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Abstract

We present in this work a new methodology to design kerneldaia

which is structured with smaller components, such as texages or
sequences. This methodology is a template procedure whitlhe ap-
plied on most kernels on measures and takes advantage otaletailed

“bag of components” representation of the objects. To ol#ach a de-
tailed description, we consider possible decompositidrthe original

bag into a collection of nested bags, following a prior knedge on the
objects’ structure. We then consider these smaller bagsrtpare two

objects both in a detailed perspective, stressing locatinestbetween
the smaller bags, and in a global or coarse perspective, hsidering

the entire bag. This multiresolution approach is likely eol@st suited
for tasks where the coarse approach is not precise enoudhylzere a
more subtle mixture of both local and global similaritiemécessary to
compare objects. The approach presented here would notnbeuta-

tionally tractable without a factorization trick that wetrimduce before
presenting promising results on an image retrieval task.

1 Introduction

There is strong evidence that kernel methc@s [11] can dediate-of-the-art performance
on most classification tasks when the input data lies in aovesgtace. Arguably, two fac-
tors contribute to this success. First, the good ability efnlel algorithms, such as the
SVM, to generalize and provide a sparse formulation for thgeulying learning problem;
Second, the capacity of nonlinear kernels, such as the polial and RBF kernels, to
qguantify meaningful similarities between vectors, noyaidn-linear correlations between
their components. Using kernel machines with non-vedtddta (e.g., in bioinformatics,
pattern recognition or signal processing tasks) requi®rarbitrary choices, both to rep-
resent the objects and to chose suitable kernels on thosesegpations. The challenge
of using kernel methods on real-world data has thus recéogtgred many proposals for
kernels on complex objects, notably for strings, treesg@saor graphs to cite a few.

A strategy often quoted as the generative approach to thisigm takes advantage of a
generative model, that is an adequate statistical modehfoiobjects, to derive feature
representations for the objects. In practice this oftefdgi&ernels to be used on the his-
tograms of smaller components sampled in the objects, wheileernels take into account



the geometry of the underlying model in their similarity reeges [ [Pf]4[]d] 3]. The previ-
ous approaches coupled with SVM’s combine both the advastafjusing discriminative
methods with generative ones, and produced convincindtsesumany tasks.

One of the drawbacks of such representations is howevethtegatimplicitly assume that
each component has been generated independently and tiroaataway, where the em-
pirical histogram of componentsis seen as a sample from@erlying stationary measure.
While this viewpoint may translate into adequate propsifie some learning tasks (such
as translation or rotation invariance when using histografcolors to manipulate im-
ages [IZ]), it might prove too restrictive and hence inadég)t@r other types of problems.
Namely, tasks which involve a more subtle mix of detectioth conditional (with respect
to the location of the components for instance) and globailziities between the objects.
Such problems are likely to arise for instance in speeclguage, time series orimage pro-
cessing. In the first three tasks, this consideration isbtpteeated by most state-of-the-art
methods through dynamic programming algorithms capabléetécting and penalizing
accordingly local matches between the objects. Using dymprogramming to produce a
kernel yielded fruitful results in different applicatiof@, 12], with the limitation that the
kernels obtained in practice are not always positive defiai$ reviewed irm4]. Other ker-
nels proposed for sequenc@ [10] directly incorporate alilation information into each
component, augmenting considerably the size of the commi@pace, and then introduce
some smoothing (such as mismatches) to avoid represergdtiat would be too sparse.

Figure 1: From the bag of components representation to & sested bags, using a set of
conditioning events.

We propose in this work a different approach grounded on #megative approach previ-
ously quoted, managing however to combine both conditiandlglobal similarities when
comparing two objects. The motivation behind this appraadioth intuitive and compu-
tational: intuitively, the global histogram of componentsat is the simple bag of com-
ponents representation of FigLﬂe 1, may seem inadequdte ddmponents’ appearance
seem to be clearly conditioned by some external events. giesomenon can be taken
into account by considering collections (indexed on theesaat of events, to be defined)
of nested bags or histograms to describe the object. Kettmatisvould only rely on these
detailed resolutions might however miss the bigger pictbeg is provided by the global
histogram. We propose a trade-off between both viewpohtsugh a combination that
aims at giving a balanced account of both fine and coarse @&rgps, hence the name of
multiresolution kernels, which we introduce formally incen @ On the computational
side, we show how such a theoretical framework can transitdean efficient factoriza-
tion detailed in Sectioﬂ3. We then provide experimentalltesn Sectior[|4 on an image
retrieval task which shows that the methodology improvesrformance of kernel based
state-of-the art techniques in this field.



2 Multiresolution Kernels

In most applications, complex objects can be representéisasyrams of components,
such as texts as bags of words or images and sequences gsdngtof colors and letters.
Through this representation, objects are cast as probalailvs or measures on the space
X of components, typically multinomials & is finite @@[}3] and compared as such
through kernels on measures. An obvious drawback of thiesemtation is that all con-
textual information on how the components have been sanipledt, notably any general
sense of position in the objects, but also more complex ¢iomail information that may
be induced from neighboring components, such as transitiotong range interactions.

In the case of images for instance, one may be tempted todmmsot only the overall
histogram of colors, but also more specialized histogrammighvmay be relevant for the
task. If some local color-overlapping in the images is arresting or decisive feature of
the learning problem, these specialized histograms magbergted arbitrarily following
a grid, dividing for instance the image into 4 equal parts] eomputing histograms for
each corner before comparing them pairwise between twoemésge FigurE 2 for an il-
lustration). If sequences are at stake, these may alsodszishito predefined regions to
yield local histograms of letters. If the strings are on tbatcary assumed to follow some
Markovian behaviour (hamely that the appearance of leittetige string is independent of
their exact location but only depends on the few letterspihatede them), an interesting in-
dex would translate into a set of contexts, typically a catgsuffix dictionary as detailed
in [. While the two previous examples may seem opposedamidly the histograms are
generated, both methodologies stress a particular clasgenits (location or transitions)
that give an additional knowledge on how the components wanepled in the objects.
Since both these two approaches, and possibly other omrebecgpplied within the frame-
work of this paper using a unified formalism, we present outhomgology using a general
notation for the index of events. Namely, we n@tefor an arbitrary set of conditioning
events, assuming these events can be directly observed objerct itself, by contrast with
the latent variables approach 13]. Considering stilllgiwing the generative approach,
that an object can be mapped onto a probability megswe X', we have that the realiza-
tion of an event € 7 can be interpreted under the light of a joint probability, ¢), with

x € X, factorized through Bayes’ law agx|t)u(¢) to yield the following decomposition

of uas
w3
teT

where eachu; d:"fu(-|t)u(t) is an element of the set of sub-probability measurEs X'),
that is the set of positive measure®n X’ such that their total masg X’) denoted as$p|
is less tharor equal tol. To take into account the information brought by the evemts,i
objects can hence be represented as families of measubé$ (@) indexed by7, namely

elements, contained inM7(X) %' M3 (x)7T.

2.1 Local Similarities Between Measures Conditioned by Sstof Events

To compare two objects under the light of their respectiveodgositions as sub-
probability measureg; and u;, we make use of an arbitrary positive definite kerhel
on M3 (X') to which we will refer to as the base kernel throughout theepalpor interpre-

tation purposes only, we may assume in the following sestibati can be written as~¢
whered is an Euclidian distance in/; (X'). Note also that the kernel is defined not only
on probability measures, but also on sub-probabilities.tWo elements, 1/ of M7 (X)
and a given elemeritc 7, the kernel

def
(g, ') = ke, py)



measures the similarity of and ' by quantifying how similarly their components were
generated conditionally to eventFor two different events andt of 7, k, andk; can be
associated through polynomial combinations with posiagtors to result in new kernels,
notably their sumks + k. or their productksk;. This is particularly adequate if some
complementarity is assumed betweeandt, so that their combination can provide new
insights for a given learning task. If on the contrary therdseare assumed to be similar,
then they can be regarded as a unique eyepty {t} and result in the kernel

def
Egsyoqey (s ') = k(s + poe, gy + p13),

which will measure the similarity ofn andm’ wheneither s or ¢ occurs. The previous
formula can be extended to model kernels indexed on d'set 7 of similar events,
through

d d f
kr(m,m') € k (ur, 1dy) , where ir 03" iy and php 3 g,
teT te T

Note that this equivalent to defining a distance betweenahsp andy’ conditionned by
def
T asdi(p, 1) = d*(pr, piy).-

2.2 Resolution Specific Kernels

Let P be a finite partition of7, that is a finite familyP? = (71, ..., T,,) of sets of7", such
that;NT; = @if 1 <i<j <nandJ._,T; = 7. We writeP(7) for the set of all
partitions of’T Consider now the kernel defined by a partitiBras

N ET] ks (1) (1)
=1

The kernelkp quantifies the similarity between two objects by detectimgjrtjoint sim-
ilarity under all possible events &f, given an a priori similarity assumed on the events
which is expressed as a partitiondf Note that there is some arbitrary in this definition
since, following the convolution kernelﬂ [5] approach fiostance, a simple multiplication
of base kernelér, to definekp is used, rather than any other polynomial combination.
More preusely, the mult|pI|cat|ve structure of Equatuﬂb @uantifies how two objects are
similar given a partitionP in a way that imposes for the objects to be similar according t
all subsetd;. If k can be expressed as a function of a distafide- can be expressed as

the exponential of
n
def
NED D dr (),
i=1

a quantity which penalizes local differences between tleehpositions of: andy’ over
7, as opposed to the coarsest approach wiete {7} and onlyd?(u, ') is considered.

As illustrated in Figur{|2 in the case of images expressedstsgnams indexed over loca-
tions, a partition off reflects a given belief on how events should be associateelomd
to the same set or dissociated to highlight interestingrditarities. Hence, all partitions
contained in the se® (7)) of all possible partition'sare not likely to be equally meaning-
ful given that some events may look more similar than othéfrshe index is based on
location, one would naturally favor mergers between neiginlg indexes. For contexts, a
useful topology might also be derived by grouping contexth similar suffixes.

twhich is quite a big space, since T is a finite set of cardinal, the cardinal of the set of
partitions is known as the Bell Number of ordewith B, = 1 3°%° &=~ ¢rinr,

7—00



Figure 2: A useful set of eventg for images which would focus on pixel localization
can be represented by a grid, such as8he 8 one represented above. In this cd3e
corresponds to theé3 windows presented in the left imag®, to the 16 larger square
obtained when grouping small windows,P; to the image divided intd equal parts and
Py is simply the whole image. Any partition of the image obtaifiem sets inPg, such
as the one represented above, can in turn be used to repaesemge as a family of sub-
probability measures, which reduces in the case of twordolages to binary histograms
as illustrated in the right-most image.

Such meaningful partitions can be obtained in a generalitaseassume the existence of
a prior hierarchical information on the elements/aftranslated into a series

Py={T},..Pp = {{t},te T}

of partitions of7", namely a hierarchy off. To provide a hierarchical content, the family
(P2)E_, is such that any subset present in a partitiynis included in a (unique by defi-
nition of a partition) subset included in the coarser partit’; 1, and further assume this
inclusion to be strict. This is equivalent to stating thatlesetl” of a partitionP; is divided

in P41 through a partition of” which is notT itself. We note this partition(7") and name
its elements the siblings @. Consider now the subs@y, C P(7) of all partitions of7
obtained by using only sets in

D
D def
P’ = Pa,
d=1

namelyPp def {Pe P(T)stVTe P,Tec PP}.. The setPp contains both the coarsest

and the finest resolutions, respectivélyand Pp, but also all variable resolutions for sets
enumerated itP?, as can be seen for instance in the third image of Fifjure 2.

2.3 Averaging Resolution Specific Kernels

Each partitionP contained inPp provides a resolution to compare two objects, and gen-
erates consequently a very large family of kerriglswhen P spansPp. Some partitions
are probably better suited for certain tasks than otherghwhay call for an efficient esti-
mation of an optimal partition given a task. We take in thistiem a different direction by
considering an averaging of such kernels based on a Bayaswaron the set of partitions.

In practice, this averaging favours objects which shardaiities under a large collection

of resolutions.

Definition 1. Let 7 be an index set endowed with a hierarct¥;)?_,, = be a prior
measure on the corresponding set of partitidds and & a base kernel onV/3 (X)) x
M3 (X). The multiresolution kernél, on M7 (X) x M7 (X) is defined as

krr(,uvy/) = Z ﬂ-(P) /{p(,LL,/L/). (2)
Pec Pp

Note that in Equation[[Z), each resolution specific kerneitgbutes to the final kernel
value and may be regarded as a weighted feature extractor.



3 Kernel Computation

This section aims at characterizing hierarchigs)’_, and priorst for which the compu-
tation ofk, is both tractable and meaningful. We first propose a typearéinchy generated
by trees, which is then coupled with a branching procesgs poidully specify 7. These
settings yield a computational time for expressiggwhich is loosely upperbounded by
D x card7T x c¢(k) wherec(k) is the time required to compute the base kernel.

3.1 Partitions Generated by Branching Processes

All partitions P of Pp can be generated iteratively through the following rulartatg from
the initial root partitionP := Py = {7 }. For each seT of P:

1. either leave the set as it isin,

2. either replace it by its siblings enumerated:{fi’), and reapply this rule to each
sibling unless they belong to the finest partitiBp.

By giving a probabilistic content to the previous rule thgbwa binomial parameter (i.e. for
each treated set assign probability- ¢ of applying rule 1 and probability of applying

rule 2) a candidate prior foPp can be derived, depending on the overall coarseness of
the considered partition. For all elemefitof Pp this binomial parameter is equal
whereas it can be individually defined for any elem&raf the D — 1 coarsest partitions
aser €0, 1], yielding for a partitionP € Pp, the weight

m(P)= ] A —er) ] (en),

Te P o
€ TeP

where the seP = {T'€ PP s.t.3V € P,V C T} gathers all coarser sets belonging to
coarser resolutions thai, and can be regarded as all ancestorBjihof sets enumerated
in P.

3.2 Factorization

The prior proposed in Sectidn B.1 can be used to factorizdatmeula in (2), which is
summarized in this theorem, using notations used in Dedimi

Theorem 1. For two elementsn, m’ of M7 (X), define forT spanning recursively
Pp,Pp_1,... P the quantity

Ky =1 —er)kr(p,p') +er H Ky.
Ue s(T)

Thenk, (u, ') = Kr.

Proof. The proof follows from the prior structure used for the tremeration, and can be
foundin either[ll] or [h]. Figurﬂ3 underlines the importaraf incorporating to each node
K1 aweighted product of the kernel§; computed by its siblings. O

If the hierarchy of7 is such that the cardinality a{7") is fixed to a constant for any sef’,
typically o« = 4 forimages as seenin FigLﬂe 2, then the computatidn @& upperbounded
by (aP*!—1)c(k). This computational complexity may even become lower iesaghere
the histograms become sparse at fine resolutions, yieldimglexities in linear time with
respect to the size of the compared objects, quantified bigitgth of the sequences iﬂ [4]
for instance.



Ky = (1 —er)k(pr, pwy) +er [T K,

Figure 3. The update rule for the computationkef takes into account the branching
process prior by updating each node corresponding to’B eeany intermediary partitions
with the values obtained for higher resolutions ().

4 Experiments

We present in this section experiments inspired by the inmagéeval task first consid-
ered in [12] and also used iﬁl [6], although the images used d&rer@ot exactly the same.
The dataset was also extracted from the Corel Stock datavaséncludes 12 families
of labelled images, each class containing 100 color imaggsh image being coded as
256 x 384 pixels with colors coded in 24 bits (16M colors). The fansligepictbears,
African specialty animals, monkeys, cougars, fireworksmains, office interiors, bon-
sais, sunsets, clouds, apasdrocks and gemsThe database is randomly split into bal-
anced sets of 900 training images and 300 test images. Thedasists in classifying
the test images with the rule learned by training 12 onelv8\&VI's on the learning fold.
The object are then classified according to the SVM perfogrttie highest score, namely
with a “winner-takes-all” strategy. The results presenteithis section are averaged over 4
different random splits. We used the CImg package to geméiatograms and the Spider
toolbox for the SVM experiments

We adopted a coarser representation of 9 bits per color é9&}804 pixels of each image,
rather than the 24 available ones to reduce the size of the &BB space t®@> = 512
from the original set 0256% = 16, 777, 216 colors. In this image retrieval experiment, we
used localization as the conditioning index set, dividing images intd, 4,42 = 16,9
and9? = 81 local histograms (in Figurﬂ 2 the image was for instancedeittiinto4® = 64
windows). To define the branching process prior, we simpiyaseuniform value over all
the grid ofe of 1/a, an usage motivated by previous experiments led in a sicolatext El].
Finally, we used kernels described in bdth [2] aﬂd [6] to defime base kernél. These
kernels can be directly applied on sub-probability measusich is not the case for all
kernels on multinomials, notably the Information Diffusi&ernel @]. We report results
for two families of kernels, namely the Radial Basis Funt&éxpressed for multinomials
and the entropy kernel based on the Jensen divergﬂrﬂe [6, 3]

Kapp(0, 0') = e P2 100001 g (0, 07) = o h(EE) +3 (rO)+h(8))

For most kernels not presented here, the multiresolutigmageh usually improved the
performance in a similar way than the results presentedlfeTh Finally, we also report
that using only the finest resolution available in e&ehD) setting, that is a branching pro-
cess prior uniformly set tad, yielded better results than the use of the coarsest hatogr
without achieving however the same performance of the negltiution averaging frame-
work, which highlights the interest of taking both coarsd fine perspectives into account.

2http://cimg.sourceforge.net/ andhttp://www.kyb.tuebingen.mpg.de/bs/people/spider/



Whena = .25 for instance, this setting produced 16.5% and 16.2% ertesff@ra = 4
andD = 1,2, and 15.8% fonn = 9 andD = 1.

RBF,b =1, p=.01
a=.25|a=.5a=1 Jb
global histogram|| 18.5 183 | 183 | 214

D=1,a=4 15.4 16.4 | 18.8 17
D=2a=4 13.9 135 | 15.8 | 15.2
D=1,a=9 14.7 14.7 | 16.6 15
D=2a=9 15.1 15.1 | 30.5 | 15.35

Kernel

Table 1: Results for the Corel image database experimeatnmstof error rate, with 4 fold
cross-validation and 2 different types of tested kernbls RBF and the Jensen Divergence.
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