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ENCODING POINTED MAPS BY DOUBLE OCCURRENCE

WORDS

PATRICE OSSONA DE MENDEZ AND PIERRE ROSENSTIEHL

Hommage à Antoine Panayatopoulos,

talentueux combinatoriste chez Pascal comme chez Pythagore.

Abstract. We show that pointed maps with m edges are in bijection with
standard double occurrence words with (m + 1) symbols.

1. Introduction

1.1. Graphs, Maps and Rotation Schemes. Recall that a graph consists of a
set V (of vertices) and a set E (of edges), each edge having two ends (said opposite),
each incident to a vertex. A loop is an edge whose ends are both incident to a same
vertex.

A crossing-free drawing of a graph on a surface divides the surface into regions.
If each region is homeomorphic to an open disk, the graph is said to be cellularly

embedded on the surface [9].

Figure 1. A pointed map embedded on the double torus S2

A map is a graph cellularly embedded in a surface (up to topological equiva-
lence). A map is pointed if some end of some edge of the underlying graph has been
distinguished (see Fig. 1). This will be displayed by a mark on the corresponding
edge end.
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It is common and convenient to use a polygonal representation of surfaces. The
standard polygonal representation of the double torus is an octagon whose sides
are pairwise identified according to some labels and orientations put on each side.
The use of such a polygonal representation allows a crossing free representation of
any map in the plane (see Fig. 2).

Figure 2. The map of Fig. 1 drawn in a standard polygonal rep-
resentation of the double torus

A rotation scheme of a graph is a circular order of the incident ends of edges
around each vertex of the graph. Obviously, a map on an orientable surface ty-
pologically defines a rotation scheme of the embedded graph. Less obviously, the
converse is true: any rotation scheme of a connected graph G induces a unique
cellular embedding of G on an orientable surface (up to orientation preserving
topological equivalence). This equivalence of maps and rotation scheme, which is
present in a dual form in the work of Heffter [10] and which has been extensively
used by Ringel in the 50s, have been independently expressed in the primal form
by Edmonds [7], popularized by Youngs [14] and further generalized by Gross and
Alpert [8]. According to this equivalence, a map may be represented as a normal

drawing in the plane (that is: a drawing where two edges may cross at most once)
where the rotation scheme is preserved (see Fig. 3). Notice that the equivalence of
the maps of Fig. 1, Fig. 2 and Fig. 3 may be asserted by checking that they define
the same rotation schemes.

1.2. Double Occurrence Words. A word over an alphabet Σ (which is some set
of symbols) is a sequence of symbols belonging to Σ. This sequence is usually noted
multiplicatively (a a b is a word over {a, b, c}, for instance). The concatenation of
two words is the word formed by the sequence of symbols of the first word followed
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Figure 3. A normal drawing of the pointed map of Fig. 1 in the plane

by the sequence of symbols of the second one. This concatenation is also noted
multiplicatively, as it is nothing more than the mere operation of putting the words
“the one after the other” as we do for symbols when we form a word. A word w

over an alphabet Σ is equivalent to a word w′ over an alphabet Σ′ if their exists a
one-to-one mapping which sends Σ to Σ′ and w to w′. Notice that a word w using
k symbols is equivalent to a unique word over a totally ordered alphabet of size k

where the symbols appear (for the first time) in the word in increasing order. Such
a word is said standard.

A double occurrence word is a word in which any symbol appears exactly twice.
For instance, the word a b c c a b is a double occurrence word. A double occurrence
word w that may not be factorized as w = w1 w2, where w1 and w2 are both non-
empty double occurrence words is said to be connected. For instance, a b c a c b

is connected, but a b b a c d c d is not, as it is the concatenation of a b b a and
c d c d, which are both double occurrence words.

1.3. Pointed Maps and Connected Double Occurrence Words. Although
it was known for years, in particular in quantum physics, that the sequence of the
numbers of pointed maps with m edges is the same as the sequence of the indecom-

posable involutions (which are equivalent to standard connected double occurrence
words) [6] [1], no bijective proof of this numerical equivalence was known.

Our purpose is restricted to a display of our encoding and decoding algorithms
enlightened by pictures. So, what may be the obviousness of each step of these
algorithms we refer for a complete proof to the expository of our more general
result (may be a more obscure one) on encoding hypermaps [12][13]. As a first
course, Table 1 displays the codes for the 10 pointed maps with two edges.
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Table 1. Codes for the maps with two edges (using the alphabet
{α, a, b} ordered by α < a < b)

2. Encoding a pointed map

First, we add a loop “α” just before the pointed incidence and move the mark
to the loop:

We call m the edge end where the mark is, m′ the opposite end of the same edge,
and b the edge end next to m′ in the rotation order. Then we list all the edge labels
encountered while traveling from b to m′ around the vertex m′ is incident to. So is
formed a list of visited ends.
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Then, m is moved to the next end of the list of visited ends, whose opposite end
has not yet been visited (here the end of e2 incident to v1):

We iterate:
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3. Decoding a connected double occurrence word

Starting from the double occurrence word, we will connect the two occurrences
of each symbol and group symbols into boxes.

Let b be the leftmost symbol not in a box (here b is the first occurrence of α)
and let m be the leftmost first occurrence symbol whose second occurrence m′ is
not in a box (here m and m′ are the first and second occurrences of α)

Create a box that contains all symbols from b to m′ and then connect each first
occurrence symbol in the box to its second occurrence (wherever it is):
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Now, b is the second occurrence of e1, m and m′ are the first and second occur-
rences of e2 and we iterate:
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Now, create a vertex per box and connect it to the edges symbols in the box
according to their order of appearance:

Last, remove the α loop, point at the first symbol and forget the boxes:



ENCODING POINTED MAPS BY DOUBLE OCCURRENCE WORDS 9

4. Conclusion

We shall notice that, in the decoding process, the first symbol (α) plays a special
“bootstrapping” rule necessary to initiate the inductive construction of the pointed
map.
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