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BOUNDARY BEHAVIOUR OF M-HARMONIC FUNCTIONS AND

NON-ISOTROPIC HAUSDORFF MEASURE

PHILIPPE JAMING & MARIA ROGINSKAYA

Abstract. In this paper we consider weighted boundary behaviour of M-harmonic functions on the
unit ball of Cn. In particular, we show that a measure on the unit sphere of Cn admits a component
along the non-isotropic Hausdorff measure on that sphere and that this component gives rise to
certain weighted boundary behaviour of the M-harmonic extension of the original measure.

1. Introduction

In this paper, we study weighted boundary behaviour of invariant-harmonic (M-harmonic) exten-
sions of measures on the unit sphere Sn of Cn to its unit ball Bn.

In a first step, we show that, for every 0 ≤ α ≤ n, a finite Radon measure on S
n decomposes into a

sum of two mutually singular measures ν0 and ν1 where ν1 is a component along the Hausdorff measure
mα. Note that decompositions of measures along Hausdorff measures already appear in Kahane and
Katznelson’s work [7, 5, 6] but their decomposition does not suit our needs.

The Hausdorff measure we consider here is the non-isotropic Hausdorff measure associated to the

distance d(ζ, ξ) = |1 − 〈ζ, ξ〉|
1
2 on Sn. This distance is the most adapted to invariant complex analysis

on Bn and relations between the corresponding Hausdorff measure and boundary behaviour of M-
harmonic functions already occurs in several places (see e.g. [4, 2, 1, 3]).

Now, let P [ν] denote the M-harmonic extension (or the Poisson-Szegö integral) of a measure ν.
We next show that the component ν1 of ν along the Hausdorff measure mα is essentially recovered by
a suitably weighted boundary limit of P [ν].

These results may be summarized in the following theorem :

Theorem. Let 0 ≤ α ≤ n and let mα be the non-isotropic Hausdorff measure of order α. There exist

constants C, c > 0 such that, for every finite complex valued Radon measure ν on Sn, there exist an

mα-summable function f , and a measure ν0 mutually singular to mα such that ν = fmα + ν0, and

c|f(ζ)| ≤ lim sup
z ∈ Γγ(ζ)

z → ζ

(1 − |z|)n−α|P [ν](z)| ≤ C|f(ζ)|, mα-a.e on S
n

where Γγ(ζ) is an admissible approach region at ζ ∈ Sn.

Note that the extreme cases α = 0 and α = n are already known (see [10], section 7).
The article is organised as follows : in the next section, we present the precise setting for our

problem. The following section is devoted to the decomposition of measures along Hausdorff measures
and some related lemmas. Finally, we apply these results to the study of weighted boundary behaviour
of M-harmonic functions and prove our main theorem.

1991 Mathematics Subject Classification. 28A78,32H20,42B25.
Key words and phrases. M-harmonic functions, boundary behaviour, non-isotropic Hausdorff measure, non-isotropic

Hausdorff dimension.
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2. setting

2.1. M-harmonic functions. In this paper, Bn will be the unit ball of C
n and S

n, its boundary.
Denote by |.| the euclidean norm on Cn and let dσ be the usual surface measure on Sn.

Let M denote the group of holomorphic automorphisms of Bn. The Laplace operator on Bn that
is invariant under M is given by

∆̃f =
4(1 − |z|2)

n + 1

n
∑

i,j=1

[δi,j − zizj]
∂2f

∂zj∂zi

,

where δi,j is the Kronecker symbol.

Definition. A function f ∈ C2(Bn) is said to be M-harmonic if ∆̃f = 0.

The invariant Poisson kernel P on Bn × Sn is given by

P (z, ξ) =
(1 − |z|2)n

|1 − 〈z, ξ〉|2n
z ∈ Bn, ξ ∈ S

n.

It is well known that if ν is a finite measure on Sn, then

P [ν](z) :=

∫

Sn

P (z, ξ)dν(ξ)

satisfies ∆̃P [ν] = 0. As standard reference on M-harmonic functions we will use [9, 10].

2.2. Non-isotropic Hausdorff measure. For the statements and the proofs of the main results of
this paper, we recall the notion of “non-isotropic” Hausdorff measure.

We will consider d(ζ, ω) = |1 − 〈ζ, ω〉| 12 , the non-isotropic distance on Sn. To keep with the habits
of complex analysts, for δ ≥ 0, we denote by

Q(ζ, δ) := {ω ∈ S
n : d(ω, ζ)2 < δ} = {ω ∈ S

n : |1 − 〈ζ, ω〉| < δ}
the corresponding non-isotropic balls of radius

√
δ (or Koranyi balls). If K is a compact subset of S

n,
0 < α ≤ n, the non-isotropic Hausdorff measure of K is defined by

mα(K) = lim
∆→0

inf
∑

δα
j ,

where the infimum is over all covers {Q(ζj , δj)} of K by Koranyi balls with radii δj < ∆. If A is an
arbitrary subset of Sn, then

mα(A) = sup{mα(K) : K compact, K ⊂ A, mα(K) < +∞},
(the fact that one may restrict attention to subsets K with mα(K) < ∞ results from [8], chapter 6).

The non-isotropic Hausdorff-dimension is then defined in the usual way.
We will use the following definition.

Definition. Let ν be a finite measure on Sn, define the upper α-derivate of ν as

Dαν(ζ) = lim sup
δ→0+

ν
(

Q(ζ, δ
)

)

δα
,

and the lower α-derivate of ν as

Dαν(ζ) = lim inf
δ→0+

ν
(

Q(ζ, δ)
)

δα
.

If the limit exists we will call it α-derivate and denote it as Dαν(ζ).

One can then state Frostman’s Theorems (Theorem 6.9 in [8]) as :

For ν a finite positive measure on S
n and E ⊂ S

n a Borel set,
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— if Dαν ≤ C on E then mα(E) ≥ ν(E)
KC

, for some absolute constant K > 0,

— if Dαν ≥ C on E then mα(E) ≤ K
ν(E)

C
, for some absolute constant K > 0.

Remark. Since σ
(

Q(ζ, δ)
)

≃ δn, when α = n, mn is equivalent to the Lebesgue measure on Sn.
When n = 1, the non-isotropic Hausdorff measure corresponds to the usual Hausdorff measure on

the boundary.
Note that the non-isotropic Hausdorff measure depends on “directional” considerations. For in-

stance, let Sn,k = {(z1, . . . , zk, 0, . . . , 0) ∈ Sn} be the intersection of Sn with Ck (included in Cn in a
standard way). Then, Frostman’s Lemma with µ = σk, Lebesgues’ measure on S

n,k (extended to S
n

in a standard way) shows that Sn,k has non-isotropic dimension k.

Let S
n,k
R = Re Sn,k = {(x1, . . . , xk, 0, . . . , 0) ∈ Sn : x1, . . . , xk ∈ R}. Then Q(ζ, δ) ∩ S

n,k
R are the

usual euclidean balls with radius
√

δ. Thus Frostman’s Lemma with µ = σk, Lebesgues’ measure on

S
n,k
R shows that S

n,k
R has dimension k

2 − 1. In particular S
n,2k
R and S

n,k do not have same dimension,
though they are isometric in Euclidian metric.

3. Density estimates

Definition. Let ν be a measure on S
n and 0 ≤ α ≤ n. We will say that ν is mutually singular to mα

if for every Borel set K such that 0 < mα(K) < ∞ there exists a set E such that mα(E) = 0 and

|ν|(K \ E) = 0.

Lemma 3.1. Let α > 0. There exists a constant C, depending only on α, such that for any complex

measure ν on Sn, and for every t > 0,

mα

(

{

ζ ∈ S
n : Dα|ν|(ζ) > t

}

)

≤ C
‖ν‖
t

.

Proof. It is enough to prove the lemma for positive measures. This is then just Frostman’s Lemma
applied to E =

{

ζ ∈ Sn : Dα|ν|(ζ) > t
}

. �

Lemma 3.2. Let 0 ≤ α ≤ n and let ν be a Radon measure on Sn. If ν is mutually singular to mα,

then

mα

(

{ζ ∈ S
n : Dα|ν|(ζ) > 0}

)

= 0.

Proof. It is enough to prove the statement for positive measures.
Denote by Ka = {ζ ∈ Sn : Dα|ν|(ζ) > a}. As, for fixed δ > 0, ζ 7→ Q(ζ, δ) is lower semi-continuous,

Ka is of course a Borel set. Further, by Lemma 3.1, mα(Ka) < +∞. Finally, as

{ζ ∈ S
n : Dα|ν|(ζ) > 0} =

⋃

a∈Q+

Ka,

it is enough to prove that mα(Ka) = 0 for every a > 0.
Fix a > 0. As ν is mutually singular to mα we can also assume that ν(Ka) = 0.
Let δ0 be small enough to have

(1) mα(Ka) < 2 inf
∑

rα
i

where the infimum runs over all covers {Q(ζi, ri)} of Ka by balls of radius ri < 9δ0.
Let ε > 0. As ν(Ka) = 0 and ν is a Radon measure there exists an open set Ω, such that Ka ⊂ Ω

and ν(Ω) < ε.
Since, for each ζ ∈ Ka, Dαν(ζ) > a, there exists a ball Q(ζ, rζ) ⊂ Ω of radius rζ < δ0 such that

ν
(

Q(ζ, rζ)
)

> arα
ζ .
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By the “5-covering Lemma” adapted to Koranyi balls (see [10] Lemma 7.5), there exists a countable

disjoint subcollection {Qi}i∈τ of {Q(ζ, rζ)}ζ∈Ka
such that Ka ⊂

⋃

i∈τ

9Qi. But then with (1),

mα(Ka) ≤ 2 · 9α
∑

i∈τ

rα
i ≤ 2 · 9α

a

∑

i∈τ

ν(Qi) ≤ Cν(Ω) ≤ Cε.

As ε is arbitrary small, mα(Ka) = 0. �

Lemma 3.3. Let 0 ≤ α ≤ n. There exists a constant C > 0, which depends only on α, such that, for

every Borel set K such that 0 < mα(K) < ∞, the measure ν = mα|K satisfies

C ≤ Dαν(ζ) ≤ 1,

mα-almost everywhere on K, and

Dαν(ζ) = 0,

mα-almost everywhere on Sn\K.

Proof. This is mutadis mutandis the same proof as in [8], Theorem 6.2. �

Proposition 3.4. Let ν be a finite Radon measure on the sphere Sn and let 0 ≤ α ≤ n. Then

there exists a Borel function f summable with respect to mα and a finite Borel measure ν0 mutually

singular to mα, such that ν = fmα + ν0.

Proof. Let K ⊂ Sn be such that 0 < mα(K) < +∞. Then, by Radon-Nikodým, ν = νK + fKmα|K ,
where νK is mutually singular to mα|K . By construction, if K ′ ⊂ K is such that 0 < mα(K ′) < +∞,
then fK′ = fK , mα and ν-almost everywhere on K ′.

This allows to define mα-almost everywhere on E = {ζ ∈ Sn : Dα|ν|(ζ) > 0} a function f such
that f |K = fK for any K ⊂ E. Extend this function by zero to the rest of the sphere and let
ν0 = ν − fmα. Then

i. the function f is mα-summable, i.e.

∫

|f |dmα < +∞. Indeed

∫

|f |dmα = sup
K

∫

|f |dmα = sup
K

∫

|fK |dmα ≤ ‖ν‖.

ii. The measure ν0 is mutually singular to mα : Let K be a Borel subset of S
n such that 0 <

mα(K) < +∞. By construction, f = fK∩E mα-almost everywhere on K ∩ E, thus ν0|K∩E =
νK∩E . By the Radon-Nykodim construction of νK∩E, there is a set FK , such that mα(FK) = 0
and |ν0|

(

(K ∩ E) \ FK

)

= |νK∩E |((K ∩ E) \ FK) = 0.

On the set K \ E we have Dα|ν| = 0 and applying the first part of Frostman’s Lemma
for an arbitrary small constant C, we get |ν|(K \ E) = 0. As ν0|Sn\E = ν|Sn\E , we have
|ν0|(K \ E) = 0. Finally,

|ν0|(K \ FK) = |ν0|
(

(

(K ∩ E) \ FK

)

∪
(

K \ E
)

)

= 0,

and as mα(FK) = 0 we get that ν0 is mutually singular to mα.
iii. The measure ν0 is finite : ν and fmα are both finite, so ν0 = ν − fmα is finite.

So f and ν0 have the desired properties and the proof is complete. �

Lemma 3.5. Let ν be a finite Radon measure and let ν = ν0 + fmα be the decomposition of ν given

by Proposition 3.4. Then

(2) C|f(ζ)| ≤ Dα|ν|(ζ) ≤ |f(ζ)|
mα-almost everywhere.



BOUNDARY BEHAVIOUR OF M-HARMONIC FUNCTIONS 5

Proof. It is enough to prove the lemma for positive measures. Moreover, by Lemma 3.2, Dα|ν0| = 0
mα-almost everywhere, so it is enough to consider the case ν = fmα with f ≥ 0.

We will call a function g ∈ L1(mα) “simple” if there exists a countable collection of disjoint Borel
sets {Kn}n∈Z and real numbers {an}n∈Z, such that mα(Kn) < ∞ for all n ∈ Z and g =

∑

n∈Z

anχKn
,

where χKn
is the characteristic function of the set Kn. By Lemma 3.3, the statement (2) is true for

simple functions.

Let us consider the sequence of simple functions {gn}n∈N, given by gn(ζ) = [nf(ζ)]
n

(where [nf(ζ)]

denotes the integer part of nf(ζ)). It is easy to see that gn ∈ L1(mα) and gn → f both pointwise
(mα-a.e.) and in L1(mα)-sense. But |Dα(fmα) − Dα(gnmα)| ≤ Dα(|f − gn|mα). By Lemma 3.1,

mα({|Dα(fmα) − Dα(gnmα)| > t}) ≤ mα({Dα(|f − gn|mα) > t}) ≤ ‖f − gn‖L1(mα)

t
→ 0,

when n → ∞, i.e. Dα(gnmα) converges to Dα(fmα) in mα. So there exists a subsequence {gnj
}, for

which Dα(gnj
mα) converges to Dα(fmα) pointwise mα-a.e. Then, passing to the limit in

C
∣

∣gnj
(ζ)

∣

∣ ≤ Dα

∣

∣gnj
mα

∣

∣(ζ) ≤
∣

∣gnj
(ζ)

∣

∣

(which is true mα-a.e.), we obtain Inequality (2) for f . �

4. Nontangential limits

Notation. For ζ ∈ S
n and γ > 1

2 , we will consider the usual approach regions

Γγ(ζ) = {z ∈ Bn : |1 − 〈z, ζ〉| < γ(1 − |z|2)}.

As usual, C will denote some absolute constant that may change from one inequality to the next
one.

Lemma 4.1. Let γ > 1
2 and let α ∈ R be such that 0 ≤ α ≤ n. Then there exists a constant

C = C(α, γ) such that for every finite complex measure ν on Sn,

(3) lim sup
z → ζ

z ∈ Γγ(ζ)

(1 − |z|)n−αP [ν](z) ≤ CDα|ν|(ζ)

for every ζ ∈ Sn.

Proof. As the kernel P is positive, |P [ν]| ≤ P [|ν|], so it is enough to prove the lemma for positive
measures. By standard consequences of mean-value properties, it is also enough to consider the case
γ = 1. Write Γ(ζ) for Γ1(ζ).

Fix ζ ∈ Sn such that Dα[ν](ζ) is finite. Let z ∈ Γ(ζ) and set δ = 1
2 (1 − |z|).

Let ε > 0 and take ∆ < 2 small enough to have
ν
(

Q(ζ, r)
)

rα
< Dα[ν](ζ) + ε for all r < ∆. Let N be

the greatest integer such that 2Nδ < ∆ (we may assume that δ is small enough to have N > 1, i.e.

δ < 1
4∆). Set

V0 = {ω ∈ S
n : |1 − 〈ω, ζ〉| < δ} = Q(ζ, δ),

for k = 1, 2, . . . , N , set

Vk = {ω ∈ S
n : 2k−1δ ≤ |1 − 〈ω, ζ〉| < 2kδ} ⊂ Q(ζ, 2kδ),
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and set V∞ = S
n \

(

∪N
k=0Vk

)

. Then

(1 − |z|)n−αP [ν](z) =(1 − |z|)n−α

∫

Sn

P (z, ω)dν(ω)

=(1 − |z|)n−α

∫

V0

P (z, ω)dν(ω) + (1 − |z|)n−α

N
∑

k=1

∫

Vk

P (z, ω)dν(ω)(4)

+ (1 − |z|)n−α

∫

V∞

P (z, ω)dν(ω).

For the first term, if ω ∈ V0 then one has

P (z, ω) =
(1 − |z|2)n

|1 − 〈z, ω〉|2n
≤ 2n

(1 − |z|)n
=

22n

δn
.

So,

(1 − |z|)n−α

∫

V0

P (z, ω)dν(ω) ≤ 1

2n−α
δn−α 22n

δn
ν(V0) = C

ν(V0)

δα
= C

ν
(

Q(ζ, δ)
)

δα

≤CDα[ν](ζ) + Cε.

The sum in (4) of the integrals over Vk can be estimated in a similar way : if z ∈ Γ(ζ) and ξ ∈ Sn,
then

P (z, ξ) ≤ 32n(1 − |z|)n

|1 − 〈ξ, ζ〉|2n
,

(see e.g. [10], page 90). In particular, for ξ ∈ Vk,

P (z, ξ) ≤ 32n2−2n(k−1)

δn
=

C

22nkδn
.

We thus get

(1 − |z|)n−α

∫

Vk

P (z, ξ)dν(ξ) ≤C
1

22nk

ν(Vk)

δα
≤ C

1

2(2n−α)k

ν
(

Q(ζ, 2kδ)
)

(2kδ)α

≤C
1

2(2n−α)k

(

Dα[ν](ζ) + ε
)

.

As 2n − α > 0, the sum of all corresponding integrals can be estimated by CDα[ν](ζ) + Cε.

Finally, in (4), the integral over V∞ can be estimated by 22n(1−|z|)n

∆2n |ν|
(

Sn \Q(ζ, ∆
2 )

)

. Summerizing
the previous estimates, (4) gives

(1 − |z|)n−αP [ν](z) ≤ CDα[ν](ζ) + Cε +
22n(1 − |z|)n

∆2n
|ν|

(

S
n \ Q(ζ,

∆

2
)
)

.

As ∆ is fixed, passing to the lim sup, we get

lim sup
z→ζ, z∈Γγ(ζ)

(1 − |z|)n−αP [ν](z) ≤ CDα|ν|(ζ) + Cε.

As ε > 0 is arbitrary, we get the desired estimate (3). �

Combining this with Lemma 3.2, it follows that

Corollary 4.2. Let 0 ≤ α ≤ n and γ > 1
2 . Let ν be a finite measure on Sn, then if ν is mutually

singular with mα,

lim
z ∈ Γγ(ζ)

z → ζ

(1 − |z|)n−αP [ν](z) = 0 mα − almost everywhere.
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The next lemma provides the estimate from bellow :

Lemma 4.3. Let 0 ≤ α ≤ n. There exists a constant C > 0 such that for every positive measure ν

and every ζ ∈ Sn there exists a sequence zi ∈ Γ(ζ) such that Ri = 1 − |zi| → 0 and,

(1 − |zi|)n−αP [ν](zi) ≥ CDα(ν)(ζ).

Proof. Fix ζ ∈ Sn and let δ > 0. Then,

(1 − |z|)n−αP [ν](z) = (1 − |z|)n−α

∫

Sn

P (z, ξ)dν(ξ) ≥ (1 − |z|)n−α

∫

Q(ζ,δ)

P (z, ξ)dν(ξ).

But, for z ∈ Γ(ζ) such that 1 − |z| = δ,

P (z, ξ) =
(1 − |z|2)n

|1 − 〈z, ξ〉|2n
≥ (1 − |z|2)n

(|1 − 〈ζ, ξ〉|
1
2 + |1 − 〈z, ζ〉|

1
2 )4n

≥ C
δn

δ2n
= C

1

δn

so that

(1 − |z|)n−α

∫

Q(ζ,δ)

P (z, ξ)dν(ξ) ≥ C
ν
(

Q(ζ, δ)
)

δα
.

The result follows directly by the definition Dα(ν)(ζ) = lim sup
r→0

ν

(

Q(ζ,r)
)

rα . �

We are now in position to prove the main theorem :

Theorem 4.4. Let 0 ≤ α ≤ n and γ > 1
2 . There exist constants C, c > 0 such that, for every complex

valued Radon measure ν, there exist an mα-summable function f , and a measure ν0 mutually singular

to mα such that ν = fmα + ν0, and

(5) c|f(ζ)| ≤ lim sup
z ∈ Γγ(ζ)

z → ζ

(1 − |z|)n−α|P [ν](z)| ≤ C|f(ζ)|

mα-almost everywhere.

Proof. The decomposition of ν is given in Proposition 3.4 and Corollary 4.2 shows that the theorem
is valid for ν0. So, it is enough to consider ν = fmα. Further, the upper estimate is then just a
combination of Inequality (3) and Lemma 3.5.

Let us first assume that ν is a positive measure, i.e. f is positive. Then the lower estimate in (5)
results from Lemma 4.3.

Next, assume that ν thus f are real. Write f = f+ − f− where f+ and f− are respectively the
positive and the negative parts of f , in particular |f(ζ)| = max{f+(ζ), f−(ζ)}. As the kernel P is
positive,

(6) |P [ν]| =
∣

∣P
[

(f+ − f−)mα

]
∣

∣ =
∣

∣P
[

f+mα

]

− P
[

f−mα

]
∣

∣.

Now, for each ζ ∈ Sn, at most one of f+(ζ) and f−(ζ) is non zero. Thus, by the upper estimate,
for mα-almost every ζ ∈ S

n, at most one of (1 − |z|)n−αP [f+mα] and (1 − |z|)n−αP [f−mα] has non
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zero limit as z → ζ, z ∈ Γγ(ζ). It follows from the lower estimate for positive measures and (6) that
mα-almost every ζ ∈ Sn,

lim sup
z ∈ Γγ(ζ)

z → ζ

(1 − |z|)n−α|P [ν]| = lim sup
z ∈ Γγ(ζ)

z → ζ

∣

∣(1 − |z|)n−αP
[

f+mα

]

− (1 − |z|)n−αP
[

f−mα

]∣

∣

≥c max{f+(ζ), f−(ζ)} = c|f(ζ)|.
To conclude, if ν is a complex measure, then ν = νR + iνiR where νR = (Re f)mα, νiR = (Im f)mα

are real measures. As the kernel P is real, Re P [ν] = P [νR] and ImP [ν] = P [νiR]. The lower estimate
is true for both Re P [ν] and ImP [ν], thus

lim sup
z ∈ Γγ(ζ)

z → 0

(1 − |z|)n−α|P [ν]| ≥ lim sup
z ∈ Γγ(ζ)

z → ζ

(1 − |z|)n−α max{|P [νR]|, |P [νiR]|}

≥c max{|Re f(ζ)|, |Im f(ζ)|} ≥ c
|Re f(ζ)| + |Im f(ζ)|

2

≥ c

4
|f(ζ)|,

which completes the proof. �
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