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Abstract

We consider repeated games in which the player, instead of observing the action chosen
by the opponent in each game round, receives a feedback generated by the combined choice
of the two players. We study Hannan consistent players for these games, that is, randomized
playing strategies whose per-round regret vanishes with probability one as the nuwiber
game rounds goes to infinity. We prove a general lower bouriéi(af '/3) for the conver-
gence rate of the regret, and exhibit a specific strategy that attains this rate for any game for
which a Hannan consistent player exists.

*The first two authors acknowledge support by the PASCAL Network of Excellence under EC grant no. 506778.
The work of the second author was supported by the Spanish Ministry of Science and Technology and FEDER,
grant BMF2003-03324. Part of this work was done wile the third co-author was visiting Pompeu Fabra University.
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1 A motivating example

A simple yet nontrivial example of partial monitoring is the following dynamic pricing problem.

A vendor sells a product to a sequence of customers whom he attends one by one. To each
customer, the seller offers the product at a price he selects, say, from the ifiietjial'he cus-

tomer then decides to buy the product or not. No bargaining is possible and no other information
is exchanged between buyer and seller. The goal of the seller is to achieve an income almost as
large as if he knew the maximal price each customer is willing to pay for the product. Thus, if
the price offered to the-th customer i, and the highest price this customer is willing to pay is

y: € 10, 1], then the loss of the selleris — p;, if the product is sold and (say) a constant 0 if

the product is not sold. Formally, the loss of the vendor at tinse

g(ptayt) = (?/t - pt)HptSyt + C]Ipz>yt

wherec € [0, 1]. (In another version of the problem the constantay be replaced by;. In this

case it is easy to see that all terms depending eancel out when considering the regret, and we
obtain the bandit setting analyzed by Kleinberg and Leighton [28]—see below.) In either case,
if the seller knew in advance the empirical distribution of th'e then he could set a constant
priceg € [0,1] which minimizes his overall loss. A natural question is whether there exists a
randomized strategy for the seller such that his average regret

n

1 & 1
ﬁzé(ptayt) — min _Ze(%yt)
t=1

0,1
q€f0.1] n =

is guaranteed to converge to zeronas> oo regardless of the sequenge y-, . . . of prices. The
difficulty in this problem is that the only information the seller (i.e., the forecaster) has access to
is whetherp, > v, but neithery, nor ¢(p,;, y;) are revealed. One of the main results of this paper
describes a simple strategy such that the average regret defined above is of the order of

We treat such limited-feedback (partial monitoring) prediction problems in a more general
framework which we describe next. The dynamic pricing problem described above, which is
a special case of this more general framework, has been also investigated by Kleinberg and
Leighton [28] in a simpler setting where the reward of the seller is defingtbas:) = p: L, <y, .
Note that, by using the feedback information (i.e., whether the customer bought the product or
not), here the seller can compute the valuen@f;, v;). Therefore, their game reduces to an
instance of the multi-armed bandit game (see Example 1 below) with a continuous action space.

2 Main definitions

We adopt a learning-theoretic viewpoint and describe partial monitoring as a repeated prediction
game between forecaster (the player) and thenvironment (the opponent). In the same spirit,

we call outcomes the actions taken by the environment. At each roundl, 2. .. of the game,

the forecaster chooses an actibrfrom the set{1,..., N}, and the environment chooses an
actiony, fromthe sef{1,..., M }. The losses of the forecaster are summarized iddsanatrix
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PREDICTION WITH PARTIAL MONITORING

Parameters: number of actionsV, number of outcomes/, loss functior?, feedback func-
tion h.

Foreachround=1,2.. .,

(1) the environment chooses the next outcame {1, ..., M} without revealing it;

(2) the forecaster chooses a probability distribufipover the set ofV actions and draws
an action/; € {1,..., N} according to this distribution;

(3) the forecaster incurs logél,, y;) and each actionincurs los</(i, y,), where none of
these values is revealed to the forecaster;

(4) the feedback(1;,y;) is revealed to the forecaster.

L = [¢(4,))]nxm- (This matrix is assumed to be known by the forecaster.) Without loss of
generality, we rescale the losses so that they all li@,in]. If, at timet, the forecaster chooses
an action/; € {1,..., N} and the outcome ig; € {1,..., M}, then the forecaster’s suffers
loss ¢(1;,y:). However, instead of the outcomg, the forecaster only observes the feedback
h(1:,y:), whereh is a knownfeedback function that assigns, to each action/outcome pair in
{1,...,N} x{1,..., M} an element of a finite s& = {s1, ..., s,,} of signals. The values of

h are collected in deedback matrix H = [h(i, J)| N

Note that we do not make any restrictive assumption on the power of the opponent. The
environment may choose actign at timet by considering the whole past, that is, the whole
sequence of action/outcome péifs, ys), s = 1,...,t—1. Without loss of generality, we assume
that the opponent uses a deterministic strategy, so that the valyasofixed by the sequence
(I1,...,1;_1). In comparison, the forecaster has access to significantly less information, since
he only knows the sequence of past feedba@kd;, v1), ..., h(L—1,y:-1))-

We note here that some authors consider a more general setup in which the feedback may
be random. For the sake of clarity we treat the simpler model described above and return to the
more general case in Section 7.

It is an interesting and complex problem to investigate the possibilities of a predictor only
supplied with the limited information of the feedback. In this paper we focus on the average

regret
1 .
_Zg -[t7yt Z_mln ﬁzg(z7yt) 9

77777

that is, the difference between the average (per-round) loss of the forecaster and the average
(per-round) loss of the best action. Forecasting strategies guaranteeing that the average regret
converges to zero almost surely for all possible strategies of the environment areftailled
consistent after James Hannan, who first proved the existence of a Hannan consistent strategy
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in the full information case [21] wherh(i,j) = j for all 4, (i.e., when the true outcomg

is revealed to the forecaster after taking an action). The full information case has been studied
extensively in the theory of repeated games, and in the fields of learning theory and information
theory. A few key references and surveys include Blackwell [6], Cesa-Bianchi, Freund, Haus-
sler, Helmbold, Schapire, and Warmuth [8], Cesa-Bianchi and Lugosi [9], Feder, Merhav, and
Gutman [14], Foster and Vohra [18], Hart and Mas-Colell [23], Littlestone and Warmuth [29],
Merhav and Feder [32], and Vovk [38, 37].

A natural question one may ask is under what conditions on the loss and feedback matrices it
is possible to achieve Hannan consistency, that is, to guarantee that, asymptotically, the cumula-
tive loss of the forecaster is not larger than that of the best constant action with probability one.
Naturally, this depends on the relationship between the loss and feedback functions. An initial
answer to this question has been provided by the work of Piccolboni and Schindelhauer [34].
However, since they are only concerned with expected performance, their results do not imply
Hannan consistency. In addition, their bounds have suboptimal rates of convergence. Below,
we extend those results by showing a forecaster that achieves Hannan consistency with optimal
convergence rates.

Note that the forecaster is free to encode the valifésj) of the feedback function by real
numbers. The only restriction is thati{i, j) = h(i, j') then the corresponding real numbers
should also coincide. To avoid ambiguities by trivial rescaling, we assume/thag)| < 1
for all pairs (7, 7). Thus, in the sequel we assume tliht= [L(7,j)|nxa IS @ matrix of real
numbers between-1 and1 and keep in mind that the forecaster may replace this matrix by
H, = [¢:i(h(i,7))]nxam for arbitrary functionsp; : [-1,1] — [-1,1],i = 1,..., N. Note that
the setS of signals may be chosen such that it has< M elements, though after numerical
encoding the matrix may have as many\d$v distinct elements.

The problem of partial monitoring was considered by Mertens, Sorin, and Zamir [33], Rus-
tichini [35], Piccolboni, and Schindelhauer [34], and Mannor and Shimkin [30]. The forecaster
strategy studied in Section 3 is first introduced in [34], where its expected regret is shown to
have a sub-linear growth. Rustichini [35] and Mannor and Shimkin [30] consider a more gen-
eral setup in which the feedback is not necessarily a deterministic function of the pair outcome
and forecaster’s action, but it may be random with a distribution indexed by this pair. Based on
Blackwell's approachability theorem, Rustichini [35] establishes a general existence result for
strategies with asymptotically optimal performance in this more general framework. In this pa-
per we answer Rustichini’s question about the fastest achievable rate of convergence in the case
when Hannan consistent strategies exist. Mannor and Shimkin also consider cases when Hannan
consistency may not be achieved, give a partial solution, and point out important difficulties in
such cases.

Before introducing a general prediction strategy and sufficient conditions for its Hannan con-
sistency, we describe a few concrete examples of partial monitoring problems.

Example 1 (Multi-armed bandit problem.A well-studied special case of the partial monitoring
prediction problem is the so-called multi-armed bandit problem. Here the forecaster, after taking
an action, is able to measure his loss (or reward) but does not have access to what would have
happened had he chosen another possible action. Hetd., that is, the feedback received by
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the forecaster is just his own loss. This problem has been widely studied both in a stochastic and
in a worst-case setting. The worst-case or adversarial setting considered in this paper was first
investigated by Bidos [5] (see also Megiddo [31]). Hannan consistent strategies were constructed
by Foster and Vohra [17], Auer, Cesa-Bianchi, Freund, and Schapire [2], and Hart and Mas Colell
[22, 24] (see also Fudenberg and Levine [20]). Auer, Cesa-Bianchi, Freund, and Schapire [2]
(see also Auer [1] and the refined analysis of Cesa-Bianchi and Lugosi [11]) define a strategy
that guarantees a rate of convergence of the ofdey N (log N)/n) for the regret, which is
optimal up to the logarithmic factor.

Example 2 (Dynamic pricing) Consider the dynamic pricing problem described in the introduc-
tion of the section under the additional restriction that all prices take their values from the finite
set{0,1/N,...,(N —1)/N} whereN is a positive integer (see Example 6 for a non-discretized
version). Clearly, ifN is sufficiently large, this discrete version approximates arbitrarily the
original problem. Now one may take = N and the loss matrix is

o o | — 1@
L =[0(i,j)lnxy  where  ((i,j) = ‘7711@ +els; .
The information the forecaster (i.e., the vendor) receives is simply whether the predicted value
I, is greater than the outcomgor not. Thus, the entries of the feedback maHixnay be taken

to beh(i, j) = I;~; or, after an appropriate re-encoding,
h(i,j):aﬂi§j+bﬂi>]‘ Z,]:L,N
wherea andb are constants chosen by the forecaster satistyjng: [—1, 1].

Example 3 (Apple tasting. This problem was first considered by Helmbold, Littlestone, and
Long [26] in a somewhat more restrictive setting. In this examyle: M = 2 and the loss and
feedback matrices are given by

01 a a
L:[lol and H:{bc}'

Thus, the forecaster only receives feedback about the outgonteen he chooses the first action.
(Imagine that apples are to be classified as “good for sale” or “rotten”. An apple classified as
“rotten” may be opened to check whether its classification was correct. On the other hand, since
apples that have been checked cannot be put on sale, an apple classified “good for sale” is never
checked.)

Example 4 (Label efficient prediction.In the problem of label efficient prediction (see Helm-
bold and Panizza [25] and also Cesa-Bianchi, Lugosi, and Stoltz [12]) the forecaster, after choos-
ing its prediction for round, decides whether to query the outcomewhich he can only do for

a limited number of times. In [12] matching upper and lower bounds are given for the regret in
terms of the number of available labels, total number of rounds, and number of actions. A variant



of the label efficient prediction problem may also be cast as a partial monitoring problem. Let
N =3, M = 2, and consider loss and feedback matrices of the form

1 1 b
L=|10 and H= c
01 c

o O Q

In this example the only times useful feedback is received are when the first action is played but
in this case a maximal loss is incurred regardless of the outcome. Thus, just like in the problem
of label efficient prediction, playing the “informative” action has to be limited, otherwise there
is no hope for Hannan consistency.

3 General upper bounds on the regret

The purpose of this section is to derive general upper bounds for the rate of convergence of the
regret achievable under partial monitoring. This will be done by analyzing a forecasting strat-
egy inspired by Piccolboni and Schindelhauer [34]. This strategy is based on the exponentially
weighted average forecaster, a thoroughly studied predictor in the full information case, see,
for example, Auer, Cesa-Bianchi, and Gentile [3], Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire, and Warmuth [8], Littlestone and Warmuth [29], Vovk [38, 37]. In the special case
of the multi-armed bandit problem, the forecaster reduces to the strategy of Auer, Cesa-Bianchi,
Freund, and Schapire [2] (see also Hart and Mas-Colell [24] for a closely related method).

The crucial assumption under which the strategy is defined is that there exisdtsxafv
matrix K = [k(i, 7))y« Such that

L=KH,
that is,
H
H and { L }
have the same rank. In other words we may write, fof all{1,..., N} andj € {1,..., M},
N

Ui, g) = 3 kG0, 1) h(L,5)

=1
In this case one may define the estimated Iogm/s

~ k(i, 1) (I
i, y) = “iﬁ“w,izL“wN. (1)

(Note that the estimates proposed above are real-valued, and may even be negative.) We denote
the cumulative estimated losses at rouraehd for action by L, ; = Zizl 001, yy).

Consider the forecaster defined in Figure 1, whiras defined in Theorem 1. Roughly
speaking, the two terms in the expressiopgfcorrespond to “exploitation” and “exploration”.
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Parameters: matrle of Iosses feedback matrH, matrixK such thal. = KH
Initialization: L1 0= = LN70 = 0.

Foreachround =1,2,...

(1) lety, = (k%) >/3((In N)/N )3t/ andny, = (k*)2/3N/3(1n N)Y31/3;

117

(2) choose an actior, from the set of actiong1,..., N} at random, according to the
distributionp, defined by

e*mLi,tfl N Y
zg—l e~ Mlkt—1 N’

Dit = (1 - %)

(3) letL;y = Li sy + £(i,y,) foralli =1,...,N.

Figure 1: The randomized forecaster for prediction under partial monitoring.

The first term assigns exponentially decreasing weights to the actions depending on their es-
timated cumulative losses, while the second term ensures sufficient exploration to guarantee
accurate estimates of the losses.

A key property of the loss estimates is their unbiasedness in the following sense. Denoting
by E; the conditional expectation given, ..., I;_; (i.e., the expectation with respect to the
distributionp, of the random variablé;), observe that this conditioning fixes the valug/gfand
thus,

N
~ k(i,k) h(k,
Bl ) = Z yt)pk,t
k=1
N
- Z’“ h(k,y)) = L(i,y), i=1,...,N,
k=1

and thereforé(i, y,) is an unbiased estimate of the Id$s v, ).
The main performance bound of this section is summarized in the next theorem. Note that

the average regret
(Zﬁ [tayt i:mln Zg(layt)>

-----

decreases to zero at a rate'/3. This is significantly slower than the best rate'/? obtained

in the “full information” case. In the next section we show that this rate cannot be improved
in general. Thus, the price paid for having access only to some feedback except for the actual
outcomes is the deterioration in the rate of convergence. However, Hannan consistency is still
achievable whenever the conditions of the theorem are satisfied.
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Theorem 1 Consider any partial monitoring problem such that the loss and feedback matrices
satisfyL. = KH for someN x N matrix K with £* = max{1, max; ; |k(¢, j)| }, and consider

the forecaster of Figure 1. Léte (0, 1). Then, for all strategies of the opponent, for ajlwith
probability at leastl — 6,

- Zg [tayt ‘:Hlln %ZE(Z,?A)

-----

<o) ()

1 N+4 N +4
tyf = + 5(k*N)Y3n23(n N) "3 1n frs
2n )
1 N +4
o (L (WP I N) 2 4 47N In ; .

The main term in the performance bound has the order of magnitutié(k* N)*?(In N)/3.
Observe that this theorem directly implies Hannan consistency, by a simple application of the
Borel-Cantelli lemma.

Proof. The starting point of the proof of the theorem is an application of Theorem 5 (shown in
the Appendix) to the estimated losses. Sifigdies between-B, and B;, whereB; = k*N/~,,
the proposed values of andr, imply thatn, B; < 1ifand only ift > (In N)/(Nk*), that s, for
allt > 1. Therefore, defining fot = 1, ..., n, the probability vectop, by its components
e~ MLit—1

DPix = N = Zzlv"'aNa
Zk*l e MLk

we may apply Theorem 5 to obtain

Zzpz#@yt ‘mln Z 21nN+Zmsztfzyt

t=1 i=1 T+

Sincep;; = (1 —w)pir + /N, the inequality above yields, after some simple bounding,

n

Zzpztgiyt ,_min Z QIHN—FZ?%ZPZJ@% +Z%Z Zyt) (2)

t=1 i=1 T TIn+1

Introduce the notation
:Z€<[t,yt> and Lj,n:Z£<jayt)7 ]: 1,...,N.
t=1 t=1

Next we show that, with an overwhelming probability, the right-hand side of the inequality (2) is
less than something of the orde¥?, and that the left-hand side is close to the actual regret

Zf LIiy) — mln L]n.

.....



Our main tool is Bernstein’s inequality for martingales, see Lemma 7 in the Appendix. This
inequality implies the following four lemmas, whose proofs are similar, so we omit some of
them.

Lemma 1 With probability at leastt — §/(N + 4),

n N n N
SO T piellioye) <D0 pislliyye)

t=1 i=1 t=1 i=1

+J2(k;*]\f)2 (Zi> 1nN;r4+§ (1+k N) 1nN;4.

=1 Ve Tn

Proof. DefineZ, = — 32N, pi,0(i, ) so thatE,[Z,] = — S°N | p; +£(i, 1), and considefy, =
Z; — Ey[Z;]. We note that

E [ X7] < Ei[Z]] Zpi,tpj,tEt [Z(i,yt)Z(j, Z/t)]
.3

N
kG, )k, K)h(k,y)?  (k*N)?
= S > i (4, k) (12) (k,ye) <( )
i k=1 pk,t Vi

bl

and therefore,

m:jimmﬂgwwwjéi.
t=1

=1 It

On the other hand X} | is bounded by = 1+ (k*N)/~,. Bernstein’s inequality (see Lemma 7)
thus concludes the proof. i

Lemma 2 For each fixed;j, with probability at leastt — /(N + 4),

n

~ 1 N+4 V2 k*N N +4
Ljn < Lj,+ 44| 2(k*N)? E — | In + — (1 + ) In .

Lemma 3 With probability at least — §/(N + 4),

n N n n

o~ k*N)? 2 N+4 V2. N+4
> oy Pl g)? <) m( "y 2(k*N)4( 77_;) e VEy ‘
t=1 =1 t=1 —

Vi
Proof. Let Z;, = n, ZL@,J@', y)%, andX; = Z, — E;[Z,]. All |X,| are bounded by
(k*N)?

2
t

=1.

K = max n
t=1,....,n



On the other hand,

Vo= S BN < (0N Y
t=1

Ve
t=1
Bernstein’s inequality (see Lemma 7) now concludes the proof, together with the inequality
(k*N)?
"t

Ei[Z:] <y

Lemma 4 With probability at least — /(N + 4),

Z%Z (%, ¢) Z%JFJ 2(k*N)? (Z%>1HN;4 \/?i(k*NJr%)lnN;rél-

= t=1

The next lemma is an easy consequence of the Hoeffding-Azuma inequality for sums of
bounded martingale differences (see Hoeffding [27], Azuma [4]).

Lemma 5 With probability at least — /(N + 3),

n N

n , n. N+4
§ : < E § . — .
- €(It, yt) NS pz,t£<l7yt) + 2 In 5}

t=1 =1

The proof of the main result follows now from a combination of Lemmas 1 to 5 with (2) (where
Lemma 2 is appliedV times). Using a union-of-event bound, we see that, with probaliility,

26 Ii,y) — 4m1n L;,

.....

2In N

Tin+1

"1 N +4 ﬁ( k*N) N +4
+2 2(k*N)2 — | ln—+ =14+ In
[y (52wt (2w

<
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Substituting the proposed valuesygfandn;, and using that for-1 < a <0

n

Zta< 1 nOH'-].’
a+1

t=1

we obtain the claimed result with a simple calculation. 1

We close this section by considering the implications of Theorem 1 to the special cases men-
tioned in the introduction.

Example 5 (Multi-armed bandit problen). Recall that in the case of the multi-armed bandit
problemH = L and the condition of the theorem is trivially satisfied. Indeed, one may take

K to be the identity matrix so that* = 1. Thus, Theorem 1 implies a bound of the order of
((N?In N)/n)'/3. Even though, as it is shown in the next section, the ¢xte'/3) cannot be
improved in general, faster rates of convergence are achievable for the special case of the bandit
problem. Indeed, for the bandit problem Auer, Cesa-Bianchi, Freund, and Schapire [2], Auer [1],
and Cesa-Bianchi and Lugosi [11] describe careful modifications of the forecaster of Theorem 1
that achieves an upper bound of the ordeg@ (In N)/n. It remains a challenging problem to
characterize the class of problems that admit rates of convergence fastén(thar?).

Example 6 (Dynamic pricing) In the discretized version of the dynamic pricing problem (i.e.,
when all prices are restricted to the $6t1/N, ..., (N — 1)/N}), the feedback matrix is given

by h(i,j) = ali<; + bl;~; for some arbitrarily chosen values efandb. By choosing, for
exampleg = 1 andb = 0, itis clear thatH is an invertible matrix and therefore one may choose
K = LH~! and obtain a Hannan-consistent strategy with average regret of the ondet/af
Thus, the seller has a way of selecting the prigesich that his loss is not much larger than what
he could have achieved had he known the vales all costumers and offered the best constant
price. Note that with this choice afandb, the value oft* equalsl (i.e., does not depend aw)

and therefore the upper bound has the fa*tN?log N)/n)'/3,/In(1/§) for some constant'.

By choosingN ~ n'/5 and running the forecaster into stages of doubling lengths the effect of
discretization decreases at about the same rate as the average regret, and for the original problem
with unrestricted price range one may obtain a regret bound of the form

1 « 1 &
— {(pg,y;) — min — 0(q,y:) = O(n~°lnn) .
n; (Pe: ) tz; (¢, 9) ( )

q€0,1] n

We leave out the simple but tedious details of the proof. We simply note here that the discretiza-
tion to N prices is done by the mappingto Yx(y;) = | Ny.|/N.

Example 7 (Apple tasting. In the apple tasting problem described above, one may choose the
feedback values = b = 1 andc = 0. Then, the feedback matrix is invertible and, once again,
Theorem 1 applies.

Example 8 (Label efficient prediction. Recall next the variant of the label efficient prediction
problem described in the previous section. Here the rank efjuals two, so it is necessary

11



(and sulfficient) to encode the feedback matrix such that its rank equals two. One possibility is to
chooser = 1,b = 1/2, andc = 1/4. Then we havd, = K H for

0o 2 2
K= 2 -2 =2
-2 4 4

The obtained rate of convergen@én—'/3) may be shown to be optimal. In fact, it is this example
that we use in Section 5 to show that this rate of convergence cannot be improved in general.

Remark 1 It is interesting to point out that the bound of Theorem 1 does not depend explicitly
on the value of the cardinality/ of the set of outcomes. Of course, in some problems the value
k* may depend oi/. However, in some important special cases, such as the multi-armed bandit
problem for whicht* = 1, this value is independent af . In such cases the result extends easily

to an infinite set of outcomes. In particular, the case when the loss matrix may change with time
can be encoded this way.

4  Other regret-minimizing strategies

In the previous section we saw a forecasting strategy that guarantees that the average regret is
of the order ofn~'/3 whenever the loss matrik can be expressed & H for some matrix
K. In this section we discuss some alternative strategies that yield small regret under different
conditions.

First note that it is not true that the existence of a Hannan consistent predictor is guaranteed
if and only the loss matrif. can be expressed &H. The following example describes such a
situation.

Example 9 Let N = M = 3,

and H=

o e

b
d
€

o Qo

Clearly, for all choices of the numbeiisb, ¢, d, e, the rank of the feedback matrix is at most two
and therefore there is no matix for which L = K H. However, note that whenever the first
action is played, the forecaster has full information about the outggmEormally, an action

i€ {l,...,N}is said to beevealing for a feedback matri¥l if all entries in thei-th row of H

are different. Below we prove the existence of a Hannan consistent forecaster for all problems in
which there exists a revealing action.

Theorem 2 Consider an arbitrary partial monitoring problenL, H) such thatL has a re-
vealing action. Let € (0,1). If the randomized forecasting strategy of Figure 2 is run with

parameters
—+/2mIn(4/6 2¢eIn N
5:max{0,m mn(/)} and =4/ =4
n n
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Parameters:0 < ¢ < 1 andn > 0. Action r is revealing.
Initialization: w; =+ =wyno = 1.
Foreachround=1,2,...

(1) draw an actiory; from {1, ..., N} according to the distribution

Wi t—1 .
Pit= v 1=1,...,N,

Zj:l Wyt—1

(2) draw a Bernoulli random variablg, such thaf?[Z, = 1] = ¢;

(3) if Z, = 1 then play a revealing actioii, = r, observey;, and compute

wiy = wiy_e TEW/E foreachi=1,...,N;

(4) otherwise, ifZ, = 0, play I; = J, and letw; ; = w;,_; foreachi =1,..., N.

Figure 2: The randomized forecaster for feedback matrices with a revealing action.

wherem = (4n)?/3(In(4N/§))'/3, then

1 (& AN\Y?
— ( g (1, y) — IIllIl Ly n) < 8n~1/3 (ln —)
n i=1 1)

t=1 7

holds with probability at least — o for any strategy of the opponent.

Proof. The forecaster of Figure 2 chooses at each round a revealing action with a small proba-
bility ¢ ~ m/n (of the order of2~'/3). At thesem stages where a revealing action is chosen, the
forecaster suffers a total loss of abaut= O(n?/?) but gets full information about the outcome

y;. This situation is a modification of the problem label efficient prediction studied in Helm-

bold and Panizza [25], and in Cesa-Bianchi, Lugosi, and Stoltz [12]. In particular, the algorithm
proposed in Figure 2 coincides with that of of Theorem 2 of [12]—except maybe at those rounds
whenZ;, = 1. Indeed, Theorem 2 of [12] ensures that, with probability at |éast), not more
thanm among theZ; have value 1, and that

= In(4N/9)
o 14 < —_—
Z (Jisy) = min ; (G y) < 8nyf ——
This in turn implies that
" In(4N/9)
(1 o 8y —————=
; (I, 9) = min Z Jowe) <t Sng | ==



and substituting the proposed value for the parameteoncludes the proof. 1

Remark 2 (Dependence ofv.) Observe that, even when the condition of Theorem 1 is satisfied,
the bound of Theorem 2 is considerably tighter. Indeed, even though the dependence on the time
horizonn is identical in both bounds (of the order of'/3), the bound of Theorem 2 depends

on the number of actiond' in a logarithmic way only. As an example, consider the case of the
multi-armed bandit problem. Recall that hdde= L and there is a revealing action if and only

if the loss matrix has a row whose elements are all different. In such a case Theorem 2 provides a
bound of the order of(In ) /n)'/3. On the other hand, there exist bandit problems for which, if

N < n, itis impossible to achieve a regret smaller taf20)(N/n)'/? (see [2]). If N is large,

the logarithmic dependence of Theorem 2 gives a considerable advantage.

Interestingly, even il. cannot be expressed KsH, if a revealing action exists, the strategy of
Section 3 may be used to achieve a small regret. This may be done by using a trick of Piccolboni
and Schindelhauer [34] to first convert the problem into another partial-monitoring problem for
which the strategy of Section 3 can be used. The basic step of this conversion is to replace the
pair of N x M matrices(L, H) by a pair ofm N x M matrices(L’, H') wherem < M denotes

the cardinality of the sef = {s,..., s, } of signals (i.e., the number of distinct elements of

the matrixH). In the obtained prediction problem the forecaster chooses ama@ngctions at

each time instance. The converted loss mdifils obtained simply by repeating each row of the
original loss matrixn times. The new feedback matiX’ is binary and is defined by

H'(m(i — 1)+ k,5) = Tpgjymse » i=1,...,N, k=1,...,m, j=1,....M.

Note that this way we get rid of the inconvenient problem of how to encode in a natural way the
feedback symbols. If the matrices

/ H’
H and {L’}

have the same rank, then there exists a madi>such thatl’ = K’'H’ and the forecaster of
Section 3 may be applied to obtain a forecaster that has an average regret of the ardét of
for the converted problem. However, it is easy to see that any forecastéh such a bounded
regret for the converted problem may be trivially transformed into a forecdster the original
problem with the same regret bound’ simply takes an actionwheneverA takes an action of
the formm(i — 1) + kforanyk =1,...,m.

The above conversion procedure guarantees Hannan consistency for a large class of partial
monitoring problems. For example, if the original problem has a revealing actioanm = M
and the)M x M sub-matrix formed by the row&/ (i —1) + 1, . .., M of H' is the identity matrix
(up to some permutations over the rows), and therefore has full rank. Then obviously a matrix
K’ with the desired property exists and the procedure described above leads to a forecaster with
an average regret of the orderrof!/3.

This last statement may be generalized, in a straightforward way, to an even larger class of
problems as follows.
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Corollary 1 (Distinguishing actions) Assume that the feedback matkis such that for each
outcomej = 1,..., M there exists an actione {1,..., N} such that for all outcomeg # j,

h(i,j) # h(i,j’). Then the conversion procedure described above leads to a Hannan consistent
forecaster with an average regret of the ordemof'/>.

The rank ofH’ may be considered as a measure of the information provided by the feedback.
The highest possible value is achieved by matridéwiith rank M. For such feedback matrices,
Hannan consistency may be achieved for all associated loss mdifices

Even though the above conversion strategy applies to a large class of problems, the associ-
ated condition fails to characterize the set of palisH) for which a Hannan consistent fore-
caster exists. Indeed, Piccolboni and Schindelhauer [34] show a second simple conversion of
the pair(L’, H') that can be applied in situations when there is no ma&ixwith the prop-
erty ' = K'L’. (This second conversion basically deals with some actions which they define
as “non-exploitable” and which correspond to Pareto-dominated actions.) In these situations a
Hannan consistent procedure may be constructed based on the forecaster of Section 3. On the
other hand, Piccolboni and Schindelhauer also show that if the condition of Theorem 1 is not
satisfied after the second step of conversion, then there exists an external randomization over the
sequences of outcomes such that the sequence of expected regrets grows at|esisessthe
expectations are understood with respect to the forecaster’s auxiliary randomization and the ex-
ternal randomization. Thus, a proof by contradiction using the dominated-convergence theorem
shows that Hannan consistency is impossible to achieve in these cases. This result combined
with Theorem 1 implies the following gap theorem.

Corollary 2 Consider a partial monitoring forecasting problem with loss and feedback matrices
L andH. If Hannan consistency can be achieved for this problem, then there exists a Hannan
consistent forecaster whose average regret vanishes anhraté.

Thus, whenever it is possible to force the average regret to converge to zero, a convergence
rate of the order of~'/3 is also possible. In some special cases, such as the multi-armed bandit
problem, even faster rates of the ordenot/? may be achieved (see Auer, Cesa-Bianchi, Freund,
and Schapire [2] and Auer [1]). However, as it is shown in Section 5 below, for certain problems
in which Hannan consistency is achievable, it can only be achieved with rate of convergence not
faster tham—1/3.

5 Alower bound on the regret

Next we show that the order of magnitude (in terms of the length of thesplay the bound of
Theorem 1 is, in general, not improvable. A closely related idea in a somewhat different context
appears in Mertens, Sorin and Zamir [33, page 290].

Theorem 3 Consider the partial monitoring problem of label efficient prediction introduced in
Example 4 and defined by the pair of loss and feedback matrices

o O Q
o o o

1 1
L=|10 and H=
01
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Then, for anyn > 8 and for any (randomized) forecasting strategy there exists a sequence
1, ..., Yn Of outcomes such that

1 1< n~'/3
1 o1 N
”t§1 f(lt,yt)] Z.H}g}m; i ye) > ==

1

E

whereE denotes the expectation with respect to the auxiliary randomization of the forecaster.

Remark 3 Using techniques as in [12], it is easy to extend the theorem above to get a lower
bound of the order of(In V) /n)'/3. In view of the upper bound obtained in Theorem 2, this
lower bound is the best possible for the variant of label efficient prediction described in Exam-
ple 4, extended to the case &f+ 1 actions andV outcomes. However, we conjecture that for
many other prediction problems with partial monitoring, significantly larger lower bounds (as a
function of N) hold.

Proof. The proof proceeds by constructing a random sequence of outcomes and showing that,
for any (possibly randomized) forecaster, the expected value of the regret with respect both to
the random choice of the outcome sequence and to the forecaster’s random choices is bounded
from below by the claimed quantity.

More precisely, fix» > 8 and denote by/,, ..., U, the auxiliary randomization which the
forecaster has access to. Without loss of generality, it can be taken as an i.i.d. sequence of uniform
random variables if0, 1]. The underlying probability space is equipped with thalgebra of
events generated by the random sequence of outcdfes.,Y,, and by the randomization
Ui,...,U,. The random sequence of outcomes is independent of the auxiliary randomization,
whose associated probability distribution is denote®hy

We define three different probability distributiois® P4, Q ® P4, andR ® P4, formed by
the product of the auxiliary randomization and one of the three probability distribubioQs
andR over the sequence of outcomes defined as follows. URdbe sequenc&’, Ys,...,Y,
is formed by independent, identically distributgd 2}-valued random variables with parameter
1/2. UnderQ (respectivelyR) theY; are also i.i.d. and1, 2}-valued but with parametér/2 — ¢
(respectivelyl /2 + ), wheres > 0 is chosen below.

We denote byE, (respectivelyEp, Eg, Er, Epgp,, Egszr,, Erer,) the expectation with
respect tdP, (respectivelyP, Q, R, P ® Py, Q ® P4, R ® P4). Obviously,

= _ . . > = _ . .
P (E L] jﬂi%gfg%n) >l [E ] f%%a%g%]’ )
Now,
n
i . < i = = —
B | mip, o < mig Ballya) = § —ne
whereas

~ n 1
EQ [Ln] = 5 + §EQ [Nﬂ + €EQ [Ng] — €EQ [NQ] s
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whereN; is the random variable denoting the number of times the forecaster chooses the action
j over the sequenckg,...,Y,, given the staté/;, ..., U, of the auxiliary randomization, for
j =1, 2, 3. Thus, using Fubini’s theorem,

[ ~ | 1
Eq |Ea [L } — min, Ljn 2 5Eqsr, [N1] + & (n — Eqer, [N2]) -
A similar argument shows that
I ~ 1 1
Eg |E4 [L } - min, Lin| > 5Bsce, [Ni] + 2 (0 — Ease, [N))

Averaging the two inequalities we get

-~ . 1 1
Be [£4 (2] - min, Lin| > 3Eecr, (V1] + & (n— 5 (ur, Vel + Brora VD) . 4
Consider first aleterministidorecaster. Denote B, ..., T, € {1,...,n} the times when the

forecaster chose actidn Since action 1 is revealing, we know the outcomes at these times, and
denote them by, = (Y, ..., Yr, ). Denote byK;, the (random) index of the largest integer

j such thatl; < t — 1. Each actior/, of the forecaster is determined by the random vector (of
random length), = (Yl, . ,YTKt). Since the forecaster we consider is determinigticjs

fully determined byZ,.,. Hence,l; may be seen as a function &f, ., rather than a function

of Z, only. This implies that, denoting b¥,, (respectivelyQ,) the distribution ofZ,,.; under

P (respectivelyQ), we haveQ [I; = 2] = Q, [[; = 2] andP[[; = 2] = P, [I; = 2]. Pinsker’s
inequality (see, e.g., [13, Lemma 12.6.1]) then ensures that, far all

QUL =2 <PIL=2]+/ 3K (B Q). ©

where/C denotes the Kullback-Leibler divergence. The right-hand side may be further bounded
using the following lemma.

Lemma 6 Consider a deterministic forecaster. For< ¢ < 1/+/6,
K (]P)na Qn) < 6]EIP’ [Nl] 52

Proof. We note thatZ,, ., = Z,,, except wher,, = 1. In this caseZ, ., = (Z,,Y,). Therefore,
using the chain rule for relative entropy (see, e.g., [13, Lemma 2.5.3)),

K (]P)nv @n) < K (]P)nfb anl) + P [[n = 1] K (Bl/% BI/Q—E)

2¢?
< K(Pp-1,Qu) + P, =1] T a2

whereB, denotes the Bernoulli distribution with parameter We conclude by iterating the
argument and using that— 4¢% > 1/3 for 0 < ¢ < 1/V/6. 1
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Summing (5) ovet = 1,...,n, we have proved that

EQ [NQ] < Ep [NQ] —+ nev/ SEP [Nl] y

and this holds for any deterministic strategy. (Note that considering a deterministic strategy
amounts to conditioning on the auxiliary randomization. . ., U,.)

Consider now an arbitrary (possibly randomized) forecaster. Using Fubini’s theorem and
Jensen’s inequality, we get

Eqer, [No] < Epgp, [No] + nev/3Ergp, [M1] - (6)
Symmetrically,
Ergp, [N3] < Epgp, [IV3] +ney/3Epep, [V1] - )
UsingEpgp, [NVa] + Epgp, [N3] < n, and substituting (6) and (7) into (4) yield
Ep |E4 [Z]— min L; >lm + ne 1—5\/3m (8)
n =123 jn| = 2 0 9 0 )

wherem, denotesEpgp, [V1]. If my < 1/8 then fore = 1/4/6 the right-hand side of (8)
is at leastn/10, which is greater tham?3/5 for n > 8. Otherwise, ifm, > 1/8, we set

€= (4\/3m0)_1, which still satisfie$) < ¢ < 1/v/6. The lower bound then becomes

~ 1 n
_ i . > = S
B {EA L] 123 LJ’”} 23" 16 Bmy
and the right-hand side may be seen to be always biggerthdn5. An application of (3)
concludes the proof. 1

6 Internal regret

In this section we deal with the stronger notion of internal (or conditional) regret. Internal regret
is concerned with consistent modifications of the forecasting strategy. Each of these possible
modifications is parameterized by a departure funcion {1,..., N} — {1,..., N}. After
roundn, the cumulative loss of the forecaster is compared to the cumulative loss that would
have been accumulated had the forecaster chosen atiphinstead of actiory; at roundt,

t = 1,...,n. If such a consistent modification does not result in a much smaller accumulated
loss then the strategy is said to have small internal regret. Formally, we seek strategies achieving

o C0) — min >0, = o)

where the minimization is over all possible functiohs We can extend the notion of Hannan
consistency to internal regret by requiring that the above average regret vanishes with probability
1 asn — oo.
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The notion of internal regret has been shown to be useful in the theory of equilibria of re-
peated games. Foster and Vohra [16, 18] showed that if all players of a finite game choose a
strategy that is Hannan consistent with respect to the internal regret, then the joint empirical fre-
guencies of play converge to the set of correlated equilibria of the game (see also Fudenberg and
Levine [19], Hart and Mas-Colell [22]). Foster and Vohra [16, 18] proposed internal regret mini-
mizing strategies for the full-information case, see also Cesa-Bianchi and Lugosi [10]. We design
here such a procedure in the setting of partial monitoring. The key tool is a conversion trick de-
scribed in Stoltz and Lugosi [36] (see also Blum and Mansour [7] for a similar procedure). This
trick essentially converts external regret minimizing strategies into internal regret minimizing
strategies, under full information. We extend it here to prediction under partial monitoring.

The forecaster we propose is formed by a sub-algorithm and a master algorithm. The param-
etersn, and~; used below are tuned as in Section 3. At each rauthé sub-algorithm outputs a
probability distribution
1—]

w = (1 ) gyeini

over the set of pairs of different actions; with the helpugfthe master algorithm computes a
probability distributionp, over the actions.

Consider the loss estimatés, y;) defined in (1). For a given distributigmnover{1,..., N},
denote

Up.y) = pullk,y).

Now introduce the cumulative losses
Ly =Y " ipi,y,)

wherep! 7 denotes the probability distribution obtained fremby moving the probability mass
pis fromi to j; that is, we sepHJ =0 andp’ 7 = psj + psi- The distributionu, computed by

the sub-algorithm is an exponentially welghted average associated to the cumulativélcjéses
that is,

o (~nIi)
Zk;ﬁl exp (_Wtszil>
Now letp, be the probability distribution over the set of actions defined by the equation
Z u 'p 7 =, 9

(4,4) 1i#7
Such a distribution exists, and can be computed by a simple Gaussian elimination (see e.g., Foster
and Vohra [18], or Stoltz and Lugosi [36]). The master algorithm then chooses, at totined
action/; drawn according to the probability distribution

Db, = (1 - 'Vt)ﬁt + %1 (10)

’L—>]

Ut -

wherel = (1,...,1).
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Theorem 4 Consider any partial monitoring problem such that the loss and feedback matrices
satisfyL. = KH for someN x N matrix K with £* = max{1, max; ; |k(¢, j)| }, and consider

the forecaster described above. bet (0, 1). Then, for alln, with probability at least — ¢, the
cumulative internal regret is bounded as

1 — ] —
— (1 — min — 0(D(1.
n; (tayt) mq}nn; ( (t) ?Jt)

*\2 \T5 1/3 2
- 9((!4:)]:71111]\7) (1+ gln(zhjlvN)/(S)>

/1 2N? IN?
+N{/ —In=— + 4(k*N)**n=23(1n N)~¥31In —
2n 0 0

1 * 2 1/3 * 2N2
+— (2N + ((K*N)*In N)'/* + k*N) 1nT
n

where the minimum is taken over all functiohs {1,..., N} — {1,..., N},

Note that with the help of Borel-Cantelli lemma, Theorem 4 shows that, under the same con-
ditions onL andH, the forecaster decribed above achieves Hannan consistency with respect to
internal regret.

Proof. First observe that it suffices to consider departure functiotigat differ from the identity
function in only one point of their domain. This follows simply from

Zf(ltayt) - mqinzg(fb(lt),yt) <N (mgxzﬂu —i (0(3,y) — £(7, ?Jt))) .

We now bound the right-hand side of the latter inequality.
For a givery, the estimated losséép! . y,), i # 7, fall in the interval[—k*N/~;, k*N/~,].
Sincey; andr, are tuned as in Theorem 5N, /v, < 1, and we may apply Theorem 5 to derive

Z Z ui_&jz(pi_)j, Yi) mlﬂ Z U(p; 7, yt

t=1 4]

2lnN —1) +i77tzut ( ij7yt)>2. (11)

Mn+1 =1 iZ)

Fori # j, 1"7 is the vectow such that; = 0, v; = 2, andv, = 1 for all & # ¢ andk # j. Use
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first (10) and then (9) to rewrite the first term of the left-hand side of (11) as

ZZUW L) = ZZ“H]<1—% (pi~ ,yt)+7\§€(1Hj,yt)>

t=1 i#j t=1 i#j
= Z(l—% %) +Z%Z w1y
t=1 1#]
= Zf Py r) +Z%Z HJ( (1, )—Z(l,yt))
t=1 1#£j
= Zé (Pes yt) ‘1‘2 Z s <~] Yt) é(@%)) -
t=1 i#£j

Substituting into (11), we have

n

maprzt (g(@ yt) £<j7yt))

#i
= Zz(pt,yt)—minzz(p?ﬁyt) (12)
M
AInN =i (F(pi~7 i .
< Zmzu ]< Py ]ayt> +Z%Zu j( i Yt) g(]a%)) :
Mn+1 =1 iz P vy

Now, we apply Bernstein’s inequality (see Lemma 7) several times again and mimic the proofs
of Lemmas 1 and 2. For all paiis# j, with probability at least — /(2N (N — 1) + 2),

szt( (4, ye) J Yt) ) szt (4 ye) = €07, )
o (v 1 2N(N —1)+2  2V2 F*NY, 2N(N —1)+2
- (J‘l(/f N) (;%»n - +=3 <1+ - >1n _ ) .

(13)

Similarly to Lemma 3, we also have, with probability at least 6 /(2N (N — 1) + 2),
j i— 2 . k*N 2
Zﬁtzut ( (P j7yt)> < Ent( ~ )
t=1

t=1 i#£j
+J2(k*N)4< n n_g) 1n2N(N—1)+2+£1n2N(N—1)+2 (14)




whereas, similarly to Lemma 4, with probability at least 6/(2N(N — 1) + 2),

Z%Z“HJ( i Yr) Jyt>_ Z%

t=1 1]

+J4(k;*)2 (zn:%) 1n2N(N_1)+2+£(k*+ﬂ)1n2N(N_1)+2. (15)

o 3 N o

We then use the Hoeffding-Azuma inequality (see Hoeffding [27], AzumaY4]y — 1) times
to show that for every pair# j, with probability at least — §/(2N (N — 1) + 2),

, N(N—-1)+3
szt (4, ye) — €4, 91) >Z]Ift (i, ) E(J,yt))—\/%ln%. (16)

Finally, we substitute inequalities (13)—(16) into (12) and use a union-of-event bound to obtain
that, with probability at least — 4,

maxz]lft i (00 w) — €4, 91)

t=1

"’\/2”11157

where we used the notatioh = /(2N (N — 1) + 2), with &’ > §/(2N?) whenN > 2. The
proof is now concluded as that of Theorem 1. 1

7 Random feedback

Several authors consider an extended setup in which the feedbacks are random variables. See
Rustichini [35], Mannor and Shimkin [30], Weissman and Merhav [39], Weissman, Merhav, and
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Somekh-Baruch [40] for examples. In this section we briefly point out that most of the results of
this paper extend effortlessly to this more general case.

To describe the model, denote By(S) the set of all probability distributions over the set
of signalsS. The signaling structure is formed by a collection/of/ probability distributions
pa gy overS, fori =1,...,Nandj = 1,..., M. At each round, the forecaster now observes
a random variable{ (1;,y;), drawn independently from all the other random variables, with
distributiony(z, ,,)-

We may easily generalize the results of Theorems 1 and 4 to the case of random feedbacks.
As above, each element 8fis encoded by a real number(inl, 1]. Let E be theN x M matrix
whose elements are given by the expectations of the random varfables. Theorems 1 and 4
remain true under the condition that there exists a matrisuch that. = KE. The only
necessary modification is how the losses are estimated. Here the forecaster uses the estimates

7 k(i, I) H 1y, yr)

Ui, y) = - i=1,....N
ty

instead of the estimates defined in Section 3. Conditioned, on., I;_;, the expectation of

v

0(1,y) isthe losd(i, y;). Since this, together with boundedness, are the only conditions that were

needed in the proofs, the extension of the results to this more general framework is immediate.
The results of Section 4 may be generalized to the case of random feedbacks as well. For

example, to construddl’ whenH is a matrix of probability distributions ove#, we proceed as

follows: for1 < ¢ < N ands € S, denote byH; ;) the row vector of elements i), 1], such

that thek-th element offf; ,) is ju(; 1) (s). Now, the((k; — 1)m + k)-throw of H', 1 < ky < N,

1 <k <m,is Hy, 5,,)- All the other details of the construction and the proofs go through.

Appendix: Bernstein’s inequality

Bernstein’s inequality (see, e.g. [15]) is used several times in the proofs.

Lemma 7 (Bernstein’s inequality) Let X, X, ..., X,, be a bounded martingale difference se-
quence (with respect to the filtratio = (F;)1<<n)), With increments bounded in absolute

values byK, and
M,=> X,
t=1
the associated martingale. Denote its predictable quadratic variation by

t=1

and assume that,, < v for some constant. Then, for allu > 0,

P[M, > u] < exp (‘2(v+u—;<u/3)>
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and in particular, for allz > 0,

P [Mn > V2ur + (V2/3)Kz| < e

Appendix: basic lemmas

Theorem 5 Consider any sequence of losses € [—B;, B, i = 1,...,.N, B, > 0, t =
1,...,n, and any non-increasing sequence of tuning parameters0,t = 1,...,n, such that
n:B; < 1for all t. Then, the forecaster which uses the exponentially weighted averages

Wy ¢ .
qi,t: N 3 2:1,...’N7

Zj:l Wit

where
t—1
Wit = €XP (—Ut Z&,s) )
s=1

satisfies

n N n n N
Z Z Giilis — j:f{liHN Z lir < ( S %) In N + Z Mt Z Gia G5y -
t=1 =1

=1 =1 =1 Mn+1

The proof below is a simple modification of an argument first proposed in [3]. Denote the
numerator of the defining expressiongef by w; ; = e Fit=1 whereL; ; 1 = €;1+...+ {41,
and usew; , = e-m-1Lit-1 to denote the weight, ; where the parametey is replaced byy; ;.
The normalization factors will be denoted B, = >_" | w;, andiW; = 3% | w),. Finally, we
usek, to denote the expert whose loss after the firgiunds is the lowest (ties are broken by
choosing the expert with smallest index). Thatlig,; = min;<y L; ;.

In the proof of the theorem, we also make use of the following technical lemma.

Lemma 8 Forall N > 2,forall 3 > a > 0,andforalld,,...,dy > 0such thaty )~ e-o% >

L,
N —ad; .

lnzj\?le_ﬁd B N,
Proof. We begin by writing

N _od; N o,

n > e 1 o e
E;'Vzl e—Bd; Zjvzl ela—p)d; o—ad;
< (B-a)E[D)]
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where we applied Jensen inequality to the random variébtaking valued; with probability
e‘“di/Zj.V:l e~% for eachj = 1,..., N. SinceD takes at mostV distinct values, its entropy
H(D) is at mostn N. Therefore

ZN e—o&di N
_ i=1 4 —Bd;
InN > H(D) = S (admtln;e >

N
= aE[D]+ lnz e P > oF [D]

j=1

where the last inequality holds sin@f;l e~ > 1. HenceE [D] < (InN)/a. As 3 > a by
hypothesis, we can plug the bound®BnD] in the upper bound above and conclude the prgof.

Proof. As itis usual in the analysis of the exponentially weighted average predictor, we study the
evolution ofln(W,,,/W;). However, here we need to couple this term Wittwy, , +/wk, +11)
including in both terms the time-varying parameigr Tracking the currently best expeétt is

used to lower bound the weight(wy, .+1/W:+1). In fact, the weight of the overall best expert
(after n rounds) could get arbitrarily small during the prediction process. We thus obtain the
following

1 Iy Whiort 1 g Whet+1

Uz Wi Nt+1 Wi

B (L B l) I Wit L iln W, o1/ Wit N lln Wy, 1t/ Wh
M+1 Mt Wiy t+1 wkt,t+1/Wt+1 yr wﬁgt,tH/W{H

= (A +(B)+(C).

We now bound separately the three terms on the right-hand side. ThéAgimeasily bounded
by usingn,,; < 7, and using the fact thaj, is the index of the expert with smallest loss after the
firstt rounds. Thereforeyy, ;,+1/W;+1 must be at least/N. Thus we have

1 1 1 1
(A) = (— — —) In WH_I S ( — —) InN .
M4+ Nt Wy t+1 Mie+1 us

We proceed to bounding the teri®) as follows

(B> _ lln w;ct7t+1/Wt/+1 _ lln Zf\il e~ M1 (Lie—Ly, )

N oL
N Wittt/ Wi e > i€ (Lt Ly )

— 1 1
< e ey N — (— — —> In N
NeTle+1 N1 e
where the inequality is proven by applying Lemma 8 with= L, — Ly, ;. Note thatd; > 0
sincek; is the index of the expert with smallest loss after the firstunds an(EZ.N:1 e M+1di > ]
as fori = k; we haved; = 0. The term(C) is first split as follows
1 Wi, o /We 1wk, L L Wi,

(C)=—In =—1n —1In
Tt w;ct,tJrl/ Wt/-i—l Ui wfct,tﬂ Nt W,
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We bound separately each one of the two terms on the right-hand side. For the first one, we have

1 Wiyt 1 6*7]tht_1,t71
= i = L~ L
t ki t+1 t ’

For the second term, we consider the random variablthat takes valué; , with probability
¢ir = w;y /Wy foreachi =1,...,N. Asn,B, < 1, we have in particulan./;, < 1, so we may
use the inequality” < 1 + = + 22 for z < 1, andin(1 + u) < u foru > —1, to obtain

1 w?! 1 N ; —nelie 1 N
—In—4 = —In izt Wit =—1n Z gige M
Tt Wi Tt Wi U ——
1 N
< 77_ In (Z Qi (1 —mliy + 77t2€z2,t)>
t i=1

N N
< - Z Qiiliz + M Z Qi,tfzz,t :
i—1 i—1

Finally, we plug back in the main equation the bounds on the first two téAnsnd(B), and
the bounds on the two parts of the tef@h). After rearranging we obtain

N N
Z gitliz < (th,t — th,l,t—l) + M Z Qi,tgit
i—1 i—1

1 W41 1 Wr g

In
Mt+1 Wit yr Wi

+o (L - l) N .
M1 T
We apply the above inequalities to eack 1,...,n and sum up using

n

E (Liyt — Ly 1) = min Ly,

t=1

i <— Lo @t 1y —w’““’t> <Ly Yo N
—1 Te+1 t+1 Mt Wi m Wi Ui

to conclude the proof. 1
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