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A RENEWAL THEORY APPROACH TO

PERIODIC COPOLYMERS WITH ADSORPTION

FRANCESCO CARAVENNA, GIAMBATTISTA GIACOMIN, AND LORENZO ZAMBOTTI

Abstract. We consider a general model of an heterogeneous polymer chain fluctuating
in the proximity of an interface between two selective solvents. The heterogeneous char-
acter of the model comes from the fact that monomer units interact with the solvents and
with the interface according to some charges that they carry. The charges repeat them-
selves along the chain in a periodic fashion. The main question on this model is whether
the polymer remains tightly close to the interface, a phenomenon called localization, or
there is a marked preference for one of the two solvents yielding thus a delocalization

phenomenon.
We propose an approach to this model, based on renewal theory, that yields sharp esti-
mates on the partition function of the model in all the regimes (localized, delocalized and
critical). This in turn allows to get a very precise description of the polymer measure,
both in a local sense (thermodynamic limit) and in a global sense (scaling limits). A key
point, but also a byproduct, of our analysis is the closeness of the polymer measure to
suitable Markov Renewal Processes.

2000 Mathematics Subject Classification: 60K35, 82B41, 82B44

Keywords: Random Walks, Renewal Theory, Markov Renewal Theory, Scaling limits,
Polymer models, Wetting Models.

1. Introduction and main results

1.1. Two motivating models. Let S := {Sn}n=0,1,... be a random walk, S0 = 0 and

Sn =
∑n

j=1 Xj , with IID symmetric increments taking values in {−1, 0,+1}. Hence the

law of the walk is identified by p := P (X1 = 1) (= P (X1 = −1)), and we assume that
p ∈ (0, 1/2). Note that we have excluded the case p = 1/2 and this has been done in order
to lighten the exposition: all the results we present have a close analog in the case p = 1/2,
however the statements require a minimum of notational care because of the periodicity
of the walk. We also consider a sequence ω := {ωn}n∈N={1,2,...} of real numbers with the

property that ωn = ωn+T for some T ∈ N and for every n: we denote by T (ω) the minimal
value of T .

Consider the following two families of modifications of the law of the walk, both indexed
by a parameter N ∈ N:

(1) Pinning and wetting models. For λ ≥ 0 consider the probability measure PN,ω

defined by

dPN,ω

dP
(S) ∝ exp

(
λ

N∑

n=1

ωn1{Sn=0}

)
. (1.1)
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The walk receives a pinning reward, which may be negative or positive, each time it
visits the origin. By considering the directed walk viewpoint, that is {(n, Sn)}n, one
may interpret this model in terms of a directed linear chain receiving an energetic
contribution when it touches an interface. In this context it is natural to introduce
the asymmetry parameter h :=

∑T
n=1 ωn/T , so that one isolates a constant drift

term from the fluctuating behavior of ω. The question is whether for large N the
measure PN,ω is rather attracted or repelled by the interface (there is in principle
the possibility for the walk to be essentially indifferent of such a change of measure,
but we anticipate that this happens only in trivially degenerate cases while in
critical situations a more subtle scenario shows up).

By multiplying the right–hand side of (1.1) by 1{Sn≥0: n=1,...,N} one gets to a
so called wetting model, that is the model of an interface interacting with an
impenetrable wall. The hard–wall condition induces a repulsion effect of purely
entropic origin which is in competition with attractive energy effects: one expects
that in this case h needs to be positive for the energy term to overcome the entropic
repulsion effect, but quantitative estimates are not a priori obvious.

There is an extensive literature on periodic pinning and wetting models, the
majority of which is restricted to the T = 2 case, we mention for example [10, 17].

(2) Copolymer near a selective interface. Much in the same way we introduce

dPN,ω

dP
(S) ∝ exp

(
λ

N∑

n=1

ωn sign (Sn)

)
, (1.2)

where if Sn = 0 we set sign(Sn) := sign(Sn−1)1{Sn−1 6=0}. This convention for
defining sign(0), that will be kept throughout the paper, has the following simple
interpretation: sign(Sn) = +1, 0,−1 according to whether the bond joining Sn−1

and Sn lies above, on, or below the x–axis.
Also in this case we take a directed walk viewpoint and then PN,ω may be

interpreted as a polymeric chain in which the monomer units, the bonds of the walk,
are charged. An interface, the x–axis, separates two solvents, say oil above and
water below: positively charged monomers are hydrophobic and negatively charged
ones are instead hydrophilic. In this case one expects a competition between three
possible scenarios: polymer preferring water, preferring oil or undecided between
the two and choosing to fluctuate in the proximity of the interface. We will therefore
talk of delocalization in water (or oil) or of localization at the interface. Critical
cases are of course of particular interest.

We select [21, 24] from the physical literature on periodic copolymers, keeping
however in mind that periodic copolymer modeling has a central role in applied
chemistry and material science.

1.2. A general model. We point out that the models presented in § 1.1 are particular
examples of the polymer measure with Hamiltonian

HN (S) =
∑

i=±1

N∑

n=1

ω(i)
n 1{sign(Sn)=i} +

N∑

n=1

ω(0)
n 1{Sn=0} +

N∑

n=1

ω̃(0)
n 1{sign(Sn)=0}, (1.3)
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where ω(±1), ω(0) and ω̃(0) are periodic sequences of real numbers. Observe that, by our
conventions on sign(0), the last term gives an energetic contribution (of pinning/depinning
type) to the bonds lying on the interface.

Besides being a natural model, generalizing and interpolating between pinning and
copolymer models, the general model we consider is the one considered at several instances,
see e.g. [26] and references therein.

Remark 1.1. The copolymer case corresponds to ω(+1) = −ω(−1) = λω and ω(0) = ω̃(0) =
0, while the pinning case corresponds to ω(0) = λω and ω(+1) = ω(−1) = ω̃(0) = 0. We

stress that the wetting case can be included too, with the choice ω(0) = λω, ω
(−1)
n = −∞ for

every n and ω(+1) = ω̃(0) = 0. Of course plugging ω
(−1)
n = −∞ into the Hamiltonian (1.3)

is a bit formal, but it simply corresponds to a constraint on S in the polymer measure
associated to HN , see (1.4) below. For ease of exposition we will restrict to finite values
of the charges ω, but the generalization is straightforward.

Remark 1.2. We take this occasion for stressing that, from an applied viewpoint, the
interest in periodic models of the type we consider appears to be at least two–fold. On one
hand periodic models are often chosen as caricatures of the quenched disordered models,
like the ones in which the charges are a typical realization of a sequence of independent
random variables (e.g. [1, 4, 11, 26] and references therein). In this respect and taking
a mathematical standpoint, the relevance of periodic models, which may be viewed as
weakly inhomogeneous, for understanding the strongly inhomogeneous quenched set–up
is at least questionable and the approximation of quenched models with periodic ones, in
the limit of large period, poses very interesting and challenging questions. In any case,
the precise description of the periodic case that we have obtained in this work highlights
limitations and perspectives of periodic modeling for strongly inhomogeneous systems. One
the other hand, as already mentioned above, periodic models are absolutely natural and
of direct relevance for application, for example when dealing with molecularly engineered
polymers [16, 24].

Starting from the Hamiltonian (1.3), for a = c (constrained) or a = f (free) we introduce
the polymer measure Pa

N,ω on Z
N, defined by

dPa
N,ω

dP
(S) =

exp (HN (S))

Z̃a
N,ω

(
1{a=f} + 1{a=c}1{SN=0}

)
, (1.4)

where Z̃a
N,ω := E[exp(HN ) (1{a=f} + 1{a=c}1{SN=0})] is the partition function, that is the

normalization constant. Here ω is a shorthand for the four periodic sequences appearing
in the definition (1.3) of HN , and we will use T = T (ω) to denote the smallest common
period of the sequences.

The Laplace asymptotic behavior of Z̃N,ω plays an important role and the quantity

fω := lim
N→∞

1

N
log Z̃c

N,ω, (1.5)

is usually called free energy. The existence of the limit above follows from a direct super–

additivity argument, and it is easy to check that Z̃c
N,ω can be replaced by Z̃ f

N,ω without

changing the value of fω, see e.g. [11]. The standard free energy approach to this type of
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models starts from the observation that

fω ≥ lim
N→∞

1

N
log E

[
exp

(
HN (S)

)
; Sn > 0 for n = 1, . . . , N

]

=
1

T (ω)

T (ω)∑

n=1

ω(+1)
n + lim

N→∞

1

N
log P

(
Sn > 0 for n = 1, . . . , N

)
.

(1.6)

It is a classical result [8, Ch. XII.7] that P(Sn > 0 for n = 1, . . . , N) ∼ cN−1/2, as N → ∞,
for some c ∈ (0,∞) (by aN ∼ bN we mean aN/bN → 1). Hence the limit of the last term
of (1.6) is zero and one easily concludes that

fω ≥ fD
ω := max

i=±1
hω(i), hω(i) :=

1

T (ω)

T (ω)∑

n=1

ω(i)
n . (1.7)

Having in mind the steps in (1.6), one is led to the following basic

Definition 1.3. The polymer chain defined by (1.4) is said to be:

• localized (at the interface) if fω > fD
ω ;

• delocalized above the interface if fω = hω(+1);

• delocalized below the interface if fω = hω(−1).

Notice that, with this definition, if hω(+1) = hω(−1) and the polymer is delocalized, it is
delocalized both above and below the interface.

Remark 1.4. Observe that the polymer measure Pa
N,ω is invariant under the joint trans-

formation S → −S, ω(+1) → ω(−1), hence by symmetry we may (and will) assume that

hω := hω(+1) − hω(−1) ≥ 0 . (1.8)

It is also clear that we can add to the Hamiltonian HN a constant term (with respect
to S) without changing the polymer measure. Then we set

H′
N (S) := HN (S) −

N∑

n=1

ω(+1)
n ,

which amounts to redefining ω
(+1)
n → 0, ω

(−1)
n → (ω

(−1)
n −ω

(+1)
n ) and ω̃

(0)
n → (ω̃

(0)
n −ω

(+1)
n ),

and we can write

dPa
N,ω

dP
(S) =

exp (H′
N (S))

Za
N,ω

(
1{a=f} + 1{a=c}1{SN=0}

)
, (1.9)

where Za
N,ω is a new partition function which coincides with Z̃a

N,ω exp(−∑N
n=1 ω

(+1)
n ). The

corresponding free energy fω is given by

fω := lim
N→∞

1

N
log Za

N,ω = fω − fD
ω , (1.10)

and notice that in terms of fω the condition for localization (resp. delocalization) becomes
fω > 0 (resp. fω = 0). From now on, speaking of partition function and free energy we
will always mean Za

N,ω and fω.
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1.3. From free energy to path behavior. In order to understand the spirit of the
paper, let us briefly outline our results (complete results are given in § 1.5 below).

Our first goal is to give necessary and sufficient explicit conditions in terms of the
charges ω for the (de)localization of the polymer chain, see Theorem 1.5. We point out
that the content of this theorem is in fact much richer, as it gives the sharp asymptotic
behavior (and not only the Laplace one [5]) as N → ∞ of the constrained partition
function Zc

N,ω. In particular we show that when the polymer is delocalized (fω = 0) the
constrained partition function Zc

N,ω is actually vanishing as N → ∞. Moreover the rate
of the decay induces a further distinction in the delocalized regime between a strictly
delocalized regime (Zc

N,ω ∼ c1N
−3/2, c1 ∈ (0,∞)) and a critical regime (Zc

N,ω ∼ c2N
−1/2,

c2 ∈ (0,∞)).
These asymptotic results are important because they allow to address further interest-

ing issues. For example, it has to be admitted that defining (de)localization in terms of the
free energy is not completely satisfactory, because one would like to characterize the poly-
mer path properties. In different terms, given a polymer measure which is (de)localized
according to Definition 1.3, to what extent are its typical paths really (de)localized? Some
partial answers to this question are known, at least in some particular instances: we men-
tion here the case of T (ω) = 2 copolymers [21] and the case of homogeneous pinning and
wetting models [6, 18, 25].

The main purpose of this paper is to show that, for the whole class of models we
are considering, free energy (de)localization does correspond to a strong form of path
(de)localization. More precisely, we look at path behavior from two different viewpoints.

• Thermodynamic limit. We show that the measure Pa
N,ω converges weakly as N →

∞ toward a measure Pω on Z
N, of which we give an explicit construction, see

Section 3. It turns out that the properties of Pω are radically different in the three
regimes (localized, strictly delocalized and critical), see Theorem 1.7. It is natural
to look at these results as those characterizing the local structure of the polymer
chain.

• Brownian scaling limits. We prove that the diffusive rescaling of the polymer mea-
sure Pa

N,ω converges weakly in C([0, 1]) as N → ∞. Again the properties of the
limit process, explicitly described in Theorem 1.8, differ considerably in the three
regimes. Moreover we stress that scaling limits describe global properties of the
chain.

We insist on the fact that the path analysis just outlined has been obtained exploiting
heavily the sharp asymptotic behavior of Zc

N,ω as N → ∞. In this sense our results are the

direct sharpening of the Large Deviations approach taken in [5], where a formula for fω was
obtained for periodic copolymers (but the method of course directly extends to the general
case considered here). Such a formula (see § 2.3), that reduces the problem of computing
the free energy to a finite dimensional problem connected to a suitable Perron–Frobenius
matrix, in itself suggests the new approach taken here since it makes rather apparent the
link between periodic copolymers and the class of Markov renewal processes [2]. On the
other hand, with respect to [5], we leave aside any issue concerning the phase diagram
(except for § 1.6 below).

1.4. The order parameter δω. It is a remarkable fact that the dependence of our results
on the charges ω is essentially encoded in one single parameter δω , that can be regarded
as the order parameter of our models. For the definition of this parameter, we need some
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preliminary notation. We start with the law of the first return to zero of the original walk:

τ1 := inf{n > 0 : Sn = 0} K(n) := P
(
τ1 = n

)
. (1.11)

It is a classical result [8, Ch. XII.7] that

∃ lim
n→∞

n3/2 K(n) =: cK ∈ (0,∞) . (1.12)

Then we introduce the Abelian group S := Z/(TZ) and to indicate that an integer n is
in the equivalence class β ∈ S we write equivalently [n] = β or n ∈ β. Notice that the
charges ωn are functions of [n], and with some abuse of notation we can write ω[n] := ωn.
The key observation is that, by the T–periodicity of the charges ω and by the defini-
tion (1.8) of hω, we can write

n2∑

n=n1+1

(ω(−1)
n − ω(+1)

n ) = −(n2 − n1)hω + Σ[n1],[n2] .

Thus we have decomposed the above sum into a drift term and a more fluctuating term,
where the latter has the remarkable property of depending on n1 and n2 only through
their equivalence classes [n1] and [n2]. Now we can define three basic objects:

• for α, β ∈ S and ` ∈ N we set

Φω
α,β(`) :=





ω
(0)
β +

(
ω̃

(0)
β − ω

(+1)
β

)
if ` = 1, ` ∈ β − α

ω
(0)
β + log

[
1

2

(
1 + exp

(
− ` hω + Σα,β

))]
if ` > 1, ` ∈ β − α

0 otherwise

, (1.13)

which is a sort of integrated version of our Hamiltonian;

• for x ∈ N we introduce the S × S matrix Mω
α,β(x) defined by

Mω
α,β(x) := eΦω

α,β
(x) K(x)1(x∈β−α) ; (1.14)

• summing the entries of Mω over x we get a S × S matrix that we call Bω:

Bω
α,β :=

∑

x∈N

Mω
α,β(x) . (1.15)

The meaning and motivation of these definitions, that at this point might appear artificial,
are explained in detail in § 2.2. For the moment we only stress that the above quantities
are explicit functions of the charges ω and of the law of the underlying random walk (to
lighten the notation, the ω–dependence of these quantity will be often dropped in the
following).

We can now define our order parameter δω. Observe that Bα,β is a finite dimensional
matrix with nonnegative entries, hence the Perron–Frobenius (P–F) Theorem (see e.g.
[2]) entails that Bα,β has a unique real positive eigenvalue, called the Perron–Frobenius
eigenvalue, with the property that it is a simple root of the characteristic polynomial and
that it coincides with the spectral radius of the matrix. This is exactly our parameter:

δω := Perron–Frobenius eigenvalue of Bω . (1.16)
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1.5. The main results. Now we are ready to state our results. We start characterizing
the (de)localization of the polymer chain in terms of δω .

Theorem 1.5 (Sharp asymptotics). The polymer chain is localized if and only if δω > 1.
More precisely, the asymptotic behavior of Zc

N,ω as N → ∞, [N ] = η is given by

(1) for δω > 1 (localized regime) Zc
N,ω ∼ C>

ω,η exp
(
fωN

)
;

(2) for δω < 1 (strictly delocalized regime) Zc
N,ω ∼ C<

ω,η /N3/2 ;

(3) for δω = 1 (critical regime) Zc
N,ω ∼ C=

ω,η /
√

N ,

where fω > 0 is the free energy and its explicit definition in terms of ω is given in § 2.3,
while C>

ω,η, C<
ω,η and C=

ω,η are explicit positive constants, depending on ω and η, whose
value is given in Section 2.

Remark 1.6. Theorem 1.5 is the building block of all the path analysis that follows. It is
therefore important to stress that, in the quenched disordered case, cf. Remark 1.2, such
a strong statement in general does not hold, see [12, Section 4].

Next we investigate the thermodynamic limit, that is the weak limit as N → ∞ of
the sequence of measures Pa

N,ω on Z
N (endowed with the standard product topology).

The next theorem provides a first connection between free energy (de)localization and the
corresponding path properties.

Before stating the result, we need a notation: we denote by P the set of ω such that:

P := {ω : δω ≤ 1, hω = 0, ∃ α, β : Σα,β 6= 0} , (1.17)

P< := P ∩ {δω < 1}, P= := P ∩ {δω = 1}.
Here P stands for problematic, or pathologic. Indeed, we shall see that for ω ∈ P the results
are weaker and more involved than for ω /∈ P. We stress however that these restrictions
do not concern localized regime, because P ⊂ {ω : δω ≤ 1}. We also notice that for the
two motivating models of § 1.1, the pinning and the copolymer models, ω never belongs
to P. This is clear for the pinning case, where by definition Σ ≡ 0. On the other hand,
in the copolymer case it is known that if hω = 0 and ∃ α, β : Σα,β 6= 0 then δω > 1:
see Appendix D or [5]. In reality the pathological aspects observed for ω ∈ P may be
understood in statistical mechanics terms and we sketch an interpretation in § 1.6 below:
this goes rather far from the spirit of this paper, since it is an issue tightly entangled with
the analysis of the free energy. It will therefore be taken up in a further work.

Theorem 1.7 (Thermodynamic limit). If ω /∈ P<, then both the polymer measures
Pf

N,ω and Pc
N,ω converge as N → ∞ to the same limit Pω, law of an irreducible Markov

chain on Z which is:

(1) positive recurrent if δω > 1 (localized regime) ;

(2) transient if δω < 1 (strictly delocalized regime) ;

(3) null recurrent if δω = 1 (critical regime) .

If ω ∈ P< (in particular δω < 1), for all η ∈ S and a = f, c the measure Pa
N,ω converges

as N → ∞, [N ] = η to Pa,η
ω , law of an irreducible transient Markov chain on Z.



8 FRANCESCO CARAVENNA, GIAMBATTISTA GIACOMIN, AND LORENZO ZAMBOTTI

We stress that in all regimes the limit law Pω or Pa,η
ω has an explicit construction in terms

of Mω
α,β(x), see Section 3 for details.

We finally turn to the analysis of the diffusive rescaling of the polymer measure Pa
N,ω.

More precisely, let us define the map XN : R
N 7→ C([0, 1]):

XN
t (x) =

xbNtc

σN1/2
+ (Nt − bNtc) xbNtc+1 − xbNtc

σN1/2
, t ∈ [0, 1],

where b · c denotes the integer part and σ2 := 2p is the variance of X1 under the origi-
nal random walk measure P. Notice that XN

t (x) is nothing but the linear interpolation

of {xbNtc/(σ
√

N)}t∈ N
N
∩[0,1]. For a = f, c we set:

Qa
N,ω := Pa

N,ω ◦ (XN )−1,

Then Qa
N,ω is a measure on C([0, 1]), the space of real continuous functions defined on the

interval [0, 1], and we want to study the behavior as N → ∞ of this sequence of measures.

We start fixing a notation for the following standard processes:

• the Brownian motion {Bτ}τ∈[0,1];

• the Brownian bridge {βτ}τ∈[0,1] between 0 and 0;

• the Brownian motion conditioned to stay non-negative on [0, 1] or, more precisely,
the Brownian meander {mτ}τ∈[0,1], see [23];

• the Brownian bridge conditioned to stay non-negative on [0, 1] or, more precisely,
the normalized Brownian excursion {eτ}τ∈[0,1], also known as the Bessel bridge of
dimension 3 between 0 and 0, see [23] .

Then we introduce a modification of the above processes labeled by a parameter p ∈ [0, 1]:

• the process {B(p)
τ }τ∈[0,1] is the so–called skew Brownian motion of parameter p,

cf. [23]. More explicitly, B(p) is a process such that |B(p)| = |B| in distribution, but
in which the sign of each excursion is chosen to be +1 (resp. −1) with probability p

(resp. 1 − p) instead of 1/2. In the same way, the process {β(p)
τ }τ∈[0,1] is the skew

Brownian bridge of parameter p. Observe that for p = 1 we have B(1) = |B| and

β(1) = |β| in distribution.

• the process {m(p)
τ }τ∈[0,1] is defined by

P(m(p) ∈ dw) := p P(m ∈ dw) + (1 − p) P(−m ∈ dw),

i.e. m(p) = σm, where P(σ = 1) = 1−P(σ = −1) = p and (m,σ) are independent.

The process {e(p)
τ }τ∈[0,1] is defined in exactly the same manner. For p = 1 we have

m(1) = m and e(1) = e.

Finally, we introduce a last process, labeled by two parameters p, q ∈ [0, 1]:

• consider a r.v. U 7→ [0, 1] with the arcsin law: P(U ≤ t) = 2
π arcsin

√
t, and

processes β(p), m(q) as defined above, with (U, β(p),m(q)) independent triple. Then
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we denote by {B(p,q)
τ }τ∈[0,1] the process defined by:

B(p,q)
τ :=





√
U β

(p)
τ
U

if τ ≤ U

√
1 − U m

(q)
τ−U
1−U

if τ > U

.

Notice that the process B(p,q) differs from the p–skew Brownian motion B(p) only
for the last excursion in [0, 1], whose sign is +1 with probability q instead of p.

We are going to show that the sequence {Qa
N,ω} has a weak limit as N → ∞ (with a

weaker statement if ω ∈ P). Again the properties of the limit process differ considerably
in the three regimes δω > 1, δω < 1 and δω = 1. However for the precise description of
the limit processes, for the regimes δω = 1 and δω < 1 we need to distinguish between
a ∈ {f, c} and to introduce further parameters pω, qω, defined as follows:

• case δω = 1 :
– pω := p=

ω , defined in (4.19). We point out two special cases: if hω > 0 then p=
ω =

1, while if hω = 0 and Σ ≡ 0 then p=
ω = 1/2;

– for each η ∈ S, qω := q=
ω,η, defined by (4.21).

• case δω < 1 :
– ω /∈ P<: if hω > 0 we set pω := p<

ω := 1 while if hω = 0 we set pω := p<
ω :=

1/2;
– ω ∈ P<: for each η ∈ S and a = f, c, pω := p

<,a
ω,η is defined in (4.8) and (4.10).

Theorem 1.8 (Scaling limits). If ω /∈ P, then the sequence of measures {Qa
N,ω} on

C([0, 1]) converges weakly as N → ∞. More precisely:

(1) for δω > 1 (localized regime) Qa
N,ω converges to the measure concentrated on the

constant function taking the value zero ;

(2) for δω < 1 (strictly delocalized regime):

• Qf
N,ω converges to the law of m(p<

ω ) ;

• Qc
N,ω converges to the law of e(p<

ω ) ;

(3) for δω = 1 (critical regime):

• Qf
N,ω converges to the law of B(p=

ω ) ;

• Qc
N,ω converges to the law of β(p=

ω ) .

If ω ∈ P, then for all η ∈ S the measures Qc
N,ω and Qf

N,ω converge as N → ∞, [N ] = η
to, respectively:

(1) for δω < 1, the law of e(p<,c
ω,η) and m(p<,f

ω,η).

(2) for δω = 1, the law of β(p=
ω ) and B(p=

ω ,q=
ω,η).

Results on thermodynamic limits in the direction of Theorem 1.7 have been obtained
in the physical literature by exact computations either for homogeneous polymers or for
T = 2 pinning models and copolymers, see e.g. [21], while, in some cases, Brownian scaling
limits have been conjectured on the base of heuristic arguments, see e.g. [25]. Rigorous
results corresponding to our three main theorems have been obtained for homogeneous
pinning/wetting models in [6, 18]. We would like to stress the very much richer variety of
limit processes that we have obtained in our general context.
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1.6. About the regime P. We have seen, cf. Theorem 1.7, that if ω ∈ P< the infinite
volume limit (in particular the probability that the walk escapes either to +∞ or to −∞)
depends on a = c or f and on the subsequence [N ] = η ∈ S. This reflects directly into
Theorem 1.8 and in this case also the P= regime is affected, but only for a = f and the
change is restricted to the sign of the very last excursion of the process. It is helpful to
keep in mind that ω ∈ P if and only if there is a non trivial unbiased copolymer part, that
is hω = 0 but the matrix Σ is non trivial, and at the same time the polymer is delocalized.

It is known (Appendix D and [5]) that in absence of pinning terms, that is ω
(0)
n = ω̃

(0)
n = 0

for every n, the polymer is localized. However if the pinning rewards are sufficiently large
and negative, one easily sees that (de)pinning takes over and the polymer delocalizes.
This is the phenomenon that characterizes the regime P and its lack of uniqueness of limit
measures.

D

L

% = +1

% = −1
0

h

βc β

Figure 1. A sketch of the phase diagram for the model (1.18). In this
case, with abuse of notation, P = {(h, β) : h = 0, β ≥ βc}. Approaching
P in the sense of the dashed arrowed lines one observes the two sharply
different behaviors of paths completely delocalized above (% = +1) or below
(% = −1) the interface.

Lack of uniqueness of infinite volume measures and dependence on boundary conditions
do not come as a surprise if one takes a statistical mechanics viewpoint and if one notices
that the system undergoes a first order phase transition exactly at P. In order to be more
precise let us consider the particular case of

dPN,ω

dP
(S) ∝ exp

(
N∑

n=1

(ωn + h) sign (Sn) − β

N∑

n=1

1{Sn=0}

)
, (1.18)

with h and β two real parameters and ω a fixed non trivial centered (
∑T

n=1 ωn = 0) periodic
configuration of charges. The phase diagram of such a model is sketched in Figure 1. In
particular it is easy to show that for h = 0 and for β large and positive the polymer
is delocalized and, recalling that for β = 0 the polymer is localized, by monotonicity of
the free energy in β one immediately infers that there exists βc > 0 such that localization
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prevails for β < βc, while the polymer is delocalized (both above and below the interface) if
β ≥ βc. However the two regimes of delocalization above or below the interface, appearing
for example as soon as h is either positive or negative and β ≥ βc, are characterized

by opposite values (±1) of % = %(h, β) := limN→∞ EN,ω

[
N−1

∑N
n=1 sign (Sn)

]
and of

course % is the derivative of the free energy with respect to h. Therefore the free energy
is not differentiable at h = 0 and we say that there is a first order phase transition. First
order phase transitions are usually associated to multiple infinite volume limits (phase
coexistence). A detailed analysis of this interesting phenomenon will be given elsewhere.

1.7. Outline of the paper. In Section 2 we study the asymptotic behavior of Zc
N,ω,

proving Theorem 1.5. In Section 3 we compute the thermodynamic limits of Pa
N,ω, proving

Theorem 1.7. In Section 4 we compute the scaling limits of Pa
N,ω, proving Theorem 1.8.

Finally, in the Appendices we give the proof of some technical results and some additional
material.

2. Sharp asymptotics for the partition function

In this section we are going to derive the precise asymptotic behavior of Zc
N,ω, in partic-

ular proving Theorem 1.5. The key observation is that the study of the partition function
for the models we are considering can be set into the framework of the theory of Markov
renewal processes, see [2, Ch. VII.4]. We start recalling the basic notions of this theory
and setting the relative notation.

2.1. Markov Renewal Theory. Given a finite set S (for us it will always be Z/(TZ)),
by a kernel we mean a family of nonnegative S × S matrices Fα,β(x) depending on a
parameter x ∈ N. We say that the kernel Fα,β(x) is semi–Markov if Fα,·(·) is a probability
mass function on S × N for every α ∈ S, that is if

∑
β,x Fα,β(x) = 1.

A semi–Markov kernel Fα,β(x) has a simple probabilistic interpretation: it defines a
Markov chain {(Jk, Tk)} on S × N through the transition kernel given by

P
[
(Jk+1, Tk+1) = (β, x)

∣∣ (Jk, Tk) = (α, y)
]

= Fα,β(x) . (2.1)

In this case we say that the process {Jk, Tk} is a (discrete) Markov–renewal process,
the {Tk} being thought of as interarrival times. This provides a generalization of classical
renewal processes, since the {Tk} are no longer IID but their laws are rather modulated
by the process {Jk}. Since the r.h.s. of (2.1) does not depend on y, it follows that {Jk}
is a Markov chain, and it is called the modulating chain of the Markov renewal process
(observe that in general the process {Tk} is not a Markov chain). The transition kernel
of {Jk} is given by

∑
x∈N Fα,β(x). We will assume that this chain is irreducible (therefore

positive recurrent, since S is finite) and we denote by {να}α∈S its invariant measure.

Given two kernels F and G, their convolution F ∗ G is the kernel defined by

(F ∗ G)α,β(x) :=
∑

y∈N

∑

γ∈S

Fα,γ(y)Gγ,β(x − y) =
∑

y∈N

[
F (y) · G(x − y)

]
α,β

, (2.2)

where · denotes matrix product. Observe that if F and G are semi–Markov kernels, then
F ∗ G is semi–Markov too. With standard notation, the n–fold convolution of a kernel F
with itself will be denoted by F ∗n, the n = 0 case being by definition the identity kernel
[F ∗0]α,β(x) := 1(β=α)1(x=0).
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A fundamental object associated to a semi–Markov kernel F the so–called Markov–
Green function (or Markov–renewal kernel), which is the kernel U defined by

Uα,β(x) :=
∞∑

k=0

[
F ∗k

]
α,β

(x) . (2.3)

Of course the kernel U is the analog of the Green function of a classical renewal process,
and it has a similar probabilistic interpretation in terms of the associated Markov renewal
process {(Jk, Tk)}:

Uα,β(x) = Pα

[
∃k ≥ 0 : T0 + . . . + Tk = x , Jk = β

]
, (2.4)

where Pα is the law of {(Tk, Jk)} conditioned on {J0 = α, T0 = 0}.
We need some notation to treat our periodic setting: we say that a kernel Fα,β(x) has

period T ∈ N if the set {x : Uα,α(x) 6= 0} is contained in TZ, for the least such T (this
definition does not depend on α because the chain {Jk} is supposed to be irreducible, see
the discussion at p. 208 of [2]). It follows that the set {x : Uα,β(x) 6= 0} is contained
in the translated lattice γ(α, β) + TN, where γ(α, β) ∈ {0, . . . , T − 1} (for us it will be
γ(α, β) = [β − α]).

In analogy to the classical case, the asymptotic behavior of Uα,β(x) as x → ∞ is of
particular interest. Let us define the (possibly infinite) mean µ of a semi–Markov kernel
Fα,β(x) as

µ :=
∑

α,β∈S

∑

x∈N

x να Fα,β(x) . (2.5)

Then we have an analog of Blackwell’s Renewal Theorem, that in our periodic setting
reads as

∃ lim
x→∞

[x]=β−α

Uα,β(x) = T
νβ

µ
, (2.6)

cf. Corollary 2.3 p. 10 of [2] for the classical case.

We will see that determining the asymptotic behavior of Uα,β(x) when the kernel
Fα,β(x) is no more semi–Markov is the key to get the asymptotic behavior of the par-
tition function Zc

N,ω.

2.2. A random walk excursion viewpoint. Now we are ready to make explicit the
link between the partition function for our model and the Theory of Markov Renewal
Processes. Let us look back to our Hamiltonian (1.3): its specificity comes from the fact
that it can be decomposed in an efficient way by considering the return times to the origin
of S. More precisely we set for j ∈ N

τ0 = 0 τj+1 = inf{n > τj : Sn = 0} ,

and for P–typical trajectories of S one has an infinite sequence τ := {τj}j of stopping
times. We set Tj = τj − τj−1 and of course {Tj}j=1,2,... is, under P, an IID sequence. By
conditioning on τ and integrating on the up–down symmetry of the random walk excursions
one easily obtains the following expression for the constrained partition function:

Zc
N,ω = E




ιN∏

j=1

exp
(
Ψω(τj−1, τj)

)
; τιN = N


 , (2.7)
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where ιN = sup{k : τk ≤ N} and we have introduced the integrated Hamiltonian
Ψω(n1, n2), which gives the energetic contribution of an excursion from n1 to n2:

Ψω(n1, n2) =





ω
(0)
n2 +

(
ω̃

(0)
n2 − ω

(+1)
n2

)
if n2 = n1 + 1

ω
(0)
n2 + log

[
1

2

(
1 + exp

n2∑

n=n1+1

(
ω(−1)

n − ω(+1)
n

))]
if n2 > n1 + 1

0 otherwise .

(2.8)

Now we are going to use in an essential way the fact that our charges are T–periodic.
In fact a look at (2.8) shows that the energy Ψω(n1, n2) of an excursion from n1 to n2

is a function only of (n2 − n1), [n1] and [n2], where by [ · ] we mean the equivalence
class modulo T , see § 1.4. More precisely for n1 ∈ α, n2 ∈ β and ` = n2 − n1 we have
Ψω(n1, n2) = Φω

α,β(`), where Φω was defined in (1.13). Then recalling the law K(n) of the

first return, introduced in (1.11), we can rewrite (2.7) as

Zc
N,ω =

N∑

k=1

∑

t0,...,tk∈N
0=:t0<t1<...<tk:=N

k∏

j=1

K (tj − tj−1) exp
(
Φω

[tj−1],[tj ]
(tj − tj−1)

)
. (2.9)

This decomposition of Zc
N,ω according to the random walk excursions makes explicit the

link with Markov Renewal Theory. In fact using the kernel Mα,β(x) introduced in (1.14)
we can rewrite it as

Zc
N,ω =

N∑

k=1

∑

t0,...,tk∈N
0=:t0<t1<...<tk:=N

k∏

j=1

M[tj−1],[tj ](tj − tj−1)

=

N∑

k=1

∑

t0,...,tk∈N
0=:t0<t1<...<tk:=N

[
M(t1) · M(t2 − t1) · . . . · M(N − tk−1)

]
0,[N ]

=
∞∑

k=0

[
M∗k

]
[0],[N ]

(N) .

(2.10)

Therefore it is natural to introduce the kernel Zα,β(x) defined by

Zα,β(x) =
∞∑

k=0

[
M∗k

]
α,β

(x) , (2.11)

so that Zc
N,ω = Z[0],[N ](N). More generally Zα,β(x) for [x] = β − α can be interpreted as

the partition function of a directed polymer of size x that starts at a site (M, 0), with
[M ] = α, and which is pinned at the site (M + x, 0).

Our purpose is to get the precise asymptotic behavior of Zα,β(x) as x → ∞, from which
we will obtain the asymptotic behavior of Zc

N,ω and hence the proof of Theorem 1.5. It is

clear that equation (2.11) is the same as equation (2.3), except for the fact that in general
the kernel M has no reason to be semi–Markov. Nevertheless we will see that with some
transformations one can reduce the problem to a semi–Markov setting.

It turns out that for the derivation of the asymptotic behavior of Zα,β(x) it is not
necessary to use the specific form (1.14) of the kernel Mα,β(x), the computations being
more transparent if carried out in a general setting. For these reasons, in the following
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we will assume that Mα,β(x) is a generic T–periodic kernel such that the matrix Bα,β

defined by (1.15) is finite. While these assumption are sufficient to yield the asymptotic
behavior of Zα,β(x) when δω > 1, for the cases δω < 1 and δω = 1 it is necessary to
know the asymptotic behavior as x → ∞ of Mα,β(x) itself. Notice that our setting is an
heavy–tailed one: more precisely we will assume that for every α, β ∈ S:

∃ lim
x→∞

[x]=β−α

x3/2 Mα,β(x) =: Lα,β ∈ (0,∞) . (2.12)

From equation (1.13) it is easy to check that the kernel Mα,β(x) defined by (1.14) does
satisfy (2.12) (see Section 3 for more details on this issue).

For ease of exposition, we will treat separately the three cases δω > 1, δω < 1 and
δω = 1.

2.3. The localized regime (δω > 1). The key idea is to introduce the following expo-
nential perturbation of the kernel M (cf. [2, Theorem 4.6]), depending on the positive real
parameter b:

Ab
α,β(x) := Mα,β(x) e−bx .

Let us denote by ∆(b) the Perron–Frobenius eigenvalue of the matrix
∑

x Ab
α,β(x). As

the entries of this matrix are analytic and nonincreasing functions of b, ∆(b) is analytic
and nonincreasing too, hence strictly decreasing because ∆(0) = δω > 1 and ∆(∞) = 0.
Therefore there exists a single value fω > 0 such that ∆

(
fω

)
= 1, and we denote by

{ζα}α, {ξα}α the Perron–Frobenius left and right eigenvectors of
∑

x Afω

α,β(x), chosen to

have (strictly) positive components and normalized in such a way that
∑

α ζα ξα = 1 (of
course there is still a degree of freedom in the normalization, which however is immaterial).

Now we set

Γ>
α,β(x) := Afω

α,β(x)
ξβ

ξα
= Mα,β(x) e−fωx ξβ

ξα
, (2.13)

and it is immediate to check that Γ> is a semi–Markov kernel. Furthermore, we can
rewrite (2.11) as

Zα,β(x) := efωx ξα

ξβ

∞∑

k=0

[
(Γ>)∗k

]
α,β

(x) = efωx ξα

ξβ
Uα,β(x) , (2.14)

where Uα,β(x) is nothing but the Markov–Green function associated to the semi–Markov
kernel Γ>

α,β(x). Therefore the asymptotic behavior of Zα,β(x) is easily obtained applying

Blackwell’s Renewal Theorem (2.6). To this end, let us compute the mean µ of the semi–
Markov kernel Γ>: it is easily seen that the invariant measure of the associated modulating
chain is given by {ζαξα}α, therefore

µ =
∑

α,β∈S

∑

x∈N

x ζα ξα Γ>
α,β(x) =

∑

α,β∈S

∑

x∈N

xe−fωx ζα Mα,β(x) ξβ

= −
(

∂

∂b
∆(b)

)∣∣∣∣
b=fω

∈ (0,∞) ,

(for the last equality see for example [5, Lemma 2.1]). Coming back to (2.14), we can now
apply Blackwell’s Renewal Theorem (2.6) obtaining the desired asymptotic behavior:

Zα,β(x) ∼ ξα ζβ
T

µ
exp (fω x) x → ∞, [x] = β − α . (2.15)
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In particular, for α = [0] and β = η we have part (1) of Theorem 1.5, where C>
ω,η =

ξ0ζηT/µ.

2.4. The strictly delocalized case (δω < 1). We prove that the asymptotic behavior
of Zα,β(x) when δω < 1 is given by

Zα,β(x) ∼
([

(1 − B)−1L (1 − B)−1
]
α,β

) 1

x3/2
x → ∞, [x] = β − α , (2.16)

where the matrixes L and B have been defined in (2.12) and (1.15). In particular, taking
α = [0] and β = η, (2.16) proves part (2) of Theorem 1.5 with

C<
ω,η :=

[
(1 − B)−1L (1 − B)−1

]
0,η

.

To start with, we prove by induction that for every n ∈ N

∑

x∈N

[M∗n]α,β(x) = [Bn]α,β . (2.17)

The n = 1 case is the definition of B, while for n ≥ 1
∑

x∈N

M∗(n+1)(x) =
∑

x∈N

∑

z≤x

M∗n(z) · M(x − z) =
∑

z∈N

M∗n(z) ·
∑

x≥z

M(x − z)

=
∑

z∈N

M∗n(z) · B = Bn · B = Bn+1 .

Next we claim that, if (2.12) holds, then for every α, β ∈ S

∃ lim
x→∞

[x]=β−α

x3/2
[
M∗k

]
α,β

(x) =

k−1∑

i=0

[
Bi · L · B(k−1)−i

]
α,β

. (2.18)

We proceed by induction on k. The k = 1 case is given by (2.12), and we have that

M∗(n+1)(x) =

x/2∑

y=1

(
M(y) · M∗n(x − y) + M(x − y) · M∗n(y)

)

(strictly speaking this formula is true only when x is even, however the odd x case is
analogous). By the inductive hypothesis equation (2.18) holds for every k ≤ n, and in

particular this implies that {x3/2[M∗k]α,β(x)}x∈N is a bounded sequence. Therefore we
can apply Dominated Convergence and (2.17), getting

∃ lim
x→∞

[x]=β−α

x3/2
[
M∗(n+1)

]
α,β

(x)

=
∑

γ

∞∑

y=1

(
Mα,γ(y)

n−1∑

i=0

[
Bi · L · B(n−1)−i

]
γ,β

+ Lα,γ

[
M∗n

]
γ,β

(y)

)

=
∑

γ

(
Bα,γ

n−1∑

i=0

[
Bi · L · B(n−1)−i

]
γ,β

+ Lα,γ

[
B∗n

]
γ,β

)

=
n∑

i=0

[
Bi · L · Bn−i

]
α,β

.
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Our purpose is to apply the asymptotic result (2.18) to the terms of (2.11), hence we
need a bound to apply Dominated Convergence. What we are going to show is that

x3/2
[
M∗k

]
α,β

(x) ≤ C k3
[
Bk
]
α,β

(2.19)

for some positive constant C and for all α, β ∈ S and x, k ∈ N. Observe that the r.h.s.
above, as a function of k, is a summable sequence because the matrix B has spectral radius
δω < 1. We proceed again by induction: for the k = 1 case, thanks to (2.12), it is possible
to find C such that (2.19) holds true (this fixes C once for all). Now assuming that (2.19)
holds for all k < n we show that it does also for k = n (we suppose for simplicity that
n = 2m is even, the odd n case being analogous). Then we have (assuming that also x is
even for simplicity)

x3/2
[
M∗2m

]
α,β

(x) = 2

x/2∑

y=1

∑

γ∈S

[
M∗m

]
α,γ

(y) x3/2
[
M∗m

]
γ,β

(x − y)

≤ 2 · 23/2 C m3

x/2∑

y=1

∑

γ∈S

[
M∗m

]
α,γ

(y)
[
Bm
]
γ,β

≤ C (2m)3
[
B2m

]
α,β

,

where we have applied (2.17), and (2.19) is proven.

We can finally obtain the asymptotic behavior of Zα,β(x) applying the bound (2.18) to
(2.11), using Dominated Convergence thanks to (2.19). In this way we get

∃ lim
x→∞

[x]=β−α

x3/2Zα,β(x) =
∞∑

k=1

k−1∑

i=0

[
Bi · L · B(k−1)−i

]
α,β

=

∞∑

i=0

∞∑

k=i+1

[
Bi · L · B(k−1)−i

]
α,β

=

∞∑

i=0

[
Bi · L · (1 − B)−1

]
α,β

=
[
(1 − B)−1 · L · (1 − B)−1

]
α,β

,

and equation (2.16) is proven.

2.5. The critical case (δω = 1). In the critical case the matrix B defined in (1.15) has
Perron–Frobenius eigenvalue equal to 1. Let {ζα}α, {ξα}α denote its corresponding left
and right eigenvectors, always chosen to have positive components and normalized so that∑

α ζα ξα = 1. Then it is immediate to check that the kernel

Γ=
α,β(x) := Mα,β(x)

ξβ

ξα
(2.20)

is semi–Markov, and the corresponding Markov–Green function Uα,β(x) is given by

Uα,β(x) :=

∞∑

k=0

[
(Γ=)∗k

]
α,β

(x) =
ξβ

ξα
Zα,β(x) , (2.21)

where the last equality follows easily from (2.11). We are going to derive the asymp-
totic behavior of Uα,β(x), and from the above relation we will get the analogous result
for Zα,β(x).
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Denoting by {(Tk, Jk)} under P the Markov–renewal process generated by the semi–
Markov kernel Γ=

α,β(x), for Uα,β(x) we have the probabilistic interpretation (2.4), that we
rewrite for convenience

Uα,β(x) = Pα

[
∃k ≥ 0 : T0 + . . . + Tk = x , Jk = β

]
. (2.22)

For β ∈ S we introduce the sequence of stopping times {κ(β)
n }n≥0 corresponding to the

visit of the chain {Jk} to the state β:

κ
(β)
0 := inf{k ≥ 0 : Jk = β} κ

(β)
n+1 := inf{k > κ(β)

n : Jk = β} , (2.23)

and we define the process {T (β)
n }n≥0 by setting

T
(β)
0 := T0 + . . . + T

κ
(β)
0

T (β)
n : T

κ
(β)
n−1+1

+ . . . + T
κ
(β)
n

. (2.24)

The key point is that under Pα the random variables {T (β)
n } are the interarrival times of

a (possibly delayed) classical renewal process, equivalently the sequence {T (β)
n }n≥1 is IID

and independent of T
(β)
0 . We denote for x ∈ N by q(β)(x) the (mass function of the) law

of T
(β)
n for n ≥ 1, while the law of T

(β)
0 under Pα is denoted by q(α;β)(x). Since clearly

{
∃k ≥ 0 : T0 + . . . + Tk = x , Jk = β

}
⇐⇒

{
∃n ≥ 0 : T

(β)
0 + . . . + T (β)

n = x
}

,

from (2.22) we get

Uα,β(x) = Pα

[
∃n ≥ 0 : T

(β)
0 + . . . + T (β)

n = x
]

=

(
q(α;β) ∗

∞∑

n=0

(
q(β)

)∗n
)

(x) , (2.25)

which shows that Uα,β(x) is indeed the Green function of the classical renewal process

whose interarrival times are the {T (β)
n }n≥0.

Now we claim that the asymptotic behavior of q(β)(x) as x → ∞, x ∈ β, is given by

q(β)(x) ∼ cβ

x3/2
cβ :=

1

ζβ ξβ

∑

α,γ

ζα Lα,γ ξγ > 0 , (2.26)

see Appendix A for a proof of this relation. Then the asymptotic behavior of (2.25) is
given by

Uα,β(x) ∼ T 2

2π cβ

1√
x

x → ∞, [x] = β − α , (2.27)

as it follows by [7, Th. B] (the factor T 2 is due to our periodic setting). Combining
equations (2.21), (2.26) and (2.27) we finally get the asymptotic behavior of Zα,β(x):

Zα,β(x) ∼ T 2

2π

ξα ζβ∑
γ,γ′ ζγ Lγ,γ′ ξγ′

1√
x

x → ∞, [x] = β − α . (2.28)

Taking α = [0] and β = η, we have the proof of part (3) of Theorem 1.5.
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3. Thermodynamic limits

In this section we study the limit as N → ∞ of the polymer measure Pa
N,ω, using the

sharp asymptotics for the partition function obtained in the previous section. We recall
that Pc

N,ω is a probability measure on Z
N, which we endow with the product topology. In

particular, weak convergence on Z
N means convergence of all finite dimensional marginals.

We start giving a very useful decomposition of Pa
N,ω. The intuitive idea is that a path

(Sn)n≤N can be split into two main ingredients:

• the family (τk)k=0,1,... of returns to zero of S (defined in § 2.2);

• the family of excursions from zero (Si+τk−1
: 0 ≤ i ≤ τk − τk−1)k=1,2,...

Moreover, since each excursion can be either positive or negative, it is also useful to
consider separately the signs of the excursions σk := sign(Sτk−1+1) and the absolute values
(ek(i) := |Si+τk−1

| : i = 1, . . . , τk − τk−1). Observe that these are trivial for an excursion
with length 1: in fact if τk = τk−1 + 1 then σk = 0 and ek(0) = ek(1) = 0.

Let us first consider the returns (τk)k≤ιN under Pa
N,ω, where ιN = sup{k : τk ≤ N}.

The law of this process can be viewed as a probability measure pa
N,ω on the class AN of

subsets of {1, . . . , N}: indeed for A ∈ AN , writing

A = {t1, . . . , t|A|}, 0 =: t0 < t1 < · · · < t|A| ≤ N, (3.1)

we can set

pa
N,ω(A) := Pa

N,ω(τi = ti, i ≤ ιN ). (3.2)

The measure pa
N,ω describes the zero set of the polymer of size N , and it is analyzed in

detail below. From the inclusion of AN into {0, 1}N, the family of all subsets of N, pa
N,ω

can be viewed as a measure on {0, 1}N (this observation will be useful in the following).

Now we pass to the signs: we can see that, given (τj)j≤ιN , under Pa
N,ω the signs (σk)k≤ιN

form an independent family. Conditionally on (τj)j≤ιN , the law of σk is specified by:

- if τk = 1 + τk−1, then σk = 0;

- if τk > 1 + τk−1, then σk can take the two values ±1 with

Pa
N,ω

(
σk = +1

∣∣∣ (τj)j≤ιN

)
=

1

1 + exp
{
−(τk − τk−1)hω + Σ[τk−1],[τk]

} . (3.3)

Observe that when τιN < N (which can happen only for a = f) there is a last (incomplete)
excursion in the interval {0, . . . , N}, and the sign of this excursion is also expressed by (3.3)
for k = ιN + 1, provided we set τιN+1 := N .

Finally we have the moduli: again, once (τk−1, σk)1≤k≤ιN+1 are given, the excursions
(ek)k=1,...,ιN+1 form an independent family. The conditional law of ek(·) on the event
{τk−1 = `0, τk = `1} and for f = (fi)i=1,...,`1−`0 is, for k ≤ ιN , given by

Pa
N,ω

(
ek(·) = f

∣∣∣ (τj−1, σj)1≤j≤ιN+1

)

= P
(
Si = fi : i = 1, . . . , `1 − `0

∣∣∣ Si > 0 : i = 1, . . . , `1 − `0 − 1, S`1−`0 = 0
)

.
(3.4)
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In the case τιN < N we have a last excursion eιN+1(·): its conditional law, on the event
{τιN = ` < N} and for f = (fi)i=1,...,N−`, is given by

Pa
N,ω

(
eιN+1(·) = f

∣∣∣ (τj−1, σj)1≤j≤ιN+1

)

= P
(
Si = fi : i = 1, . . . , N − `

∣∣∣ Si > 0 : i = 1, . . . , N − `
)
,

(3.5)

We would like to stress that the above relations fully characterize the polymer mea-
sure Pa

N,ω. A remarkable fact is that, conditionally on (τk)k∈N, the joint distribution of
(σj , ej)j≤ιN does not depend on N : in this sense, all the N–dependence is contained in the
measure pa

N,ω.
For this reason, this section is mainly devoted to the study of the asymptotic behavior

of the zero set measures pa
N,ω as N → ∞. The main result is that pc

N,ω and pf
N,ω have

the same weak limit pω on {0, 1}N as N → ∞ (with some restrictions when ω ∈ P<).
Once this is proven, it follows easily that also the polymer measure Pa

N,ω converges to

a limit measure Pω on Z
N, constructed by pasting the excursion over the limit zero set.

More precisely, Pω is the measure under which the processes (τj), (σj) and (ej) have the
following laws:

• the law of the (τj)j∈N is determined in an obvious way by the limiting zero set
measure pω;

• conditionally on (τj)j∈N, the variables (σj)j∈N are independent with marginal laws
given by (3.3);

• conditionally on (τj, σj)j∈N, the variables (ej(·))j∈N are independent. On the event
{τk−1 = `0, τk = `1} with `0 < `1 < ∞ the law of ek is given by the r.h.s. of (3.4).
We have to consider also the case `0 < ∞, `1 = ∞, because in the regime δω < 1
it turns out that Pω(τk = ∞) > 0 (see below and Appendix B): in this case the
law of ek is given for any n ∈ N and for f = (fi)i=1,...,n by:

Pω

(
ek(i) = fi : i = 1, . . . , n

∣∣∣ (τj , σj)j∈N

)
= P+

(
Si = fi : i = 1, . . . , n

)

:= lim
N→∞

P
(
Si = fi : i = 1, . . . , n

∣∣∣ Si > 0 : i = 1, . . . , N
)
,

(3.6)

where the existence of such limit is well known: see e.g. [11].

3.1. Law of the zero level set in the free and constrained cases. Let us describe
more explicitly pa

N,ω(A), using the (strong) Markov property of Pa
N,ω. We use throughout

the paper the notation (3.1). Recalling the definition (1.14) of Mα,β(t), we have:

• for a = c and A ∈ AN : pc
N,ω(A) 6= 0 if and only if t|A| = N , and in this case:

pc
N,ω(A) =

1

Zc
N,ω

|A|∏

i=1

M[ti−1],[ti](ti − ti−1)

• for a = f and A ∈ AN :

pf
N,ω(A) =

1

Z f
N,ω




|A|∏

i=1

M[ti−1],[ti](ti − ti−1)


P (N − t|A|) exp

(
Φ̃[t|A|],[N ](N − t|A|)

)
.
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where P (n) :=
∑∞

k=n+1 K(k) =
∑∞

k=n+1 P(τ1 = k) and we have introduced

Φ̃α,β(`) := log

[
1

2

(
1 + exp

(
− `hω + Σα,β

))]
1(` >1) 1(`∈β−α) , (3.7)

which differs from Φ in not having the terms of interaction with the interface,
cf. (1.13).

We are going to show that, for any value of δω , the measure pa
N,ω on {0, 1}N converges

as N → ∞ (with some restrictions if ω ∈ P<) to a limit measure under which the process
([τk], τk − τk−1)k∈N is a Markov renewal process. Moreover, we will compute explicitly the
corresponding semi–Markov kernel, showing that the returns to zero are

(1) integrable if δω > 1 (localized regime);

(2) defective if δω < 1 (strictly delocalized regime);

(3) non integrable if δω = 1 (critical regime).

Thanks to the preceding observations, this will complete the proof of Theorem 1.7. We
stress that the key result in our derivation is given by the sharp asymptotics of the partition
function Zc

N,ω obtained in the previous section.

Before going into the proof, we give some preliminary material which is useful for all
values of δω . For k ∈ N we define the shift operator:

θk : R
N 7→ R

N, θkζ := ζ[k+·],

and it is easy to check that the following relations hold true:

Zc
N−k,θkω = Z[k],[N ](N − k), k ≤ N. (3.8)

Z f
N,ω =

N∑

t=0

Zc
t,ω P (N − t) exp

(
Φ̃[t],[N ](N − t)

)
, (3.9)

Pa
N,ω (τ1 = k) = M0,[k](k)

Za
N−k,θkω

Za
N,ω

, 1 ≤ k ≤ N, a = c, f. (3.10)

Finally, using (1.12), (1.14) and (1.13) it is easy to see that (2.12) holds true, namely

∃ lim
x→∞

[x]=β−α

x3/2 Mα,β(x) = Lα,β, (3.11)

where:

Lα,β =





cK
1

2

(
1 + exp

(
Σα,β

))
exp(ω

(0)
β ) if hω = 0

cK
1

2
exp(ω

(0)
β ) if hω > 0

. (3.12)

Since also the asymptotic behavior of P (`) exp(Φ̃α,β(`)) will be needed, we set

L̃α,β := lim
`→∞, `∈β−α

√
` P (`) e

eΦα,β(`) =





cK

(
1 + exp(Σα,β)

)
if hω = 0

cK if hω > 0

, (3.13)

as it follows easily from (3.7) and from the fact that P (`) ∼ 2 cK/
√

` as ` → ∞.



A RENEWAL THEORY APPROACH TO PERIODIC INHOMOGENEOUS POLYMER MODELS 21

3.2. The localized regime (δω > 1). We prove point (1) of Theorem 1.7. More precisely,
we prove the following:

Proposition 3.1. If δω > 1 then the polymer measures Pf
N,ω and Pc

N,ω converge as
N → ∞ to the same limit Pω, under which ([τk], τk − τk−1)k∈N is a Markov renewal
process with semi-Markov kernel (Γ>

α,β(x) : α, β ∈ S, x ∈ N).

For the definition of Γ> see (2.13).

Proof of Proposition 3.1. We prove first the case a = c. By (3.8), (3.10) and by the
asymptotics of Z in (2.15) above, we have for all α, β, γ ∈ S and ` ∈ α, m ∈ β

∃ lim
N→∞
N∈γ

Zc
N−m,θmω

Zc
N−`,θ`ω

= lim
N→∞
N∈γ

Zβ,γ(N − m)

Zα,γ(N − `)
= e−fωk ξβ

ξα
,

and since the right hand side does not depend on γ, then the limit exists as N → ∞. It
follows that for ` ∈ α, k + ` ∈ β:

lim
N→∞

Pc
N−`,θ`ω

(τ1 = k) = Mα,β(k) e−fωk ξβ

ξα
= Γ>

α,β(k).

By the Markov property of Pc
N,ω this yields

lim
N→∞

Pc
N,ω (τ1 = k1, . . . , τj = kj) =

j∏

i=1

Γ>
[ki−1],[ki]

(ki − ki−1), k0 := 0.

The argument for Pf
N,ω goes along the very same line: by (3.9),

e−fωN Z f
N−k,θkω = e−fωN

N−k∑

t=0

Z[k],[N−t](N − k − t) P (t) exp
(
Φ̃[N−t],[N ](t)

)

= e−fωk
∑

η∈S

N−k∑

t=0

e−fω t P (t)
[
exp

(
Φ̃η,[N ](t)

)
e−fω (N−k−t)Z[k],η(N − k − t)

]
.

Since by (2.15) the expression in brackets converges as N → ∞ and N ∈ [t]+η, we obtain

∃ lim
N→∞
N∈γ

e−fωN Z f
N−k,θkω = ξ[k] e

−fωk

(
T

µ

∑

η∈S

∑

t∈N
[t]=γ−η

e−fω t P (t) exp
(
Φ̃η, γ(t)

)
ζη

)
.

Observe that the term in parenthesis is just a function of γ. Having found the precise
asymptotics of Z f

N,ω, we can argue as for Pc
N,ω to conclude the proof. �

3.3. The critical regime (δω = 1). We prove point (3) of Theorem 1.7. More precisely,
we prove the following:

Proposition 3.2. If δω = 1 then the polymer measures Pf
N,ω and Pc

N,ω converge as
N → ∞ to the same limit Pω, under which ([τk], τk − τk−1)k∈N is a Markov renewal
process with semi-Markov kernel (Γ=

α,β(x) : α, β ∈ S, x ∈ N).

For the definition of Γ= see (2.20).
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Proof of Proposition 3.2. We prove first the case a = c. By (3.11) and and by the asymp-
totics of Z in (2.28) above, we obtain for all k ∈ α:

∃ lim
N→∞
N∈β

N1/2 Zα,β(N − k) =
T 2

2π

ξα ζβ∑
γ,γ′ ζγ Lγ,γ′ ξγ′

.

It follows for all α, β, γ ∈ S and ` ∈ α, m ∈ β

∃ lim
N→∞
N∈γ

Zc
N−m,θmω

Zc
N−`,θ`ω

= lim
N→∞
N∈γ

Zβ,γ(N − m)

Zα,γ(N)
=

ξβ

ξα
,

and since the right hand side does not depend on γ, then the limit exists as N → ∞. It
follows for ` ∈ α, k + ` ∈ β:

lim
N→∞

Pc
N−`,θ`ω

(τ1 = k) = Mα,β(k)
ξβ

ξα
= Γ=

α,β(k).

By the Markov property of Pc
N,ω this yields

lim
N→∞

Pc
N,ω (τ1 = k1, . . . , τj = kj) =

j∏

i=1

Γ=
[ki−1],[ki]

(ki − ki−1), k0 := 0.

For Pf
N,ω, by (3.9) we have for N ∈ β and k ≤ N :

Z f
N−k,θkω =

∑

γ

N−k∑

t=0

Z[k],γ(t)P (N − k − t) exp
(
Φ̃γ, β(N − k − t)

)
.

By the previous results and using (3.13) we obtain that for every k ∈ N

∃ lim
N→∞, N∈β

Z f
N−k,θkω = ξ[k]

T

2π

∑
η ζη L̃η,β∑

η,η′ ζη Lη,η′ ξη′

∫ 1

0

dt

t
1
2 (1 − t)

1
2

= ξ[k]

(
T

2

∑
η ζη L̃η,β∑

η,η′ ζη Lη,η′ ξη′

)
.

(3.14)

To conclude it suffices to argue as in the constrained case. �

3.4. The strictly delocalized regime (δω < 1). We prove point (2) and the last as-
sertion of Theorem 1.7. In this case the result is different according to whether ω ∈ P<

or ω /∈ P< (recall the definition (1.17)). To be more precise, there is first a weak formu-
lation for all ω which gives a thermodynamic limit of Pa

N,ω depending on the sequence

{N : [N ] = η} and on a = f, c; secondly, there is a stronger formulation only for ω /∈ P<,
which says that such limits coincide for all η ∈ S and a = f, c.

It will turn out that in the strictly delocalized regime there exists a.s. a last return
to zero, i.e. the process (τk)k∈N is defective. In order to express this with the language
of Markov renewal processes, we introduce the sets S := S ∪ {∞} and N := N ∪ {∞},
extending the equivalence relation to N by [∞] = ∞. Finally we set for all α, η ∈ S:

Λc
α,η :=

[
(1 − B)−1L (1 − B)−1

]
α,η

, µc
α,η :=

[
L (1 − B)−1

]
α,η

,

Λf
α,η :=

[
(1 − B)−1L̃

]
α,η

, µf
α,η := L̃α,η,
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and for all η ∈ S and a = f, c we introduce the semi-Markov kernel on S × N:

Γη,a
α,β(x) :=





Mα,β(k)Λa
β,η/Λ

a
α,η α ∈ S, x ∈ N, β = [x] ∈ S

µa
α,η/Λ

a
α,η α ∈ S, x = ∞, β = [∞]

1 α = β = [∞], x = 0

0 otherwise.

Notice that Γη,a is really a semi-Markov kernel, since for α ∈ S:

∑

β∈S

∑

x∈N

Γη,a
α,β(x) =

µa
α,η

Λa
α,η

+
∑

β∈S

∑

x∈N

Mα,β(x)Λa
β,η

Λa
α,η

=
µa

α,η

Λa
α,η

+
1

Λa
α,η

[B · Λa]α,η

=
µa

α,η

Λa
α,η

+
1

Λa
α,η

(Λa
α,η − µa

α,η) = 1.

We are going to prove the following:

Proposition 3.3. Let δω < 1. Then:

(1) for a = f, c, Pa
N,ω converges as N → ∞, [N ] = η to a measure Pa,η

ω , under
which ([τk], τk − τk−1)k∈N is a Markov renewal process with semi-Markov kernel
(Γη,a

α,β(x) : α, β ∈ S, x ∈ N).

(2) if ω /∈ P<, then Pa,η
ω =: Pω and Γη,a =: Γ< depend neither on η nor on a, and

both Pf
N,ω and Pc

N,ω converge as N → ∞ to Pω, under which ([τk], τk − τk−1)k∈N

is a Markov renewal process with semi-Markov kernel Γ<.

Remark 3.4. Part (2) of Proposition 3.3 is an easy consequence of part (1). In fact from
equations (3.12) and (3.13) it follows immediately that when ω /∈ P< then both matrices

(Lα,β) and (L̃α,β) are constant in α, and therefore Λa factorizes into a tensor product, i.e.

Λa
α,η = λa

α νa
η , α, η ∈ S,

where (λa
α)α∈S and (νa

α)α∈S are easily computed. But then it is immediate to check that
the semi–Markov kernel Γη,a =: Γ< depends neither on η nor on a.

Proof of Proposition 3.3. By the preceding Remark it suffices to prove part (1). For all
k ∈ α, by (2.16) we have

∃ lim
N→∞
[N ]=β

N3/2 Zα,β(N − k) =
[
(1 − B)−1L (1 − B)−1

]
α,β

= Λc
α,β. (3.15)

In particular, we have for all α, β, η ∈ S and ` ∈ α, m ∈ β:

∃ lim
N→∞
N∈η

Zc
N−m,θmω

Zc
N−`,θ`ω

= lim
N→∞
N∈η

Zβ,η(N − m)

Zα,η(N)
=

Λc
β,η

Λc
α,η

,

Then by (3.10) we get

lim
N→∞
N∈η

Pc
N,ω(τ1 = k) =

M0,[k](k)Λc
[k],η

Λ0,η
= Γη,c

0,[k](k).
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By the Markov property of Pc
N,ω this generalizes to

lim
N→∞
N∈η

Pc
N,ω (τ1 = k1, . . . , τj = kj) =

j∏

i=1

Γη,c
[ki−1],[ki]

(ki − ki−1), k0 := 0.

We prove now the case a = f. Recalling (3.9) above, we see here that

N1/2 Z f
N−k,θkω =

N−k∑

t=0

Z[k],[t+k](t)N1/2 P (N − k − t) exp
(
Φ̃[t+k],[N ](N − k − t)

)
.

Then by (3.13) we obtain

∃ lim
N→∞
N∈η

N1/2 Z f
N−k,θkω =

∞∑

t=0

Z[k],[t+k](t) L̃[t+k],η =
[
(1 − B)−1L̃

]
[k],η

= Λf
[k],η , (3.16)

since
∞∑

t=0

Zα,γ(t) =

∞∑

t=0

∞∑

k=0

M∗k
α,γ(t) =

∞∑

k=0

B∗k
α,γ =

[
(I − B)−1

]
α,γ

. (3.17)

Arguing as for Pc
N,ω, we conclude the proof. �

4. Scaling limits

In this section we prove that the measures Pa
N,ω converge under Brownian rescaling.

The results and proofs follow closely those of [6] and we shall refer to this paper for several
technical lemmas.

The first step is tightness of (Qa
N,ω)N∈N in C([0, 1]).

Lemma 4.1. For any ω and a = c, f the sequence (Qa
N,ω)N∈N is tight in C([0, 1]).

For the standard proof we refer to Lemma 4 in [6].

In the rest of the section we prove Theorem 1.8.

4.1. The localized regime (δω > 1). We prove point (1) of Theorem 1.8. By Lemma 4.1
it is enough to prove that Pa

N,ω(|XN
t | > ε) → 0 for all ε > 0 and t ∈ [0, 1] and one can

obtain this estimate explicitly. We point out however that in this regime one can avoid
using the compactness lemma and one can obtain a stronger result by elementary means:
observe that for any k, n ∈ N such that n > 1 and k + n ≤ N , we have

Pa
N,ω

(
Sk = Sk+n = 0, Sk+i 6= 0 for i = 1, . . . , n − 1

)

≤
1
2

(
1 + exp

(∑n
i=1

(
ω

(−1)
k+i − ω

(+1)
k+i

)))

Zc
n,θkω

=: K̂k(n), (4.1)

and this holds both for a = c and a = f. Inequality (4.1) is obtained by using the Markov
property of S both in the numerator and the denominator of the expression (1.9) defining
Pa

N,ω (·) after having bounded Za
N,ω from below by inserting the event Sk = Sk+n = 0.

Of course limn→∞(1/n) log K̂k(n) = −fω uniformly in k (notice that K̂k+T (n) = K̂k(n)).
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Therefore if we fix ε > 0 by the union bound we obtain (we recall that {τj}j and ιN were
defined in Section 3)

Pa
N,ω

(
max

j=1,2,...,ιN
τj − τj−1 > (1 + ε) log N/fω

)

≤
∑

k≤N−(1+ε) log N/fω

∑

n>(1+ε) log N/fω

K̂k(n)

≤ N
∑

n>(1+ε) log N/fω

max
k=0,...,T−1

K̂k(n) ≤ c

N ε
,

for some c > 0.
Let us start with the constrained case: notice that Pc

N,ω(dS)–a.s. we have τιN = N and
hence maxj≤ιN τj − τj−1 ≥ maxn=1,...,N |Sn|, since |Sn+1 − Sn| ≤ 1. Then we immediately
obtain that for any C > 1/fω

lim
N→∞

Pc
N,ω

(
max

n=1,...,N
|Sn| > C log N

)
= 0, (4.2)

which is of course a much stronger statement than the scaling limit of point (1) of Theo-

rem 1.8. If we consider instead the measure Pf
N,ω, the length of the last excursion has to

be taken into account too: however, an argument very close to the one used in (4.1) yields
also that the last excursion is exponentially bounded (with the same exponent) and the
proof of point (1) of Theorem 1.8 is complete.

4.2. The strictly delocalized regime (δω < 1). We prove point (2) of Theorem 1.8.
We set for t ∈ {1, . . . , N}:
Dt := inf{k = 1, . . . , N : k > t, Sk = 0}, Gt := sup{k = 1, . . . , N : k ≤ t, Sk = 0}.
The following result shows that in the strictly delocalized regime, as N → ∞, the visits to
zero under Pa

N,ω tend to be very few and concentrated at a finite distance from the origin
if a = f and from 0 or N if a = c.

Lemma 4.2. If δω < 1 there exists a constant C > 0 such that for all L > 0:

lim sup
N→∞

Pf
N,ω (GN ≥ L) ≤ C L−1/2, (4.3)

lim sup
N→∞

Pc
N,ω

(
GN/2 ≥ L

)
≤ C L−1/2, (4.4)

lim sup
N→∞

Pc
N,ω

(
DN/2 ≤ N − L

)
≤ C L−1/2. (4.5)

Lemma 4.2 is a quantitative version of point (2) of Theorem 1.7 and it is a rather straight-
forward complement: the proof is sketched in Appendix B, in particular (B.3).

The signs. In order to prove point (2) of Theorem 1.8, it is now enough to argue as in the
proof of Theorem 9 in [6], with the difference that now the excursions are not necessarily in
the upper half plane, i.e. the signs are not necessarily positive. So the proof is complete if
we can show that there exists the limit (as N → ∞ along [N ] = η) of the probability that
the process (away from {0, 1}) lives in the upper half plane. In analogy with Section 3.4,
in the general case we have different limits depending on the sequence [N ] = η and on
a = f, c, while if ω /∈ P< all such limits coincide.
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We start with the constrained case: given Lemma 4.2, it is sufficient to show that

∃ lim
N→∞
N∈η

Pc
N,ω(SN/2 > 0) =: p<,c

ω,η . (4.6)

Formula (4.6) follows from the fact that

Pc
N,ω(SN/2 > 0) =

∑

α,β

∑

x<N/2

∑

y>N/2

Z0,α(x) ρ+
α,β(y − x)Mα,β(y − x)Zβ,[N ](N − y)

Z0,[N ](N)
,

where for all z ∈ N and α, β ∈ S:

ρ+
α,β(z) :=

1

1 + exp (−z hω + Σα,β)
, (4.7)

cf. (3.3). By Dominated Convergence and by (3.12) and (3.17):

∃ lim
N→∞
N∈η

N3/2
∑

x<N/2

∑

y>N/2

Z0,α(x) ρ+
α,β(y − x)Mα,β(y − x)Zβ,η(N − y)

=
[
(1 − B)−1

]
0,α

cK
1

2
exp(ω

(0)
β )

[
(1 − B)−1

]
β,η

.

By (2.16) we obtain (4.6) with

p<,c
ω,η :=

∑
α,β

[
(1 − B)−1

]
0,α

cK
1
2 exp(ω

(0)
β )

[
(1 − B)−1

]
β,η[

(1 − B)−1L (1 − B)−1
]
0,η

. (4.8)

Observe that by (3.12):

• if hω > 0 then in (4.8) the denominator is equal to the numerator, so that p<,c
ω,η = 1

for all η.
• if hω = 0 and Σ ≡ 0 then in (4.8) the denominator is equal to twice the numerator,

so that p<,c
ω,η = 1/2 for all η.

• in the remaining case, i.e. if ω ∈ P<, in general p<,c
ω,η depends on η.

Now let us consider the free case. This time it is sufficient to show that

∃ lim
N→∞
N∈η

Pf
N,ω(SN > 0) =: p<,f

ω,η. (4.9)

Formula (4.9) follows from the fact that

Pf
N,ω(SN > 0) =

∑

α

∑

x<N

Z0,α(x) · 1
2P (N − k)

Z f
N,ω

,

and using (3.9), (3.17) and (3.13) we obtain that (4.9) holds with

p<,f
ω,η =

∑
α

[
(1 − B)−1

]
0,α

cK
[
(1 − B)−1L̃

]
0,η

. (4.10)

Again, observe that by (3.13):

• if hω > 0 then in (4.10) the denominator is equal to the numerator and p<,f
ω,η = 1

for all η.
• if hω = 0 and Σ ≡ 0 then in (4.10) the denominator is equal to twice the numerator,

so that p<,f
ω,η = 1/2 for all η.
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• in the remaining case, i.e. if ω ∈ P<, in general p<,f
ω,η depends on η and is different

from p<,c
ω,η .

4.3. The critical regime (δω = 1). In this section we prove point (3) of Theorem 1.8.
As in the previous section, we first determine the the asymptotic behavior of the zero level
set of the copolymer and then we pass to the study of the signs of the excursions.

We introduce the random closed subset Aa
N of [0, 1], describing the zero set of the

polymer of size N rescaled by a factor 1/N :

P(Aa
N = A/N) = pa

N,ω(A), A ⊆ {0, . . . , N},
where we recall that pa

N,ω(·) has been defined in § 3.1. Let us denote by F the class of all

closed subsets of R
+ := [0,+∞). We are going to put on F a topological and measurable

structure, so that we can view the law of Aa
N as a probability measure on (a suitable

σ–field of) F and we can study the weak convergence of Aa
N .

We endow F with the topology of Matheron, cf. [19] and [9, § 3], which is a metrizable
topology. To define it, to a closed subset F ⊆ R

+ we associate the closed nonempty

subset F̃ of the compact interval [0, π/2] defined by F̃ := arctan
(
F ∪ {+∞}

)
. Then the

metric ρ(·, ·) we take on F is

ρ(F,F ′) := max

{
sup
t∈ eF

d(t, F̃ ′) , sup
t′∈ eF ′

d(t′, F̃ )

}
F, F ′ ∈ F , (4.11)

where d(s,A) := inf{|t− s|, t ∈ A} is the standard distance between a point and a set. We
point out that the r.h.s. of (4.11) is the so–called Hausdorff metric between the compact

sets F̃ , F̃ ′. Thus given a sequence {Fn}n ⊂ F and F ∈ F , we say that Fn → F in F if and
only if ρ(Fn, F ) → 0. We observe that this is equivalent to requiring that for each open
set G and each compact K

F ∩ G 6= ∅ =⇒ Fn ∩ G 6= ∅ eventually

F ∩ K = ∅ =⇒ Fn ∩ K = ∅ eventually
. (4.12)

Another necessary and sufficient condition for Fn → F is that d(t, Fn) → d(t, F ) for
every t ∈ R

+.
This topology makes F a separable and compact metric space [19, Th. 1-2-1], in par-

ticular a Polish space. We endow F with the Borel σ–field, and by standard theorems on
weak convergence we have that also the space M1(F) of probability measures on F is
compact.

The main result of this section is to show that the law of the random set Aa
N ∈ M1(F)

converges as N → ∞ to the law of the zero set of a Brownian motion {B(t)}t∈[0,1] for a = f
or of a Brownian bridge {β(t)}t∈[0,1] for a = c.

Proposition 4.3. If δω = 1 then as N → ∞
Af

N =⇒ {t ∈ [0, 1] : B(t) = 0} , (4.13)

Ac
N =⇒ {t ∈ [0, 1] : β(t) = 0} . (4.14)

The proof of Proposition 4.3 is achieved comparing the law of Af
N and Ac

N with the
law of a random set RN defined as follows: recalling that {τk}k∈N denotes the sequence of
return times of S to zero, we set

RN := range {τi/N, i ≥ 0}
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and we look at the law RN under the critical infinite volume measure Pω of Proposition 3.2.
Observe that under Pω the process ([τk], τk −τk−1)k∈N is a Markov renewal process, whose
semi–Markov kernel is given by Γ=. The key point of the proof is given by the following
result:

Lemma 4.4. The law of {RN}N under Pω converges weakly to the law of the random set
{t ≥ 0 : B(t) = 0}.

The core of the proof (see Step 1 below) uses the theory of regenerative sets and their
connection with the concept of subordinator, see [9]. However we point out that it is also
possible to give a more standard proof, using tightness and checking “convergence of the
finite dimensional distributions”: this approach is outlined in Appendix C.

Proof of Lemma 4.4 We introduce the random set

R(β)
N := range{τk/N : k ≥ 0, [τk] = β} β ∈ S .

Notice that RN = ∪βR(β)
N . Let us also recall the definitions (2.23) and (2.24):

κ
(β)
0 := inf{k ≥ 0 : [τk] = β}, κ

(β)
i+1 := inf{k > κ

(β)
i : [τk] = β},

T
(β)
0 := τ

κ
(β)
0

, T
(β)
i := τ

κ
(β)
i

− τ
κ
(β)
i−1

, i ≥ 1.

Then (T
(β)
i )i≥1 is under Pω an IID sequence, independent of T

(β)
0 : see the discussion

before (2.25). We divide the rest of the proof in two steps.

Step 1. This is the main step: we prove that the law of R(β)
N under Pω converges to the

law of {t ≥ 0 : B(t) = 0}. For this we follow the proof of Lemma 5 in [6].

Let {P (t)}t≥0 be a Poisson process with rate γ > 0, independent of (T
(β)
i )i≥0. Then

σt = [T
(β)
1 + · · · + T

(β)
P (t)]/N forms a non decreasing CAD process with independent sta-

tionary increments and σ0 = 0: in other words σ = (σt)t≥0 is a subordinator. As for
any Levy process, the law of σ is characterized by the Laplace transform of the one-time
distributions:

E [exp (−λσt)] = exp (−tφN (λ)) , λ ≥ 0, t ≥ 0,

for a suitable function φN : [0,∞) 7→ [0,∞), called Lévy exponent, which has a canonical
representation, the Lévy–Khintchin formula (see e.g. (1.15) in [9]):

φN (λ) =

∫

(0,∞)

(
1 − e−λs

)
γ P(T

(β)
1 /N ∈ ds) = γ

∞∑

n=1

(1 − exp(−λn/N)) q(β)(n) .

We denote the closed range {σt : t ≥ 0} of the subordinator σ by R̂(β)
N . Then, following

[9], R̂(β)
N is a regenerative set. Moreover R(β)

N = T
(β)
0 /N + R̂(β)

N .

Notice now that the law of the regenerative set R̂(β)
N is invariant under the change of

time scale σt −→ σct, for c > 0, and in particular independent of γ > 0. Since φN −→ c φN

under this change of scale, we can fix γ = γN such that φN (1) = 1 and this will be

implicitly assumed from now on. By Proposition (1.14) of [9], the law of R̂(β)
N is uniquely

determined by φN .
By the asymptotics of q(β) given in (2.26), one directly obtains that φN (λ) → λ1/2 =:

ΦBM (λ) as N → ∞. It is now a matter of applying the result in [9, §3] to obtain that

R̂(β)
N converges in law to the regenerative set corresponding to ΦBM . However by direct

computation one obtains that the latter is nothing but the zero level set of a Brownian
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motion, hence R̂(β)
N ⇒ {t ∈ [0, 1] : B(t) = 0}. From the fact that T

(β)
0 /N tends to 0 a.s.,

the same weak convergence for R(β)
N follows immediately.

Step 2. We notice now that RN = ∪βR(β)
N is the union of non independent sets. Therefore,

although we know that each R(β)
N converges in law to {t ≥ 0 : B(t) = 0}, it is not trivial

that RN converges to the same limit. We start showing that for every positive t ≥ 0, the

distance between the first point in R(α)
N after t and the first point in R(β)

N after t converges
to zero in probability. More precisely, for any closed set F ⊂ [0,∞) we set:

dt(F ) := inf(F ∩ (t,∞)). (4.15)

and we claim that for all α, β ∈ S and t ≥ 0, |dt(R(α)
N ) − dt(R(β)

N )| → 0 in probability.

Recalling (2.25) and setting q(α;β)(t) = Pθαω(T
(β)
0 = t), for all ε > 0:

Pω

(
dt(R(α)

N ) ≥ dt(R(β)
N ) + ε

)

=
∑

k

∑

γ

bNtc∑

y=0

Pω(τk = y, [τk] = γ)

∞∑

z=bNtc−y+1

Pθγω(T
(β)
0 = z) Pθβω(T

(α)
0 ≥ bNεc)

=
∑

γ

bNtc∑

y=0

U0,γ(y)
∞∑

z=bNtc−y+1

q(γ;β)(z)
∞∑

w=bNεc

q(β;α)(w).

Arguing as in the proof of (2.26), it is easy to obtain the bound: q(β;α)(w) ≤ C1 w−3/2, and

by (2.27): U0,γ(y) ≤ C2 y−1/2, where C1, C2 are positive constants. Then asymptotically

Pω

(
dt(R(α)

N ) ≥ dt(R(β)
N ) + ε

)
≤ C3

N1/2

(∫ t/T

0
dy

∫ ∞

(t−y)/T
dz

∫ ∞

ε/T
dw

1

y1/2 z3/2 w3/2

)

for some positive constant C3, having used the convergence of the Riemann sums to the cor-
responding integral. The very same computations can be performed exchanging α with β,
hence the claim is proven.

Now notice that dt(RN ) = minα∈S dt(R(α)
N ), and since S is a finite set we have that

also |dt(RN ) − dt(R(β)
N )| → 0 in probability for any fixed β ∈ S. Since we already know

that R(β)
N converges weakly to the law of {t ≥ 0 : B(t) = 0}, the analogous statement

for RN follows by standard arguments. More precisely, let us look at (RN ,R(β)
N ) as a

random element of the space F × F : by the compactness of F it suffices to take any

convergent subsequence (Rkn ,R(β)
kn

) ⇒ (B,C) and to show that P(B 6= C) = 0. By the

Portmanteau Theorem it is sufficient to prove that limN→∞ Pω(RN 6= R(β)
N ) = 0, and this

is an immediate consequence of the decomposition
{
RN 6= R(β)

N

}
=

⋃

t∈Q+

⋃

n∈N

{
|dt(RN ) − dt(R(β)

N )| > 1/n
}

,

which holds by the right–continuity of t 7→ dt. �

Proof of (4.14). First, we compute the Radon-Nykodim density of the law of Ac
N ∩ [0, 1/2]

with respect to the law of R1/2
N := RN ∩ [0, 1/2]: for F = {t1/N, . . . , tk/N} ⊂ [0, 1/2] with
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0 =: t0 < t1 < · · · < tk integer numbers, the Radon–Nykodim derivative of the law of

Ac
N ∩ [0, 1/2] with respect to the law of R1/2

N for R1/2
N = F is:

f c
N (g1/2(F )) = f c

N (tk/N) =

∑N
n=N/2 M[tk ],[n](n − tk)Z[n],[N ](N − n)

Z0,[N ](N) Q[tk](N/2 − tk)

ξ0

ξ[tk]
,

where Qα(t) :=
∑

β

∑∞
s=t+1 Γ=

α,β(s) and for any closed set F ⊂ [0,∞) we set:

gt(F ) := sup(F ∩ [0, t]). (4.16)

By (2.28), for all ε > 0 and uniformly in g ∈ [0, 1/2 − ε]:

f c
N (g) ∼

∑
γ L[Ng],γ

T 2

2π

ξγ ζ[N]P
γ,γ′ ζγ Lγ,γ′ ξγ′

T−1
∫ 1/2
0 y−1/2 (1 − y − g)−3/2 dy

T 2

2π

ξ0 ζ[N]P
γ,γ′ ζγ Lγ,γ′ ξγ′

T−1
∑

γ L[Ng],γ ξγ/ξ[Ng] 2 (1/2 − g)−1/2

ξ0

ξ[Ng]

=

√
1/2

1 − g
=: r(g).

If Ψ is a bounded continuous functional on F such that Ψ(F ) = Ψ(F ∩ [0, 1/2]) for all
F ∈ F , then, setting ZB := {t ∈ [0, 1] : B(t) = 0} and Zβ := {t ∈ [0, 1] : β(t) = 0}, we get:

E[Ψ(Zβ)] = E
[
Ψ(ZB) r(g1/2(ZB))

]
,

see formula (49) in [6]. By the asymptotics of f c
N we obtain that

E [Ψ(Ac
N )] = E

[
Ψ(R1/2

N ) f c
N (g1/2(R1/2

N ))
]
→ E

[
Ψ(ZB) r(g1/2(ZB))

]
= E [Ψ(Zβ)]

i.e. Ac
N ∩ [0, 1/2] converges to Zβ ∩ [0, 1/2]. Notice now that the distribution of the random

set {1 − t : t ∈ Ac
N ∩ [1/2, 1]} under Pc

N,ω is the same as the distribution of Ac
N ∩ [0, 1/2]

under Pc
N,ω, where ω[i] := ω[N−i]. Therefore we obtain that Ac

N ∩ [1/2, 1] converges to
Zβ ∩ [0, 1/2] and the proof is complete.

Proof of (4.13). By conditioning on the last zero, we see that if Ψ is a bounded continuous
functional on F then:

E

[
Ψ(Af

N )
]

=
N∑

t=0

E [Ψ(Ac
t)]

Zc
t,ω

Z f
N,ω

P (N − t) exp
(
Φ̃[t],[N ](N − t)

)
.

We denote by βt a Brownian bridge over the interval [0, t], i.e. a Brownian motion over
[0, t] conditioned to be 0 at time t, and we set Zβt :=

{
s ∈ [0, t] : βt(s) = 0

}
. By (4.14),

(2.28) and (3.14) we obtain as N → ∞:

E

[
Ψ(Af

N)
]

=

N∑

t=0

∑

γ

1(t∈γ) E [Ψ(Ac
t)]

Zc
t,ω

Z f
N,ω

P (N − t) exp
(
Φ̃γ,[N ](N − t)

)

∼
∫ 1

0
E[Ψ(Zβt)]

1

t
1
2 (1 − t)

1
2

dt ·
∑

γ

1

T

T 2

2π

ξ0 ζγ∑
η,η′ ζη Lη,η′ ξη′

L̃γ,[N ]

ξ0
T
2

P
η ζη

eLη,[N]P
η,η′ ζη Lη,η′ ξη′

=

∫ 1

0
E[Ψ(Zβt)]

1

π t
1
2 (1 − t)

1
2

dt = E[Ψ(ZB)]. �
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The signs. To complete the proof of point (3) of Theorem 1.8 in the critical case (δω = 1)
we follow closely the proof given in Section 8 of [6]. We have already proven the convergence
of the set of zeros and we have to “paste” the excursions. From Section 3 we know that,
conditionally on the zeros:

• the signs {σk}k and the absolute values {ek(·)}k of the excursions are independent;
• the (conditional) law of ek(·) is the same as under the original random walk mea-

sure P.

The weak convergence under diffusive rescaling of ek(·) for k ≤ ιN towards the Brownian
excursion e(·) and of the last excursion eιN+1(·) for a = f towards the Brownian meander
m(·) has been proved in [14] and, respectively, in [3]. Then it only remains to concentrate
on the signs.

We start with the constrained case: we are going to show that for all t ∈ (0, 1)

∃ lim
N→∞

Pc
N,ω(SbtNc > 0) =: p=

ω , (4.17)

and the limit is independent of t. We point out that actually we should fix the extremities
of the excursion embracing t, that is we should rather prove that

lim
N→∞

Pc
N,ω

(
SbtNc > 0

∣∣∣ GbtNc/N ∈ (a − ε, a) , DbtNc/N ∈ (b, b + ε)
)

= p=
ω , (4.18)

for a < t < b and ε > 0 (recall the definition of Gt and Dt in § 4.2), but in order to lighten
the exposition we will stick to (4.17), since proving (4.18) requires only minor changes.

We have, recalling (4.7):

Pc
N,ω(SbtNc > 0) =

∑

α,β

∑

x<btNc

∑

y>btNc

Z0,α(x) ρ+
α,β(y − x)Mα,β(y − x)Zβ,[N ](N − y)

Z0,[N ](N)
.

By Dominated Convergence and by (2.28):

∃ lim
N→∞
N∈η

N1/2
∑

x<btNc

∑

y>btNc

Z0,α(x) ρ+
α,β(y − x)Mα,β(y − x)Zβ,η(N − y)

=
1

T 2

∫ t

0
dx

∫ 1

t
dy [x(y − x)3(1 − y)]−

1
2

(
T 2

2π

)2
ξ0 ζα ξβ ζη

(
∑

γ,γ′ ζγ Lγ,γ′ ξγ′)2
cK

1

2
exp(ω

(0)
β )

see (3.12). We obtain (4.17) with

p=
ω :=

∑
α,β ζα cK

1
2 exp(ω

(0)
β ) ξβ∑

α,β ζα Lα,β ξβ
(4.19)

Observe the following: by (3.12),

• if hω > 0 then in (4.19) the denominator is equal to the numerator, so that p=
ω = 1.

• if hω = 0 and Σ ≡ 0 then in (4.19) the denominator is equal to twice the numerator,
so that p=

ω = 1/2.

Now let us consider the free case. We are going to show that for all t ∈ (0, 1]:

∃ lim
N→∞
[N ]=η

Pf
N,ω(SbtNc > 0) =

(
1 − 2 arcsin

√
t

π

)
p=

ω +
2 arcsin

√
t

π
q=

ω,η =: p=,f
ω,η(t) , (4.20)

where p=
ω is the same as above, see (4.19), while q=

ω,η is defined in (4.21) below. We stress
again that we should actually fix the values of GbtNc and DbtNc like in (4.18), proving that
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the limiting probability is either p=
ω or q=

ω,η according to whether DbtNc ≤ N or DbtNc > N ,

but this will be clear from the steps below. Formula (4.20) follows from the fact that

Pf
N,ω(SbtNc > 0) =

∑

α,β

∑

x<btNc

∑

y>btNc

Z0,α(x) ρ+
α,β(y − x)Mα,β(y − x)Z f

N−y,θ[y]ω

Z f
N,ω

+
∑

α

∑

x<btNc

Z0,α(x) ρ+
α,[N ](N − x)P (N − x) exp

(
Φ̃[x],[N ](N − x)

)

Z f
N,ω

.

Letting N → ∞ with [N ] = η, by (3.14) the first term in the r.h.s. converges to:
∫ t

0

dx

x
1
2

∫ 1

t

dy

(y − x)
3
2

·

·
∑

α,β

1

T 2

T 2 ξ0 ζα

2π
∑

γ,γ′ ζγ Lγ,γ′ ξγ′
cK

1

2
exp(ω

(0)
β )

ξβ
T
2

∑
γ ζγ L̃γ,η∑

γ,γ′ ζγ Lγ,γ′ ξγ′
·
∑

γ,γ′ ζγ Lγ,γ′ ξγ′

ξ0
T
2

∑
γ ζγ L̃γ,η

=

(
1 − 2 arcsin

√
t

π

)
· p=

ω

while the second term converges to
∫ t

0

dx

x
1
2 (1 − x)

1
2

1

T

∑

α

T 2 ξ0 ζα

2π
∑

γ,γ′ ζγ Lγ,γ′ ξγ′
cK ·

∑
γ,γ′ ζγ Lγ,γ′ ξγ′

ξ0
T
2

∑
γ ζγ L̃γ,η

=
2 arcsin

√
t

π
·

cK
∑

γ ζγ
∑

γ ζγ L̃γ,η

.

Therefore we obtain (4.20) with:

q=
ω,η =

cK
∑

γ ζγ
∑

γ ζγ L̃γ,η

. (4.21)

We observe that, by (3.13):

• if hω > 0 or if hω = 0 and Σ ≡ 0, then p=,f
ω,η(t) = q=

ω,η = p=
ω for all t and η

• in the remaining case, i.e. if ω ∈ P=, in general p=,f
ω,η(t) depends on t and η.

Now that we have proven the convergence of the probabilities of the signs of the excur-
sion, in order to conclude the proof of point (3) of Theorem 1.8 it is enough to argue as
in the proof of Theorem 11 in [6].

Appendix A. An asymptotic result

We are going to prove that equation (2.26) holds true. Let us first give some pre-
liminary notation: given an irreducible T × T matrix Qα,β with nonnegative entries, its
Perron–Frobenius eigenvalue (= spectral radius) will be denoted by Z = Z(Q) and the
corresponding left and right eigenvectors (with any normalization) will be denoted by
{ζα}, {ξα}. We recall that ζα, ξα > 0. Being a simple root of the characteristic polynomial,
Z(Q) is an analytic function of the entries of Q, and

∂Z

∂Qα,β
=

ζα ξβ(∑
γ ζγξγ

) . (A.1)
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Hence Z(Q) is a strictly increasing function of each of the entries of Q.
Now, let Q denote the transition matrix of an irreducible, positive recurrent Markov

chain, and let us introduce the matrix Q(γ) and the (column) vector |γ〉 defined by
[
Q(γ)

]
α,β

:= Qα,β 1(β 6=γ)

[
|γ〉
]
α

:= 1(α=γ) .

By monotonicity, Z(Q(γ)) < Z(Q) = 1 for all γ. Then we can define the geometric series

(1 − Q(γ))−1 :=

∞∑

k=0

(
Q(γ)

)k
.

The interesting point is that, for every γ, the row vector 〈γ| · (1−Q(γ))−1 is (a multiple of)
the left Perron–Frobenius eigenvector of the matrix Q (by 〈γ| we denote the transposed

of |γ〉). Similarly the column vector (1 − Q(γ))−1 · Q · |γ〉 is (a multiple of) the right
Perron–Frobenius eigenvector of Q. More precisely we have

[
〈γ| · (1 − Q(γ))−1

]
α

=
να

νγ

[
(1 − Q(γ))−1 · Q · |γ〉

]
α

= 1 , (A.2)

where {να}α is the invariant measure of the chain, that is
∑

α ναQα,β = νβ and
∑

α να = 1.
Equation (A.2) can be proved by exploiting its probabilistic interpretation in terms of
expected number of visits to state α before the first return to site γ, see [2, § I.3].

Next we turn to the asymptotic behavior of q(β)(x), giving the law of T
(β)
0 under Pβ

(recall the notations introduced in § 2.5). With a standard renewal argument, we can
express it as

q(β)(x) =

x−1∑

y=0

∑

γ∈S

V
(β)
β,γ (y) Γ=

γ,β(x − y) =
(
V (β) ∗ Γ=

)
β,β

(x) , (A.3)

where the kernel V (β) is defined by

V (β)
α,γ (x) =

∞∑

k=0

[(
Γ(β)

)∗k]
α,γ

(x) ,

and we have set Γ
(β)
α,γ(x) := Γ=

α,γ(x)1(γ 6=β). Let us look more closely at both terms in the
r.h.s. of (A.3).

• For the semi–Markov kernel Γ=, recall its definition (2.20), the asymptotic behavior
as x → ∞, [x] = β − γ is given by

Γ=
γ,β(x) ∼ L̂γ,β

x3/2
L̂γ,β := Lγ,β

ξβ

ξγ
. (A.4)

Moreover, we have that

∑

x∈N

Γ=
γ,β(x) = Bγ,β

ξβ

ξγ
=: B̂γ,β . (A.5)

• On the other hand, for the kernel V (β) we can apply the theory developed in § 2.4
for the case δω < 1, because the matrix

∑

x∈N

Γ(β)
α,γ(x) =

[
B̂(β)

]
α,γ
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has Perron–Frobenius eigenvalue strictly smaller than 1 (we recall the convention

[Q(β)]α,γ := Qα,γ1(γ 6=β) for any matrix Q). Since

Γ(β)
α,γ(x) ∼

[
L̂(β)

]
α,γ

x3/2
x → ∞ , [x] = γ − α ,

we can apply (2.16) to get that as x → ∞, [x] = α − γ

V (β)
α,γ (x) ∼

([
(1 − B̂(β))−1L̂(β)(1 − B̂(β))−1

]
α,γ

) 1

x3/2
. (A.6)

Moreover applying an analog of (2.17) we get that

∑

y∈N

V (β)
α,γ (y) =

∞∑

k=0

[(
B̂(β)

)k]
α,γ

=
[
(1 − B̂(β))−1

]
α,γ

. (A.7)

We are finally ready to get the asymptotic behavior of q(β). As both V (β) and Γ= have
a x−3/2–like tail, it is easy to check from (A.3) that as x → ∞, x ∈ TN

q(β)(x) ∼
∑

γ∈S

{(∑

y∈N

V
(β)
β,γ (y)

)
Γ=

γ,β(x) + V
(β)
β,γ (x)

(∑

y∈N

Γ=
γ,β(y)

)}
,

and applying (A.7), (A.4), (A.6) and (A.5) we get that q(β)(x) ∼ cβ/x3/2 as x → ∞,
x ∈ TN, with

cβ =
[
(1 − B̂(β))−1 · L̂

]
β,β

+
[
(1 − B̂(β))−1 · L̂(β) · (1 − B̂(β))−1 · B̂

]
β,β

=
[
(1 − B̂(β))−1 · L̂ · (1 − B̂(β))−1 · B̂

]
β,β

= 〈β| · (1 − B̂(β))−1 · L̂ · (1 − B̂(β))−1 · B̂ · |β〉 .

To obtain the second equality we have used the fact that
[
(1 − B̂(β))−1 · B̂

]
β,β

=
[
〈β| · (1 − B̂(β))−1 · B̂

]
β

= 1 ,

which follows from (A.2) applied to the matrix Q = B̂. Again from (A.2) we get

cβ =
1

νβ

∑

α,γ∈S

ναL̂α,γ ,

where {να}α is the invariant measure (that is the normalized left Perron–Frobenius eigen-

vector) of the matrix B̂. However from the definition (A.5) of B̂ it is immediate to see that

{να} = {ζα ξα}, and recalling the definition (A.4) of L̂ we obtain the expression for cβ we
were looking for:

cβ =
1

ζβ ξβ

∑

α,γ

ζα Lα,γ ξγ . (A.8)

Appendix B. Some computations on the thermodynamic limit measure

We want now to give a description of the typical paths under Pa,η
ω in the delocalization

regime, i.e. when δω < 1. We are going to compute the distribution of two interesting
random variables under Pa,η

ω in this case: the last return to zero and the total number of
returns to zero. Other analogous computations are possible using the same procedure.
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The last return to zero. We want to study the law under Pa,η
ω of the last zero ` := sup{i ∈

N : Si = 0} in the strictly delocalized regime. For simplicity we consider the case a = c,
the case a = f being completely analogous. We compute first the law of `k := sup{i ≤ k :
Si = 0} with k ∈ N: for x ≤ k < N and N ∈ η:

Pc
N,ω(`k = x) = Z0,[x](x)

N∑

z=k+1

M[x],[z](z − x)Z[z],η(N − z)

Z0,η(N)
(B.1)

By (3.11) and (3.15) we obtain:

lim
N→∞
N∈η

Pc
N,ω(`k = x) = Z0,[x](x)

[
∞∑

z=0

L[x],η−[z]

Λc
0,η

Zη−[z],η(z) +
∞∑

z=k+1

M[x],[z](z − x)
Λc

[z],η

Λc
0,η

]
.

Notice now that, by (3.17):

∞∑

z=0

L[x],η−[z] Zη−[z],η(z) =
∑

γ

L[x],γ

∞∑

z=0

Zγ,η(z) =
[
L · (I − B)−1

]
[x],η

= µc
[x],η. (B.2)

Therefore, we have proven that:

Pc,η
ω (`k = x) = lim

N→∞
N∈η

Pc
N,ω(`k = x) = Z0,[x](x)

[
µc

[x],η

Λc
0,η

+

∞∑

z=k+1

M[x],[z](z − x)
Λc

[z],η

Λc
0,η

]

and letting k → ∞ we obtain:

Pc,η
ω (` = x) = Z0,[x](x)

µc
[x],η

Λc
0,η

.

For the proof of Lemma 4.2 above, notice for instance that by (B.1):

Pc
N,ω(GN/2 ≥ L) = Pc

N,ω(`N/2 ≥ L) (B.3)

≤ C1 N3/2

bN/2c∑

t=L

t−3/2
N+1∑

k=bN/2c+1

(k − t)−3/2 (N + 2 − k)−3/2 ≤ C2 L−1/2,

where C1, C2 are positive constants.

The number of returns to zero. Analogously, we want to study the law of the total number
of returns to zero N := #{i ∈ N : Si = 0} under Pc,η

ω . Let NK := #{i : 1 ≤ i ≤ K : Si = 0}
for k ∈ N. For k ≤ K and N ∈ η:

Pc
N,ω(NK = k) =

K∑

x=1

M∗k
0,[x](x)

N∑

y=K+1

M[x],[y](y − x)Z[y],η(N − y)

Z0,η(N)

Then by (3.11) and (3.15):

lim
N→∞
N∈η

Pc
N,ω(NK = k)

=

K∑

x=0

M∗k
0,[x](x)




∞∑

y=0

L[x],η−[y]

Λc
0,η

Zη−[y],η(y) +

∞∑

z=K+1

M[x],[y](y − x)
Λc

[y],η

Λc
0,η


 .
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By (B.2), letting K → ∞ we obtain:

Pc,η
ω (N = k) =

1

Λc
0,η

[
Bk · µc

]

0,η
.

Appendix C. On the weak convergence of the critical zero set

We are going to outline an alternative proof of Lemma 4.4, that is we are going to show
that when δω = 1 as N → ∞

RN under Pω =⇒ {t ≥ 0 : B(t) = 0}. (C.1)

To keep the notation transparent, it is convenient to denote by GN ∈ M1(F) the image
law of RN under Pω. That is GN is a probability law on F (the class of all closed subsets
of R

+) defined for a measurable subset A ⊆ F by

GN (A) := Pω

(
RN ∈ A

)
.

In the same way the law of {t ≥ 0 : B(t) = 0} will be denoted by G(BM). Then we can
reexpress our goal (C.1) as

GN =⇒ G(BM) . (C.2)

Remember the definition (4.15) of the mapping dt : F 7→ R
+∪{+∞}. We claim that to

prove (C.2) it suffices to show that, for every n ∈ N and for all t1, . . . , tn ∈ R, the law of

the vector (dt1 , . . . , dtn) under GN converges to the law of the same vector under G(BM):

(dt1 , . . . , dtn) ◦
(
GN

)−1
=⇒ (dt1 , . . . , dtn) ◦

(
G(BM)

)−1
. (C.3)

The intuitive explanation of why (C.3) should imply (C.2) is that an element ξ ∈ F can
be identified with the process {dt(ξ)}t∈R+ , since ξ = {t ∈ R

+ : dt−(ξ) = t}. Hence the
convergence in M1(F) can be read in terms of the random process {dt(·)}t∈R+ , and using
the compactness of M1(F) it turns out that (C.3) is indeed sufficient to ensure (C.2). Let
us sketch more in detail these arguments.

(1) The Borel σ–field of F coincides with σ({dt}t∈R+), i.e. with the σ-field generated
by {dt}t∈R+ , and also with σ({dt}t∈I) where I is any dense subset of R

+.
(2) Suppose that we are given {νk}, ν ∈ M1(F) such that νk ⇒ ν: this fact does

not entail the convergence of all the finite dimensional marginals of {dt}, that is
it is not true that the law of the vector (dt1 , . . . , dtn) under νk converges to the
law of the same vector under ν, because the mappings dt(·) are not continuous
on F . Nevertheless one can show that this convergence does hold for almost all
choices of the indexes t1, . . . , tn. More precisely, given any measure ν ∈ M1(F)
there exists a subset Iν ⊆ R

+ with Leb(Iν
c) = 0 with the following property: for

any sequence {νk} with νk ⇒ ν, for any n ∈ N and for all t1, . . . , tn ∈ Iν , the
law of the vector (dt1 , . . . , dtn) under νk converges as k → ∞ to the law of the
same vector under ν. This is a well-known feature of processes whose discontinuity
points form a negligible set, in particular CADLAG processes: in fact the set Iν

can be chosen as the set of t ∈ R
+ such that ν

{
ξ : dt−(ξ) = dt(ξ)

}
= 1, because

dt−(ξ) = dt(ξ) implies that dt(·) is continuous at ξ.
(3) Since M1(F) is compact, to prove (C.2) it suffices to show that any convergent

subsequence of {GN}N converges to G(BM). Thus we take a convergent subsequence
Gkn ⇒ ν for some ν ∈ M1(F) and we want to prove that ν = G(BM). By point (2)
there exists a dense subset Iν ⊆ R

+ such that for t1, . . . , tn ∈ Iν the law of the
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vector (dt1 , . . . , dtn) under Gkn converges to the law of the same vector under ν, and
since we are assuming that (C.3) holds this means that the vector (dt1 , . . . , dtn)

has the same law under ν and under G(BM). This is equivalent to say that ν
and G(BM) coincide on the σ–field σ({dt}t∈Iν ), and by point (1) it follows that

indeed ν = G(BM).

Thus it only remains to show that (C.3) holds, and this can be done by direct com-
putation. For simplicity we consider only the case n = 1 of the one–time marginals, but
everything can be extended to the case n > 1.

For any t > 0 the law of dt under G(BM) is given by

G(BM)
(
dt ∈ dy

)
=

t1/2

π y(y − t)1/2
1(y>t) dy =: ρt(y) dy ,

see [23]. Hence we have to show that for every x ∈ R
+

lim
N→∞

Pω

(
dt(RN ) > x

)
=

∫ ∞

x
ρt(y) dy .

We recall that RN = range{τn/N : n ≥ 0} is the range of the process {τn}n∈N rescaled by
a factor 1/N , and that under Pω the process {τn}n∈N is a Markov–renewal process with
semi–Markov kernel Γ=

α,β(x) defined by (2.20). We also use the notation Uα,β(x) for the

corresponding Markov–Green function, defined by (2.21). Then using the Markov property
we get

Pω

(
dt(RN ) > x

)
=
∑

k∈N

Pω

(
τk ≤ Nt , τk+1 > Nx

)

=
∑

α,β∈S

Nt∑

y=1

∞∑

w=Nx

∑

k∈N

Pω

(
τk = y , [τk] = α

)
Pθyω

(
τ1 = w − y , [τ1] = β − α

)

=
∑

α,β∈S

Nt∑

y=1

U0,α(y)

∞∑

w=Nx

Γ=
α,β(w − y)

The asymptotic behavior of the terms appearing in the expression can be extracted
from (2.27) and (2.12): the net result is that as z → ∞

√
z U0,α(z)

[z]=α−−−→ T 2

2π

ζαξα∑
γ,γ′ ζγLγ,γ′ξγ′

=: cU
0,α

z3/2 Γ=
α,β(z)

[z]=β−α−−−−−→ ξβ

ξα
Lα,β =: cΓ

α,β .

Therefore we have as N → ∞

Pω

(
dt(RN ) > x

)
∼

∑

α,β∈S

cU
0,α cΓ

α,β

Nt∑

y=1

1√
y

1([y]=α)

∞∑

w=Nx

1

(w − y)3/2
1([w]=β)

∼ 1

T 2

(
∑

α,β∈S

cU
0,α cΓ

α,β

)
1

N2

∑

s∈(0, t
T

)∩ Z
N

1√
s

∑

u∈( x
T

,∞)∩ Z
N

1

(u − s)3/2
,
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and from the explicit expressions for cU
0,α, cΓ

α,β together with the convergence of the Rie-
mann sums to the corresponding integral we get

∃ lim
N→∞

Pω

(
dt(RN ) > x

)
=

1

2π

∫ t/T

0
ds

1√
s

∫ ∞

x/T
du

1

(u − s)3/2

=
1

π

∫ t/T

0
ds

1√
s

1√
x/T − s

=
1

π

∫ t

0
dy

1√
y

1√
x − y

=

∫ ∞

x
dz ρt(z) ,

that is what was to be proven.

Appendix D. A localization argument

Let us give a proof that for the copolymer near a selective interface model, described
in § 1.1, the charge ω never belongs to P (see (1.17) for the definition of P). More precisely,
we are going to show that if hω = 0 and Σ 6≡ 0 then δω > 1, that is the periodic copolymer
with zero–mean, nontrivial charges is always localized. As a matter of fact this is an
immediate consequence of the estimates on the critical line obtained in [5]. However we
want to give here an explicit proof, both because it is more direct and because the model
studied in [5] is built over the simple random walk measure, corresponding to p = 1/2
with the language of § 1, while we consider the case p < 1/2.

We recall that, by (A.1), the Perron-Frobenius eigenvalue Z(Q) of an irreducible matrix
Q is increasing in the entries of Q. We also point out a result proved by Kingman [15]: if
the matrix Q = Q(t) is a function of a real parameter t such that all the entries Qα,β(t)
are log–convex functions of t (that is t 7→ log Qα,β(t) is convex for all α, β), then also
t 7→ Z(Q(t)) is a log–convex function of t.

Next we come to the copolymer near a selective interface model: with reference to the

general Hamiltonian (1.3), we are assuming that ω
(0)
n = ω̃

(0)
n = 0 and hω = 0 (where hω

was defined in (1.8)). In this case the integrated Hamiltonian Φα,β(`), see (1.13), is given
by

Φα,β(`) =





0 if ` = 1 or ` /∈ β − α

log
[

1
2

(
1 + exp

(
Σα,β

))]
if ` > 1 and ` ∈ β − α

.

We recall that the law of the first return to zero of the original walk is denoted by K(·),
see (1.11), and we introduce the function q : S → R

+ defined by

q(γ) :=
∑

x∈N, [x]=γ

K(x)

(notice that
∑

γ q(γ) = 1). Then the matrix Bα,β defined by (1.15) becomes

Bα,β =





1
2

(
1 + exp

(
Σα,β

))
q(β − α) if β − α 6= [1]

K(1) + 1
2

(
1 + exp

(
Σα,α+[1]

))
·
(
q([1]) − K(1)

)
if β − α = [1]

(D.1)

By (1.16), to prove localization we have to show that the Perron–Frobenius eigenvalue of
the matrix (Bα,β) is strictly greater than 1, that is Z(B) > 1.
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Applying the elementary convexity inequality (1 + exp(x))/2 ≥ exp(x/2) to (D.1) we
get

Bα,β ≥ B̃α,β :=

{
exp

(
Σα,β/2

)
q(β − α) if β − α 6= [1]

K(1) + exp
(
Σα,α+[1]/2

)
·
(
q([1]) − K(1)

)
if β − α = [1]

. (D.2)

By hypothesis Σα0,β0 6= 0 for some α0, β0, therefore the inequality above is strict for
α = α0, β = β0. We have already observed that the P–F eigenvalue is a strictly increasing

function of the entries of the matrix, hence Z(B) > Z(B̃). Therefore it only remains to

show that Z(B̃) ≥ 1, and the proof will be completed.
Again an elementary convexity inequality applied to the second line of (D.2) yields

B̃α,β ≥ B̂α,β := exp
(
c(β − α)Σα,β/2

)
· q(β − α) (D.3)

where

c(γ) :=





1 if γ 6= [1]

q([1])−K(1)
q([1]) if γ = [1]

.

We are going to prove that Z(B̂) ≥ 1. Observe that setting vα := Σ[0],α we can write

Σα,β = Σ[0],β − Σ[0],α = vβ − vα .

Then we make a similarity transformation via the matrix Lα,β := exp(vβ/2)1(β=α), getting

Cα,β :=
[
L · B̂ · L−1

]
α,β

= exp
((

c(β − α) − 1
)
Σα,β/2

)
· q(β − α)

= exp
(
dΣα,α+[1] 1(β−α=1)

)
· q(β − α) ,

where we have introduced the constant d := −K(1)/( 2 q([1]) ). Of course Z(B̂) = Z(C).

Also notice that by the very definition of Σα,β we have Σα,α+[1] = ω
(−1)
α+[1] − ω

(+1)
α+[1], hence

the hypothesis hω = 0 yields
∑

α∈S(Σα,α+[1]) = 0.
Thus we are finally left with showing that Z(C) ≥ 1 where Cα,β is an S × S matrix of

the form

Cα,β = exp
(
wα 1(β−α=1)

)
· q(β − α) where

∑

α

wα = 0
∑

γ

q(γ) = 1 .

To this end, we introduce an interpolation matrix

Cα,β(t) := exp
(
t · wα 1(β−α=1)

)
· q(β − α) ,

defined for t ∈ R, and notice that C(1) = C. Let us denote by η(t) := Z
(
C(t)

)
the

Perron–Frobenius eigenvalue of C(t): as the entries of C(t) are log–convex functions of t,
it follows that also η(t) is log–convex, therefore in particular convex. Moreover η(0) = 1
(the matrix C(0) is bistochastic) and using (A.1) one easily checks that d

dtη(t)|t=0 = 0.
Since clearly η(t) ≥ 0 for all t ∈ R, by convexity it follows that indeed η(t) ≥ 1 for all t ∈ R,
and the proof is complete.
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