, −2αi

0(t n+1/2). The fact that the next time-step, dt n+1,
depends on a quantity calculated half a time-step before does not
affect significantly the quasi-simplectic nature of our integrator. The
important thing here is that dtn should vary slowly with time. At this
point, we also test if it is necessary to remap the distribution function
with a new set of round clouds, due to the accumulation of deviations
from local harmonicity of the potential, as studied in Section 3.3.3.

t=0

t=10

Figure 13. Mean projected density (left-hand panels) and velocity dispersion (right-hand panels), as functions of position, for the simulations with Gaussian
initial conditions. Each row of panels corresponds to a given time. The solid curve and the dotted curve are for the high- and the low-resolution simulations,
respectively, except for t = 0: in that case, the curves are calculated according to equation (84).

(vi) Lagrange remap, if needed, as explained in Section 3.1.

Note importantly, thus, that our algorithm is second order both in
space and in time. It is quasi-simplectic in the sense that it would be
time reversible, equivalent to generalized leap-frog, if the time-step
was constant.

3.3.2 Diagnostics: ‘Courant’ condition and energy conservation

There is a list of diagnostics to perform during run-time. The most
important are those related to time-stepping. What matters in our
Lagrangian approach is that orbits in phase space should be sampled
with sufficient number of points as well as cloud-shape variations
during the trajectory. From the analysis of Section 2.2.1, this means,
using equation (37),

dt � πC
maxi

√
2αi

0

, (82)

where C is a ‘Courant’ parameter small compared to unity. In prac-
tice we find that we should have C � 0.01. For all the simulations
made in this paper, we took C = 0.01.
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A cloudy Vlasov solution 141

Another diagnostic is of course total energy conservation, which
is, in our units,

Etot ≡ 1

2

∫
v2 f (x, v, t) dx dv

−1

4

∫ [(
dφ

dx

)2

− M2

]
dx

= constant. (83)

This equation assumes that the system is finite of total mass M. We
added a term proportional to M2 to compensate for the divergence
in the integral

∫
(dφ/dx)2 dx so that the constant in equation (83) is

finite.
One might use instantaneous deviations from energy conserva-

tion to constrain the time-step, but we chose here to test energy
conservation only as a consistency check. We shall indeed see in
Section 4 that energy is very well conserved in our code.

Finally notice that mass is conserved by definition, except when a
resampling of the distribution is performed with a new set of round
clouds. During this step, mass conservation is enforced as explained
in Section 3.1.4, as well as total momentum.

3.3.3 Lagrange remap

The assumption of a quadratic local potential is in general always
violated to some extent during run-time since it corresponds to vari-

t=40

t=100

Figure 13 – continued

ations in the projected density ρ(x) (Section 2.2.4). What counts, as
already mentioned in Section 3.2.2, is the cumulative error on the
force, which translates into clouds with increasingly wrong elliptic-
ity parameters. This effect, even if always small during a time-step
(see Section 2.2.4), cumulates with time. In particular, the clouds
get inevitably spuriously elongated and some ‘hairy’ structure ap-
pears during evolution (Fig. 9). This is why we have at some point
to remap the distribution function with a new set of round clouds,
an operation that we call ‘Lagrange remap’.

To illustrate this point, we consider here the same example as
in Section 2.2.4: the evolution of a distribution function initially
Gaussian, i.e. given by

f (x, v) = ρ̄ exp

(
−1

2

x2 + v2

h2

)
, x2 + v2 � R2,

f (x, v) = 1

2
ρ̄ exp

(
−1

2

x2 + v2

h2

)

×
{

cos

[
π

2
(
√

x2 + v2 − R)/Rapo

]
+ 1

}
,

x2 + v2 � (R + 2Rapo)2.

(84)

This initial profile will be used for the set of simulations studied in
Section 4. The same apodization as in equation (65) is performed
to regularize the function at its edges: equation (84) approaches
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142 C. Alard and S. Colombi

Figure 14. Energy conservation for the simulations with Gaussian initial
conditions. The relative deviation from energy conservation is displayed as
a function of time for the high-resolution simulation (thick curve) and the
low-resolution simulation (thin curve): Etot and Etot ini correspond to total
energy and initial total energy, respectively, as measured in the simulations
according to equation (83).

Gaussian initial conditions only if h � R. For the simulation con-
sidered here, we take h = 0.2, ρ̄ = 1/(2πh2),R = 1,Rapo = 0.1.
The cloud size is R = h/10 = 0.02, similarly as in Section 2.2.4
and the intercloud spacing is thus given by �g = √

2R = 0.028.
To compute the force and the error on it (equation 73), we take N s

= 8 as advocated in Section 3.2.2.
The left-hand panel of Fig. 8 gives the maximum instantaneous

error on the force as a function of initial position, x ini. It shows
that the deviations from the local quadratic approximation globally
increase with time, as expected. What is important here, though,
is the accumulation, Ecum, of little kicks at each time-step due to
these deviations, as given by equation (74). This quantity, shown as
a function of time in the middle panel of Fig. 8, has the dimension-
ality of a velocity. It should remain small compared to the velocity

Figure 15. Comparison of the simulation with Gaussian initial conditions with a stationary solution. The function f (x , 0) is displayed in the left-hand panel,
while the function f (0, v) is displayed in the right-hand panel. On each panel, the simulation (thick grey curve) is compared to the stationary solution given
by equation (87) with the same energy and same mass (dots). The dashes are the same as the dots, except that the stationary solution has been normalized to
match the maximum of f . For reference, the thin solid curve corresponds to initial conditions.

resolution:
Emax

cum

�v

� Emax � 1. (85)

If condition (85) is violated, a new sampling of the distribution
function with round clouds should be performed. We notice that a
typical value of the threshold, E max = 0.05, i.e. a 5 per cent cu-
mulative error, corresponds, as expected, to a fraction of dynamical
time, t � 0.4. Interestingly, but not surprisingly, if condition (85)
is enforced, the number nremap of time-steps between each remap
is pretty stable, as shown in the right-hand panel of Fig. 8. For our
Courant parameter choice C = 0.01 and for E max = 0.05 we find
n remap � 15. Its variations decrease with time, as expected, while
the system converges to a stationary state. As a result, it is a very
good approximation to keep nremap fixed, which is quite useful, as it
is not necessary in that case to estimate the cumulative error, and as
a consequence, N s = 2 can be taken to speed up considerably the
calculation of the force, without any significant loss in accuracy.

One would thus be tempted to fix nremap as a function of our
Courant condition using the following formula,

nremap(C) = n0.01

(C/0.01)
, (86)

with, typically, n0.01 � 15 to produce a cumulative error on the force
of the order of 5 per cent. This estimate is only valid for the ini-
tial conditions considered here, but according to the arguments of
Section 2.2.4, the same result should be roughly found for other con-
figurations: with C � 0.01, a Lagrange remap should be performed
every 10–15 time-steps.

One might be worried that a cumulative error of a few per cent
per Lagrange remap is too much: accumulation of errors after a few
thousand remaps might still be too large. However, on has to take
into account the fact that the cumulative error, as given by equa-
tion (74), does not take into account possible global cancellations
during the dynamics. In particular, if a given symmetric potential is
fixed, we see that a cloud plunged in the right side of the potential
will be the object of next to quadratic distortions opposite to those in
the other side: they will cancel each other, which makes the solution
rather stable on the long term, even if our absolute cumulative error
becomes very large. This is illustrated in Fig. 9, which compares the
results obtained for the simulation of Fig. 8 without remapping at
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A cloudy Vlasov solution 143

Figure 16. The phase-space distribution function for top-hat initial conditions, similarly as in Fig. 12.
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Figure 16 – continued
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A cloudy Vlasov solution 145

t = 6 to the exact solution. The ‘hairy’ effect is quite visible, but the
solution is rather close to the correct answer at the coarse level.

4 S O M E A P P L I C AT I O N S

In this section, we show how our tree-code performs for three dif-
ferent kinds of initial conditions. Similar results should be obtained
for the CM code, so we do not feel it necessary to show them here.

The first model, considered in Section 4.1, is a stationary profile,
satisfying ∂ f /∂t = 0. This is a crucial test: the code should be able
to maintain a stationary profile during many dynamical times to a
very good accuracy. We shall see that our code passes this test with
great success.

The second model, considered in Section 4.2, is a Gaussian dis-
tribution function: this kind of very smooth initial conditions is well
adapted to our method, which should be able to follow their evo-
lution quite accurately until the details appearing during run-time
become too small to be resolved by our sampling clouds. We shall
see that at this point our numerical solution still gives a very good
coarse-level version of the full-resolution one.

The third model, considered in Section 4.3, is a top-hat apodized
by a cosine. The evolution of this a kind of distribution function
allows us to test directly to what extent our code can maintain a

t=0

t=10

Figure 17. Mean projected density and velocity dispersion, for the simulations with top-hat initial conditions, similarly as in Fig. 13.

region with f = constant. In particular, effects of aliasing can be
quantified easily.

For each of the models considered above, we perform one ‘low
resolution’ simulation with �x = �v = 0.02, and one ‘high resolu-
tion’ simulation with �x = �v = 0.005. We run these simulations
using a Courant condition C = 0.01 and a Lagrange remap every
15 time-steps, following the conclusions of the analyses above. To
perform the resampling, we use the Lucy algorithm with 10 itera-
tions exactly, whatever the residue obtained between the resampled
distribution and the previous one, following discussions of Sec-
tion 3.1.2. To maintain the domain of contributing values of f finite,
we proceed as explained in the paragraph just after equation (63)
with δmin = 5 × 10−5. In all cases, we aim to evolve the system
during approximately 30 dynamical times (corresponding to 60 or-
bital times), a goal that we achieve in the following way. We set up
initial conditions such that ρ 0 is of order two in equation (37) for
the top-hat and the Gaussian case, and evolve them up to t = 100.
For the stationary solution, the choice of ρ 0 is of order unity and we
evolve the simulation up to t = 150. With our Courant condition, this
amounts finally to approximately 7000 time-steps for the stationary
simulation and 8000 time-steps for the simulations with Gaussian
and top-hat initial conditions, corresponding to a large number of
remaps, about 470 and 530, respectively.
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146 C. Alard and S. Colombi

This way we are able to quantify the limitations of our approach,
namely coarse-graining and aliasing effects due to the finite size
of the sampling clouds at the moment of remap. We shall see that,
as expected, the low-resolution simulations give a very accurate
coarse-grained version of the high-resolution ones.

4.1 First application: stationary profile

A family of stationary solutions is given by (Spitzer 1942)

fs(x, v) = ρ̄

[
cosh

(
x

σx

)]−2

exp

(
−1

2

v2

σ 2
v

)
, (87)

with

σx =
√

σv√
2πρ̄

. (88)

For further reference, the total mass is

M = 2(2π)1/4ρ̄1/2σ 3/2
v , (89)

and the total energy (equation 83) is

Etot = 3(2π)1/4ρ̄1/2σ 7/2
v . (90)

t=40

t=100

Figure 17 – continued

To perform the simulations, we set up initial conditions with the
same apodization as in equations (65) and (84), to make the support
of the function compact. To achieve an initial set-up sufficiently
close to the stationary solution, we must have σ v and σ x sufficiently
small compared to the apodization radius, R. Our choice here is
R = 1,Rapo = 0.2, ρ̄ = 2, σv = 0.2 [hence, σ x � 0.2 � σ v].
With this set-up, the number of clouds contributing during run-
time is about 80 000–120 000 and 4200–7500 in the high- and low-
resolution simulations, respectively. This number decreases slowly
with time as a result of the truncation procedure used to maintain
the support of f compact (see Section 3.1.2). In principle we could
fine tune this procedure in order to maintain the number of sampling
clouds approximately constant with time, but we decided not to do
so at this point, because it affects only the tails of the distribution
function.

Fig. 10 examines energy conservation and deviations from the
stationary solution as functions of time. As expected, energy
conservation is very good both for the high- and for the low-
resolution simulations, better than 0.5 per cent. However, it wors-
ens with time. This is mainly a consequence of our truncation of
the phase-space distribution function at δmin = 5 × 10−5. Note
that the maximum difference between the true distribution function
and the simulated one tends to augment linearly with time at a
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A cloudy Vlasov solution 147

certain point, even for the high-resolution simulation, as illustrated
by the right-hand panel of Fig. 10. For the high-resolution simu-
lation, this is again mainly due to the truncation of the tails of f .
Indeed, the difference δ f between the numerical and the analyti-
cal solutions measured at the centre of the fluctuation, (x , v) = (0,
0), is only of the order of −2 × 10−4 for t = 150. For the low-
resolution simulation, another effect adds up to the truncation of the
tails, namely a weak diffusion at the maximum of f at the moment
of Lagrange remap. When fluctuations become of the order of the
cloud size, one can indeed expect two competing effects, according
to the details of the shape of the sampled distribution function: (i)
a coarse-graining effect, where small-scale fluctuations tend to be
progressively smeared out, and (ii) an aliasing effect already dis-
cussed in Section 3.1.2, where, on the contrary, artificial contrasts
are created with the appearance of spurious oscillations. Since the
distribution function we sample here is smooth, effect (ii) is not
present. However, although a deconvolution method such as Lucy’s
(or van Citter’s) aims to minimize effect (i), it cannot reduce it com-
pletely. This effect is very small, since it induces a rather weak
diffusion, even for the low-resolution simulation, of the order of 2
per cent only at the centre of the fluctuation at t = 150.

Fig. 11 shows the zeroth and second moments of f (x, v) with re-
spect to velocity, namely the projected density and the velocity dis-
persion, as functions of x, at latest output, t = 150. Even though the
low-resolution simulation has already significantly diffused, with a
two per cent depletion on the maximum of f , the overall solution is
still pretty close to the correct one. The deviations observed in the
tails both in the high- and the low-resolution simulations are a conse-
quence of the truncation procedure used to maintain the computing
domain finite.

4.2 Second application: a Gaussian as initial conditions

The Gaussian initial conditions we consider are specified by equa-
tion (84), with R = 0.8,Rapo = 0.2, ρ̄ = 4 and h = 0.2. With this
set-up, the number of clouds contributing is roughly 95 000–120 000
and 6600–7700 for the high- and the low-resolution simulations, re-
spectively.

Fig. 12 shows the distribution function in phase space at vari-
ous times, t = 0, 10, 40 and 100. As expected, a spiral structure
appears, which roles up with time. At some point, it becomes so
thin that it disappears due to finite resolution. Of course, this event
happens earlier for the low-resolution simulation. Visually, this lat-
ter seems to represent a very good coarse-grained version of the
high-resolution simulation. This can be examined in more detail in
Fig. 13, which displays projected density and velocity dispersion at
the same instants as in Fig. 12. At t = 10, it is not possible to distin-
guish yet between low and high resolution. The difference between
the two simulations is the most significant for t = 40: in that case,
details are lost in the low-resolution simulation, but it gives a rather
accurate coarse-grained version of the high-resolution simulation.
At late time, t = 100, details have nearly disappeared even in the
high-resolution simulation and the agreement between low and high
resolution remains excellent.

Fig. 14 displays the relative deviation from energy conservation
as a function of time. For the high-resolution simulation, results are
very similar to what was obtained for the stationary solution: total
energy decreases slowly with time, mainly because of our truncation
of the tails of the phase-space distribution function, but is conserved
with a precision better than 0.5 per cent at t = 100. The behaviour
observed for the low-resolution simulation is more complex. Indeed,

energy first increases up to t � 50, due to coarse-graining effects
which introduce a slight bias in the tails of the distribution function.
At variance with the high-resolution simulation, these effects dom-
inate over those due to the truncation until details in the distribution
have completely disappeared. Note that the maximum of f , which
should stay constant, presents small variations between initial and
final time. The net result is an increase of 0.1 and 2 per cent for
the high- and the low-resolution simulations, respectively. This is
probably due to aliasing effects, which are, however, not expected
to affect energy conservation significantly.

Examination of the second part of Fig. 13 suggests that the system
is relaxing towards a stationary regime. Fig. 15 compares the phase-
space distribution function at the latest stage of the high-resolution
simulation to a stationary solution given by equation (87). To com-
pute the parameters of the stationary solution, we use equations
(89) and (90). For the total energy, we take the initial value obtained
from the (apodized) Gaussian profile and obtain ρ̄ � 3.79 and
σ v = 0.298, which corresponds to the dotted curve. It globally
agrees well with the simulated solution (thick grey curve), if ones
keeps initial conditions as a reference for comparison (solid thin
curve). Note that the agreement is improved in the high f part if ρ̄

is changed to 4 (dashed curve), but remains imperfect: the dashed
curve is not able to reproduce the clear transition between a plateau
at low values of f and the central belt shape, which suggests a more
complex stationary regime, with two components.

4.3 Third application: a top-hat as initial conditions

To set up initial conditions, we use equation (65) with R = 0.8,

Rapo = 0.2 and ρ̄ = 1. The number of clouds contributing to f varies
between 190 000 and 350 000 and between 11 000 and 29 000 for
the high- and low-resolution simulations, respectively.

Figs 16 and 17 show the resulting distribution function in phase
space and its zeroth and second moments, at various times, t = 0, 10,
40 and 100, both for the low- and the high-resolution simulations.
The system builds with time a two component structure: most of the
region f = ρ̄ remains in a compact structure with a roughly elliptic
shape rotating and pulsating around the centre, while a ring appears
around it by the effect of rolling up. The appearance of this ring,

Figure 18. Energy conservation for the simulations with top-hat initial
conditions, similarly as in Fig. 14.

C© 2005 RAS, MNRAS 359, 123–163

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/359/1/123/983199 by guest on 15 M
arch 2021



148 C. Alard and S. Colombi

Figure 19. Phase-space distribution function at various times, for Gaussian initial conditions in the N-body simulations. Left- and right-hand panels correspond
to the high- and the low-resolution simulations, respectively. Darker regions correspond to higher values of f . This figure can be compared directly with Fig. 12,
which was obtained with the cloud method.

formed of a very fine spiral structure transporting a small fraction
of the total mass (see Fig. 17), explains the significant increase of
the number of clouds contributing to the distribution function. At
t = 100, our pulsating core+ring structure has not converged to any

stationary solution, as expected, but remains topologically stable
on the coarse level, if one takes into account the fact that mass
migrates slowly from the edges of the central patch to the external
ring.
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Figure 19 – continued
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150 C. Alard and S. Colombi

A careful examination of Figs 16 and 17 shows that the agreement
between low and high resolution is pretty good, although not as
impressive as for the Gaussian case: some details differ even at
the coarse level, particularly in the region of transition between the
external ring and the central patch. These differences do not affect
energy conservation significantly, as illustrated in Fig. 18: in both
simulations, energy decreases slowly with time, mainly as a result of
our truncation of the tails of the phase-space distribution function,
and is conserved with an accuracy better than 0.2 per cent.

Note finally that aliasing effects seem to be more significant here
than for the Gaussian simulation, although still quite reasonable: at
t = 100, we find for both simulations that the maximum of f is about
1–2 per cent larger than it should be. This happens at the edges of the
central patch. At the centre, we measure f (0, 0) � 1.005 and 1.0007
for the low- and the high-resolution simulations, respectively, which
represents a very small deviation from unity.

t=0

low resolution

high resolution

Figure 20. Mean projected density (left-hand panels) and velocity dispersion (right-hand panels), as functions of position, for the N-body simulations with
Gaussian initial conditions, compared at various times, t = 0, 10, 40 and 100, to the result obtained with the cloud method. Each row of panels corresponds
to low- and high-resolution N-body simulations, respectively. The N-body results are displayed as thin black curves, while the thick grey curve indicates the
result obtained with the high-resolution cloud simulation. (Note that for t = 0, the thick grey curve is not exactly the same as in Fig. 13; it corresponds to the
actual realization of the analytic initial conditions with the clouds.)

5 C O M PA R I S O N W I T H S TA N DA R D N - B O DY

In this section we show that the cloud method matches very well the
results obtained with with the standard N-body approach, but with a
significant gain in accuracy and smoothness, as expected. To conduct
our analyses, we concentrate on the high-resolution simulation with
Gaussian initial conditions studied in Section 4.2.

We wrote a simple particle-mesh code (PM) similar to the CM
code described in Section 3.2.3 In our N-body code, the projected
density is thus calculated by cloud-in-cell interpolation (see, e.g.
Hockney & Eastwood 1988) of the mass of each particle on a fine
mesh of step �g. Our choice of mesh interspacing is �g = 200/N ,
where N is the number of particles. The initial conditions are ex-
actly the same as in Section 4.2, but no apodization was performed
(equation 84). Instead, we just put no particle beyond R. This does
not make much difference, since the cut-off radius R corresponds
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A cloudy Vlasov solution 151

to a 5σ level for our Gaussian. In order to represent the initial con-
ditions in phase space, we generate a set of particles with random
positions according to a given density law. The time integrator is a
simple leap-frog with constant time-step, dt = 0.0125, comparable
with the time-step chosen for our cloud simulations.

We performed two simulations: one at ‘low resolution’, with N =
105, a number of sampling units comparable to our high-resolution
cloud simulation; and the other one at ‘high resolution’, with N =
106. Fig. 19 shows, similarly as Fig. 12, the phase-space distribu-
tion function at various stages for each simulation. To sample the
density in phase space, we perform top-hat smoothing with a square
window of size �w equal to the high-resolution cloud simulation
interspacing: �w = �g = 0.005. With this choice of �w, we can
perform a direct comparison between the N-body method and the
cloud method, since the cloud interspacing basically defines the size
of the smallest structures that the clouds can sample. Up to t = 40,
the match with the cloud simulation is excellent, except of course
the fact that the phase-space distribution function is more noisy. This
visual match is confirmed by Fig. 20, which displays the projected
density and the velocity dispersion at the same instants as in Fig. 19,
where agreement between N-body and cloud methods is very good,
even at t = 100, except in the tails, as expected.

t=10

low resolution

high resolution

Figure 20 – continued

At t = 100, the fine features in the phase-space distribution
function are significantly distorted in the low-resolution simula-
tion, probably due to the appearance of a resonance. This resonance
seems to be also present in the high-resolution simulation, but to a
much lesser extent. Even though we might expect this resonance to
be of a physical nature (Touma, private communication), it should
appear only at the microscopic level: for instance, we noticed that
increasing the number of particles would considerably diminish its
effects. Note that these effects are not so dramatic if one consid-
ers projected quantities such as density and velocity dispersion as
illustrated by Fig. 19.

We already see here that our cloud method has two advantages.
First, it preserves the smoothness and the features of the distribu-
tion function, even when f is small, which is not the case for the
N-body approach: even with 10 times more sampling units, the
N-body approach is rather noisy in the tails, as further illustrated by
Fig. 20. Secondly, it performs actual coarse-grain dynamics, without
propagating artificially possible resonances that should exist only
at the microscopic level.

Note, however, that the N-body results can still be improved in
different ways. For instance, instead of setting up initial condi-
tions with a random distribution of particles, we could have reduced
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152 C. Alard and S. Colombi

shot-noise effects by locating the particles on a regular pattern or
on a glass deformed smoothly with the appropriate displacement
field to match the initial distribution. We could as well improve the
interpolation to compute the distribution function in phase space by
using, e.g. Gaussian smoothing with the appropriate window size
(which could be adaptive) or Voronoi tessellation (e.g. Arad, Dekel
& Klypin 2004). We could as well transport the information relative
to the initial value of f , and to avoid the appearance of the reso-
nance noticed above, we could improve the calculation of the force
to make it smooth enough. With all these potential improvements,
there is no doubt the N-body method would perform much better in
terms of accuracy, but at a significant computational cost.

It would be beyond the scope of this paper to compare in detail
the computational cost of our method with an ‘improved’ N-body,
especially since we are treating here the simple two-dimensional
phase-space case: it will be more relevant to discuss this matter when
the method will be applied to realistic situations in six-dimensional
phase space. However, we can give here a qualitative comparison.
In two-dimensional phase space, compared to standard N-body, our
method is of course more costly in memory: two parameters corre-
sponding to the shape of the clouds have to be transported and the
force must be supplemented with its slope. It is also more costly in
CPU: the slope of the force has to be estimated and the Lagrange

t=40

low resolution

high resolution

Figure 20 – continued

remap has to be performed. This last step is rather expensive in the
tree-code version of our code but can be greatly speeded up in the
CM version, by using the fast convolution method explained in Ap-
pendix A2. In terms of CPU time, the CM version compares fairly
well with our PM code: it is typically an order of magnitude slower
for the same number of sampling units. However, as shown above,
the gain in accuracy and smoothness is considerable compared to
the overcost in CPU.

6 A DA P T I V E R E F I N E M E N T

In the simulations with Gaussian and top-hat initial conditions stud-
ied in Section 4, the complexity of the phase-space distribution
function augments with time, due to the well-known effect of rolling
up. In the top-hat case, details are significant only in the external
ring. This calls for local refinement, i.e. for increasing resolution
only where needed: in principle this should reduce significantly the
cost of the simulation. The gain obtained from local refinement in
two-dimensional phase space might of course be quite question-
able. For instance, such a gain is expected to be rather small in the
Gaussian case, where complexity appears everywhere in the com-
puting domain with approximately the same level of detail. However,
refinement is expected to be much more relevant in higher numbers
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A cloudy Vlasov solution 153

of dimensions, especially in the cosmological case, where only a
very small fraction of phase space is occupied.

Here, we examine a simple approach based on standard adaptive
refinement tree (ART) methods. Our goal is to demonstrate only
that refinement is possible with the cloud method. This section is
organized as follows. In Section 6.1, we give a sketch of the method.
Technical details are discussed in Appendix B. In Section 6.2, we
show how the method performs for the top-hat initial conditions
used in Section 4.3: we start from a low-resolution initial set-up with
�x =�v = 0.02, allow for two levels of refinement, and compare the
results obtained to the high-resolution simulations of Section 4.3,
with �x = �v = 0.005.

6.1 Method of refinement

In the practical implementation that we test on the tree-code, the
phase space is decomposed hierarchically on a quad-tree at the mo-
ment of remap. Each cell of the quad-tree is associated to a cloud.
If needed, the cell is split equally into four subcells correspond-
ing to four subclouds. The process is performed as long as neces-
sary, i.e. until the sizes of the corresponding (sub)clouds obey some

t=100

low resolution

high resolution

Figure 20 – continued

criteria based on local properties of the phase-space distribution
function.

At each successive level of refinement, we use the van Citter al-
gorithm to reconstruct the distribution function. We first start from
the coarse level, where we reconstruct f the same way as for the
fixed-resolution code, as described in Section 3.1.2. We then con-
sider the set of clouds corresponding to the first level of refinement
as residues to reconstruct f more accurately by applying the van
Citter algorithm again on these clouds, and so on, until the last level
of refinement.

We consider two criteria of refinement. The first one is based on
the measurement of local curvature of the phase-space distribution
function: local curvature is indeed a key quantity for preserving
details in the distribution function: the cloud size should be always
small compared to the local curvature radius. The second criterion is
based on convergence of the reconstruction at successive refinement
levels: clouds where f is poorly reconstructed are refined. We shall
see that in practice both curvature and convergence criteria give
similar refinement structure.

In our implementation of refinement, even when split into smaller
subclouds, clouds at a given refinement level are thus kept since
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154 C. Alard and S. Colombi

Figure 21. Top-hat simulations at t = 10. Left-hand panels: phase-space distribution function for the full-resolution simulation (top), the simulation with
refinement based on local curvature (middle) and the simulation with refinement based on local convergence (bottom). Top right-hand panel: the local curvature
measured in the simulation with refinement based on local curvature, as explained in the text of Section 6.2. Two bottom right-hand panels: levels of refinement
in the simulations with local curvature criterion (middle) and local convergence criterion (bottom). Darker regions corresponds to higher level.

C© 2005 RAS, MNRAS 359, 123–163

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/359/1/123/983199 by guest on 15 M
arch 2021



A cloudy Vlasov solution 155

Figure 22. Same as in Fig. 21, but for t = 40.
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156 C. Alard and S. Colombi

Figure 23. Same as in Fig. 21, but for t = 100.

their subcloud counterparts are considered as residues. In principle,
it would be advisable from the dynamical point of view to remove
these clouds from the hierarchy, i.e. to set their mass to zero. Indeed,
because of the structures in the gravitational potential brought by

the small clouds, the quadratic approximation is expected at some
point to become invalid for the larger clouds. We notice as well that
one of our refinement criteria should rely as well on variations of the
projected density, which account for deviations from the quadratic
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A cloudy Vlasov solution 157

Refinement based on local curvature

Full resolution

Refinement based on local convergence

Figure 24. Mean projected density (left-hand panels) and velocity dispersion (right-hand panels), as functions of position, for top-hat simulations with
refinement based on local curvature (top row) and on local convergence (bottom row), compared to full resolution (middle row), at t = 40.

behaviour of the potential. As our goal is just to demonstrate that
refinement is possible with our method, we decided in the present
work to put aside removal of coarser level clouds and refinement
based on projected density. As it is, thus, our refinement procedure
is quite improvable and will work only if the gravitational poten-
tial remains sufficiently quadratic at the coarse level, which should

hopefully be the case if the number of refinement levels is not too
large.

6.2 Example: top-hat initial conditions

To check how our refinement procedure performs, we again ran sim-
ulations with the same top-hat initial conditions as in Section 4.3,
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Refinement based on local curvature

Full resolution

Refinement based on local convergence

Figure 25. Same as Fig. 24, but for t = 100.

but starting from low-resolution initial conditions with �g = 0.02
and allowing refinement until high resolution is reached, �g =
0.005. This represents a significant increase in mass resolution,
a factor 16, corresponding in total to a coarse level plus two lev-
els of refinement. We performed two simulations, based on local
curvature and local convergence criteria, respectively. All the pa-

rameters defining the simulations are the same as in Section 4,
except for those depending on refinement, which are given in Ap-
pendices B1 and B2. There is also a difference in the choice of
δmin (see Section 3.1.2) that we set to δmin = 0.0005 for simu-
lations based on adaptive refinement with the local convergence
criterion.
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A cloudy Vlasov solution 159

Figure 26. Energy conservation in top-hat simulations with refinement,
compared to fixed-resolution simulations. The solid and dotted thin curves
correspond to simulations with refinement based on local curvature and lo-
cal convergence, respectively. The lower thick curve and nearly superposed
dashed one correspond, respectively, to the high- and low-resolution sim-
ulations of Section 4.3. These simulations use Lucy deconvolution. The
upper thick and dashed curves correspond to similar simulations, but were
performed using van Citter reconstruction.

Figs 21, 22 and 23 show the phase-space distribution function at
various times, t = 10, 40 and 100. The refined simulations seem to
reproduce rather well the results of the full-resolution simulation, up
to t = 40. For t = 100, the refined simulations clearly differ from the
full-resolution one, even though they present the same level of detail.
The two lowest right-hand panels on each of the figures show the
refinement levels. As expected, the result obtained from the local
curvature criterion is very similar to that obtained from the local
convergence criterion. For reference, the upper right-hand panel
shows an estimate of the local curvature, more exactly the quantity
C = max(|λ1|, |λ2|) present in equation (B4) where λ1 and λ2 are the
eigenvalues of the Hessian of the phase-space distribution function.
Note thatC is quite noisy despite our sophisticated weighting scheme
to compute f and its derivatives, as it still captures some small-scales
defects, but it seems to be determined accurately enough to set up
refinement correctly based on local curvature.

Figs 24 and 25 show the projected density and the velocity dis-
persion for the snapshots t = 40 and t = 100. Careful examination
confirms the visual impression from Figs 22 and 23: the refined
simulations reproduce well the fine features of the full-resolution
one for t = 40, but not for t = 100.

Finally, Fig. 26 examines energy conservation for various sim-
ulations. Refined simulations present the same behaviour, whether
a local curvature or local convergence criterion is used: excellent
energy conservation up to t � 40, then a nearly linear increase of
energy with time with a significant but still reasonable final violation
of energy conservation of the order of 2 per cent. The curves corre-
sponding to the high- and low-resolution simulations of Section 4.3,
performed with Lucy deconvolution, are displayed for reference, but
it would be more fair to make the comparison with fixed-resolutions
simulations performed with van Citter. Indeed, in our current imple-

mentation, simulations using van Citter deconvolution conserve en-
ergy less well than those using Lucy: in Fig. 26, the high-resolution
simulation using van Citter presents similar behaviour to our sim-
ulations with refinement, except that the final violation of energy
conservation is twice smaller. The low-resolution simulation does
significantly worse. First it conserves energy well, up to t � 10, then
energy increases rather fast up to t � 40 where it reaches a plateau
corresponding to a global violation of energy conservation of the
order of 2 per cent.

This behaviour is related to the fact that the positivity of the distri-
bution function is not guaranteed in the van Citter algorithm and that
we perform a truncation of the tails of f : if f is smaller than δmin, it is
set to zero. If this truncation, which is meant to keep the computing
domain finite and f as positive as possible, was not present, energy
conservation would be by construction much better. The cut-off of
the negative contributions of f implies that energy increases with
time. The effect is all the stronger since resolution is low. Refine-
ment is expected to improve energy conservation compared to low
resolution, at least during some length of time, but since it keeps
coarse and intermediary levels of refinement, it is not expected to do
as well as the full-resolution simulation, hence the result observed
in Fig. 26.

However, a 2 per cent violation of energy conservation is prob-
ably not enough to explain the significant disagreement at t = 100
between simulations with refinement and the full-resolution one.
There is indeed at least one other effect intervening, as discussed in
the last paragraph of Section 6.1: namely that at the coarser levels,
the local quadratic nature of the potential is likely to be violated
during run-time. This can produce cumulative effects that show up
only after a large number of orbits.

Despite the limitations of the current implementation, we think
we have demonstrated here that the cloud method is compatible with
adaptive refinement.

7 P E R S P E C T I V E S A N D E X T E N S I O N TO A
H I G H E R N U M B E R O F D I M E N S I O N S

We demonstrated the ability of the cloud method to solve the
Vlasov–Poisson system in one dimension. An interesting feature
of this method is that its structure allows a simple generalization to
the n-dimensional case. We will show in the next section that the
n-dimensional cloud equations can be solved quite easily, as a natu-
ral generalization of the one-dimensional equations. It is also quite
obvious that the tree-code method that we used to solve the Poisson
equation can be extended to a higher number of dimensions.

7.1 n-dimensional equations

Provided that we keep in mind the results obtained in one dimen-
sion, the generalization of the cloud equation to n dimensions is
straightforward. In the one-dimensional case, it was shown that a
general solution cloud can be written as a function of second-order
polynomials in (x 1, . . . , xn, v1, . . . , vn). We will adopt this result
and show that a closed system of equations can be obtained for an
n-dimensional cloud. To simplify the writing of the equations, we
define the vector u such that:

ui =
{

xi 0 < i � n,

vi n < i � 2n.
(91)

Using this notation, we are now able to write the generalized Vlasov
equation in Lagrangian coordinates for a cloud of density f (u, t)
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evolving in the potential φ(u, t):

∂

∂t
f (u, t) + ∂

∂ui
f (u, t) ui+n η(i)

− ∂

∂ui
φ(u, t)

∂

∂ui+n
f (u, t) η(i)

= 0, (92)

with the following definition for the function η:

η(i) =
{

1 0 < i � n,

0 i < 1 or i > n.
(93)

We will look for a general solution in the case of a quadratic poten-
tial. An extrapolation of the one-dimensional case suggests that the
general cloud equation can be written as a function of a quadratic
polynomial. In this case:

φ(u, t) = αi j η(i)η( j) ui u j , (94)

f (u, t) = F(λi j ui u j ). (95)

Note that the coefficients α i j and λi j depend on time, in general,
α i j ≡ α i j (t) and λi j ≡ λi j (t).

By inserting this expression for f (u, t) in the Vlasov equation,
equation (92), we will obtain a closed system of differential equa-
tions for the coefficients λi j (t). We will now illustrate the relevant
calculations step by step. By taking each term in the Vlasov equation
from left to right we have:

First term in the Vlasov equation:

∂

∂t
f (u, t) = ∂λi j

∂t
ui u j . (96)

Second term in the Vlasov equation:

∂

∂ui
f (u, t)η(i) = 2λi jη(i) u j . (97)

Thus,

∂

∂ui
f (u, t) ui+nη(i) = 2λi j η(i) u j ui+n, (98)

which can be rewritten:

∂

∂ui
f (u, t) ui+nη(i) = 2λ(k−n) j η(k − n) u j uk . (99)

The last term of the Vlasov equation can be evaluated using the
same method. We arrive at the following result:

∂

∂ui
φ(x, t)

∂

∂ui+n
f (u, t) η(i)

= 4φik λ(k+n) j η(i)η(k) u j uk . (100)

We are now ready to tackle the Vlasov equation itself. We have to
write that each coefficient of the second-order polynomial is zero.
For each second-order term uiuj we have to consider the contribution
from the pair of indices (i, j) and (j, i). In the case i = j , there is
only one contributor, but we will still add the symmetric term; this
will result in a factor of 2 on the left side, and since the right side
is equal to 0 it does not change the equation. Thus by adding the
contribution of each term in equations (96), (99) and (100), and
taking into account the symmetric term, we find that:

∂λi j

∂t
+ λ(i−n) j η(i − n) + λ( j−n)i η( j − n)

−2φki λ(k+n) j η(k)η(i) − 2φk j λ(k+n)i η(k)η( j)

= 0. (101)

7.2 Applications of the method

Considering the current capabilities of the largest computers it seems
clear that the two-dimensional case could be undertaken rapidly, and
that in astrophysics it would offer a new look at a few interesting
problems, like for instance the dynamics of galactic discs. Due to
the particular interest of the two-dimensional case we present the
detailed cloud equations in Appendix C. Due to the high dimen-
sionality of phase space in the three-dimensional case, it seems that
trying to integrate the Vlasov–Poisson system directly using the
cloud method may be too costly. However, it is clear that a most
interesting case, namely the cold dark matter model in cosmology,
may not require the same amount of resources and could be solved
using an appropriate version of the cloud method. It is important
to notice that in this case the density in the six-dimensional phase
space is adequately represented by the extended folding of a three-
dimensional sheet having a nearly constant density. In particular, this
case may not require the sophisticated Lucy deconvolution scheme
and the general remapping technique.
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Gagné R. R., Shoucri M., 1977, J. Comput. Phys., 27, 315
Hockney R. W., Eastwood J. W., 1988, Computer Simulation using Particles.

IOP Publishing, Bristol
Hohl F., Feix M. R., 1967, ApJ, 147, 1164
Janin G., 1971, A&A, 11, 188
Klimas A. J., 1987, J. Comput. Phys., 68, 202
Klimas A. J., Farrell W. M., 1994, J. Comput. Phys., 110, 150
Merrall T. E. C., Henriksen R. N., 2003, ApJ, 595, 43
Nishida M. T., Yoshizawa M., Watanabe Y., Inagaki S., Kato S., 1981, PASJ,

33, 567
Rasio F. R., Shapiro S. L., Teukolsky S. A., 1989, ApJ, 344, 146
Roberts K. V., Berk H. L., 1967, Phys. Rev. Lett., 19, 297
Shlosman I., Hoffman Y., Shaviv G., 1979, MNRAS, 189, 723
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A cloudy Vlasov solution 161

A P P E N D I X A : S A M P L I N G O F T H E
D I S T R I BU T I O N F U N C T I O N F RO M
A S E T O F C L O U D S

A1 Arbitrary set of clouds on a regular grid

Assume we want to compute f i, j = f (xi, vj) where (xi, vj) are
sampling points on a square grid of spacing �, for an ensemble of
clouds with arbitrary axis ratio and orientation, using either equa-
tion (59) or equation (66). Since the clouds are rather extended and
overlap significantly, the calculation of f i, j , is expected to be rather
CPU-time consuming, in general, but simple. The natural way of
performing it is simply to project each cloud independently on the
grid. The only difficulty is to find the subsample of grid points where
a given cloud contributes. To do that, one can estimate the projected
size of the cloud on the x- and v-axes:

Rmax,x = Rmax

R

√
β2

2C
, Rmax,v = Rmax

R

√
β0

2C
, (A1)

where β 0 and β 2 are given by equations (22) and (24), respectively.
This defines the rectangle where the ellipse corresponding to the
cloud is inscribed. To speed up the calculation, one can find, for
fixed values of x ∈ [−Rmax,x , Rmax,x ] in the cloud coordinate frame,
the segment [v1, v2] given by the intersection between the ellipse
covered by the cloud and the vertical line of abscissa x, which we
do not feel necessary to write here for simplicity.

A2 Round set of clouds on a grid: fast convolution algorithm

When one considers a round set of clouds set up on a regular grid,
it is possible to use a simple trick to speed up the calculation of
f i, j compared to the simple algorithm described in Section A1, by
noticing that the convolution of a function by a Gaussian can be
factorized in that case:∫

dx∗ dv∗ f (x + x∗, v + v∗) exp

[
−1

2

(
x∗2

R2
x

+ v∗2

R2
v

)]

=
∫

dx∗ exp

(
−1

2

x∗2

R2
x

)

×
∫

dv f (x + x∗, v + v∗) exp

(
−1

2

v∗2

R2
v

)
. (A2)

In practice, this means the following. Assume for simplicity that
the centre, (xn

G, vn
G), of each cloud, n, coincides exactly with a grid

sampling point (xin , v jn ), and furthermore that cloud interspacing,
�g, is a multiple of the target mesh interspacing �. With these
assumptions, first create an array f ∗∗

i, j , which is zero everywhere,
except at cloud positions

f ∗∗
in , jn

= Mn/V , (A3)

where Mn is the mass of the cloud n, and V = �2
g. Then perform

an operation equivalent to convolution in velocity space. For doing
that, it is just necessary to propagate vertically the initial values
f ∗∗
in , jn

using the weights given by function G(x , y), on the columns
of the array f ∗∗

i, j which contains non-zero elements:

f ∗
in , j =

∑
m,|v j −vm

G |�Rmax

f ∗∗
in , jm

G
(

0, v j − vm
G

)
. (A4)

The last operation consists of convolving along x-axis:

fi, j = 1

G(0, 0)

∑
m,|x j −xm

G |�Rmax

f ∗
im , j G

(
x j − xn

G, 0
)
. (A5)

Here we used the separability of the function G(x , y): G(x , y) =
G(x , 0) G(0, y)/G(0, 0). We made the approximation, to speed up
the calculation, that the truncation is not x2 + v2 � R2

max, but rather
|x | � Rmax and |v| � Rmax, but this should not have any significant
consequence if the value of Rmax is large enough, e.g. Rmax = 4R
as used in this paper. For simplifying the argument, we introduced
the arrays f ∗∗

i, j and f ∗
i, j with the same size as the target mesh size,

but one can see that only f ∗ is necessary, and it can be reduced to
an array of dimension (N c,x , N g,v), where N c,x and N g,v are the
size of the cloud mesh along the x-axis and of the target mesh along
the v-axis, respectively. Typically, the first step of the calculation,
equation (A4), takes 2 N tot Rmax/� operations, where N tot is the to-
tal number of clouds, while the second step, equation (A5), takes 2
N sites Rmax/�, where N sites is the total number of target grid sites. The
total number of operations, (N tot + N sites) 2Rmax/�, is to be com-
pared to π N sites(Rmax/�)2, as expected from the method presented
in Section A1, a tremendous gain in time. Indeed, if we use equations
(A4) and (A5) to compute f̃i in the Lucy or van Citter algorithms,
we see that we gain a factor of order (4/π)(Rmax/�)2 � 10 for the
deconvolution and our parameter choice (Rmax = 4R, R = �/

√
2).

As a result, we used this fast convolution method in the CM code to
speed up reconstruction and the method described in Section A1 in
other cases, when the clouds have arbitrary shape and orientation.

In principle, we could have used this efficient implementation
as well for our tree-code. However, this program is designed for
adaptive mesh refinement (Section 6). It would be rather involved,
algorithmically, although possible, to adapt this method to an un-
structured grid such as the one used in our refinement procedure.
Instead, for all the simulations presented in this paper, which are
done with the tree-code, we used the very general but much slower
method described below, at a significant cost of CPU time.

Note finally that equations (A4) and (A5) apply to equation (59),
but the method can easily be generalized to equation (66).

A3 Arbitrary set of clouds at an arbitrary point: the
quad-tree algorithm

In general, if one aims to estimate f (x, v) at an arbitrary point of
phase space, it is necessary to find rapidly the clouds contributing
to this point. There is a very general and standard method of doing
that, based on hierarchical decomposition of phase space on a quad-
tree structure, until there is zero or one cloud centre per cell of this
tree. The list of clouds contributing to point (x , v) is constructed
by walking into this tree, from root to leaves (i.e. going through the
structure of the tree, from the largest to the smallest structures). To
build the tree properly, one has take into account the extension of
the clouds. While the tree is constructed, for each cell it contains,
defined by some coordinate range, [(x 1, v1), (x 2, v2)], one computes
the effective potential range C eff ≡ [(x eff,1, veff,1), (x eff,2, veff,2)],
where

xeff,1 = min
clouds i in the cell

(
xi

G − Ri
max,x

)
, (A6)

xeff,2 = max
clouds i in the cell

(
xi

G + Ri
max,x

)
, (A7)

veff,1 = min
clouds i in the cell

(
vi

G − Ri
max,v

)
, (A8)

veff,2 = max
clouds i in the cell

(
vi

G + Ri
max,v

)
. (A9)

In these equations, Ri
max,x and Ri

max,v are given by equations (A1)
for each cloud belonging to the cell, (xi

G, vi
G) ∈ [(x 1, v1), (x 2, v2)].
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To construct the list of clouds contributing to point (x , v), one starts
from the root and walks down into the tree. During the walk, only
cells satisfying (x , v) ∈ C eff are opened, i.e. decomposed in four
subcells, until convergence is achieved, i.e. when the cell contains
zero or one cloud. This algorithm is quite fast: the loss of speed
compared to the trivial method explained in Section A1 is of the
order of ln N tot, where N tot is the total number of clouds. It has
the advantage of being very general since it allows us to compute
f (x, v) at any point. This explains why we adopted it from the very
beginning when we started to develop our tree-code, in order to keep
this latter as flexible as possible.

A P P E N D I X B : R E F I N E M E N T P RO C E D U R E :
T E C H N I C A L D E TA I L S

This appendix deals with technical issues of our refinement proce-
dure. In Section B1, we explain in detail how the refinement structure
is implemented. In particular, as in standard ART methods, to keep
the method stable, we make sure that transitions between refinement
levels are not too abrupt. We also take into account the large exten-
sion of the clouds. In Section B2, we describe the way we set our
criteria of refinement, namely one based on local curvature and the
other one based on local convergence.

B1 Principle of refinement

Let L be the level of refinement, equal to L = 0 for the coarse
level. For simplicity, we assume that the coarse level is a grid with
fixed interspacing, �x = �v = �g. In order to avoid instabilities,
the function L(x , v) should vary smoothly in phase space: abrupt
transitions between two levels |L 1 − L 2| > 1 are forbidden. Also,
special care has to be taken of the large extension of the clouds.
For example, assume that we split a cloud of size R = √

2/2�g

with cut-off radius Rmax = 4R into four twice smaller clouds. Since
the cloud influences remote regions beyond the cut-off scale of the
four subclouds, refinement should be performed as well in these
regions. Fig. B1 shows how to handle this problem and naturally
to preserve smoothness of the function L(x , v). While following
the rules dictated by the procedure detailed in Fig. B1, we use a
criterion based on local convergence or/and on measurement of local
curvature to decide if a cloud has to be refined or not, as explained
later in Section B2.

Once a full hierarchy of clouds and subclouds has been created,
we proceed as follows to reconstruct the phase-space distribution
function.

(o) Set up the coarse level, L = 0: compute f 0
i from the old set of

clouds (prior to remap) at sampling points (xi,0
G , v

i,0
G ). Then use the

van Citter algorithm to compute the masses, M0
i , of the coarse-level

clouds, as explained in Section 3.1.2;

(i) If the maximum level of refinement is not reached, increase L
by one, otherwise stop.

(ii) Compute f L
i at the positions of clouds of level L , (xi,L

G , vi,L
G ),

from the old set of clouds. Now, consider clouds of level L like
residues and use the van Citter algorithm to compute the masses
of these clouds, ML

i . To estimate f̃ L
i in equation (63), clouds of

lower levels � � L − 1 contribute, but with fixed masses computed
previously. Start again with step (i).

In step (ii), once the cloud masses have been determined up to
some level, they remain unchanged while determining the masses
of clouds of upper levels. It is indeed expected that the corrections
brought by residues improve the reconstruction of the distribution

Figure B1. Sketch of our refinement procedure, for our choice of cloud
size, RL, compared to local cloud interspacing, �g/2L : 2L RL/�g = √

2/2,
which implies a 4RL cut-off at 2L Rmax/�g = 2

√
2. Suppose we decide to

refine the right-most cloud of the upper panel, of level L − 1. This cloud
is supplemented with four twice smaller subclouds of level L, labelled by
3. This, however, influences a region of radius Rmax/2L−1, represented by
the black circular arc. To enforce our refinement criterion on all the region
influenced by this cloud, we must add supplementary layers of subclouds
around it, labelled by 2 and by 1. We can stop adding corrections at subclouds
labelled by 1, since their extension covers the zone of influence (light circular
arcs). For easy implementation of regularization (B2), we also create ghost
clouds of zero mass designated by the letter ‘G’ in order to compute the
correct weights for the refined level. With this refinement procedure, we see
that the cloud to be refined has to be sufficiently far away from ghosts. The
closest possible ghost for the right-most cloud at level L − 1 is the left-most
one, which was labelled by a G surrounded by a circle. Our refinement can
be performed recursively to higher level, as illustrated in the lower panel,
by obeying the following simple rules: (1) it is forbidden to refine ghosts;
(2) clouds labelled by 1 can only be refined in ghosts; (3) clouds labelled
by 2 can only be either refined in ghosts, in subclouds labelled by 1 or in
subclouds labelled by 2 according to their distance to the closest ghosts,
as illustrated in the upper and lower panel; (4) clouds labelled by 3 can be
fully refined. Note that, by construction, the region labelled with 3’s can
be refined to arbitrary level L ∞, while keeping smooth transitions between
coarse level 0 and L ∞.

function within the corresponding refinement region, without con-
taminating the remaining part of phase space.

In our implementation of refinement, we use the van Citter decon-
volution algorithm. Alternatively, one might use the Lucy method.
In that case, clouds with L � 1 can no longer be considered as
residues, and, due to the multiplicative nature of the Lucy algo-
rithm, we would have to reiterate at all levels to compute the overall
distribution of masses, M�

i , � � L . This would complicate the algo-
rithm considerably, with no guarantee of easy convergence, so we
decided for this work not to test this refinement scheme.

To compute f̃i in equations (63) and (64) from the new set of
round clouds, one can still use equation (59), as discussed at the end
of Section 3.1.3. It now simply reads

f̃ (x, v) =
L∑

�=0

1

V �

∑
i

M�
i G�

(
x − xi,�

G , v − v
i,�
G

)
, (B1)

where V � = V 0 4−� = �x�v4−� and the function G � is the same as
the function G but with a radius R� = 2−� R. To estimate f L

i from the
ancient set of clouds, one can similarly adapt equation (66), which
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now becomes

f (x, v) =
L∑

�=0

W

V �

∑
i G�

(
x − xi,�

G , v − v
i,�
G

)
M�

i∑
i G�

(
x − xi,�

G , v − v
i,�
G

) . (B2)

We see in equation (B2) that the interpolation is performed at each
level of refinement separately. In order to have proper normalization,
we need to add at the border of each refinement level a layer of
ghost clouds with zero masses but contributing to the weight in the
denominator, as described in Fig. B1.

B2 Criteria of refinement

Our refinement is by essence set up to follow details of the distribu-
tion function where needed. Consider the distribution function as a
surface of equation z = f (x , v). The local curvature of this surface
determines to what extent these details can be reproduced by our
clouds of finite size. If the size R of the clouds is not small enough
compared to the local minimum curvature radius Rc, we expect
significant loss of details as well as aliasing effects. A first natural
refinement criterion thus relies on the value of R/Rc. However, it
is expected, equivalently, that deconvolution will have trouble con-
verging when R/Rc � 1, since details cannot be adjusted correctly
by the clouds. This motivates an alternative criterion of refinement,
based on local convergence of the reconstruction. The convergence
criterion also has the advantage of being a quite natural extension
of our approach: it guarantees by definition the quality of the recon-
struction, at variance with the local curvature criterion. This latter
indeed relies on the measurement of second derivatives of f , which
can be quite noisy. However, as illustrated by Section 6.2, both re-
finement criteria give very similar results.

While constructing the hierarchy of clouds and subclouds, we
proceed level by level. To create clouds of level L, clouds of level L
− 1 are tested as follows.

(A) Local convergence criterion. In this case, it is necessary to
reconstruct the distribution function simultaneously with the refine-
ment structure, using steps (o), (i) and (ii) described in Section B1.
Put simply, step (i) has to supplemented with the criterion on local
convergence to create the new level of refinement, L: one sets a list
of clouds of level L − 1 for which the reconstruction scheme did not
converge, δL−1

i > δL−1
c in equation (63), after some fixed number

of iterations, say 10 according to the discussion in Section 3.1.2 In
principle, the optimal calculation of δL−1

c as a function of L depends
on the noise properties of the reconstruction, but it would go be-
yond the scope of this paper to analyse them in detail. We therefore
consider a very simple way of setting the convergence threshold:

δL
c = δ0

c , L � 1, (B3)

which ignores possible propagation of errors in the reconstructions
from level to level, at the risk of accumulating small-scale artefacts.
For this reason, the value of δ0

c should in practice be slightly larger
than discussed in Section 3.1.2, to avoid unnecessary refinement
due to fluctuations of the small-scale noise. A good practical value
is δ0

c � 0.001.
(B) Local curvature criterion. The clouds of level L − 1 for which

the local curvature of the phase-space distribution function is larger
than some threshold are refined. The local curvature is estimated at
cloud centres from the old set of clouds (prior to remap), using the
Hessian of the function f (x, v) given by equation (B2) (we do not
write it here for simplicity). Our refinement criterion is(

�g

2L−1

)2

max(|λ1|, |λ2|) > Fcurvature, (B4)

where λ1 and λ2 are the eigenvalues of the Hessian. A good practical
choice of the refinement parameter is F curvature � 0.1.

(C) Keep stability of the refinement. At positions of clouds of level
L − 1 to be refined, check locally what the refinement level Lold was
in the old set of clouds and impose the condition that L � L old + 1.
To do that, we consider a square of size �g/2L−1 centred on (xi,L−1

G ,
v

i,L−1
G ) and find with standard quad-tree search the set of old clouds

intersecting with it. Lold corresponds to the maximum refinement
level found in this set. For stability purposes, we should have L �
L old + 1. During run-time, we indeed do not expect the creation
of more than one level of refinement per remap. If that happens,
it must be due to some spurious small-scale artefact created at the
moment of the previous remap, which we do not want to propagate
furthermore.

There is a subtlety in our algorithm that we have to mention now.
Indeed, the criteria explained above are applied to a discrete set of
sampling points. To make sure that this sampling catches all the
features of the distribution function, one has to examine locally
conditions (A) and (B) at all levels up to Lold, by creating the cor-
responding subclouds. Due to the large extension of the clouds and
the way Lold is computed, a large number of subclouds is in fact un-
necessary. At the end, the hierarchy of clouds has to be ‘cleaned up’,
to keep only the relevant refinement regions, i.e. regions satisfying
criteria (A) or/and (B). After being cleaned up, the new set of clouds
and subclouds is ready for successive deconvolutions at various lev-
els, which are thus performed twice when the convergence criterion
is used: once to construct the hierarchy of clouds and once again
after this hierarchy has been cleared of unnecessary subclouds.

A P P E N D I X C : E X P L I C I T T WO - D I M E N S I O NA L
C L O U D E QUAT I O N S

dλ11

dt
− 4 φ11λ31 − 4 φ21λ41 = 0, (C1)

dλ22

dt
− 4 φ12λ32 − 4 φ22λ42 = 0, (C2)

dλ33

dt
+ 2 λ13 = 0, (C3)

dλ44

dt
+ 2 λ24 = 0, (C4)

dλ21

dt
− 2 φ12λ31 − 2 φ22λ41

−2 φ11λ32 − 2 φ21λ42 = 0,

(C5)

dλ31

dt
+ λ11 − 2 φ11λ33 − 2 φ21λ43 = 0, (C6)

dλ32

dt
+ λ12 − 2 φ12λ33 − 2 φ22λ43 = 0, (C7)

dλ41

dt
+ λ21 − 2 φ11λ34 − 2 φ21λ44 = 0, (C8)

dλ42

dt
+ λ22 − 2 φ12λ34 − 2 φ22λ44 = 0, (C9)

dλ43

dt
+ λ23 + λ14 = 0. (C10)
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