

Méthodes à epsilon près pour un problème non linéaire mixte de type elliptique hyperbolique : formules d'estimation des sauts

Jean-Sébastien Le Brizaut, Marc Pogu

▶ To cite this version:

Jean-Sébastien Le Brizaut, Marc Pogu. Méthodes à epsilon près pour un problème non linéaire mixte de type elliptique hyperbolique : formules d'estimation des sauts. 2005. hal-00007607

HAL Id: hal-00007607 https://hal.science/hal-00007607

Preprint submitted on 21 Jul 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Rapport de Recherche

METHODES A ε PRES POUR UN PROBLEME NON LINEAIRE MIXTE DE TYPE ELLIPTIQUE / HYPERBOLIQUE : FORMULES D'ESTIMATION DES SAUTS

Jean-Sébastien Le Brizaut et Marc Pogu

Laboratoire de Mathématiques Jean Leray Université de Nantes / Centrale Nantes

SOMMAIRE

- p.3 Introduction
- p.4 1. Présentation du problème et rappels de résultats
- p.4 1.1. Position du problème
- p.4 1.2. Formulation en projection
 - 1.3. Introduction d'un prolongement
- p.9 2. Formules pour l'estimation des sauts
- p.15 3. Un exemple explicite par discrétisation
- p.20 Annexe 1

p.6

- p.23 Annexe 2
- p.24 Références

Introduction

Lorsque l'on considère des systèmes d'équations aux dérivées partielles non linéaires mixtes elliptiques hyperboliques, on est amené à chercher des solutions des systèmes avec restes. Ces derniers dont soit rendus inférieurs à ε >0 arbitraire (dans ce cas, on obtient des solutions à ε près), soit minimisés (on obtient alors des solutions généralisées à ε près).

Dans le cadre des espaces de Sobolev, il a été montré en [POG91] et [POG92] et plus récemment en [LEB01] [LEB03b] [JOL03] que pour une classe de systèmes mixtes, après prolongements adaptés des termes non linéaires, on obtient des solutions à ε près.

Ici, nous étudions le cas significatif du système associé au modèle de Karman et Guderley. Après avoir posé le système mixte (§1.1), on rappelle (§1.3) les résultats de [POG92] (Théorème 1 et Proposition 1) sur les solutions à ε près. Ensuite (§2), dans le cadre de la méthode des éléments finis P12D, on s'intéresse à des solutions généralisées à ε près du système sans prolongement. On établit des formules pour l'estimation des sauts (Théorème 2). Les arguments introduits sont différents de ceux utilisés lorsque les termes non linéaires des systèmes induisent des propriétés de contraction, continuité ou monotonie ; dans cette direction, on peut consulter par exemple [ZEN90]. Les formules pour l'estimation des sauts sont exploitées (§3) à partir d'un exemple numérique explicite et en utilisant les méthodes de discrétisation de [LEB02] et [LEB03a]. Nous donnons d'une part les restes selon les triangles et d'autre part le reste global correspondant à différents nombres de triangles dans la discrétisation.

1. Présentation du problème et rappels de résultats

1.1. Position du problème

On considère le modèle de Karman et Guderley modélisant les écoulements transsoniques par le système :

$$\begin{cases} \partial_1(\alpha(\partial_1 u)) + \partial_2^2 u = 0 & (\Omega) \\ \partial_2 u = g & (\Gamma) \\ u = 0 & (\Gamma') \end{cases}$$
(1)

où les données géométriques sont :

$$\Omega = \left\{ e^{2}, x_{1} \in \left] - 1, 1 \right[, x_{2} \in \left] 0, 1 \right[\right\}$$

$$\Gamma = \left\{ x = (x_{1}, 0), x_{1} \in \left] - 1, 1 \right[\right\}, \qquad (2)$$

$$\Gamma' = \partial \Omega - \Gamma,$$

et les données fonctionnelles :

$$\alpha(s) = (k - ls)s$$

$$g(s) = \begin{cases} \sqrt{M}(-4s) & \text{si } s \in \left[-\frac{1}{2}, \frac{1}{2}\right] \\ 0 & \text{ailleurs} \end{cases}$$

$$k = 6,25 \left(\frac{1}{M} - M\right)$$

$$l = 1,2$$

$$M \in]0,1[$$

$$(3)$$

L'inconnue est une fonction $u: \Omega \rightarrow R$.

1.2. Formulation en projection

On cherche $u \in H^1(\Omega)$. En tenant compte du terme non linéaire et des conditions aux limites de (1), on introduit l'espace :

$$V = \left\{ \in H^1(\Omega), v = 0 \text{ sur } \Gamma' \right\}.$$
(4)

Si (1) admet une solution $u \in V$ alors, en utilisant la formule de Green généralisée, elle satisfait l'équation variationnelle :

$$(\alpha(\partial_1 u), \partial_1 v)_0 + (\partial_2 u, \partial_2 v)_0 = -\langle g, v \rangle \quad \forall v \in V$$
(5)

où :

$$(.,.)_{0} \text{ désigne le produit scalaire dans } L^{2}(\Omega),$$

de norme associée $|.|_{0}$.
<.,.> désigne la dualité ($H^{1/2}(\Gamma), H^{-1/2}(\Gamma)$)

Cette équation variationnelle peut s'écrire :

$$(z(u), \nabla v)_0 = -\langle g, v \rangle \quad \forall v \in V$$
(6)

$$z(u) = \begin{pmatrix} \alpha(\partial_1 u) \\ \partial_2 u \end{pmatrix}.$$
 (7)

Introduisons la fonction $u_g \in V$ solution de :

$$\begin{cases} -\Delta u_g = 0 & (\Omega) \\ \partial_2 u_g = -g & (\Gamma) \\ u_g = 0 & (\Gamma') \end{cases}$$
(8)

On en déduit que (7) équivaut à :

$$(S(u), \nabla v)_0 = 0 \qquad \forall v \in V \tag{9}$$

où

$$S(u) = z(u) - \nabla u_g$$

Soit P_W la projection de $(L^2(\Omega))^2$ sur le sous-espace $W = \{\nabla v, v \in V\}$. Résoudre le problème (1) revient alors à résoudre :

$$P_W S(u) = 0 \tag{10}$$

5

avec :

1.3. Introduction d'un prolongement

On cherche à résoudre (10) avec :

$$|\nabla u|_{\infty} \le \mu_1 < +\infty$$
.

Dans [POG92], on introduit un prolongement de S par Z :

$$Z(u) = \widetilde{z}(u) - \nabla \widetilde{u}_g$$
(11)

$$\widetilde{z}(u) = Q(\nabla u)$$

$$\nabla \widetilde{u}_g = \nabla u_g \circ b'(\nabla u)'$$

avec :

où :

$$Q: \mathbb{R}^2 \to \mathbb{R}^2$$
$$Q_1(x) = N_1'(x_1)$$
$$Q_2(x) = N_2'(x_2)$$

avec :

$$N_1 : R \rightarrow R$$
$$N_1(s) = L_1[b(s)]$$
$$N_2 : R \rightarrow R$$
$$N_2(s) = L_2[b(s)]$$

et :

$$b(s) = s.\theta(s)$$

où, pour $\mu_2 > \mu_1$,

$$\begin{aligned} \theta : R \to R \\ \theta \in C^{\infty}(R) \\ \begin{cases} \theta(s) = 1 & s \in] \mu_1, \mu_1[\\ \theta(s) = 0 & s \in] - \infty, -\mu_2[\cup] \mu_2, +\infty[\\ 0 \le \theta(s) \le 1 & s \in] - \mu_2, -\mu_1[\cup] \mu_1, \mu_2[\end{aligned}$$

et :

$$\begin{bmatrix} L_1(s) = k \frac{s^2}{2} - l \frac{s^3}{3} \\ L_2(s) = \frac{s^2}{2} \end{bmatrix}$$

Reportons (11) dans (9), on obtient [POG92] :

$$\begin{split} & \left(\widetilde{z} (u_{\varepsilon} - \nabla \widetilde{u}_{g}, \nabla v)_{0} = (\eta_{\varepsilon}, \nabla v)_{0} \quad \forall v \in \mathbb{V} \\ & \left| \eta_{\varepsilon} \right|_{0} \leq \varepsilon \end{split}$$

où :

L'utilisation de la formule de Green généralisée conduit à :

$$\begin{aligned} f div(\widetilde{z}(u_{\varepsilon})) &= \Delta \widetilde{u}_{g} + div\eta_{\varepsilon} \quad (\Omega) \\ \widetilde{z}(u_{\varepsilon}).n &= \partial_{n}\widetilde{u}_{g} + \eta_{\varepsilon}.n \quad (\Gamma) \end{aligned}$$

On a :

$\begin{array}{l} \underline{\mathbf{Th} \acute{\mathbf{e}} \mathbf{o} \mathbf{r} \acute{\mathbf{e}} \mathbf{n} \mathbf{1}} \\ \bullet \quad \forall \varepsilon > 0, \ \exists u_{\varepsilon} \in V \quad \text{tel que } \left| P_{W} \left(\widetilde{\varepsilon}(u_{\varepsilon}) - \nabla \widetilde{u}_{g} \right)_{0} \leq \varepsilon \end{aligned}$ (12) • De plus, la solution de (12) satisfait l'équation variationnelle : $\left(\widetilde{\varepsilon}(u_{\varepsilon}), \nabla v \right)_{0} = (\nabla \widetilde{u}_{g}, \nabla v)_{0} + (\eta_{\varepsilon}, \nabla v)_{0} \quad \forall v \in V \end{aligned}$ (13) où $\left| \eta_{\varepsilon} \right|_{0} \leq \varepsilon$, et le problème aux limites : $\begin{cases} div(\widetilde{\varepsilon}(u_{\varepsilon})) = \Delta \widetilde{u}_{g} + div(\eta_{\varepsilon}) \quad (\Omega) \\ \widetilde{\varepsilon}(u_{\varepsilon}).n = \partial_{n} \widetilde{u}_{g} + \eta_{\varepsilon}.n \quad (\Gamma) \\ u_{\varepsilon} = 0 \quad (\Gamma') \end{aligned}$ (14)

Proposition 1

Si la solution de (12) satisfait :

$$|\nabla u_{\varepsilon}|_{\infty} \leq \mu_1,$$

alors :

•
$$\forall \varepsilon > 0, \exists u_{\varepsilon} \in V \text{ tel que } |P_{W}(z(u_{\varepsilon}) - \nabla u_{g})|_{0} \le \varepsilon$$
 (15)

• De plus, la solution de (15) satisfait l'équation variationnelle :

$$(z(u_{\varepsilon}), \nabla v)_{0} = -\langle g, v \rangle + (\eta_{\varepsilon}, \nabla v)_{0} \quad \forall v \in V$$
(16)

et le problème aux limites :

$$\begin{cases} div(z(u_{\varepsilon})) = div(\eta_{\varepsilon}) & (\Omega) \\ \partial_{2}u_{\varepsilon} = g + \eta_{\varepsilon} \cdot n & (\Gamma) \\ u_{\varepsilon} = 0 & (\Gamma') \end{cases}$$
(17)

2. Formules pour l'estimation des sauts

La figure ci-dessous présente une discrétisation du domaine (Ω) en triangles. Les pas de discrétisation en espace h_1 et h_2 sont pris égaux à h. On désigne par \mathcal{T}_{Γ} l'ensemble des triangles T ayant une frontière commune avec Γ et par \mathcal{T}_{Ω} l'ensemble des autres. On pose : $\mathcal{T} = \mathcal{T}_{\Gamma} \cup \mathcal{T}_{\Omega}$. La zone foncée correspond à l'ensemble \mathcal{T}_{Γ} .

Utilisant la méthode des éléments finie P12D, on est amené à chercher u_h solution du problème discret analogue à (1).

Pour obtenir une relation comparable à (16), on estime, avec la définition (7) :

$$\left(z(u_h), \nabla v\right)_0 - \langle g, v \rangle. \tag{18}$$

On obtient :

où l'on pose :

$$(z(u_h), \nabla v)_0 = E_{\Omega} + E_{\Gamma}$$

$$E_{\Omega} = \sum_{T \in \mathcal{T}_{\Omega}} (z(u_h), \nabla v)_{0,T}$$

$$E_{\Omega} = \sum_{T \in \mathcal{T}_{\Gamma}} (z(u_h), \nabla v)_{0,T}$$
(19)

Théorème 2

$$\forall h > 0, \exists u_h \in V \text{ tel que } \left| P_W(z(u_h) - \nabla u_g) \right|_0 \le \varepsilon_h$$
 (20)

où :

$$\varepsilon_h = C_2 |g - g_h|_{0,\Gamma} + C_1 C_2 r_h \tag{21}$$

et :

$$r_{h} = \left(\sum_{T \in \mathcal{T}} \left| s_{T} \right|_{0,\partial T}^{2} + \sum_{T \in \mathcal{T}_{\Gamma}} \left| s_{T,2} \right|_{0,\partial T \cap \Gamma}^{2} \right)^{1/2}$$
(22)

avec s_T sauts de $z(u_h)$ sur les normales unitaires extérieures de T, $s_{T,2}$ saut de $z(u_h)$ sur les normales unitaires verticales et diagonales. De plus la solution de (20) satisfait l'équation variationnelle :

$$(z(u_h), \nabla v)_0 = -\langle g, v \rangle + (\eta_h, \nabla v)_0$$
⁽²³⁾

où

$$\eta_h = \nabla \theta_h - \nabla w_h \tag{24}$$

avec θ_h solution de :

$$\begin{cases}
-\Delta \theta_h = 0 \quad (\Omega) \\
\partial_n \theta_h = g - g_h \quad (\Gamma) \\
\theta_h = 0 \quad (\Gamma')
\end{cases}$$
(25)

et w_h vérifie :

$$\exists w_h \in V \text{ tel que } F_h(v) = (\nabla w_h, \nabla v)_0$$
(26)

avec :

$$F_h \big| \le C_1 C_2 r_h \tag{27}$$

et au problème aux limites :

$$\begin{cases} div(z(u_h)) = div\eta_h & (\Omega) \\ \partial_2 u_h = g + \eta_h . n & (\Gamma) \\ u_h = 0 & (\Gamma') \end{cases}$$
(28)

Démonstration

Dans chaque carré de la discrétisation, les normales unitaires extérieures aux triangles sont notées sur les figures suivantes :

et :

Puisque ∇u_h est constant sur chaque triangle et que, sur les diagonales communes, on a :

$$n_3^H = -n_3^B,$$

il vient :

$$\begin{split} \big(z(u_{h}), \nabla v\big)_{0,T^{B}} &+ \big(z(u_{h}), \nabla v\big)_{0,T^{H}} \\ &= - < z(u_{h}^{B}).n_{1}^{H}, v > - < z(u_{h}^{B}).n_{2}^{H}, v > + < z(u_{h}^{H}).n_{1}^{H}, v > \\ &+ < z(u_{h}^{H}).n_{2}^{H}, v > + < (z(u_{h}^{H}) - z(u_{h}^{B}).n_{3}^{H}, v > \end{split}$$

Sur les verticales et horizontales communes, on a :

$$n_i^H = -n_i^B, \quad i = 1,2.$$

De (19) on déduit la formule suivante :

$$\left(z(u_h), \nabla v \right)_0 = \sum_{T \in \mathcal{T}} < s_T, v >_{\partial T} + \sum_{T \in \mathcal{T}_\Gamma} < z(u_h).n_1^B, v >$$

où l'on pose :

$$s_T = \delta z.n_T$$

avec :

 δz : saut à travers les frontières communes aux triangles n_T : normale unitaire extérieure au triangle *T*.

Sur Γ' , les sauts sont calculés par prolongement par 0 en dehors de Ω . Dans la première somme sur \mathcal{T}_{Γ} , on ne compte que les sauts sur les verticales et les diagonales des triangles. On a :

$$\sum_{T \in \mathcal{T}_{\Gamma}} < z(u_h).n_1^B, v >= - < g_h, v > + \sum_{T \in \mathcal{T}_{\Gamma}} < s_{T,2}, v >$$

où sur Γ , on pose :

$$s_{T,2} = g_h - \partial_2 u_h,$$

ce qui permet d'écrire :

$$(z(u_h), \nabla v)_0 = -\langle g, v \rangle + \langle g - g_h, v \rangle + F_h(v)$$

où :

$$F_h(v) = \sum_{T \in \mathcal{T}_{\Omega}} \langle s_T, v \rangle_{\partial T} - \sum_{T \in \mathcal{T}_{\Gamma}} \langle s_{T,2}, v \rangle$$
(29)

On a :

$$\left|F_{h}(v)\right| \leq \sum_{T \in \mathcal{T}} \left|s_{T}\right|_{0,\partial T} \left|v\right|_{0,\partial T} + \sum_{T \in \mathcal{T}_{\Gamma}} \left|s_{T,2}\right|_{0,\partial T \cap \Gamma} \left|v\right|_{0,\partial T \cap \Gamma} \cdot$$

Majorons :

$$\begin{split} \left| F_{h}(v) \right| &\leq \left(\sum_{T \in \mathcal{T}} \left| s_{T} \right|_{0,\partial T}^{2} \right)^{1/2} \left(\sum_{T \in \mathcal{T}} \left| v \right|_{0,\partial T}^{2} \right)^{1/2} \\ &+ \left(\sum_{T \in \mathcal{T}_{\Gamma}} \left| s_{T,2} \right|_{0,\partial T \cap \Gamma}^{2} \right)^{1/2} \left(\sum_{T \in \mathcal{T}_{\Gamma}} \left| v \right|_{0,\partial T \cap \Gamma}^{2} \right)^{1/2} \\ &\left| F_{h}(v) \right| \leq r_{h} \left(\sum_{T \in \mathcal{T}_{\Gamma} + \mathcal{T}_{\Omega}} \left| v \right|_{0,\partial T}^{2} \right)^{1/2} \end{split}$$

où :

$$r_{h} = \left(\sum_{T \in \mathcal{T}} \left| s_{T} \right|_{0,\partial T}^{2} + \sum_{T \in \mathcal{T}_{\Gamma}} \left| s_{T,2} \right|_{0,\partial T \cap \Gamma}^{2} \right)^{1/2}$$

Comme on a :

$$v\big|_{0,\partial T \cap \Gamma} \le C_1 \big| v\big|_{1,T} \tag{30}$$

(on trouvera une estimation de la constante C_1 dans l'annexe 1), il vient :

$$\left|F_{h}(v)\right| \leq C_{1} r_{h} (\sum_{T \in \mathcal{T}_{\Gamma} + \mathcal{T}_{\Omega}} \left|v\right|_{1,T}^{2})^{1/2}$$

ou encore :

$$|F_h(v)| \le C_1 r_h \|v\|_{1,\Omega}$$

d'où :

$$|F_h(v)| \le C_1 r_h C_2 |\nabla v|_0$$

On trouvera une estimation de la constante C_2 dans l'annexe 2. F_h est linéaire et continue sur V avec :

$$|F_h|' \le C_1 C_2 r_h.$$

En appliquant le théorème de Riesz, on a :

$$\exists w_h \in V$$
 tel que $F_h(v) = (\nabla w_h, \nabla v)_0$

avec :

$$\left|\nabla w_{h}\right|_{0} = \left|F_{h}\right| \le C_{1}C_{2}r_{h}.$$

On a donc, avec (26) et (29) :

$$(z(u_h), \nabla v)_0 = -\langle g, v \rangle + \langle g - g_h, v \rangle + (\nabla w_h, \nabla v)_0$$
(31)

En introduisant :

$$\begin{cases} -\Delta \theta_h = 0 \quad (\Omega) \\ \partial_n \theta_h = g - g_h \quad (\Gamma) \\ \theta_h = 0 \quad (\Gamma') \end{cases}$$
(32)

on peut réécrire (31) :

$$\left(z(u_h), \nabla v \right)_0 = - < g, v > + (\nabla \theta_h, \nabla v)_0 + \left(\nabla w_h, \nabla v \right)_0$$

ou encore :

$$(z(u_h), \nabla v)_0 = -\langle g, v \rangle + (\eta_h, \nabla v)_0$$

où :

$$\eta_h = \nabla \theta_h + \nabla w_h$$

et :

$$\eta_h \big|_0 \le \big| \nabla \theta_h \big|_0 + C_1 C_2 r_h.$$

A partir de (32), on a :

$$(\nabla \theta_h, \nabla v)_0 = \langle g - g_h, v \rangle$$

1

ce qui donne :

$$\left|\nabla \theta_{h}\right|_{0}^{2} \leq \left|g - g_{h}\right|_{0,\Gamma} \left|\theta_{h}\right|_{0,\Gamma} \leq C_{2}\left|g - g_{h}\right|_{0,\Gamma} \left|\nabla \theta_{h}\right|_{0}$$

et :

$$\left|\eta_{h}\right|_{0} \leq \varepsilon_{h}$$

avec :

$$\varepsilon_h = C_2 |g - g_h|_{0,\Gamma} + C_1 C_2 r_h.$$

<u>Remarques</u> :

- ε_h ne tend vers 0 que si la dicrétisation implique r_h petit. Dans ce cas, on obtient une solution à ε près comme dans le Théorème 1, mais sans prolongement.
- Dans la démonstration précédente, une autre majoration de F_h peut être obtenue :

$$\begin{split} \sum_{T \in \mathcal{T}_{\Omega}} & | < s_{T}, v >_{\partial T} | \leq \sum_{T \in \mathcal{T}_{\Omega}} |s_{T}|_{\infty} |v|_{L^{1}(\partial T)} \\ & \leq h |s|_{\infty} \sum_{T \in \mathcal{T}_{\Omega}} |v|_{0, \partial T} \\ & \leq C_{1} h |s|_{\infty} \sum_{T \in \mathcal{T}_{\Omega}} \|v\|_{1, T} \\ & \leq C_{1} \|v\|_{1} |s|_{\infty} \end{split}$$

où :

$$s|_{\infty} = \max \{ s_T |_{\infty}, T \in \mathcal{T}_{\Omega} \}.$$

3. Un exemple explicite par discrétisation

La solution u_h est représentée sous la forme d'une somme de polynômes de degré 1 définis sur chaque triangle :

$$u_{h} = \sum_{T \in \mathcal{T}} \left(a_{T}^{2} x_{2} + a_{T}^{1} x_{1} + a_{T}^{0} \right) \chi_{T}$$
(33)

où χ_T est la fonction indicatrice de T.

On a calculé des valeurs approchées de u_h pour chaque point de la discrétisation présentée au paragraphe 2 (pour des détails sur les méthodes utilisées, on pourra se reporter à [LEB02] et [LEB03a]). On considère dans la suite une grille de 8x4 carrés.

Si on considère un carré du maillage (les pas de discrétisation sont égaux) :

on cherche à déterminer les coefficients de (32) dans chaque triangle. Compte tenu des informations aux sommets de chaque type de triangle, on obtient pour les triangles du type (TB) :

$$a_T^2 = \left(\frac{u_{i,j+1} - u_{i,j}}{h}\right) = \partial_2 u_h$$
$$a_T^1 = \left(\frac{u_{i+1,j} - u_{i,j}}{h}\right) = \partial_1 u_h$$
$$a_T^0 = u_{i,j}$$

et pour les triangles de type (TH) :

$$a_T^2 = \left(\frac{u_{i+1,j+1} - u_{i+1,j}}{h}\right) = \partial_2 u_h$$
$$a_T^1 = \left(\frac{u_{i+1,j+1} - u_{i,j+1}}{h}\right) = \partial_1 u_h$$
$$a_T^0 = u_{i,j+1} - u_{i+1,j+1} + u_{i+1,j}$$

En numérotant les triangles de la discrétisation de la manière suivante :

où N1 désigne le nombre d'intervalle de discrétisation horizontalement, on obtient les valeurs suivantes (les valeurs inférieures à 10^{-2} sont grisées) :

Т	aO	a1	a2	Т	aO	a1	a2	Т	aO	a1	a2
1	0	-0.105	0	23	-0.036	0.144	0.100	45	0.011	-0.019	-0.032
2	-0.011	-0.062	0.043	24	-0.011	0.044	0	46	0.009	-0.006	-0.018
3	-0.026	-0.147	0.043	25	0	0.144	0	47	0.007	-0.028	-0.018
4	-0.049	-0.057	0.132	26	0.025	0.044	-0.100	48	0.003	-0.010	0
5	-0.063	-0.265	0.132	27	0.036	-0.025	-0.100	49	0	-0.010	0
6	-0.123	-0.025	0.372	28	0.029	0.003	-0.072	50	-0.003	0	0.010
7	-0.129	0.516	0.372	29	0.030	-0.057	-0.072	51	-0.003	-0.006	0.010
8	-0.036	0.144	0	30	0.020	-0.019	-0.034	52	-0.004	0	0.016
9	0	0.516	0	31	0.016	-0.062	-0.034	53	-0.004	0.003	0.016
10	0.093	0.144	-0.372	32	0.007	-0.028	0	54	-0.003	0	0.013
11	0.129	-0.265	-0.372	33	0	-0.028	0	55	-0.003	0.013	0.013
12	0.069	-0.025	-0.132	34	-0.005	-0.010	0.018	56	0	0	0
13	0.063	-0.147	-0.132	35	-0.007	-0.019	0.018	57	0	0.013	0
14	0.041	-0.057	-0.043	36	-0.010	-0.006	0.032	58	0.003	0	-0.013
15	0.026	-0.105	-0.043	37	-0.012	0.003	0.032	59	0.003	0.003	-0.013
16	0.016	-0.062	0	38	-0.012	0.003	0.032	60	0.004	0	-0.016
17	0	-0.062	0	39	-0.011	0.044	0.031	61	0.004	-0.006	-0.016
18	-0.008	-0.028	0.034	40	-0.003	0.013	0	62	0.003	0	-0.010
19	-0.016	-0.057	0.034	41	0	0.044	0	63	0.003	-0.010	-0.010
20	-0.025	-0.019	0.072	42	0.008	0.013	-0.031	64	0	0	0
21	-0.030	-0.025	0.072	43	0.011	0.003	-0.031				
22	-0.037	0.003	0.100	44	0.011	0.003	-0.032				

Compte tenu des valeurs numériques obtenues, on peut simplifier le nombre de paramètres en se limitant au domaine [-1,1]x[0,0.75] ce qui correspond aux triangles numérotés de 1 à 48. Le nombre de paramètres passerait alors de 192 à 144.

Avec cette discrétisation (8x4), aucune des valeurs des dérivées par rapport à la première variable n'est supérieure à :

$$u_C = \frac{k}{2l}$$

ce qui caractérise le passage d'un système de type elliptique à un système de type hyperbolique (voir [LEB02] pour cette notion). Quand on traite de la même manière une discrétisation plus fine (64x32 ou 32x16), on obtient effectivement une zone hyperbolique et une elliptique (voir [LEB03a] pour des exemples de résultats numériques dans ce sens).

On peut également illustrer numériquement les sauts s_T introduits dans le théorème 2. On obtient pour chaque triangle les valeurs suivantes :

Т	S	Т	S	Т	S	Т	S	Т	S	Т	S
1	0.029	12	0.257	23	0.161	34	0.023	45	0.032	56	0.016
2	0.097	13	0.138	24	0.116	35	0.020	46	0.022	57	0.026
3	0.116	14	0.101	25	0.106	36	0.021	47	0.024	58	0.010
4	0.236	15	0.059	26	0.129	37	0.016	48	0.015	59	0.010
5	0.312	16	0.040	27	0.089	38	0.028	49	0.013	60	0.005
6	0.466	17	0.036	28	0.067	39	0.052	50	0.010	61	0.008
7	0.360	18	0.051	29	0.084	40	0.040	51	0.014	62	0.009
8	0.307	19	0.053	30	0.051	41	0.036	52	0.005	63	0.012
9	0.274	20	0.046	31	0.047	42	0.035	53	0.008	64	0.006
10	0.537	21	0.045	32	0.028	43	0.016	54	0.009		
11	0.418	22	0.111	33	0.023	44	0.019	55	0.020		

où :

$$S = \frac{1}{3} \sum_{i=1}^{3} \left| \delta z. n_i \right|.$$

La répartition dans le domaine des sauts les plus importants est donnée par la figure suivante :

Une estimation de r_h introduit en (22) peut également être donnée pour toutes les discrétisations utilisées en [LEB02], [LEB03a] et [LEB03b] :

Nb d'intervalles en x1	Nb d'intervalles en x2	rh
8	4	0.913
16	8	1.213
32	16	1.362
64	32	1.528

On observe une augmentation de r_h en fonction du nombre de points de discrétisation, cette augmentation proviendrait des erreurs d'arrondi. On remarquera enfin que la résolution numérique du rotationnel est exacte (pas de sauts) quand les pas de discrétisation utilisés pour les deux variables spatiales sont identiques. C'est le cas dans tous les exemples traités dans ce rapport.

Annexe 1

On veut montrer :

$$\left| v \right|_{0,\partial T} \le C_1 \left| v \right|_{1,T}$$

Dans le triangle de référence T_0 :

on a :

 $\left|v\right|_{0,\partial T_0} \leq C_0 \left|v\right|_{1,T_0}$

Dans un triangle de la discrétisation, on a :

$$|v|_{0,\partial T}^{2} = \int_{0}^{h} \int_{0}^{h} v^{2}(x_{1}, x_{2})^{2} dx_{1} dx_{2}$$

Par changement des variables pour se ramener au triangle de référence, on montre que :

$$\begin{split} \left| v \right|_{0,\partial T}^2 &\leq h^2 C_0^2 (\int_0^1 \int_0^1 v^2 (hX_1, hX_2)^2 dX_1 dX_2 \\ &+ h^2 \int_0^1 \int_0^1 \partial_1^2 v (hX_1, hX_2)^2 dX_1 dX_2 \\ &+ h^2 \int_0^1 \int_0^1 \partial_2^2 v (hX_1, hX_2)^2 dX_1 dX_2 \end{split}$$

soit :

$$\begin{split} \left| v \right|_{0,\partial T}^{2} &\leq h^{2} C_{0}^{2} (\frac{1}{h^{2}} \int_{0}^{h} \int_{0}^{h} v^{2} (x_{1}, x_{2})^{2} dx_{1} dx_{2} \\ &+ \int_{0}^{h} \int_{0}^{h} \partial_{1}^{2} v (x_{1}, x_{2})^{2} dx_{1} dx_{2} \\ &+ \int_{0}^{h} \int_{0}^{h} \partial_{2}^{2} v (x_{1}, x_{2})^{2} dx_{1} dx_{2} \end{split}$$

ou encore :

$$\left| \boldsymbol{v} \right|_{0,\partial T}^2 \leq C_0^2 \left(\left| \boldsymbol{v} \right|_{0,\Gamma}^2 + h^2 \left| \nabla \boldsymbol{v} \right|_{0,\Gamma}^2 \right).$$

On prendra donc :

 $C_1 \leq C_0 \, .$

Estimation de C_0

On considère le carré [0,1]x[0,1] suivant :

et on peut écrire :

$$u(x_1,t) = u(x_1,0) + \int_0^t \partial_2 u(x_1,s) ds$$

comme *t*<1, et en appliquant l'inégalité de Cauchy-Schwartz, on obtient :

$$|u(x_1,0)|^2 \le 2(|u(x_1,t)|^2 + \int_0^1 |\partial_2 u(x_1,s)|^2 ds).$$

En intégrant successivement par rapport à t et par rapport à x_1 , on a :

$$\int_{0}^{1} u^{2}(x_{1},0) dx_{1} \leq 2 \left(\left| u \right|_{0}^{2} + \left| \partial_{2} u \right|_{0}^{2} \right).$$
 (i)

On découpe en deux triangles le carré [0,1]x[0,1] :

et on introduit le prolongement défini par :

$$v(x_1, x_2) = \begin{cases} u(x_1, x_2) & T1\\ u(1 - x_1, 1 - x_2) & T2 \end{cases}$$

et sur la diagonale, on a :

$$u(x_1, 1 - x_1) = u(x_1, 0) + \int_0^{1 - x_1} \partial_2 u(x_1, s) ds$$

Avec des méthodes comparables à celles utilisées pour déterminer (i), on a :

$$\int_0^1 u^2(x_1, 1-x_1) dx_1 \le 2 \left(\int_0^1 u^2(x_1, 0) dx_1 + \left| \partial_2 u \right|_{0,T}^2 \right)$$

On a :

$$\int_{\partial T} u^2 d\Gamma = \int_0^1 u^2 (x_1, 0) dx_1 + \int_0^1 u^2 (0, x_2) dx_2 + \int_0^1 u^2 (x_1, 1 - x_1) dx_1$$

$$\leq 3 \int_0^1 u^2 (x_1, 0) dx_1 + \int_0^1 u^2 (0, x_2) dx_2 + 2 |\nabla u|_{0, T}^2$$

Avec (i) et le prolongement, on a :

$$\int_0^1 u^2(x_1,0) dx_1 = \int_0^1 v^2(x_1,0) dx_1 \le 2|v|_{1,C}^2 \le 4|u|_{1,T}^2$$

ce qui donne :

$$\int_{\partial T} u^2 d\Gamma \le 12 |u|_{1,T}^2 + 4 |u|_{1,T}^2 + 2 |u|_{1,T}^2 = 18 |u|_{1,T}^2$$

et la constante est majorée par :

$$C_0 \le 3\sqrt{2}$$

Annexe 2

On veut estimer la majoration :

Par définition :

$$\begin{split} & \left\| v \right\|_{1,\Omega} \leq C_2 \left| \nabla v \right|_0 \\ & \left\| v \right\|_{1,\Omega}^2 \leq \left| v \right|_0^2 + \left| \nabla v \right|_0^2. \end{split}$$

On peut écrire :

$$|v|_0^2 = \int_{-1}^1 \int_0^1 v^2(x_1, x_2) dx_1 dx_2$$

et, en utilisant :

$$v(x_1, x_2) = v(x_1, 1) + \int_1^{x_2} \partial_2 v(x_1, s) ds$$

Compte tenu des conditions aux bords, il suffit d'intégrer deux fois pour avoir :

et par conséquent :

$$\begin{split} \big| v \big|_0^2 &\leq \big| \partial_2 v \big|_0^2 \\ & \big\| v \big\|_{1,\Omega}^2 \leq 2 \big| \nabla v \big|_0^2 \\ & C_2 &= \sqrt{2} \; . \end{split}$$

ce qui donne :

Références

- [JOL03] J.C.Jolly, Solutions à ε près de systèmes d'équations aux dérivées partielles non linéaires de type mixte posés sur des ouverts non bornés, *Annales Mathématiques Blaise Pascal*, Vol.10, n°1, 2003
- [LEB01] J.S.LeBrizaut, Méthodes à ε près et applications à des problèmes aux limites, *Bulletin des Sciences Mathématiques*, Vol.125, 2001
- [LEB02] J.S.LeBrizaut, M.Pogu, A mixed non linear boundary value problem appearing in gas dynamics : generalized solutions and numerical results, *International Journal of Engineering Science*, Vol.40, 2002
- [LEB03a] J.S.LeBrizaut, Numerical study of the effect of an entropy parameter in an elliptic hyperbolic non linear boundary value problem, *Systems Analysis Modelling Simulation*, Vol.43, n°4, 2003
- [LEB03b] J.S.LeBrizaut, Méthodes d'optimisation pour l'approche de problèmes aux limites non linéaires mixtes elliptiques hyperboliques, *Bulletin des Sciences Mathématiques*, Vol.127, 2003
- [POG91] M.Pogu, G.Tournemine, Une méthode fonctionnelle de résolution approchée d'un problème transsonique, *CRAS*, II, 1991
- [POG92] M.Pogu, G.Tournemine, Functional approach to the solution of the Karman-Guderley equation, *Bulletin of the Polish Academy of Sciences, Technical Sciences*, Vol.40, n°4, 1992
- [ZEN90] A.Zenisek, Nonlinear elliptic and evolution problems and their finite element approximations, Academic Press, 1990