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Mechanical route to the pressure of a fluid adsorbed in a random
porous medium

W. Dong
Institut de Recherches sur la Catalyse, Centre National de la Recherche Scientifique, 2, Avenue Albert
Einstein, 69626 Villeurbanne Cedex, France and Laboratoire de Chimie Théorique, Ecole Normale
Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France

By using different methods, we show how to derive the correct mechanical route to the pressure of 
a fluid adsorbed in a random porous medium. Some discussions are also made on the 
thermodynamic consistency of the mechanical route. 

I. INTRODUCTION

In the last years, the study of porous media has attracted

much attention. Various methods of liquid-state theory have

been extended successfully to study fluids adsorbed into ran-

dom porous media.1–11 The important work of Madden and

Glandt1,2 shows that the theoretical description of a fluid ad-

sorbed in a disordered medium can be recast into that of a

mixturelike system. This idea has been exploited also in dif-

ferent ways.4–6 By using a continuum version of the replica

trick,5 Given and Stell6 have found the exact Ornstein–

Zernike ~OZ! equations and shown that the OZ equations

derived by Madden and Glandt1,2 are valid only when

Percus–Yevick approximation is used. Several Monte Carlo

simulations have been carried out to test approaches bor-

rowed from the familiar liquid-state theories like Percus–

Yevick and hypernetted chain approximations.3,7,8 The simu-

lation investigation made by Vega, Kaminsky, and Monson8

has a particular importance. They discovered that the virial

expression of pressure given by Madden2 fails to produce

thermodynamically consistent results for the adsorption iso-

therm calculated from Gibbs–Duhem equation. They pro-

posed also an intuitive approximation for the compressibility

which gives very satisfactory results. Subsequently, Ford and

Glandt9 and Rosinberg et al.10 have derived the exact expres-

sion of the compressibility by using different methods. Since

the compressibility expression is derived directly from a

thermodynamic potential, this route assures automatically the

thermodynamic consistency. Until now, it is believed that

Madden’s virial expression of pressure comes from a me-

chanical definition. The fact that this ‘‘virial’’ route does not

lead to thermodynamic consistency provokes a very perplex-

ing and uncomfortable feeling: thermodynamic pressure and

mechanical pressure do not coincide. If this were the case,

we would get a fundamental trouble, i.e., mechanical equi-

librium is not compatible with thermodynamics description.

The consequence of this would be also serious in practice.

For example, phase equilibria, e.g., liquid–gas coexistence,

are determined by thermal, mechanical and chemical equilib-

rium conditions. A correct determination of phase coexist-

ence requires these equilibrium conditions to be generated

from a single thermodynamic potential. Based on the above

considerations, we believe that a thermodynamically consis-

tent mechanical route to pressure must exist. Until now, this

route has not been found out yet and this issue is addressed

in the present work.

II. RESULTS AND DISCUSSIONS

We consider the same fluid-matrix system as the one

studied by Madden and Glandt.1 A rigid host matrix, desig-

nated as species 0, is made by a quench from a thermody-

namic equilibrium state. Then, a fluid ~species 1! is intro-

duced and allowed to reach equilibrium but the structure of

the matrix is not affected by the presence of the latter. Each

particular matrix realization is an irregular and highly inho-

mogeneous system which has a daunting complexity. A sta-

tistical mechanics description consists in taking the average

over all the matrix realizations. The most important conclu-

sion from the work of Madden and Glandt1 is that after the

average over matrix realizations is taken, the description of

the inhomogeneous fluid-matrix system can be recast into

that of a homogeneous mixturelike system. By now, this

character has been well exploited. Nevertheless, we will

show that this very pleasing aspect should not be overem-

phasized because the description of some properties, in par-

ticular the pressure, is much more akin to that of a ‘‘pure’’

fluid. Now, let us start the main topic of this work, i.e., find-

ing out the mechanical route to the pressure of a fluid ad-

sorbed in a random porous medium.

A. Mechanical equilibrium condition and pressure
tensor

First, we consider a pure mechanics approach. The ther-

modynamic consistency will be discussed in the next subsec-

tion. Let us start from a particular matrix realization. In such

a highly inhomogeneous system, the force exerted on a sur-

face element is now a second order tensor. In an external

force field, the mechanical equilibrium condition is ex-

pressed as

¹1–P̂~r1 ;qM !52 r̂~r1 ;qM !¹1V~r1 ;qM ! ~1!

where P̂ and r̂ are, respectively, the pressure tensor and the

fluid density in the force field, 2¹1V~r1 ;qM!, of the matrix

and qM designates explicitly the matrix configuration of a

given realization. Any properly defined pressure tensor must

satisfy Eq. ~1!. Otherwise, the mechanical equilibrium can-

not be assured. In order to obtain microscopic expressions,

we appeal to the microscopic force balance equation, i.e., the

first member of the Yvon–Born–Green hierarchy,
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kT¹1r̂~r1 ;qM !52 r̂~r1 ;qM !¹1V~r1 ;qM !

2E dr2¹1u~r12!r̂ ~2 !~r1 ,r2 ;qM ! ~2!

where u(r12) is the pair interaction potential between fluid

particles, r̂ ~2!~r1 ,r2 ;qM! the inhomogeneous two-body distri-

bution function and k and T are respectively the Boltzmann

constant and the absolute temperature. By combining Eqs.

~1! and ~2! and taking the average over matrix realizations

denoted as ^•••&M , we obtain

¹1–^P̂~r1 ;qM !&M5kT¹1^r̂~r1 ;qM !&M1E dr2¹1u~r12!

3^r̂ ~2 !~r1 ,r2 ;qM !&M . ~3!

If the disordered porous medium is statistically homoge-

neous and extends over the whole space, the member on the

right hand side ~rhs! of Eq. ~3! is zero, i.e.,

¹1–^P̂~r1 ;qM !&M50. ~4!

This shows that in this case a scalar pressure can be defined

and it is constant throughout. But in this way, we are not able

to get any expression for the pressure. However, if the dis-

ordered porous sample is not homogeneous over the whole

space, the rhs of Eq. ~3! is no longer zero. Very recently,

Dong, Kierlik, and Rosinberg11 have investigated the case in

which the porous solid sample occupies only the half space

in the region z.0. Let us consider again such a system. This

will enable us to identify the mechanical fluid pressure inside

the porous solid. For this geometry, Eq. ~3! can be simplified

to

dp'~z1!

dz1

5kT
dr~z1!

dz1

1E dr2

du~r12!

dz1

r1~z1!r1~z2!g11~r12 ,z1 ,z2!

~5!

where p
'

is the component of the pressure tensor perpen-

dicular to the surface of porous solid sample, the average

over matrix realizations is performed, the subscript ‘‘1’’ is

introduced to designate fluid species and g11(r12 ,z1 ,z2) is

fluid–fluid correlation function. By using the method pro-

posed by Lekner and Henderson12 to derive sum rules for

liquid–vapor interface, Eq. ~5! can be integrated out. For a

very clear description of the integration procedure, the inter-

ested reader is referred to Ref. 12. The final result after in-

tegration is

p~1` !2p~2` !5H kTr1~1` !2

@r1~1` !#2

6

3 E dr ru8~r !g11
1`~r !J 2H kTr1~2` !

2

@r1~2` !#2

6
E dr ru8~r !g11

2`~r !J .

~6!

Since the pressure is isotropic in the region far from the

inhomogeneous zone near the solid surface at z50, the sub-

script ‘‘'’’ for the pressure has been dropped. One recog-

nizes readily that the expression in the second curly bracket

in Eq. ~6! is the pressure of the bulk fluid outside the porous

medium, i.e., p~2`!. Hence, the expression of the pressure

of the fluid adsorbed into the porous medium can be identi-

fied immediately as

p5kTr12

r1
2

6
E dr ru8~r !g11~r !. ~7!

For the simplicity of expression, the arguments and super-

script ‘‘1`’’ have been dropped. But it should be obviously

understood that g11(r) and r1 in Eq. ~7! are respectively the

fluid–fluid correlation function and the density of the fluid

adsorbed into the porous medium. Here two remarks con-

cerning Eq. ~7! are readily in order. First, Eq. ~7! is different

from the virial expression for pressure given by Madden.2

Our result, Eq. ~7!, does not contain the fluid-matrix cross

term in Madden’s virial expression. We are going to show

shortly that in fact the presence of such a cross term over

counts the contribution of the fluid-matrix interaction to the

pressure. Second, in their important work,8 Vega, Kaminsky

and Monson have discovered not only that Madden’s virial

expression is incorrect but also observed that when the cross

term is removed from the Madden’s expression, much better

thermodynamic consistency can be obtained. Nevertheless,

they have neither claimed that the exact expression of the

mechanical pressure is in fact Eq. ~7! nor looked for a formal

proof. We will come back later to comment again the work

of Vega et al..8

Now, we will give another way to prove that the correct

expression of the mechanical pressure is indeed Eq. ~7! and

show that the contribution of the fluid-matrix interaction is

over counted in Madden’s virial expression. In the above

derivation of Eq. ~7!, only the existence of a second order

pressure tensor is assumed and then one can proceed without

knowing the explicit expression of the pressure tensor. In the

following derivation, we will start explicitly from the pres-

sure tensor. In a now classic work of Irving and Kirkwood,13

the following expression is derived for the pressure tensor:

P~r!5kTr~r!I2
1

2
E dr12E

0

1

dl
r12r12

r12

u8~r12!r ~2 !~r

2lr12 ,r1~12l !r12! ~8!

where I is the unit tensor. It is now well known14 –16 that

there is some arbitrariness in the above definition of the pres-

sure tensor. However, the arbitrariness does not affect the

result for a homogeneous system. Hence, this arbitrariness is

harmless for our present purpose, i.e., finding out the me-

chanical pressure of a fluid adsorbed into a statistically ho-

mogeneous porous medium. It is to be noted that Eq. ~8! is

valid not only for homogeneous systems but also for inho-

mogeneous ones.13 From Eq. ~8!, taking the average over

matrix realizations for a statistically homogeneous porous

medium leads straightforwardly to Eq. ~7!.
In order to see clearly that there is in fact an over count-

ing of the fluid-matrix interaction in Madden’s virial expres-
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sion, it is instructive to note that Madden’s expression can be

obtained from the following tensor by taking the average

over matrix realizations:

P~r!5P~r!2

1

2
E dr12E

0

1

dl
r12r12

r12

v8~r12!H r~r

2lr12!(
j51

M

d~qj2@r1~12l !r12# !1r~r1~1

2l !r12!(
j51

M

d~qj2@r2lr12# !J ~9!

where d(x) is the Dirac d function and v8(r12) is the deriva-

tive of the pair interaction potential between fluid and ma-

trix. Any physically sensible definition of the pressure tensor

must satisfy the mechanical equilibrium condition, Eq. ~1!.
With the help of the YBG equation, Eq. ~2!, it is easy to

show that P~r! given in Eq. ~8! satisfies the mechanical equi-

librium condition but P~r! does not. Hence, it becomes clear

that the expression given by Madden2 does not have a clear

physical significance and the contribution of the fluid-matrix

interaction is over counted. In fact, this contribution is al-

ready taken into account in the first term on the right hand

side of Eq. ~8!. Here, we would like also emphasize that the

form of the equation of state for an ideal gas is not changed

even in the presence of the fluid-matrix interaction. Now, we

have derived the correct expression of the mechanical pres-

sure by two different methods. In the next subsection, we

will make some discussions on the thermodynamic consis-

tency of this mechanical route.

B. Thermodynamic consistency

The compressibility route to pressure has been found

first approximately by Vega et al.8 and then rigorously by

Ford and Glandt,9 and Rosinberg et al.10 It is now estab-

lished that this route leads to thermodynamically consistent

results.8–10 We have just found out the rigorous mechanical

route to pressure in the last subsection. Now, we will try to

examine the thermodynamic consistency of the mechanical

route. One possible strategy is to show that Eq. ~7! and the

compressibility expression given in Refs. 9 and 10 are

equivalent. The necessary condition to establish this is that

the compressibility route and the mechanical route should be

generated from a single thermodynamic potential. Let us

consider the grand potential. For an inhomogeneous system

corresponding to a given matrix realization, one can obtain

the following expression of the grand potential:

V̂~qM !5kTE dr1r̂~r1 ;qM !H E
0

1

daaE dr2r̂~r2 ;qM !

3 ĉ~r1 ,r2 ;qM;@ar̂# !21J ~10!

by functional integrations along a particular path.17

ĉ~r1 ,r2 ;qM;@ar̂#! is the direct correlation function of the in-

homogeneous system. When the average over matrix realiza-

tions is made for a statistically homogeneous porous me-

dium, we obtain

2
^V̂~qM !&M

V

5kTFr12r1
2E

0

1

daaE dr12c11c~r12 ;ar1 ,r0!G ~11!

where V is the system volume and c11c(r12 ;ar1 ,r0) is the

connected part of the direct correlation function between spe-

cies ‘‘1’’ of a mixturelike system at densities ar1 for species

‘‘1’’ ~fluid! and r0 for species ‘‘0’’ ~matrix!. It should be

pointed out that in deriving Eq. ~11! from Eq. ~10!, a non-

trivial diagrammatic reduction has to be carried out to estab-

lish

^ r̂~r1 ;qM !r̂~r2 ;qM !ĉ~r1 ,r2 ;qM;@ar̂# !&M

5r1
2c11c~r12 ;ar1 ,r0!. ~12!

The term in ^•••&M on the left hand side of Eq. ~12! does not

contain any disconnected diagrams. So the averaging over

matrix realizations cannot introduce any diagrams belonging

to c11b(r) ~the blocking part of the direct correlation func-

tion, see Ref. 6 for the precise definitions of c11c and c11b!.
The left member of Eq. ~11! can be identified as the thermo-

dynamic definition of the pressure and the differentiation

with respect to r1 leads straightforwardly to the compress-

ibility expression. Here is another way leading to the com-

pressibility.

Another exact fundamental equation in the density func-

tional theory of inhomogeneous fluids is

2

dV̂~qM !

d~m2V~r1 ;qM !!
5 r̂~r1 ;qM ! ~13!

where m is the chemical potential. It is straightforward to

show that r̂~r1 ;qM! generated from the grand potential

through Eq. ~13! satisfies the YBG equation, Eq. ~2!. Then,

one can repeat all the derivation from Eq. ~1! to Eq. ~7!. In

this way, it can be established that the pressure from the

mechanical route, Eq. ~7!, and the pressure from the com-

pressibility route, Eq. ~11! can be generated indeed from the

same thermodynamic potential. However, it is not clear

whether this is also a sufficient condition for the equivalence

of the mechanical route and the compressibility route. The

formal proof of this equivalence is still an open problem.

In the recent work of Rosinberg, Tarjus and Stell,10 a

virial expression for pressure is also given. It is interesting to

see if their virial expression agrees with the exact expression

of the mechanical pressure, Eq. ~7!. Because of the compli-

cated form of their expression ~see Eq. ~46! in Ref. 10!, it is

very hard to make a comparison in the general case. If the

pressure from their virial expression can be identified to the

exact mechanical pressure we find in the present work, some

miraculous cancelation must occur between some terms in

their expression. The work to examine this is under way.18

Although the work of Vega, Kaminsky and Monson8

strongly suggests that the mechanical pressure given in Eq.

~7! is also thermodynamically consistent, there is small but
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appreciable discrepancy between the prediction from me-

chanical route and their Monte Carlo simulation results ~see

Fig. 13 in Ref. 8!. We believe that the discrepancy is due to

numerical inaccuracies, e.g., insufficient statistics for matrix

realizations. Therefore, more accurate simulations should be

carried out to corroborate our finding. There are also some

other possibilities to inquire into the equivalence of the me-

chanical and the thermodynamic pressures. For examples,

virial expansions or very simple models for which analytic

solutions exist can be used for this purpose. The work in this

direction is being done.18

III. CONCLUSION

By using different methods, we have found out the cor-

rect mechanical route to the pressure of a fluid adsorbed into

a random porous medium. It is also shown that the exact

mechanical pressure and the compressibility can be gener-

ated from the same thermodynamic potential. This and the

observation from simulations made by Vega et al.8 suggest

strongly that the mechanical route found in this work leads

also to thermodynamic consistency. However, a formal proof

of this remains to be accomplished. The work in this direc-

tion is being undertaken.

All the previous works which extend liquid-state theory

to random media have revealed and/or well exploited the

similarity between a fluid-matrix system and a mixturelike

system. A prominent achievement based on this analogy is

the derivation of the mixturelike Ornstein–Zernike equations

by using the replica method. Nevertheless, this analogy

should not lead to the oblivion of the fact that the fluid-

matrix system under consideration is intrinsically a highly

inhomogeneous system. Unfortunately, there is currently a

tendency to overemphasize the similarity to a mixture and to

overlook the inhomogeneous aspect. Contrary to what is

claimed by Madden and Glandt,1 all the thermodynamic

quantities cannot be obtained straightforwardly from the

usual mixture expression. The expressions for the compress-

ibility and the exact virial pressure are two most striking

examples. There is no fluid-matrix cross term in this expres-

sions and the presence of the matrix is taken into account

only through the fluid–fluid correlation functions. Here, we

like to emphasize also that the correlation functions in these

pure fluidlike expressions are themselves determined by

solving mixturelike Ornstein–Zernike equations. Therefore,

there is a kind of duality in the theoretical description of

fluid-matrix systems: mixturelikeness and inhomogeneity.

Only when this duality is taken into account properly, can a

correct description be obtained.

Up to now, no simulation has been carried out in which

the direct computation of pressure is made. The result de-

rived in the present work, Eq. ~7!, lays down the basic prin-

ciple to perform the direct calculation of the pressure from

molecular dynamics simulations. The pressure should be

measured by averaging only the virial including fluid–fluid

interaction.
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