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The unitary three-body problem in a trap
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We consider either 3 spinless bosons or 3 spin-1/2 fermions, interacting with a short range potential
of infinite scattering length and trapped in an isotropic harmonic potential. In the zero-range
limit, we obtain analytically the exact spectrum and eigenfunctions, and find that even the bosonic

universal states have a vanishing collisional loss rate. For realistic values of the interaction range, the
numerical solution of a finite range model shows that the coupling between universal and efimovian
states remains weak, which confirms that the bosonic universal states are long-lived and observable.

PACS numbers: 03.75.Ss, 05.30.Jp

With a Feshbach resonance, it is now possible to pro-
duce a stable quantum gas of fermionic atoms in the uni-
tary limit, i.e. with an interaction of negligible range
and scattering length a = ∞ [1, 2, 3]. The properties
of this gas, including its superfluidity, are under active
experimental investigation [4, 5, 6, 7, 8, 9, 10]. They
have the remarkable feature of being universal, as was
checked in particular for the zero temperature equation
of state of the gas using a Monte Carlo method [11, 12].
In contrast, experiments with Bose gases at a Feshbach
resonance suffer from high loss rates [13, 14, 15, 16], and
even the existence of a unitary Bose gas phase is a very
open subject [17].

In this context, fully understanding the few-body uni-
tary problem is a crucial step. In free space, the unitary
3-boson problem has Efimov bound states [18]. In a trap,
it has efimovian states [19, 20] but also universal states
whose energy depends only on the trapping frequency
[19]. Several experimental groups are currently trapping
a few particles at a node of an optical lattice [21] and
are controlling the interaction strength via a Feshbach
resonance. Results have already being obtained for two
particles per lattice node [22], a case that was solved
analytically [23]. Anticipating experiments with 3 atoms
per node, we derive in this Letter exact expressions for all

universal and efimovian eigenstates of the 3-body prob-
lem for bosons (generalizing [19] to a non-zero angular
momentum) and for identical fermions in a trap. We also
show the long lifetime of the universal states and their
observability in a real experiment, extending to universal
states the numerical calculations of [20].

Assuming that the effective range and the true range of
the interaction potential are negligible as compared to the
de Broglie wavelength of the 3 particles, we replace the
interaction potential by the Bethe-Peierls contact condi-
tions: there exists a function A such that

ψ(r1, r2, r3) =

(

1

rij
− 1

a

)

A(Rij , rk) +O(rij) (1)

in the limit rij → 0 taken for fixed positions of the other
particle k and of the center of mass Rij of i and j. In the

unitary limit considered in this paper, a = ∞. When all
the distances rij are non zero, the 3-body wavefunction
ψ obeys the non-interacting Schrödinger equation

N
∑

i=1

[

− ~
2

2m
∆ri

+
1

2
mω2 r2i

]

ψ = Eψ (2)

where ω is the oscillation frequency and m the mass of a
particle.

To solve this problem, we extend the approach of Efi-
mov [18, 24] to the trapped case, and obtain the form

ψ(r1, r2, r3) = ψcm(C)F (R)(1 +Q)
1

rρ
ϕ(α)Y m

l (ρ/ρ).

(3)
Since the center of mass is separable for a harmonic trap-
ping, we have singled out the wavefunction ψcm(C) of its
stationary state of energy Ecm, with C = (r1+r2+r3)/3.
The operator Q ensures the correct exchange symmetry
of ψ: for spinless bosons, Q = P13+P23, where Pij trans-
poses particles i and j; for spin 1/2 fermions, we assume
a spin state ↑↓↑ so that Q = −P13. The Jacobi coordi-
nates are r = r2 − r1 and ρ = (2r3 − r1 − r2)/

√
3. For a

given total internal angular momentum l of the system,
the function ϕ(α), where α = arctan(r/ρ) is a hyperran-
gle, solves the eigenvalue problem

− ϕ′′(α) +
l(l + 1)

cos2 α
ϕ(α) = s2 ϕ(α) (4)

ϕ(π/2) = 0 (5)

ϕ′(0) + η(−1)l 4√
3
ϕ(π/3) = 0 (6)

with η = −1 for fermions, η = 2 for bosons. An analytical
expression can be obtained for ϕ(α) [25], which leads to
the transcendental equation for s [26]:

Im
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)

]

= 0, (7)
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FIG. 1: The constants sl,n for (a) 3 identical fermions and
(b) 3 bosons, obtained by numerical solution of the transcen-
dental equation Eq.(7). We have not represented the sl=0,n=0

solution for bosons, which is purely imaginary. According to
Eq.(10), each real sl,n gives rise to a semi-infinite ladder of
universal states. Note that the ground universal state has a
total angular momentum l = 1 for fermions (E ≃ 4.27~ω)
and l = 2 for bosons (E ≃ 5.32~ω).

with the notation (x)n ≡ x(x+ 1) . . . (x+n). This equa-
tion is readily solved numerically: for each l, the solu-
tions form an infinite sequence (sl,n)n≥0, see Fig.1. As
we show below, all solutions are real, except for bosons
in the l = 0 channel, where a single purely imaginary so-
lution exists, sl=0,n=0 ≃ i×1.00624 ≡ s0, the well known
Efimov solution. Finally, the function F (R), where the
hyperradius is R = (r2 + ρ2)1/2, solves the problem:

[

−~
2

m

(

d2

dR2
+

1

R

d

dR

)

+ V (R)

]

F (R) = (E−Ecm)F (R)

(8)
where V (R) = ~

2s2/(mR2) + mω2R2/4, s being one of
the sl,n. This is the Schrödinger equation for a fictive
particle of zero angular momentum and mass m/2 mov-
ing in two dimensions in the potential V (R).

When s2 > 0, the solution for F is

F (R) = e−R2/4a2

hoRs L(s)
q

(

R2/2a2
ho

)

(9)

where aho = (~/mω)1/2 is the harmonic oscillator length,

L
(·)
q is the generalized Laguerre polynomial of degree q,

q being an arbitrary non-negative integer. The resulting
spectrum for the 3-body problem is

E = Ecm + (sl,n + 1 + 2q)~ω. (10)

The quantum number q leads to a semi-infinite ladder
structure of the spectrum with a regular spacing 2~ω.
This is related to the existence of a scaling solution for the
trapped unitary gas [27] and the subsequent embedding
of the Hamiltonian in a SO(2, 1) algebra [28].

When s2 < 0, as is the case in the l = n = 0 chan-
nel for bosons, the Schrödinger equation Eq.(8) does not

define by itself an Hermitian problem [29] and has to be
supplemented by a boundary condition for R→ 0:

F (R) ∝ Im

[(

R

Rt

)s0
]

, (11)

where Rt is an additional 3-body parameter. For the
resulting efimovian states, the function F is given by

F (R) = R−1W(E−Ecm)/2~ω,s0/2(R
2/2a2

ho) (12)

where W is a Whittaker function; and the energy solves:

argΓ

[

1 + s0 − (E − Ecm)/~ω

2

]

= −|s0| ln(Rt/
√

2aho)

+argΓ(1 + s0) mod π. (13)

We did not yet obtain all the 3-body eigenstates [30].
Indeed, all the above states satisfy the contact condition
(1) with a non-zero function A. But there are wavefunc-
tions of the unitary gas which vanish when two particles
are at the same point; these are also eigenstates of the
non-interacting case. An example is the Laughlin state
of the Fractional Quantum Hall Effect for fermions and
bosons [31]:

ψ = e−
∑

3

i=1
r2

i
/2a2

ho

∏

1≤n<m≤3

[(xn + iyn) − (xm + iym)]
|η|
.

(14)
In the limit of high energies E ≫ ~ω, there are actually
many of these A ≡ 0 states: their density of states (DOS)
is almost as high as the DOS of the non-interacting case:

ρA≡0(E)

ρnon−inter(E)
=

E→∞
1 −O

(

(

~ω

E

)2
)

. (15)

In contrast, the DOS of the A 6= 0 states is

ρA 6=0(E)

ρnon−inter(E)
=

E→∞
O

(

(

~ω

E

)3
)

. (16)

Eq.(16) is a consequence of Eq.(17). We
found Eq.(15) by applying the rank theorem
to the operator ψ0(r1, r2, r3) 7→

(

ψ0(r1, r1, r3),

ψ0(r1, r2, r1), ψ0(r1, r2, r2)
)

which associates, to each
non-interacting eigenstate ψ0 of energy E, 3 functions
of 2 atomic positions, and whose kernel is the space of
A ≡ 0 states of energy E [32].

This completes our derivation of all the eigenstates of
the unitary 3-body problem in a trap. Three types of
states are obtained in general: eigenstates common to
the non-interacting case, universal interacting states, and
efimovian states depending on a 3-body parameter Rt.

We now prove that the Efimov effect is absent for 3
fermions. This fact is known but to our knowledge not
demonstrated. This is important in practice: if Efimov
states would exist, they could be populated in an ex-
periment, thus destroying universality. Numerically one



3

can only check the absence of imaginary solution of the
transcendental equation in some finite interval of s and l.
Here we prove that for any l and any imaginary s, there
is no solution to the problem (4,5,6). Let us assume
that s2 ≤ l(l + 1), and that (4,5) are satisfied. We will
show that the quantity Q(l, s2) ≡ ϕ′(0) − (−1)lϕ(π/3)
is non zero, which is incompatible with (6). We rewrite
(4) as ϕ′′(α) = U(α)ϕ(α), and take the normalization:

ϕ(0) = 1. From U(α; l, s2) = l(l+1)
cos2 α − s2 > 0, it fol-

lows: ϕ′(0) ≤ 0, and ϕ(α) > 0 for 0 ≤ α < π/2. Thus,
Q(l, s2) < 0 for l even. For l odd, one needs two interme-
diary results: (i) Q(l = 1, s2 = 2) < 0 (which we check by
explicit calculation); (ii) if ϕ1, ϕ2 are two solutions with
U2 ≥ U1, then ϕ2 ≤ ϕ1, and Q2 ≤ Q1. Now the assump-
tion s2 ≤ l(l+1) implies U(α; l, s2) ≥ U(α; l = 1, s2 = 2).
One concludes that: Q(l, s2) ≤ Q(l = 1, s2 = 2) < 0. For
bosons, we proved similarly that all the s2 are positive,
except for the well known sn=0,l=0 ≃ i× 1.00624.

It appears clearly on Fig.1 that sl,n gets close to an
integer value s̄l,n as soon as l or n increases, with

s̄l,n = l + 1 + 2n for l ≥ |η|
s̄l,n = 2n− l+ (2η + 11)/3 for l < |η| . (17)

To check this analytically, the transcendental equation is
not useful. We rather applied semi-classical WKB tech-
niques to the problem (4,5,6), and obtained [33]:

sl,0 − s̄l,0 ∼
l→∞

η(−1)l+121−l
/
√

3πl (18)

sl,n − s̄l,n ∼
n→∞

η cos
[π

3
(l + 1 − n)

] (−1)l+n+14

π
√

3 n
(19)

max
n

|sl,n − s̄l,n| ∼
l→∞

|η| 4Aimax

37/12 π1/2
l−5/6 (20)

with Aimax ≃ 0.5357 the maximum of the Airy function.
We now discuss the lifetime of the 3-body universal

states found here in the trap, due to 3-body recombi-
nation to a deeply bound molecular state. We estimate
the loss rate Γloss as the probability that 3 particles ap-
proach each other to distances of the order of the range σ
of the interaction potential, times ~/mσ2 [34]. Using the
3-body wavefunctions obtained above for the zero range
model, this gives for a universal state with exponent s:

Γloss ∝ ω

(

σ

aho

)2s

. (21)

Since s ≥ 1.77 for fermions and s ≥ 2.82 for bosons (Fig.
1), the rescaled lifetime ω/Γloss of all the universal states
tends to infinity when the rescaled range σ/aho tends
to zero. Therefore, the loss rate vanishes in the zero
range limit, not only for fermions, but also for universal
bosonic states. The Pauli principle is thus not a necessary
condition for a reduced loss rate.

What is the experimental relevance of our results? The
unitary three-body problem in an isotropic harmonic trap
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FIG. 2: Numerical solution of the separable potential model:
(a) 3-body eigenenergies and (b) estimate of the 3-body loss
rate in units of ω [34], as a function of the potential range σ
(lower axis) and the 3-body parameter Rt (upper axis). (a)
The lowest energy universal branch (stars) has a very weak
avoided crossing with an efimovian branch (crosses). The
analytical predictions of the zero-range model (solid lines) are
in good agreement with the numerics; a linear extrapolation of
the stars to σ = 0 (dotted line) matches the zero-range result.
(b) The universal branch has a reduced loss rate except very
close to the avoided crossing, where mixed states are formed
(triangles).

may be realized by trapping 3 bosons or 3 fermions at
a site of a deep optical lattice, and using a Feshbach
resonance. A crucial condition is that the interaction
potential range is much smaller than aho. For a broad
Feshbach resonance with an effective range of the order
of the Van der Waals range, we find that the potential
range may be only one order of magnitude smaller than
aho, for an usual lattice spacing of ∼ 0.5µm and a lattice
modulation depth of ∼ 50 recoil energies. One may then
fear that this experimental situation is not in the asymp-
totic regime of a zero range potential. In the zero range
model, there are energy crossings between universal and
efimovian states as a function of Rt/aho (see solid lines
in Fig.2a); for a finite range, one expects a mixing be-
tween universal and efimovian states, leading to avoided
crossings and a reduced lifetime for the universal states.

We therefore solve a finite interaction range model, the
Gaussian separable potential of range σ [20], defined as

〈r1, r2|V |r′1, r′2〉 = − ~
2

2π3/2mσ5
e−(r2

12
+r

′
2

12
)/2σ2

δ(R12−R
′
12).

(22)
This leads to an integral equation that we solve numer-
ically, as will be detailed elsewhere. In Fig.2a, we show
two l = 0 energy branches as a function of σ, corre-
sponding in the zero-range model to the lowest l = 0
universal state and to an efimovian branch. The linear
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extrapolation of the universal branch to the σ = 0 limit
reproduces the analytical zero-range result at the 10−3

level. The zero-range prediction for the efimovian branch
is also in acceptable agreement with the separable poten-
tial [35]. The avoided crossing between the two branches
is hardly visible, which reveals that the coupling due to
the finite range is weak. To estimate the 3-body loss
rate, we calculate the quantity |ψint(0,0)|2~σ4/m, with
ψ(r1, r2, r3) = ψcm(C) ψint(r,ρ) and ψint normalized to
unity [34]. Fig.2b shows that there is indeed a very long
lifetime on the universal branch, as compared to the efi-
movian one, except very close to the avoided crossing.

Finally, we propose the following experimental se-
quence: if one starts with the non-interacting ground
state, a superposition of 3-body unitary eigenstates can
be prepared by switching suddenly the scattering length
from zero to infinity. The Bohr frequencies in the subse-
quent evolution of an observable would give information
on the 3-body spectrum. For bosons, there will be a fi-
nite fraction of the sites where the three atoms have a
long lifetime. This fraction is equal to the probability of
having populated a universal state, which we calculate
to be 0.174. . ., a value dominated by the contribution
(0.105. . .) of the lowest l = 0 universal state.

In summary, we have obtained the complete analyti-
cal solution of the unitary three-body problem in a trap.
For bosons, there are both efimovian and universal states,
while for fermions we proved that all states are univer-
sal. All universal states are stable in the zero-range limit
with respect to three-body losses, not only for fermions,
but also for bosons. From the numerical solution of a
finite range model, we conclude that the bosonic univer-
sal states are indeed long-lived and observable in present
experimental state of the art.

We acknowledge very useful discussions with L. Pri-
coupenko, D. Petrov and A. Bulgac. Laboratoire Kastler
Brossel is a Unité de Recherche de l’École Normale
Supérieure et de l’Université Paris 6, associée au CNRS.
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