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Abstract

We consider repeated games in which the player, instead of observing the action chosen
by the opponent in each game round, receives a feedback generated by the combined choice
of the two players. We study Hannan consistent players for these games, that is, randomized
playing strategies whose per-round regret vanishes with probability one as the numbern of
game rounds goes to infinity. We prove a general lower bound ofΩ(n−1/3) for the conver-
gence rate of the regret, and exhibit a specific strategy that attains this rate for any game for
which a Hannan consistent player exists.

∗The first two authors acknowledge support by the PASCAL Network of Excellence under EC grant no. 506778.
The work of the second author was supported by the Spanish Ministry of Science and Technology and FEDER,
grant BMF2003-03324. Part of this work was done wile the third co-author was visiting Pompeu Fabra University.

1



1 A motivating example

A simple yet nontrivial example of partial monitoring is the following dynamic pricing problem.
A vendor sells a product to a sequence of customers whom he attends one by one. To each
customer, the seller offers the product at a price he selects, say, from the interval[0, 1]. The cus-
tomer then decides to buy the product or not. No bargaining is possible and no other information
is exchanged between buyer and seller. The goal of the seller is to achieve an income almost as
large as if he knew the maximal price each customer is willing to pay for the product. Thus, if
the price offered to thet-th customer ispt and the highest price this customer is willing to pay is
yt ∈ [0, 1], then the loss of the seller isyt − pt if the product is sold and (say) a constantc > 0 if
the product is not sold. Formally, the loss of the vendor at timet is

`(pt, yt) = (yt − pt)Ipt≤yt + c Ipt>yt

wherec ∈ [0, 1]. (In another version of the problem the constantc may be replaced byyt. In this
case it is easy to see that all terms depending onyt cancel out when considering the regret, and we
obtain the bandit setting analyzed by Kleinberg and Leighton [28]—see below.) In either case,
if the seller knew in advance the empirical distribution of theyt’s then he could set a constant
price q ∈ [0, 1] which minimizes his overall loss. A natural question is whether there exists a
randomized strategy for the seller such that his average regret

1

n

n∑
t=1

`(pt, yt)− min
q∈[0,1]

1

n

n∑
t=1

`(q, yt)

is guaranteed to converge to zero asn →∞ regardless of the sequencey1, y2, . . . of prices. The
difficulty in this problem is that the only information the seller (i.e., the forecaster) has access to
is whetherpt > yt but neitheryt nor `(pt, yt) are revealed. One of the main results of this paper
describes a simple strategy such that the average regret defined above is of the order ofn−1/5.

We treat such limited-feedback (orpartial monitoring) prediction problems in a more general
framework which we describe next. The dynamic pricing problem described above, which is
a special case of this more general framework, has been also investigated by Kleinberg and
Leighton [28] in a simpler setting where the reward of the seller is defined asρ(pt, yt) = pt Ipt≤yt.
Note that, by using the feedback information (i.e., whether the customer bought the product or
not), here the seller can compute the value ofρ(pt, yt). Therefore, their game reduces to an
instance of the multi-armed bandit game (see Example 1 below) with a continuous action space.

2 Main definitions

We adopt a learning-theoretic viewpoint and describe partial monitoring as a repeated prediction
game between aforecaster (the player) and theenvironment (the opponent). In the same spirit,
we calloutcomes the actions taken by the environment. At each roundt = 1, 2 . . . of the game,
the forecaster chooses an actionIt from the set{1, . . . , N}, and the environment chooses an
actionyt from the set{1, . . . ,M}. The losses of the forecaster are summarized in theloss matrix
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PREDICTION WITH PARTIAL MONITORING

Parameters: number of actionsN , number of outcomesM , loss functioǹ , feedback func-
tion h.

For each roundt = 1, 2 . . .,

(1) the environment chooses the next outcomeyt ∈ {1, . . . ,M} without revealing it;

(2) the forecaster chooses a probability distributionpt over the set ofN actions and draws
an actionIt ∈ {1, . . . , N} according to this distribution;

(3) the forecaster incurs loss`(It, yt) and each actioni incurs loss̀ (i, yt), where none of
these values is revealed to the forecaster;

(4) the feedbackh(It, yt) is revealed to the forecaster.

L = [`(i, j)]N×M . (This matrix is assumed to be known by the forecaster.) Without loss of
generality, we rescale the losses so that they all lie in[0, 1]. If, at time t, the forecaster chooses
an actionIt ∈ {1, . . . , N} and the outcome isyt ∈ {1, . . . ,M}, then the forecaster’s suffers
loss `(It, yt). However, instead of the outcomeyt, the forecaster only observes the feedback
h(It, yt), whereh is a knownfeedback function that assigns, to each action/outcome pair in
{1, . . . , N} × {1, . . . ,M} an element of a finite setS = {s1, . . . , sm} of signals. The values of
h are collected in afeedback matrix H = [h(i, j)]N×M .

Note that we do not make any restrictive assumption on the power of the opponent. The
environment may choose actionyt at time t by considering the whole past, that is, the whole
sequence of action/outcome pairs(Is, ys), s = 1, . . . , t−1. Without loss of generality, we assume
that the opponent uses a deterministic strategy, so that the value ofyt is fixed by the sequence
(I1, . . . , It−1). In comparison, the forecaster has access to significantly less information, since
he only knows the sequence of past feedbacks,(h(I1, y1), . . . , h(It−1, yt−1)).

We note here that some authors consider a more general setup in which the feedback may
be random. For the sake of clarity we treat the simpler model described above and return to the
more general case in Section 7.

It is an interesting and complex problem to investigate the possibilities of a predictor only
supplied with the limited information of the feedback. In this paper we focus on the average
regret

1

n

n∑
t=1

`(It, yt)− min
i=1,...,N

1

n

n∑
t=1

`(i, yt) ,

that is, the difference between the average (per-round) loss of the forecaster and the average
(per-round) loss of the best action. Forecasting strategies guaranteeing that the average regret
converges to zero almost surely for all possible strategies of the environment are calledHannan
consistent after James Hannan, who first proved the existence of a Hannan consistent strategy
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in the full information case [21] whenh(i, j) = j for all i, j (i.e., when the true outcomeyt

is revealed to the forecaster after taking an action). The full information case has been studied
extensively in the theory of repeated games, and in the fields of learning theory and information
theory. A few key references and surveys include Blackwell [6], Cesa-Bianchi, Freund, Haus-
sler, Helmbold, Schapire, and Warmuth [8], Cesa-Bianchi and Lugosi [9], Feder, Merhav, and
Gutman [14], Foster and Vohra [18], Hart and Mas-Colell [23], Littlestone and Warmuth [29],
Merhav and Feder [32], and Vovk [38, 37].

A natural question one may ask is under what conditions on the loss and feedback matrices it
is possible to achieve Hannan consistency, that is, to guarantee that, asymptotically, the cumula-
tive loss of the forecaster is not larger than that of the best constant action with probability one.
Naturally, this depends on the relationship between the loss and feedback functions. An initial
answer to this question has been provided by the work of Piccolboni and Schindelhauer [34].
However, since they are only concerned with expected performance, their results do not imply
Hannan consistency. In addition, their bounds have suboptimal rates of convergence. Below,
we extend those results by showing a forecaster that achieves Hannan consistency with optimal
convergence rates.

Note that the forecaster is free to encode the valuesh(i, j) of the feedback function by real
numbers. The only restriction is that ifh(i, j) = h(i, j′) then the corresponding real numbers
should also coincide. To avoid ambiguities by trivial rescaling, we assume that|h(i, j)| ≤ 1
for all pairs (i, j). Thus, in the sequel we assume thatH = [h(i, j)]N×M is a matrix of real
numbers between−1 and1 and keep in mind that the forecaster may replace this matrix by
Hφ = [φi(h(i, j))]N×M for arbitrary functionsφi : [−1, 1] → [−1, 1], i = 1, . . . , N . Note that
the setS of signals may be chosen such that it hasm ≤ M elements, though after numerical
encoding the matrix may have as many asMN distinct elements.

The problem of partial monitoring was considered by Mertens, Sorin, and Zamir [33], Rus-
tichini [35], Piccolboni, and Schindelhauer [34], and Mannor and Shimkin [30]. The forecaster
strategy studied in Section 3 is first introduced in [34], where its expected regret is shown to
have a sub-linear growth. Rustichini [35] and Mannor and Shimkin [30] consider a more gen-
eral setup in which the feedback is not necessarily a deterministic function of the pair outcome
and forecaster’s action, but it may be random with a distribution indexed by this pair. Based on
Blackwell’s approachability theorem, Rustichini [35] establishes a general existence result for
strategies with asymptotically optimal performance in this more general framework. In this pa-
per we answer Rustichini’s question about the fastest achievable rate of convergence in the case
when Hannan consistent strategies exist. Mannor and Shimkin also consider cases when Hannan
consistency may not be achieved, give a partial solution, and point out important difficulties in
such cases.

Before introducing a general prediction strategy and sufficient conditions for its Hannan con-
sistency, we describe a few concrete examples of partial monitoring problems.

Example 1 (Multi-armed bandit problem.) A well-studied special case of the partial monitoring
prediction problem is the so-called multi-armed bandit problem. Here the forecaster, after taking
an action, is able to measure his loss (or reward) but does not have access to what would have
happened had he chosen another possible action. HereH = L, that is, the feedback received by
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the forecaster is just his own loss. This problem has been widely studied both in a stochastic and
in a worst-case setting. The worst-case or adversarial setting considered in this paper was first
investigated by Bãnos [5] (see also Megiddo [31]). Hannan consistent strategies were constructed
by Foster and Vohra [17], Auer, Cesa-Bianchi, Freund, and Schapire [2], and Hart and Mas Colell
[22, 24] (see also Fudenberg and Levine [20]). Auer, Cesa-Bianchi, Freund, and Schapire [2]
(see also Auer [1] and the refined analysis of Cesa-Bianchi and Lugosi [11]) define a strategy
that guarantees a rate of convergence of the orderO(

√
N(log N)/n) for the regret, which is

optimal up to the logarithmic factor.

Example 2 (Dynamic pricing.) Consider the dynamic pricing problem described in the introduc-
tion of the section under the additional restriction that all prices take their values from the finite
set{0, 1/N, . . . , (N − 1)/N} whereN is a positive integer (see Example 6 for a non-discretized
version). Clearly, ifN is sufficiently large, this discrete version approximates arbitrarily the
original problem. Now one may takeM = N and the loss matrix is

L = [`(i, j)]N×N where `(i, j) =
j − i

N
Ii≤j + c Ii>j .

The information the forecaster (i.e., the vendor) receives is simply whether the predicted value
It is greater than the outcomeyt or not. Thus, the entries of the feedback matrixH may be taken
to beh(i, j) = Ii>j or, after an appropriate re-encoding,

h(i, j) = a Ii≤j + b Ii>j i, j = 1, . . . , N

wherea andb are constants chosen by the forecaster satisfyinga, b ∈ [−1, 1].

Example 3 (Apple tasting.) This problem was first considered by Helmbold, Littlestone, and
Long [26] in a somewhat more restrictive setting. In this exampleN = M = 2 and the loss and
feedback matrices are given by

L =

[
0 1
1 0

]
and H =

[
a a
b c

]
.

Thus, the forecaster only receives feedback about the outcomeyt when he chooses the first action.
(Imagine that apples are to be classified as “good for sale” or “rotten”. An apple classified as
“rotten” may be opened to check whether its classification was correct. On the other hand, since
apples that have been checked cannot be put on sale, an apple classified “good for sale” is never
checked.)

Example 4 (Label efficient prediction.) In the problem of label efficient prediction (see Helm-
bold and Panizza [25] and also Cesa-Bianchi, Lugosi, and Stoltz [12]) the forecaster, after choos-
ing its prediction for roundt, decides whether to query the outcomeyt, which he can only do for
a limited number of times. In [12] matching upper and lower bounds are given for the regret in
terms of the number of available labels, total number of rounds, and number of actions. A variant
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of the label efficient prediction problem may also be cast as a partial monitoring problem. Let
N = 3, M = 2, and consider loss and feedback matrices of the form

L =

 1 1
1 0
0 1

 and H =

 a b
c c
c c

 .

In this example the only times useful feedback is received are when the first action is played but
in this case a maximal loss is incurred regardless of the outcome. Thus, just like in the problem
of label efficient prediction, playing the “informative” action has to be limited, otherwise there
is no hope for Hannan consistency.

3 General upper bounds on the regret

The purpose of this section is to derive general upper bounds for the rate of convergence of the
regret achievable under partial monitoring. This will be done by analyzing a forecasting strat-
egy inspired by Piccolboni and Schindelhauer [34]. This strategy is based on the exponentially
weighted average forecaster, a thoroughly studied predictor in the full information case, see,
for example, Auer, Cesa-Bianchi, and Gentile [3], Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire, and Warmuth [8], Littlestone and Warmuth [29], Vovk [38, 37]. In the special case
of the multi-armed bandit problem, the forecaster reduces to the strategy of Auer, Cesa-Bianchi,
Freund, and Schapire [2] (see also Hart and Mas-Colell [24] for a closely related method).

The crucial assumption under which the strategy is defined is that there exists anN × N
matrixK = [k(i, j)]N×N such that

L = KH ,

that is,

H and

[
H
L

]
have the same rank. In other words we may write, for alli ∈ {1, . . . , N} andj ∈ {1, . . . ,M},

`(i, j) =
N∑

l=1

k(i, l) h(l, j) .

In this case one may define the estimated losses˜̀by

˜̀(i, yt) =
k(i, It) h(It, yt)

pIt,t

, i = 1, . . . , N . (1)

(Note that the estimates proposed above are real-valued, and may even be negative.) We denote
the cumulative estimated losses at roundt and for actioni by L̃i,t =

∑t
s=1
˜̀(i, yt).

Consider the forecaster defined in Figure 1, wherek∗ is defined in Theorem 1. Roughly
speaking, the two terms in the expression ofpi,t correspond to “exploitation” and “exploration”.
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Parameters:matrixL of losses, feedback matrixH, matrixK such thatL = KH
Initialization: L̃1,0 = · · · = L̃N,0 = 0.

For each roundt = 1, 2, . . .

(1) letηt = (k∗)−2/3((ln N)/N)2/3t−2/3 andγt = (k∗)2/3N2/3(ln N)1/3t−1/3;

(2) choose an actionIt from the set of actions{1, . . . , N} at random, according to the
distributionpt defined by

pi,t = (1− γt)
e−ηt

eLi,t−1∑N
k=1 e−ηt

eLk,t−1

+
γt

N
;

(3) let L̃i,t = L̃i,t−1 + ˜̀(i, yt) for all i = 1, . . . , N .

Figure 1: The randomized forecaster for prediction under partial monitoring.

The first term assigns exponentially decreasing weights to the actions depending on their es-
timated cumulative losses, while the second term ensures sufficient exploration to guarantee
accurate estimates of the losses.

A key property of the loss estimates is their unbiasedness in the following sense. Denoting
by Et the conditional expectation givenI1, . . . , It−1 (i.e., the expectation with respect to the
distributionpt of the random variableIt), observe that this conditioning fixes the value ofyt, and
thus,

Et
˜̀(i, yt) =

N∑
k=1

k(i, k) h(k, yt)

pk,t

pk,t

=
N∑

k=1

k(i, k) h(k, yt) = `(i, yt) , i = 1, . . . , N ,

and thereforẽ̀(i, yt) is an unbiased estimate of the loss`(i, yt).
The main performance bound of this section is summarized in the next theorem. Note that

the average regret
1

n

(
n∑

t=1

`(It, yt)− min
i=1,...,N

n∑
t=1

`(i, yt)

)
decreases to zero at a raten−1/3. This is significantly slower than the best raten−1/2 obtained
in the “full information” case. In the next section we show that this rate cannot be improved
in general. Thus, the price paid for having access only to some feedback except for the actual
outcomes is the deterioration in the rate of convergence. However, Hannan consistency is still
achievable whenever the conditions of the theorem are satisfied.
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Theorem 1 Consider any partial monitoring problem such that the loss and feedback matrices
satisfyL = KH for someN × N matrix K with k∗ = max{1, maxi,j |k(i, j)|}, and consider
the forecaster of Figure 1. Letδ ∈ (0, 1). Then, for all strategies of the opponent, for alln, with
probability at least1− δ,

1

n

n∑
t=1

`(It, yt)− min
i=1,...,N

1

n

n∑
t=1

`(i, yt)

≤ 5

(
(k∗N)2 ln N

n

)1/3
(

1 +

√
3

2

ln((N + 4)/δ)

ln N

)

+

√
1

2n
ln

N + 4

δ
+ 5(k∗N)4/3n−2/3(ln N)−1/3 ln

N + 4

δ

+
1

n

(
1 + ((k∗N)2 ln N)1/3 + k∗N

)
ln

N + 4

δ
.

The main term in the performance bound has the order of magnituden−1/3(k∗N)2/3(ln N)1/3.
Observe that this theorem directly implies Hannan consistency, by a simple application of the
Borel-Cantelli lemma.

Proof. The starting point of the proof of the theorem is an application of Theorem 5 (shown in
the Appendix) to the estimated losses. Since˜̀i,t lies between−Bt andBt, whereBt = k∗N/γt,
the proposed values ofγt andηt imply thatηtBt 6 1 if and only if t > (ln N)/(Nk∗), that is, for
all t > 1. Therefore, defining fort = 1, . . . , n, the probability vector̃pt by its components

p̃i,t =
e−ηt

eLi,t−1∑N
k=1 e−ηt

eLk,t−1

i = 1, . . . , N ,

we may apply Theorem 5 to obtain

n∑
t=1

N∑
i=1

p̃i,t
˜̀(i, yt)− min

j=1,...,N
L̃j,n 6

2 ln N

ηn+1

+
n∑

t=1

ηt

N∑
i=1

p̃i,t
˜̀(i, yt)

2 .

Sincepi,t = (1− γt)p̃i,t + γt/N , the inequality above yields, after some simple bounding,

n∑
t=1

N∑
i=1

pi,t
˜̀(i, yt)− min

j=1,...,N
L̃j,n 6

2 ln N

ηn+1

+
n∑

t=1

ηt

N∑
i=1

p̃i,t
˜̀(i, yt)

2 +
n∑

t=1

γt

N∑
i=1

1

N
˜̀(i, yt) . (2)

Introduce the notation

L̂n =
n∑

t=1

`(It, yt) and Lj,n =
n∑

t=1

`(j, yt), j = 1, . . . , N .

Next we show that, with an overwhelming probability, the right-hand side of the inequality (2) is
less than something of the ordern2/3, and that the left-hand side is close to the actual regret

n∑
t=1

`(It, yt)− min
j=1,...,N

Lj,n .
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Our main tool is Bernstein’s inequality for martingales, see Lemma 7 in the Appendix. This
inequality implies the following four lemmas, whose proofs are similar, so we omit some of
them.

Lemma 1 With probability at least1− δ/(N + 4),

n∑
t=1

N∑
i=1

pi,t`(i, yt) 6
n∑

t=1

N∑
i=1

pi,t
˜̀(i, yt)

+

√√√√2(k∗N)2

(
n∑

t=1

1

γt

)
ln

N + 4

δ
+

√
2

3

(
1 +

k∗N

γn

)
ln

N + 4

δ
.

Proof. DefineZt = −
∑N

i=1 pi,t
˜̀(i, yt) so thatEt[Zt] = −

∑N
i=1 pi,t`(i, yt), and considerXt =

Zt − Et[Zt]. We note that

Et[X
2
t ] 6 Et[Z

2
t ] =

∑
i,j

pi,tpj,tEt

[˜̀(i, yt)˜̀(j, yt)
]

=
∑
i,j

pi,tpj,t

N∑
k=1

pk,t
k(i, k)k(j, k)h(k, yt)

2

p2
k,t

6
(k∗N)2

γt

,

and therefore,

Vn =
n∑

t=1

Et[X
2
t ] 6 (k∗N)2

n∑
t=1

1

γt

.

On the other hand,|Xt| is bounded byK = 1+(k∗N)/γn. Bernstein’s inequality (see Lemma 7)
thus concludes the proof.

Lemma 2 For each fixedj, with probability at least1− δ/(N + 4),

L̃j,n 6 Lj,n + +

√√√√2(k∗N)2

(
n∑

t=1

1

γt

)
ln

N + 4

δ
+

√
2

3

(
1 +

k∗N

γn

)
ln

N + 4

δ
.

Lemma 3 With probability at least1− δ/(N + 4),

n∑
t=1

ηt

N∑
i=1

p̃i,t
˜̀(i, yt)

2 6
n∑

t=1

ηt
(k∗N)2

γt

+

√√√√2(k∗N)4

(
n∑

t=1

η2
t

γ3
t

)
ln

N + 4

δ
+

√
2

3
ln

N + 4

δ
.

Proof. Let Zt = ηt

∑N
i=1 p̃i,t

˜̀(i, yt)
2, andXt = Zt − Et[Zt]. All |Xt| are bounded by

K = max
t=1,...,n

ηt
(k∗N)2

γ2
t

= 1 .
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On the other hand,

Vn =
n∑

t=1

Et[X
2
t ] 6 (k∗N)4

n∑
t=1

η2
t

γ3
t

.

Bernstein’s inequality (see Lemma 7) now concludes the proof, together with the inequality

Et[Zt] 6 ηt
(k∗N)2

γt

.

Lemma 4 With probability at least1− δ/(N + 4),

n∑
t=1

γt

N∑
i=1

1

N
˜̀(i, yt) 6

n∑
t=1

γt +

√√√√2(k∗N)2

(
n∑

t=1

γt

)
ln

N + 4

δ
+

√
2

3
(k∗N + γ1) ln

N + 4

δ
.

The next lemma is an easy consequence of the Hoeffding-Azuma inequality for sums of
bounded martingale differences (see Hoeffding [27], Azuma [4]).

Lemma 5 With probability at least1− δ/(N + 3),

n∑
t=1

`(It, yt) 6
n∑

t=1

N∑
i=1

pi,t`(i, yt) +

√
n

2
ln

N + 4

δ
.

The proof of the main result follows now from a combination of Lemmas 1 to 5 with (2) (where
Lemma 2 is appliedN times). Using a union-of-event bound, we see that, with probability1− δ,

n∑
t=1

`(It, yt)− min
j=1,...,N

Lj,n

6
2 ln N

ηn+1

+2


√√√√2(k∗N)2

(
n∑

t=1

1

γt

)
ln

N + 4

δ
+

√
2

3

(
1 +

k∗N

γn

)
ln

N + 4

δ


+

n∑
t=1

ηt
(k∗N)2

γt

+

√√√√2(k∗N)4

(
n∑

t=1

η2
t

γ3
t

)
ln

N + 4

δ
+

√
2

3
ln

N + 4

δ

+
n∑

t=1

γt +

√√√√2(k∗N)2

(
n∑

t=1

γt

)
ln

N + 4

δ
+

√
2

3
(k∗N + γ1) ln

N + 4

δ

+

√
n

2
ln

N + 4

δ
.
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Substituting the proposed values ofγt andηt, and using that for−1 < α 6 0

n∑
t=1

tα 6
1

α + 1
nα+1 ,

we obtain the claimed result with a simple calculation.

We close this section by considering the implications of Theorem 1 to the special cases men-
tioned in the introduction.

Example 5 (Multi-armed bandit problem.) Recall that in the case of the multi-armed bandit
problemH = L and the condition of the theorem is trivially satisfied. Indeed, one may take
K to be the identity matrix so thatk∗ = 1. Thus, Theorem 1 implies a bound of the order of
((N2 ln N)/n)1/3. Even though, as it is shown in the next section, the rateO(n−1/3) cannot be
improved in general, faster rates of convergence are achievable for the special case of the bandit
problem. Indeed, for the bandit problem Auer, Cesa-Bianchi, Freund, and Schapire [2], Auer [1],
and Cesa-Bianchi and Lugosi [11] describe careful modifications of the forecaster of Theorem 1
that achieves an upper bound of the order of

√
N(ln N)/n. It remains a challenging problem to

characterize the class of problems that admit rates of convergence faster thanO(n−1/3).

Example 6 (Dynamic pricing.) In the discretized version of the dynamic pricing problem (i.e.,
when all prices are restricted to the set{0, 1/N, . . . , (N − 1)/N}), the feedback matrix is given
by h(i, j) = a Ii≤j + b Ii>j for some arbitrarily chosen values ofa and b. By choosing, for
example,a = 1 andb = 0, it is clear thatH is an invertible matrix and therefore one may choose
K = LH−1 and obtain a Hannan-consistent strategy with average regret of the order ofn−1/3.
Thus, the seller has a way of selecting the pricesIt such that his loss is not much larger than what
he could have achieved had he known the valuesyt of all costumers and offered the best constant
price. Note that with this choice ofa andb, the value ofk∗ equals1 (i.e., does not depend onN )
and therefore the upper bound has the formC((N2 log N)/n)1/3

√
ln(1/δ) for some constantC.

By choosingN ≈ n1/5 and running the forecaster into stages of doubling lengths the effect of
discretization decreases at about the same rate as the average regret, and for the original problem
with unrestricted price range one may obtain a regret bound of the form

1

n

n∑
t=1

`(pt, yt)− min
q∈[0,1]

1

n

n∑
t=1

`(q, yt) = O(n−1/5 ln n) .

We leave out the simple but tedious details of the proof. We simply note here that the discretiza-
tion toN prices is done by the mappingyt to YN(yt) = bNytc/N .

Example 7 (Apple tasting.) In the apple tasting problem described above, one may choose the
feedback valuesa = b = 1 andc = 0. Then, the feedback matrix is invertible and, once again,
Theorem 1 applies.

Example 8 (Label efficient prediction.) Recall next the variant of the label efficient prediction
problem described in the previous section. Here the rank ofL equals two, so it is necessary

11



(and sufficient) to encode the feedback matrix such that its rank equals two. One possibility is to
choosea = 1, b = 1/2, andc = 1/4. Then we haveL = KH for

K =

 0 2 2
2 −2 −2
−2 4 4

 .

The obtained rate of convergenceO(n−1/3) may be shown to be optimal. In fact, it is this example
that we use in Section 5 to show that this rate of convergence cannot be improved in general.

Remark 1 It is interesting to point out that the bound of Theorem 1 does not depend explicitly
on the value of the cardinalityM of the set of outcomes. Of course, in some problems the value
k∗ may depend onM . However, in some important special cases, such as the multi-armed bandit
problem for whichk∗ = 1, this value is independent ofM . In such cases the result extends easily
to an infinite set of outcomes. In particular, the case when the loss matrix may change with time
can be encoded this way.

4 Other regret-minimizing strategies

In the previous section we saw a forecasting strategy that guarantees that the average regret is
of the order ofn−1/3 whenever the loss matrixL can be expressed asKH for some matrix
K. In this section we discuss some alternative strategies that yield small regret under different
conditions.

First note that it is not true that the existence of a Hannan consistent predictor is guaranteed
if and only the loss matrixL can be expressed asKH. The following example describes such a
situation.

Example 9 Let N = M = 3,

L =

 1 0 0
0 1 0
0 0 1

 and H =

 a b c
d d d
e e e

 .

Clearly, for all choices of the numbersa, b, c, d, e, the rank of the feedback matrix is at most two
and therefore there is no matrixK for which L = KH. However, note that whenever the first
action is played, the forecaster has full information about the outcomeyt. Formally, an action
i ∈ {1, . . . , N} is said to berevealing for a feedback matrixH if all entries in thei-th row ofH
are different. Below we prove the existence of a Hannan consistent forecaster for all problems in
which there exists a revealing action.

Theorem 2 Consider an arbitrary partial monitoring problem(L,H) such thatL has a re-
vealing action. Letδ ∈ (0, 1). If the randomized forecasting strategy of Figure 2 is run with
parameters

ε = max

{
0,

m−
√

2m ln(4/δ)

n

}
and η =

√
2ε ln N

n

12



Parameters:0 ≤ ε ≤ 1 andη > 0. Action r is revealing.
Initialization: w1,0 = · · · = wN,0 = 1.

For each roundt = 1, 2, . . .

(1) draw an actionJt from {1, . . . , N} according to the distribution

pi,t =
wi,t−1∑N
j=1 wj,t−1

, i = 1, . . . , N ,

(2) draw a Bernoulli random variableZt such thatP[Zt = 1] = ε;

(3) if Zt = 1 then play a revealing action,It = r, observeyt, and compute

wi,t = wi,t−1e
−η `(i,yt)/ε for eachi = 1, . . . , N ;

(4) otherwise, ifZt = 0, playIt = Jt and letwi,t = wi,t−i for eachi = 1, . . . , N .

Figure 2: The randomized forecaster for feedback matrices with a revealing action.

wherem = (4n)2/3(ln(4N/δ))1/3, then

1

n

(
n∑

t=1

`(It, yt)− min
i=1,...,N

L1,n

)
≤ 8n−1/3

(
ln

4N

δ

)1/3

holds with probability at least1− δ for any strategy of the opponent.

Proof. The forecaster of Figure 2 chooses at each round a revealing action with a small proba-
bility ε ≈ m/n (of the order ofn−1/3). At thesem stages where a revealing action is chosen, the
forecaster suffers a total loss of aboutm = O(n2/3) but gets full information about the outcome
yt. This situation is a modification of the problem oflabel efficient prediction studied in Helm-
bold and Panizza [25], and in Cesa-Bianchi, Lugosi, and Stoltz [12]. In particular, the algorithm
proposed in Figure 2 coincides with that of of Theorem 2 of [12]–except maybe at those rounds
whenZt = 1. Indeed, Theorem 2 of [12] ensures that, with probability at least1 − δ, not more
thanm among theZt have value 1, and that

n∑
t=1

`(Jt, yt)− min
j=1,...,N

n∑
t=1

`(j, yt) 6 8n

√
ln(4N/δ)

m
.

This in turn implies that

n∑
t=1

`(It, yt)− min
j=1,...,N

n∑
t=1

`(j, yt) 6 m + 8n

√
ln(4N/δ)

m
,
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and substituting the proposed value for the parameterm concludes the proof.

Remark 2 (Dependence onN .) Observe that, even when the condition of Theorem 1 is satisfied,
the bound of Theorem 2 is considerably tighter. Indeed, even though the dependence on the time
horizonn is identical in both bounds (of the order ofn−1/3), the bound of Theorem 2 depends
on the number of actionsN in a logarithmic way only. As an example, consider the case of the
multi-armed bandit problem. Recall that hereH = L and there is a revealing action if and only
if the loss matrix has a row whose elements are all different. In such a case Theorem 2 provides a
bound of the order of((ln N)/n)1/3. On the other hand, there exist bandit problems for which, if
N ≤ n, it is impossible to achieve a regret smaller than(1/20)(N/n)1/2 (see [2]). IfN is large,
the logarithmic dependence of Theorem 2 gives a considerable advantage.

Interestingly, even ifL cannot be expressed asKH, if a revealing action exists, the strategy of
Section 3 may be used to achieve a small regret. This may be done by using a trick of Piccolboni
and Schindelhauer [34] to first convert the problem into another partial-monitoring problem for
which the strategy of Section 3 can be used. The basic step of this conversion is to replace the
pair ofN ×M matrices(L,H) by a pair ofmN ×M matrices(L′,H′) wherem ≤ M denotes
the cardinality of the setS = {s1, . . . , sm} of signals (i.e., the number of distinct elements of
the matrixH). In the obtained prediction problem the forecaster chooses amongmN actions at
each time instance. The converted loss matrixL′ is obtained simply by repeating each row of the
original loss matrixm times. The new feedback matrixH′ is binary and is defined by

H ′(m(i− 1) + k, j) = Ih(i,j)=sk
, i = 1, . . . , N, k = 1, . . . ,m, j = 1, . . . ,M .

Note that this way we get rid of the inconvenient problem of how to encode in a natural way the
feedback symbols. If the matrices

H′ and

[
H′

L′

]
have the same rank, then there exists a matrixK′ such thatL′ = K′H′ and the forecaster of
Section 3 may be applied to obtain a forecaster that has an average regret of the order ofn−1/3

for the converted problem. However, it is easy to see that any forecasterA with such a bounded
regret for the converted problem may be trivially transformed into a forecasterA′ for the original
problem with the same regret bound:A′ simply takes an actioni wheneverA takes an action of
the formm(i− 1) + k for anyk = 1, . . . ,m.

The above conversion procedure guarantees Hannan consistency for a large class of partial
monitoring problems. For example, if the original problem has a revealing actioni, thenm = M
and theM×M sub-matrix formed by the rowsM(i−1)+1, . . . ,Mi of H′ is the identity matrix
(up to some permutations over the rows), and therefore has full rank. Then obviously a matrix
K′ with the desired property exists and the procedure described above leads to a forecaster with
an average regret of the order ofn−1/3.

This last statement may be generalized, in a straightforward way, to an even larger class of
problems as follows.
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Corollary 1 (Distinguishing actions) Assume that the feedback matrixH is such that for each
outcomej = 1, . . . ,M there exists an actioni ∈ {1, . . . , N} such that for all outcomesj′ 6= j,
h(i, j) 6= h(i, j′). Then the conversion procedure described above leads to a Hannan consistent
forecaster with an average regret of the order ofn−1/3.

The rank ofH′ may be considered as a measure of the information provided by the feedback.
The highest possible value is achieved by matricesH′ with rankM . For such feedback matrices,
Hannan consistency may be achieved for all associated loss matricesL′.

Even though the above conversion strategy applies to a large class of problems, the associ-
ated condition fails to characterize the set of pairs(L,H) for which a Hannan consistent fore-
caster exists. Indeed, Piccolboni and Schindelhauer [34] show a second simple conversion of
the pair(L′,H′) that can be applied in situations when there is no matrixK′ with the prop-
erty L′ = K′ L′. (This second conversion basically deals with some actions which they define
as “non-exploitable” and which correspond to Pareto-dominated actions.) In these situations a
Hannan consistent procedure may be constructed based on the forecaster of Section 3. On the
other hand, Piccolboni and Schindelhauer also show that if the condition of Theorem 1 is not
satisfied after the second step of conversion, then there exists an external randomization over the
sequences of outcomes such that the sequence of expected regrets grows at least asn, where the
expectations are understood with respect to the forecaster’s auxiliary randomization and the ex-
ternal randomization. Thus, a proof by contradiction using the dominated-convergence theorem
shows that Hannan consistency is impossible to achieve in these cases. This result combined
with Theorem 1 implies the following gap theorem.

Corollary 2 Consider a partial monitoring forecasting problem with loss and feedback matrices
L andH. If Hannan consistency can be achieved for this problem, then there exists a Hannan
consistent forecaster whose average regret vanishes at raten−1/3.

Thus, whenever it is possible to force the average regret to converge to zero, a convergence
rate of the order ofn−1/3 is also possible. In some special cases, such as the multi-armed bandit
problem, even faster rates of the order ofn−1/2 may be achieved (see Auer, Cesa-Bianchi, Freund,
and Schapire [2] and Auer [1]). However, as it is shown in Section 5 below, for certain problems
in which Hannan consistency is achievable, it can only be achieved with rate of convergence not
faster thann−1/3.

5 A lower bound on the regret

Next we show that the order of magnitude (in terms of the length of the playn) of the bound of
Theorem 1 is, in general, not improvable. A closely related idea in a somewhat different context
appears in Mertens, Sorin and Zamir [33, page 290].

Theorem 3 Consider the partial monitoring problem of label efficient prediction introduced in
Example 4 and defined by the pair of loss and feedback matrices

L =

 1 1
1 0
0 1

 and H =

 a b
c c
c c

 .
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Then, for anyn > 8 and for any (randomized) forecasting strategy there exists a sequence
y1, . . . , yn of outcomes such that

E

[
1

n

n∑
t=1

`(It, yt)

]
− min

i=1,2,3

1

n

n∑
t=1

`(i, yt) >
n−1/3

5
,

whereE denotes the expectation with respect to the auxiliary randomization of the forecaster.

Remark 3 Using techniques as in [12], it is easy to extend the theorem above to get a lower
bound of the order of((ln N)/n)1/3. In view of the upper bound obtained in Theorem 2, this
lower bound is the best possible for the variant of label efficient prediction described in Exam-
ple 4, extended to the case ofN + 1 actions andN outcomes. However, we conjecture that for
many other prediction problems with partial monitoring, significantly larger lower bounds (as a
function ofN ) hold.

Proof. The proof proceeds by constructing a random sequence of outcomes and showing that,
for any (possibly randomized) forecaster, the expected value of the regret with respect both to
the random choice of the outcome sequence and to the forecaster’s random choices is bounded
from below by the claimed quantity.

More precisely, fixn ≥ 8 and denote byU1, . . . , Un the auxiliary randomization which the
forecaster has access to. Without loss of generality, it can be taken as an i.i.d. sequence of uniform
random variables in[0, 1]. The underlying probability space is equipped with theσ-algebra of
events generated by the random sequence of outcomesY1, . . . , Yn and by the randomization
U1, . . . , Un. The random sequence of outcomes is independent of the auxiliary randomization,
whose associated probability distribution is denoted byPA.

We define three different probability distributions,P⊗ PA, Q⊗ PA, andR⊗ PA, formed by
the product of the auxiliary randomization and one of the three probability distributionsP, Q,
andR over the sequence of outcomes defined as follows. UnderP the sequenceY1, Y2, . . . , Yn

is formed by independent, identically distributed{1, 2}-valued random variables with parameter
1/2. UnderQ (respectivelyR) theYi are also i.i.d. and{1, 2}-valued but with parameter1/2− ε
(respectively1/2 + ε), whereε > 0 is chosen below.

We denote byEA (respectively,EP, EQ, ER, EP⊗PA
, EQ⊗PA

, ER⊗PA
) the expectation with

respect toPA (respectively,P, Q, R, P⊗ PA, Q⊗ PA, R⊗ PA). Obviously,

sup
yn
1

(
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

)
> EP

[
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

]
. (3)

Now,

EQ

[
min

j=1,2,3
Lj,n

]
6 min

j=1,2,3
EQ [Lj,n] =

n

2
− nε ,

whereas

EQ

[
L̂n

]
=

n

2
+

1

2
EQ [N1] + εEQ [N3]− εEQ [N2] ,
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whereNj is the random variable denoting the number of times the forecaster chooses the action
j over the sequenceY1, . . . , Yn, given the stateU1, . . . , Un of the auxiliary randomization, for
j = 1, 2, 3. Thus, using Fubini’s theorem,

EQ

[
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

]
>

1

2
EQ⊗PA

[N1] + ε (n− EQ⊗PA
[N2]) .

A similar argument shows that

ER

[
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

]
>

1

2
ER⊗PA

[N1] + ε (n− ER⊗PA
[N3]) .

Averaging the two inequalities we get

EP

[
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

]
>

1

2
EP⊗PA

[N1] + ε

(
n− 1

2
(EQ⊗PA

[N2] + ER⊗PA
[N3])

)
. (4)

Consider first adeterministicforecaster. Denote byT1, . . . , TN1 ∈ {1, . . . , n} the times when the
forecaster chose action1. Since action 1 is revealing, we know the outcomes at these times, and
denote them byZn+1 = (YT1 , . . . , YTN1

). Denote byKt the (random) index of the largest integer
j such thatTj 6 t − 1. Each actionIt of the forecaster is determined by the random vector (of
random length)Zt =

(
Y1, . . . , YTKt

)
. Since the forecaster we consider is deterministic,Kt is

fully determined byZn+1. Hence,It may be seen as a function ofZn+1 rather than a function
of Zt only. This implies that, denoting byPn (respectivelyQn) the distribution ofZn+1 under
P (respectivelyQ), we haveQ [It = 2] = Qn [It = 2] andP [It = 2] = Pn [It = 2]. Pinsker’s
inequality (see, e.g., [13, Lemma 12.6.1]) then ensures that, for allt,

Q [It = 2] 6 P [It = 2] +

√
1

2
K (Pn, Qn) , (5)

whereK denotes the Kullback-Leibler divergence. The right-hand side may be further bounded
using the following lemma.

Lemma 6 Consider a deterministic forecaster. For0 6 ε 6 1/
√

6,

K (Pn, Qn) 6 6EP [N1] ε
2 .

Proof. We note thatZn+1 = Zn, except whenIn = 1. In this case,Zn+1 = (Zn, Yn). Therefore,
using the chain rule for relative entropy (see, e.g., [13, Lemma 2.5.3]),

K (Pn, Qn) 6 K (Pn−1, Qn−1) + P [In = 1]K
(
B1/2, B1/2−ε

)
6 K (Pn−1, Qn−1) + P [In = 1]

2ε2

1− 4ε2
,

whereBp denotes the Bernoulli distribution with parameterp. We conclude by iterating the
argument and using that1− 4ε2 > 1/3 for 0 6 ε 6 1/

√
6.
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Summing (5) overt = 1, . . . , n, we have proved that

EQ [N2] 6 EP [N2] + nε
√

3EP [N1] ,

and this holds for any deterministic strategy. (Note that considering a deterministic strategy
amounts to conditioning on the auxiliary randomizationU1, . . . , Un.)

Consider now an arbitrary (possibly randomized) forecaster. Using Fubini’s theorem and
Jensen’s inequality, we get

EQ⊗PA
[N2] 6 EP⊗PA

[N2] + nε
√

3EP⊗PA
[N1] . (6)

Symmetrically,
ER⊗PA

[N3] 6 EP⊗PA
[N3] + nε

√
3EP⊗PA

[N1] . (7)

UsingEP⊗PA
[N2] + EP⊗PA

[N3] 6 n, and substituting (6) and (7) into (4) yield

EP

[
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

]
>

1

2
m0 + nε

(
1

2
− ε

√
3m0

)
, (8)

wherem0 denotesEP⊗PA
[N1]. If m0 6 1/8 then for ε = 1/

√
6 the right-hand side of (8)

is at leastn/10, which is greater thann2/3/5 for n > 8. Otherwise, ifm0 > 1/8, we set
ε =

(
4
√

3m0

)−1
, which still satisfies0 6 ε 6 1/

√
6. The lower bound then becomes

EP

[
EA

[
L̂n

]
− min

j=1,2,3
Lj,n

]
>

1

2
m0 +

n

16
√

3m0

and the right-hand side may be seen to be always bigger thann2/3/5. An application of (3)
concludes the proof.

6 Internal regret

In this section we deal with the stronger notion of internal (or conditional) regret. Internal regret
is concerned with consistent modifications of the forecasting strategy. Each of these possible
modifications is parameterized by a departure functionΦ : {1, . . . , N} → {1, . . . , N}. After
roundn, the cumulative loss of the forecaster is compared to the cumulative loss that would
have been accumulated had the forecaster chosen actionΦ(It) instead of actionIt at roundt,
t = 1, . . . , n. If such a consistent modification does not result in a much smaller accumulated
loss then the strategy is said to have small internal regret. Formally, we seek strategies achieving

1

n

n∑
t=1

`(It, yt)−
1

n
min

Φ

n∑
t=1

`(Φ(It), yt) = o(1)

where the minimization is over all possible functionsΦ. We can extend the notion of Hannan
consistency to internal regret by requiring that the above average regret vanishes with probability
1 asn →∞.
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The notion of internal regret has been shown to be useful in the theory of equilibria of re-
peated games. Foster and Vohra [16, 18] showed that if all players of a finite game choose a
strategy that is Hannan consistent with respect to the internal regret, then the joint empirical fre-
quencies of play converge to the set of correlated equilibria of the game (see also Fudenberg and
Levine [19], Hart and Mas-Colell [22]). Foster and Vohra [16, 18] proposed internal regret mini-
mizing strategies for the full-information case, see also Cesa-Bianchi and Lugosi [10]. We design
here such a procedure in the setting of partial monitoring. The key tool is a conversion trick de-
scribed in Stoltz and Lugosi [36] (see also Blum and Mansour [7] for a similar procedure). This
trick essentially converts external regret minimizing strategies into internal regret minimizing
strategies, under full information. We extend it here to prediction under partial monitoring.

The forecaster we propose is formed by a sub-algorithm and a master algorithm. The param-
etersηt andγt used below are tuned as in Section 3. At each roundt the sub-algorithm outputs a
probability distribution

ut =
(
ui→j

t

)
(i,j) : i6=j

over the set of pairs of different actions; with the help ofut the master algorithm computes a
probability distributionpt over the actions.

Consider the loss estimates˜̀(i, yt) defined in (1). For a given distributionp over{1, . . . , N},
denote ˜̀(p, y) =

N∑
k=1

pk
˜̀(k, y) .

Now introduce the cumulative losses

L̃i→j
t−1 =

t−1∑
s=1

˜̀(pi→j
s , ys)

wherepi→j
s denotes the probability distribution obtained fromps by moving the probability mass

pi,s from i to j; that is, we setpi→j
s,i = 0 andpi→j

s,j = ps,j + ps,i. The distributionut computed by

the sub-algorithm is an exponentially weighted average associated to the cumulative lossesL̃i→j
t−1 ,

that is,

ui→j
t =

exp
(
−ηtL̃

i→j
t−1

)
∑

k 6=l exp
(
−ηtL̃k→l

t−1

) .

Now let p̃t be the probability distribution over the set of actions defined by the equation∑
(i,j) : i6=j

ui→j
t p̃i→j

t = p̃t . (9)

Such a distribution exists, and can be computed by a simple Gaussian elimination (see e.g., Foster
and Vohra [18], or Stoltz and Lugosi [36]). The master algorithm then chooses, at roundt, the
actionIt drawn according to the probability distribution

pt = (1− γt)p̃t +
γt

N
1 (10)

where1 = (1, . . . , 1).
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Theorem 4 Consider any partial monitoring problem such that the loss and feedback matrices
satisfyL = KH for someN × N matrix K with k∗ = max{1, maxi,j |k(i, j)|}, and consider
the forecaster described above. Letδ ∈ (0, 1). Then, for alln, with probability at least1− δ, the
cumulative internal regret is bounded as

1

n

n∑
t=1

`(It, yt)−min
Φ

1

n

n∑
t=1

`(Φ(It), yt)

≤ 9

(
(k∗)2N5 ln N

n

)1/3
(

1 +

√
3

2

ln(2N2)/δ)

ln N

)

+N

√
1

2n
ln

2N2

δ
+ 4(k∗N)4/3n−2/3(ln N)−1/3 ln

2N2

δ

+
1

n

(
2N + ((k∗N)2 ln N)1/3 + k∗N

)
ln

2N2

δ

where the minimum is taken over all functionsΦ : {1, . . . , N} → {1, . . . , N}.

Note that with the help of Borel-Cantelli lemma, Theorem 4 shows that, under the same con-
ditions onL andH, the forecaster decribed above achieves Hannan consistency with respect to
internal regret.

Proof. First observe that it suffices to consider departure functionsΦ that differ from the identity
function in only one point of their domain. This follows simply from

n∑
t=1

`(It, yt)−min
Φ

n∑
t=1

`(Φ(It), yt) 6 N

(
max
i6=j

n∑
t=1

IIt=i (`(i, yt)− `(j, yt))

)
.

We now bound the right-hand side of the latter inequality.
For a givent, the estimated losses̃`(pi→j

t , yt), i 6= j, fall in the interval[−k∗N/γt, k∗N/γt].
Sinceγt andηt are tuned as in Theorem 1,k∗Nηt/γt 6 1, and we may apply Theorem 5 to derive

n∑
t=1

∑
i6=j

ui→j
t
˜̀(pi→j

t , yt)−min
i6=j

n∑
t=1

˜̀(pi→j
t , yt)

6
2 ln N(N − 1)

ηn+1

+
n∑

t=1

ηt

∑
i6=j

ui→j
t

(˜̀(pi→j
t , yt)

)2

. (11)

For i 6= j, 1i→j is the vectorv such thatvi = 0, vj = 2, andvk = 1 for all k 6= i andk 6= j. Use
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first (10) and then (9) to rewrite the first term of the left-hand side of (11) as

n∑
t=1

∑
i6=j

ui→j
t
˜̀(pi→j

t , yt) =
n∑

t=1

∑
i6=j

ui→j
t

(
(1− γt)˜̀(p̃i→j

t , yt) +
γt

N
˜̀(1i→j, yt)

)
=

n∑
t=1

(1− γt)˜̀(p̃t, yt) +
n∑

t=1

γt

N

∑
i6=j

ui→j
t
˜̀(1i→j, yt)

=
n∑

t=1

˜̀(pt, yt) +
n∑

t=1

γt

N

∑
i6=j

ui→j
t

(˜̀(1i→j, yt)− ˜̀(1, yt)
)

=
n∑

t=1

˜̀(pt, yt) +
n∑

t=1

γt

N

∑
i6=j

ui→j
t

(˜̀(j, yt)− ˜̀(i, yt)
)

.

Substituting into (11), we have

max
i6=j

n∑
t=1

pi,t

(˜̀(i, yt)− ˜̀(j, yt)
)

=
n∑

t=1

˜̀(pt, yt)−min
i6=j

n∑
t=1

˜̀(pi→j
t , yt) (12)

6
4 ln N

ηn+1

+
n∑

t=1

ηt

∑
i6=j

ui→j
t

(˜̀(pi→j
t , yt)

)2

+
n∑

t=1

γt

N

∑
i6=j

ui→j
t

(˜̀(i, yt)− ˜̀(j, yt)
)

.

Now, we apply Bernstein’s inequality (see Lemma 7) several times again and mimic the proofs
of Lemmas 1 and 2. For all pairsi 6= j, with probability at least1− δ/(2N(N − 1) + 2),

n∑
t=1

pi,t

(˜̀(i, yt)− ˜̀(j, yt)
)

>
n∑

t=1

pi,t (`(i, yt)− `(j, yt))

−


√√√√4(k∗N)2

(
n∑

t=1

1

γt

)
ln

2N(N − 1) + 2

δ
+

2
√

2

3

(
1 +

k∗N

γn

)
ln

2N(N − 1) + 2

δ

 .

(13)

Similarly to Lemma 3, we also have, with probability at least1− δ/(2N(N − 1) + 2),

n∑
t=1

ηt

∑
i6=j

ui→j
t

(˜̀(pi→j
t , yt)

)2

≤
n∑

t=1

ηt
(k∗N)2

γt

+

√√√√2(k∗N)4

(
n∑

t=1

η2
t

γ3
t

)
ln

2N(N − 1) + 2

δ
+

√
2

3
ln

2N(N − 1) + 2

δ
(14)
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whereas, similarly to Lemma 4, with probability at least1− δ/(2N(N − 1) + 2),

n∑
t=1

γt

N

∑
i6=j

ui→j
t

(˜̀(i, yt)− ˜̀(j, yt)
)
≤ 1

N

n∑
t=1

γt

+

√√√√4(k∗)2

(
n∑

t=1

γt

)
ln

2N(N − 1) + 2

δ
+

√
2

3

(
k∗ +

γ1

N

)
ln

2N(N − 1) + 2

δ
. (15)

We then use the Hoeffding-Azuma inequality (see Hoeffding [27], Azuma [4])N(N − 1) times
to show that for every pairi 6= j, with probability at least1− δ/(2N(N − 1) + 2),

n∑
t=1

pi,t (`(i, yt)− `(j, yt)) ≥
n∑

t=1

IIt=i (`(i, yt)− `(j, yt))−
√

2n ln
N(N − 1) + 3

δ
. (16)

Finally, we substitute inequalities (13)–(16) into (12) and use a union-of-event bound to obtain
that, with probability at least1− δ,

max
i6=j

n∑
t=1

IIt=i (`(i, yt)− `(j, yt))

6
4 ln N

ηn+1

+

√√√√4(k∗N)2

(
n∑

t=1

1

γt

)
ln

1

δ′
+

2
√

2

3

(
1 +

k∗N

γn

)
ln

1

δ′

+
n∑

t=1

ηt
(k∗N)2

γt

+

√√√√2(k∗N)4

(
n∑

t=1

η2
t

γ3
t

)
ln

1

δ′
+

√
2

3
ln

1

δ′

+
1

N

n∑
t=1

γt +

√√√√4(k∗)2

(
n∑

t=1

γt

)
ln

1

δ′
+

√
2

3

(
k∗ +

γ1

N

)
ln

1

δ′

+

√
2n ln

1

δ′
,

where we used the notationδ′ = δ/(2N(N − 1) + 2), with δ′ > δ/(2N2) whenN > 2. The
proof is now concluded as that of Theorem 1.

7 Random feedback

Several authors consider an extended setup in which the feedbacks are random variables. See
Rustichini [35], Mannor and Shimkin [30], Weissman and Merhav [39], Weissman, Merhav, and
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Somekh-Baruch [40] for examples. In this section we briefly point out that most of the results of
this paper extend effortlessly to this more general case.

To describe the model, denote by∆(S) the set of all probability distributions over the set
of signalsS. The signaling structure is formed by a collection ofNM probability distributions
µ(i,j) overS, for i = 1, . . . , N andj = 1, . . . ,M . At each round, the forecaster now observes
a random variableH(It, yt), drawn independently from all the other random variables, with
distributionµ(It,yt).

We may easily generalize the results of Theorems 1 and 4 to the case of random feedbacks.
As above, each element ofS is encoded by a real number in[−1, 1]. LetE be theN ×M matrix
whose elements are given by the expectations of the random variablesH(i, j). Theorems 1 and 4
remain true under the condition that there exists a matrixK such thatL = KE. The only
necessary modification is how the losses are estimated. Here the forecaster uses the estimates

˘̀(i, yt) =
k(i, It)H(It, yt)

pIt,t

i = 1, . . . , N

instead of the estimates defined in Section 3. Conditioned onI1, . . . , It−1, the expectation of
˘̀(i, yt) is the loss̀ (i, yt). Since this, together with boundedness, are the only conditions that were
needed in the proofs, the extension of the results to this more general framework is immediate.

The results of Section 4 may be generalized to the case of random feedbacks as well. For
example, to constructH′ whenH is a matrix of probability distributions overS, we proceed as
follows: for 1 6 i 6 N ands ∈ S, denote byH(i,s) the row vector of elements in[0, 1], such
that thek-th element ofH(i,s) is µ(i,k)(s). Now, the((k1− 1)m + k2)-th row ofH′, 1 6 k1 6 N ,
1 6 k2 6 m, is H(k1,sk2

). All the other details of the construction and the proofs go through.

Appendix: Bernstein’s inequality

Bernstein’s inequality (see, e.g. [15]) is used several times in the proofs.

Lemma 7 (Bernstein’s inequality) LetX1, X2, . . . , Xn be a bounded martingale difference se-
quence (with respect to the filtrationF = (Ft)16t6n)), with increments bounded in absolute
values byK, and

Mn =
n∑

t=1

Xt

the associated martingale. Denote its predictable quadratic variation by

Vn =
n∑

t=1

E
[
X2

t | Ft−1

]
and assume thatVn 6 v for some constantv. Then, for allu > 0,

P [Mn > u] 6 exp

(
− u2

2 (v + Ku/3)

)
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and in particular, for allx > 0,

P
[
Mn >

√
2vx + (

√
2/3)Kx

]
6 e−x .

Appendix: basic lemmas

Theorem 5 Consider any sequence of losses`i,t ∈ [−Bt, Bt], i = 1, . . . , N , Bt > 0, t =
1, . . . , n, and any non-increasing sequence of tuning parametersηt > 0, t = 1, . . . , n, such that
ηtBt 6 1 for all t. Then, the forecaster which uses the exponentially weighted averages

qi,t =
wi,t∑N
j=1 wj,t

, i = 1, . . . , N,

where

wi,t = exp

(
−ηt

t−1∑
s=1

`i,s

)
,

satisfies

n∑
t=1

N∑
i=1

qi,t`i,t − min
j=1,...,N

n∑
t=1

`j,t 6

(
2

ηn+1

− 1

η1

)
ln N +

n∑
t=1

ηt

N∑
i=1

qi,t `
2
i,t .

The proof below is a simple modification of an argument first proposed in [3]. Denote the
numerator of the defining expression ofqi,t by wi,t = e−ηtLi,t−1, whereLi,t−1 = `i,1 + . . .+ `i,t−1,
and usew′

i,t = e−ηt−1Li,t−1 to denote the weightwi,t where the parameterηt is replaced byηt−1.

The normalization factors will be denoted byWt =
∑N

j=1 wj,t andW ′
t =

∑N
j=1 w′

j,t. Finally, we
usekt to denote the expert whose loss after the firstt rounds is the lowest (ties are broken by
choosing the expert with smallest index). That is,Lkt,t = mini≤N Li,t.

In the proof of the theorem, we also make use of the following technical lemma.

Lemma 8 For all N ≥ 2, for all β ≥ α ≥ 0, and for alld1, . . . , dN ≥ 0 such that
∑N

i=1 e−αdi ≥
1,

ln

∑N
i=1 e−αdi∑N
j=1 e−βdj

≤ β − α

α
ln N .

Proof. We begin by writing

ln

∑N
i=1 e−αdi∑N
j=1 e−βdj

= ln

∑N
i=1 e−αdi∑N

j=1 e(α−β)dje−αdj

= − ln E
[
e(α−β)D

]
≤ (β − α)E [D]
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where we applied Jensen inequality to the random variableD taking valuedi with probability
e−αdi/

∑N
j=1 e−αdj for eachj = 1, . . . , N . SinceD takes at mostN distinct values, its entropy

H(D) is at mostln N . Therefore

ln N ≥ H(D) =

∑N
i=1 e−αdi∑N
j=1 e−βdj

(
αdi + ln

N∑
j=1

e−βdj

)

= αE [D] + ln
N∑

j=1

e−βdj ≥ αE [D]

where the last inequality holds since
∑N

i=1 e−αdi ≥ 1. HenceE [D] ≤ (ln N)/α. As β > α by
hypothesis, we can plug the bound onE [D] in the upper bound above and conclude the proof.

Proof. As it is usual in the analysis of the exponentially weighted average predictor, we study the
evolution ofln(Wt+1/Wt). However, here we need to couple this term withln(wkt−1,t/wkt,t+1)
including in both terms the time-varying parameterηt. Tracking the currently best expertkt is
used to lower bound the weightln(wkt,t+1/Wt+1). In fact, the weight of the overall best expert
(after n rounds) could get arbitrarily small during the prediction process. We thus obtain the
following

1

ηt

ln
wkt−1,t

Wt

− 1

ηt+1

ln
wkt,t+1

Wt+1

=

(
1

ηt+1

− 1

ηt

)
ln

Wt+1

wkt,t+1

+
1

ηt

ln
w′

kt,t+1/W
′
t+1

wkt,t+1/Wt+1

+
1

ηt

ln
wkt−1,t/Wt

w′
kt,t+1/W

′
t+1

= (A) + (B) + (C) .

We now bound separately the three terms on the right-hand side. The term(A) is easily bounded
by usingηt+1 6 ηt and using the fact thatkt is the index of the expert with smallest loss after the
first t rounds. Therefore,wkt,t+1/Wt+1 must be at least1/N . Thus we have

(A) =

(
1

ηt+1

− 1

ηt

)
ln

Wt+1

wkt,t+1

≤
(

1

ηt+1

− 1

ηt

)
ln N .

We proceed to bounding the term(B) as follows

(B) =
1

ηt

ln
w′

kt,t+1/W
′
t+1

wkt,t+1/Wt+1

=
1

ηt

ln

∑N
i=1 e−ηt+1(Li,t−Lkt,t)∑N
j=1 e−ηt(Lj,t−Lkt,t)

≤ ηt − ηt+1

ηtηt+1

ln N =

(
1

ηt+1

− 1

ηt

)
ln N

where the inequality is proven by applying Lemma 8 withdi = Li,t − Lkt,t. Note thatdi ≥ 0

sincekt is the index of the expert with smallest loss after the firstt rounds and
∑N

i=1 e−ηt+1di ≥ 1
as fori = kt we havedi = 0. The term(C) is first split as follows

(C) =
1

ηt

ln
wkt−1,t/Wt

w′
kt,t+1/W

′
t+1

=
1

ηt

ln
wkt−1,t

w′
kt,t+1

+
1

ηt

ln
W ′

t+1

Wt

.

25



We bound separately each one of the two terms on the right-hand side. For the first one, we have

1

ηt

ln
wkt−1,t

w′
kt,t+1

=
1

ηt

ln
e−ηtLkt−1,t−1

e−ηtLkt,t
= Lkt,t − Lkt−1,t−1 .

For the second term, we consider the random variableZt that takes valuèi,t with probability
qi,t = wi,t/Wt for eachi = 1, . . . , N . As ηtBt 6 1, we have in particularηt`i,t 6 1, so we may
use the inequalityex 6 1 + x + x2 for x 6 1, andln(1 + u) 6 u for u > −1, to obtain

1

ηt

ln
W ′

t+1

Wt

=
1

ηt

ln

∑N
i=1 wi,te

−ηt`i,t

Wt

=
1

ηt

ln
N∑

i=1

qi,te
−ηt`i,t

≤ 1

ηt

ln

(
N∑

i=1

qi,t

(
1− ηt`i,t + η2

t `
2
i,t

))

6 −
N∑

i=1

qi,t`i,t + ηt

N∑
i=1

qi,t`
2
i,t .

Finally, we plug back in the main equation the bounds on the first two terms(A) and(B), and
the bounds on the two parts of the term(C). After rearranging we obtain

N∑
i=1

qi,t`i,t ≤
(
Lkt,t − Lkt−1,t−1

)
+ ηt

N∑
i=1

qi,t`
2
i,t

− 1

ηt+1

ln
wkt,t+1

Wt+1

+
1

ηt

ln
wkt−1,t

Wt

+ 2

(
1

ηt+1

− 1

ηt

)
ln N .

We apply the above inequalities to eacht = 1, . . . , n and sum up using

n∑
t=1

(
Lkt,t − Lkt−1,t−1

)
= min

j=1,...,N
Lj,n ,

n∑
t=1

(
− 1

ηt+1

ln
wkt,t+1

Wt+1

+
1

ηt

ln
wkt−1,t

Wt

)
≤ − 1

η1

ln
wk0,1

W1

=
ln N

η1

to conclude the proof.
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