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1. Introduction

Motivating example. The totally asymmetric exclusion process (TASEP for
short) is defined as follows on the set Z: At time 0, a (possibly random) con-
figuration of particles is given, in such a way that each site contains at most
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one particle. To each edge of the lattice there is associated a Poisson clock of
intensity 1. Whenever this clock rings, and there is a particle at the left-end
vertex of this edge and no particle at the right-end vertex, the particle moves
to the right; otherwise the ring of the clock is ignored. The product over Z of
Bernoulli measures of density ρ ∈ (0, 1) is invariant by this dynamics; in that
case, the average number of particles passing through the origin up to time t is
equal to ρ(1 − ρ)t, i.e. the flux through a given bond is exactly ρ(1 − ρ).

The process is modified at the origin, by imposing that the Poisson clock
associated with the bond e0 = 〈0, 1〉 is λ > 0. When λ > 1, one can still
prove that the above expression for the flux holds asymptotically, although the
Bernoulli measure is not an equilibrium measure anymore. From now on, we
shall assume that 0 < λ ≤ 1.

One of the fundamental questions in driven flow is to understand under which
conditions such a static obstruction results in the formation of a platoon starting
at the origin and propagating leftward. A convenient quantitative criterion for
platoon formation is to start the TASEP with step initial conditions, i.e. all sites
x ≤ 0 filled and all sites x ≥ 1 empty, and to consider the average current, j(λ),
in the long time limit t → ∞. j(0) = 0, j is non-decreasing, and j(λ) = 1/4 for
λ = 1. Thus the issue is to determine the critical intensity λc, which is defined
as the supremum of all the λ for which j(λ) < 1

4 . Estimates for the value of λc

were given in [10] and [5], and the full hydrodynamical picture is proved in [15].
The blockage problem for the TASEP has been studied numerically and by

exact enumerations. On the basis of these data, in [8] the value λc = 1 is con-
jectured. Recently this result has been challenged ([6]) and λc

∼= 0.8 is claimed.

One-dimensional driven lattice gases belong to the universality class of Kardar-
Parisi-Zhang (KPZ) type growth models. In particular the asymmetric simple
exclusion process can be represented as the so-called body-centered solid-on-
solid version of (1+1)-dimensional polynuclear growth model, or as directed
polymer subject to a random potential. The TASEP has also a well known
representation in terms of last-passage percolation (or maximal increasing sub-
sequences, known as Ulam’s problem). In this article we choose to work in the
setup of last passage percolation. The slow bond induces an extra line of defects
relative to the disordered bulk. If λ < λc, the optimal path, i.e. the geodesic,
is pinned to the line of defects. As λ → λc, the geodesic wanders further and
further away from the line of defects and the density of intersections with the
line of defects tends to zero. For λ > λc, the fluctuations of the geodesic are
determined by the bulk, and the line of defects is irrelevant.

In the present work we will not establish the actual value of λc (since we
cannot) or settle the question as to whether it is equal to 1; the main goal of
this paper is to describe a new way of looking at the problem which gives some
insight about the precise behavior of the system. More precisely, we show how
the problem can be studied through particular dependent percolative systems
constructed in such a way that the pinning transition can be understood in
terms of a percolation transition.
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2. Interpretation as pinning in Ulam’s problem

In this section we describe the representation of our initial problem in terms of
Ulam’s problem or polynuclear growth. For more detailed explanations, see e.g.
[1] or [11].

2.1. The Model

Let P (2) be the distribution of a Poisson point process of intensity λ(2) = 1 in
the plane R

2, and let Ω(2) the set of all its possible configurations; for all n > 0,

let P
(2)
n be the law of its restriction to the square Qn := [0, n] × [0, n] and Ω

(2)
n

be the configuration space of the restricted process.
The maximal increasing subsequence problem, or Ulam’s problem, can be

formulated in the following geometric way: Given a configuration ω(2) ∈ Ω(2) and

its restriction ω
(2)
n to Qn, look for an oriented path π (moving only upward and

rightward) from (0, 0) to (n, n) collecting as many points from ω
(2)
n as possible;

as in the case of last-passage percolation described in the introduction, we shall
call such a path a geodesic. Let Nn denote the number of collected points along
such an optimal path (which need not be unique). It is a well known fact (see
[1]) that

lim
n→+∞

E(2)Nn

n
= 2. (2.1)

In a remarkable paper [9], K. Johansson showed that for this model the
transversal fluctuations of the geodesics are of order n2/3. A closely related
problem is considered in [3].

We now modify the original model in the following way: Assume in addi-
tion, that on the main diagonal y = x there is an independent one-dimensional
Poisson point process of intensity λ(1), and let P (1) be its distribution. We will

denote by Ω(1) (resp. Ω
(1)
n ) the configuration space of this process (resp. of its

restriction to Qn). Finally if ω(1) is a realization of P (1) and ω(2) one of P (2),
let ω = ω(2) ∪ ω(1) be their union, and ωn the restriction of ω to Qn.

What can now be said about an optimal directed path starting at (0, 0) and
ending at (n, n)? If λ ≫ 1, clearly the geodesic will stay close to the diagonal
and

lim
n→∞

E(1) × E(2)Nn

n
= e(λ) > 2. (2.2)
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Instead of (2.2) in our context it will be more convenient to use a more geo-
metric notion. We say that the directed polymer is pinned (with respect to the
diagonal) if P (1) × P (2)-almost surely, the number of visits made by geodesics
to {(u, u) : 0 ≤ u ≤ t} is of order γt, for some γ > 0, for all t large enough.
One expects the “energy” notion (2.2) and geometric notion of pinning to be
identical, but this is yet another point which remains to be proved.

e(λ) is decreasing and there is a critical value λc, where e hits the value 2.
The same arguments which predict λc = 1 in the case of the TASEP yield λc = 0
in the case of our model. Thus any extra Poisson points along the diagonal are
expected to pin the directed polymer. Such a behavior is extremely delicate, and
the answer depends on the nature and behavior of the geodesics in the initial,
unperturbed system. Very little is known, even on a heuristic level, when the
underlying measure governing the behavior of the polymer is not “nice” (with
a kind of Markov property, for example a simple symmetric random walk). Our
criteria presented below give partial but rigorous answers as to whether λc is
strictly positive or not.

In passing let us note that for a symmetric environment pinning can be
proved, at least on the level of e(λ) [7]. Symmetric means that P (2) is conditioned
on point configurations which are symmetric relative to the diagonal. In this
case λc = 1, i.e. e(λ) = 2 for 0 ≤ λ ≤ 1 and e(λ) > 2 for λ > 1. Indeed in
the symmetric case, the system is amenable to exact computations in terms of
Fredholm determinants; a trace of the simplification can also be seen in our later
discussion (see subsection 2.6).

2.2. Construction of the broken-lines process

Hammersley gave a representation of the longest increasing subsequence problem
for a random permutation in terms of broken lines built from a Poisson point
process in the positive quadrant (we describe the construction in some detail
below). The length of the longest increasing subsequence can then be seen to be
the number of lines which separate the points (0, 0) and (n, n) from one another.
The purpose of that representation is to obtain a superadditivity property which
easily implies the existence of the limit in 2.1 — but doesn’t specify its value.
It is a very convenient formalism, which was used in [11, 13, 14] and [16, 17].

The broken line process ΓS in a finite domain S can be defined as the space-
time trace of some particle system with birth, death and immigration. For con-
venience we rotate the whole picture by an angle of π/4 clockwise, so that the
geodesic is restricted to never have a slope which is larger than 1 in absolute
value. In what follows we will consistently use the letters t and x for the first
and second coordinates, respectively, in the rotated picture; we will refer to t as
“time” (the reason for that will become clear shortly). The geodesics can then
be seen as curves of space-type (using the usual language of general relativity).

Let S be the planar, bounded domain defined (cf. Figure 1) as

S := {(t, x) : t0 < t < t1, g−(t) < x < g+(t)}, (2.3)
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where t0 < t1 are given points and g−(t) < g+(t), t0 < t < t1 are piecewise linear
continuous functions such that, for some t+01 (resp. t−01) in the interval [t0, t1],
g+(t) (respectively g−(t)) increases (respectively, decreases) on (t0, t+01) (resp.
(t0, t−01)) and decreases (respectively, increases) on (t01, t1) (resp. (t01, t1)), al-
ways forming an angle of ±π/4 with the t-axis.

Consider four independent Poisson processes Π0,+, Π0,−, Π+ and Π− on
the boundary of S. The processes Π0,± are supported on the leftmost vertical
boundary component △0S := {(t0, x) : g0,− < x < g0,+} of S, where g0,± :=

g±(t0), and they both have intensity
√

λ(2)/2. The process Π+ is defined on the
“northwest” boundary △+S := {(t, g0,+(t)) : t0 < t < t01}, and the process
Π− is defined on the “southwest” boundary △−S := {(t, g0,−(t)) : t0 < t <
t01}; their intensities (with respect to the length element of △±S) are both√

λ(2). Finally, let Πin be a Poisson point process in S, with intensity λ(2), and
independent of the previous four.

Following the general strategy for the definition of Markov polygonal fields
of [2], we define a broken line process as follows. Each point of the Poisson
process Πin is the point of birth of two particles which start moving in opposite
directions, i.e. with velocities +1, −1. At each random point of Π0,+, Π− a
particle is born having velocity +1. Similarly at each random point of Π0,−, Π+,
a particle is born having velocity −1. All particles move with constant velocity
until two of them collide, after which both colliding particles are annihilated
(see Figure 1).

x

t t

x

Figure 1: The construction of a Hammersley process
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The state space XS of the process ΓS is the set of all finite collections
(γ1, . . . , γk) (including the empty one) of disjoint “broken lines” γj inside S.
By a broken line in S we mean the graph γ = {(t, x) ∈ S : t = γ̃(x)} in S of a
continuous and piecewise linear function γ̃, with slopes all ±1. Let PS denote
the probability distribution on XS corresponding to the broken line process ΓS

defined above.

Let S′ ⊂ S′′ be two bounded domains of the form of 2.1, and let PS′ and
PS′′ be the probability distributions of the broken line processes in S′ and S′′,
respectively. The probability measure PS′′ on XS′′ induces a probability measure
PS′′ |S′ on XS′ , which is the distribution of the restricted process ΓS′′ ∩S′. Then,
by the choice we made of the boundary conditions, the following consistency
property holds (see [2]):

PS′′ |S′ = PS′ . (2.4)

This guarantees the existence of the broken line process Γ ≡ ΓR2 on R
2, its

distribution P on XR2 being such that for every S of the above shape, P|S = PS .
Moreover P is invariant with respect to the translations of R

2.

Remark. The same description holds for the polynuclear growth (PNG) model,
which describes a crystal growing layer by layer on a one-dimensional substrate
through the random deposition of particles. They nucleate on existing plateaus
of the crystal, forming new islands. In an idealization these islands spread later-
ally with constant speed by steady condensation of further material at the edges
of the islands. Adjacent island of the same level coalesce upon meeting and on
the top of the new levels further islands emerge.

Observe that a path π which can move only in the northeast-southeast cone
(i.e. a path of space type) can collect at most one initial Poisson point from
each broken line. In other words, the broken lines “factorize” the points of the
configuration ω, in such a way that it tells us which points cannot be collected
by the same path, and that the maximal number of points is bounded by the
number of broken lines which lie in between start-point and end-point of the
path π.

In fact, the lines also provide an explicit construction of a geodesic, as follows:
Start at point (t1, x) on the right boundary and move leftward until you meet
a line, then follow this line until you arrive at a point, which you can collect.
Then start moving leftward again until you collect a point in the second-to-last
broken line, and so on. The number of collected points is then essentially equal
to the number of broken lines, though a little care needs to be taken as far as
boundary conditions are concerned if this comparison is to be made completely
formal. This observation led to a new proof of 2.1 in [2]. It is also the starting
point of our argument.
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2.3. Essential and non-essential points

We now return to the question asked at the beginning of this section: How
are extra added points affecting initial system? We begin with a few purely
deterministic observations and statements. We will need some extra notations:
Given any configuration ω̃n (not necessarily sampled from a Poisson process) of
points in Qn, let H(ω̃n) be the number of broken lines produced by the above
construction. For x = (x, t) and A = {x1, . . . , xk} we will denote by ω̃n ∪ x or
ω̃n∪A the configuration obtained from ω̃n by the addition of the points x1, . . . ,
xk, and by Γn(ω̃n) the associated configuration of broken lines.

Proposition 2.1 (Abelian property, see [17]). For any choice of ω̃n, x1

and x2 we have

Γn (ω̃n ∪ (x1 ∪ x2)) = Γn ((ω̃n ∪ x1) ∪ x2) = Γn ((ω̃n ∪ x2) ∪ x1) . (2.5)

Proposition 2.2 (Monotonicity, see [17]). For any choice of ω̃n and x1 we
have

H(ω̃n) ≤ H(ω̃n ∪ x1) ≤ H(ω̃n) + 1. (2.6)

Definition 2.3. Given ω̃n and x we say that x is essential for ω̃n if H(ω̃n∪x1) =
H(ω̃n) + 1.

Remark. The above definition is domain-dependent: If Sn ⊂ Sm are two
domains in R

2, and ω̃n, ω̃m are the restrictions of a configuration ω̃ to Sn and
Sm respectively, then an extra added point which is essential for ω̃n might not
be essential for ω̃m.

If an added point x is essential, its presence is felt on the boundary of the
domain by the appearance of an extra broken line going outside of the area. If
an added point x is not essential, its presence can be felt on the boundary or
not, but in any case it will change the local geometry of existing broken lines.

Speaking informally, the configuration ω̃n determines a partition of the do-
main into two (possibly disconnected) regions E and B, such that any additional
point chosen in E will be essential for ω̃n, while if it is in B it will be not essen-
tial for ω̃n. It is easy to construct examples of configurations ω̃ for which E is
empty (i.e., that are very insensitive to local changes). On the other hand B is
never empty as soon as ω̃ is not empty. It is also easy to give examples of the
following situations:

• x1 is not essential for ω̃n and x2 is not essential for ω̃n, but x1 is essential
for ω̃n ∪ x2 and x2 is essential for ω̃n ∪ x1;

• x1 is essential for ω̃n and x2 is essential for ω̃n, but x2 is not essential for
ω̃n ∪ x1.
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Remark. In order to simplify our explanations and make some concepts as
well as notations more transparent (and lighter), we will change from the con-
sideration of point-to-point case to the point-to-hyperplane case, i.e. instead of
looking for a geodesic connecting (0, 0) to (t, 0), we will be looking for an optimal
path connecting (t, 0) to the line x = 0. This change is of purely “pedagogical”
nature: All the ideas discussed above and below are easily transferred to the
point-to-point case. Nevertheless we will not deny that it requires some amount
of additional work due to boundary conditions.

The reader should also not be surprised with our taking of starting point
as (t, 0) and moving backward to the x-axis in the point-to-hyperplane case
(see the remark at the end of subsection 2.2). Since our broken lines were con-
structed by drawing the space-time trajectories of particles in “forward time”,
the information provided by the broken lines about the underlying point con-
figuration is useful in the backward direction, and thus it forces us to construct
the geodesic this way. Conversely, in order to construct a forward geodesic, one
could construct the broken lines on the same point configuration but backward
in time.

Due to that, the area to which we will be restricting our process will be the
triangular area Sn enclosed by segments connecting points (0,−n), (0, n) and
(n, 0). If confusion doesn’t arise, we will keep denoting related quantities by the
same sub-index n as for the square case, for example ω̃n will stay from now on
for the configuration of points in this triangular area.

The next proposition is the crucial point in our construction.

Proposition 2.4 (see [17]). If x is essential for ω̃n then the point-to-plane
geodesic in configuration ω̃n ∪ x has to collect point x.

Again this is a purely deterministic statement, and does not depend on the
choice of ω̃n or x. Further we will be considering only cases when extra points
are added only along the t-axis.

2.4. Propagation of influence

Once an extra point x is added to the system, we need to update the config-
uration of broken lines. One way to do that is to redo the whole construction
from scratch, i.e. to erase all the existing broken lines and redraw them using
the algorithm we described previously, taking the new point into account. It is
then natural to ask how much the new picture differs from the old one, which
is not perturbed by addition of point x. It turns out that there is a very simple
algorithm allowing us to trace all the places of the domain where the addition
of x will be felt, i.e. where local modification will be done.

Consider an augmented configuration ω̃′
n = ω̃n ∪ {x}. In order to see where
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and how the broken lines of Γn(ω̃n) will be modified, we look at a new interacting
particle system, starting from the points of ω̃′

n, but with new interaction rules:

1. Particles starting from the points of ω̃n are following the same rules as
before, i.e. they are annihilated at the first time when they collide with
any other particle. These particles will be called “regular particles”;

2. The two particles which start from the newly added point x (also with
velocities +1 and −1) will be called “superior particles”, and they obey
different rules:

(a) Superior particles annihilate if and only if they collide with each
other;

(b) If a superior particle collides with some regular particle, the veloc-
ity of the superior particle changes to that of the incoming regular
particle, which is annihilated while the superior particle continues to
move.

We will denote by p+
x (resp. p−x ) the superior particle which starts from x with

initial velocity +1 (resp. −1); The space-time trajectories of p+
x

and p−
x

will be
denoted by π+

x and π−
x , respectively.

Observe that if any of these two trajectories leaves the triangular area Sn,
it will never come back to it. (Notice that since superior particles can change
their velocities during their evolution, both particles can leave the triangular
area from the same side.) If π+

x and π−
x intersect inside of Sn, then, according

to rule 2b the corresponding superior particles are annihilated.
The path π+

x
(resp. π−

x
) can be represented as an alternating sequence of con-

catenated segments π+
x (1, +), π+

x (1,−), π+
x (2, +), π+

x (2,−), . . . (resp. π−
x (1,−),

π−
x

(1, +), π−
x

(2,−), π−
x

(2, +), . . . ), where each segment corresponds to the time
interval between two consecutive velocity changes of the superior particle p+

x

(resp., p−
x

), and during which its velocity is equal to +1 or −1 according to the
sign given as second argument in the notation.

The trajectories of p+
x

and p−
x

are completely determined by ω̃n∪{x}. Observe
that each time p+

x changes its velocity from +1 to −1 (resp. p−x changes its
velocity from −1 to +1), it starts to move along a segment which also belongs
to some broken line γi from Γn(ω̃n), and when it changes its velocity back to
+1, it leaves this broken line, and moves until the next velocity flip, which
happens exactly when the superior particle collides with the next broken line
γi+1 in Γn(ω̃n). This gives an extremely simple rule how to transform Γn(ω̃n)
into Γn(ω̃′

n) (see Figure 2):

• Erase all the π±
x

(j,∓) (i.e., all parts of the path of the superior parti-
cle which are contained in one of the original broken lines) to obtain an
intermediate picture Γ′

n(ω̃n);
• Add all the π±

x (j,±) thus obtaining the picture Γ′′
n(ω̃n).

imsart ver. 2005/02/28 file: BeffaraEtAlLNMS.hyper6473.tex date: July 7, 2005



V. Beffara et al/Polymer pinning in a random medium as influence percolation 10

x x

π
+
x

π
−

x

x

Figure 2: Propagation of influence

It is not hard to conclude that Γ′′
n(ω̃n) = Γn(ω̃′

n). In other words the paths π+
x

and π−
x

show how the “influence” of x spreads along the configuration Γn(ω̃n). If
both superior particles p+

x and p−x collide inside the domain Sn, the trajectories
π+
x

and π−
x

close into a loop, and outside of this loop the configuration Γn(ω̃n)
was not modified, i.e. the presence of x was not felt at all.

Definition 2.5. Given a configuration ω of the underlying Poisson process, and
an added point x on the time axis, we will denote by τ(x; ω) (or simply τ(x) if
there is no confusion possible) the self-annihilation time of the pair of particles
created at x, i.e. the time at which the paths π−

x and π+
x meet, if such a time

exists; let τ(x) = +∞ otherwise.

In the specific case we are looking at, τ(x) is almost surely finite if λ(2) > 0,
but it need not be the case for other underlying point processes.

2.5. Interaction and Attractors

Another important step in the analysis of the spread of influence, is to under-
stand how the influence paths interact with each other if we add multiple points
x1, . . . ,xℓ to the initial configuration. Proposition 2.1 implies that we can ob-
tain the full picture by adding the points one by one; to simplify the notations,
in our description of the procedure we will also use the fact that the additional
points will be placed along t-axis, though this is not essential.

Again, due to the presence of time orientation, the nature of the interaction
between influence paths becomes exposed in a more transparent way if we pro-
ceed backward, i.e. if we begin to observe the modifications first when adding
the rightmost point, and then continue progressively, adding the points one by
one, moving leftward, each time checking the effect created by the newly added
point. For notational convenience let us index the new points in the backward
direction, i.e. xi = (ti, 0) with t1 > t2 > · · · .

Applying the construction described in the previous subsection successively
for each of the new points, we obtain the following rules for the updating a
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configuration with multiple points added: Take the initial configuration ω̃n and

let ω̃
(r)
n = ω̃n ∪ {xi, 1 ≤ i ≤ v} be the modified configuration. In order to

see where and how the broken lines of Γn(ω̃n) will be updated, consider a new

particle representation built on the configuration ω̃
(r)
n , and obeying the following

rules:

1. Regular particles, starting from the points of ω̃n, are annihilated as soon
as they collide with any other particle;

2. The particles starting from the (xi)1≤i≤r , with velocities +1 and −1 are
denoted by p+

xi
and p−

xi
respectively; again we shall call them superior

particles. They behave as follows:

(a) Whenever two superior particle of different types collide (“+−” col-
lision), they annihilate and both disappear;

(b) If two superior particles of the same type collide (“++” or “−−”
collision), then they exchange their velocities (elastic interaction) and
continue to move;

(c) If a superior particle collides with a regular particle, the velocity of
the superior particle changes that of the incoming regular particle;
the regular particle is annihilated, while the superior particle survives
and continues to move.

Denote the space-time trajectories of superior particles p+
xi

and p−xi
by π+

xi
and

π−
xi

, respectively. As before, each pair of paths π+
xi

and π−
xi

can be represented as
an alternating sequence of concatenated segments π+

xi
(1, +), π+

xi
(1,−), π+

xi
(2, +),

π+
xi

(2,−), . . . or π−
xi

(1,−), π−
xi

(1, +), π−
xi

(2,−), π−
xi

(2, +), . . . , respectively, with
the same convention for the sign of the velocities. We are now ready to complete

the set of rules which govern the transformation of Γn(ω̃n) in to Γn(ω̃
(r)
n ):

• Erase each segment π±
xi

(j,∓) from Γn(ω̃n), producing an intermediate
picture Γ′

n(ω̃n);

• Add the segments π±
xi

(j,±) to Γ′
n(ω̃n), thus producing Γ′′

n(ω̃n) = Γn(ω̃
(r)
n ).

(Here as previously, two ± in the same formula are taken to be equal signs,
while ± and ∓ in the same formula stand for opposite signs.)

Recall that we are working in the bounded triangular domain Sn with the
configuration ω̃n ∪ {xi, 1 ≤ i ≤ v}, where v is the number of added points.
By f+i = (t

f
+

i

, x
f
+

i

) and f−i = (t
f
−

i

, x
f
−

i

) we shall denote the end-points of the

influence paths π+
xi

and π−
xi

— they can be points where the corresponding
paths exit the triangular domain, or points where a “+−” collision happens, in
which case the two corresponding end-points are equal.

Besides, let r+
i = (t

r
+

i

, 0) and r−i = (t
r
−

i

, 0) be the points of first return to

the t-axis of the paths π+
xi

and π−
xi

, respectively, and define

t̂i := min{t
f
+

i

, t
f
−

i

, t
r
+

i

, t
r
−

i

}. (2.7)
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Last, let e+
i := π+

xi
∩{(t̂i, x), x ∈ R} and e−i := π−

xi
∩{(t̂i, x), x ∈ R}, and denote

by π̂+
xi

, π̂−
xi

the parts of π+
xi

and π−
xi

lying between xi and e+
i , and respectively

between xi and e−i .

Definition 2.6. Let Ji be the (random) Jordan curve starting at xi, following
the path π̂−

xi
until the point e−i , then the vertical line t = t̂i up to e+

i , and then
the path π̂+

xi
backward until it comes back to xi. The domain bounded by Ji will

be called the attractor of the point xi and denoted by Ai (see Figure 3). The
part of its boundary which is contained in π̂+

xi
(resp. π̂−

xi
) will be called the upper

(resp. lower) boundary of the attractor.

It is important to understand how attractors are affected by one another, in
order to give a convenient description of the whole augmented process. The key
remark is the following: Informally speaking, a superior particle of a given type
is not affected by an older one (i.e. one with larger index) of the same type.
Indeed this is a consequence of the previous construction, and especially of the
Abelian property (see proposition 2.1).

Of course this does not mean that the attractors Aj for j < j0 do not change
when xj0 is added, since it remains possible that a “+−”-collision happens. In
that case, we get some kind of a monotonicity property, for the statement of
which a few additional notations will be needed. Recall that τ(x; ω) stands for
the self-annihilation time of a particle in the underlying scenery, i.e. ignoring
the effect of the other new particles, both younger and older. We will denote by
τ(x,y; ω) the annihilation time of the set of superior particles born from x and
y, i.e. the last time at which any of the corresponding four superior particles is
still alive. Such an annihilation can happen in one of four ways:

• Flat: x is born, the two particles thus created annihilate, then y is born
and its two particles collide;

• Embedded: x is born, then y appears between p−x and p+
x , then the par-

ticles issued from y collide, then so do those issued from x;
• Parallel: x is born, then y appears outside of (p−x , p+

x ), then the particles
issued from y collide, then so do those issued from x;

• Crossed: x is born, then y (also outside of (p−
x

, p+
x
)), then one particle

issued from x annihilates the particle of the other type coming from y,
then the remaining two collide.

The combinatorics become much more involved when more particles are
added; nevertheless, it is possible (if a bit technical if a formal proof is needed,
see [4]) to show the following:

Proposition 2.7 (Monotonicity of the influence). For any two added
points x and y, we have the following inequality:

τ(x,y; ω) ≥ Max(τ(x, ω), τ(y; ω));

and more generally the annihilation time of the union of two finite families of
added points is at least equal to the larger of the two annihilation times of the
parts.
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In the flat, embedded and parallel cases, the monotonicity extends to the
shapes of the attractors (the attractor of y in the presence of x contains the one
without); there is true reinforcement in the embedded case, in that the inclusion
is strict as soon as there is a “++”- or “−−”-collision. This is not always the
case in crossed configurations (cf. 3, where the attractor of x3 is shortened by
the addition of x4), which leads us to the following definition:

Definition 2.8. We say that two attractors Ai and Aj , i > j are connected if
there exists a sub-sequence j = i0 < i1 < i2 < · · · < ik = i such that xir

∈ Air+1

for all 0 ≤ r < k. We will call (ij)0≤j≤k a connecting subsequence between Ai

and Aj.

π
+
x2

π
+
x1

π
−

x1

π
−

x2

π
−

x5

π
+
x5

π
+
x3

x5 x3 x2 x1

x4

Figure 3: Attractors (shaded)

Observe that if i > j > k, if Ai is connected to Aj and Aj is connected to Ak,
then Ai is connected to Ak. Nevertheless, due to the presence of orientation in
the temporal direction, the above implication generally does not hold without
the condition i > j > k.

Our construction immediately implies the following:

Proposition 2.9. If Ai is connected to Aj , i > j, then t̂i ≥ t̂j.

Corollary 2.10. If Ai is connected to Aj, i > j, and the end-points e+
j and e−j

belong respectively to the south-east and north-east boundaries of the triangular
domain Sn, then so do e+

i and e−i .

Corollary 2.11. Assume that Ai is connected to Aj , i > j, with connecting
subsequence (is)0≤s≤k: If xj is essential for the configuration ω̃n, then so are
all the xis

, 1 ≤ s ≤ k.

2.6. Pinning of the geodesics

We now return to our original problem. Observe that if, for some fixed configu-
ration ω̃n in Sn, we pick a realization of the points (xi)1≤i≤v in such a way that
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A1 and Av are connected (say), with connecting subsequence (ij)0≤j≤k, then
all the xij

must be essential for ω̃n, and therefore the point-to-plane geodesics
for the configuration ω̃n ∪ {xi} has to visit all the xij

.
In the new formalism, the original question of whether, for any given density

λ(1) > 0 of the one-dimensional Poisson point process, the limiting value in (2.1)
is increased, becomes equivalent to the following: Is there a positive δ such that,
with high probability as n goes to infinity, at least a fraction δ of the newly
added points are essential for ω(2)?

This question is more complicated than simply whether there exists a chain
of pairwise connected attractors spanning from the left to the right boundary of
the domain: Indeed, such a chain does not necessarily have positive density. In
the next Section we also mention some of the interesting mathematical questions
that arise in the construction.

It is not an easy task to understand how the attractors behave. The fact that
the structure of the influence paths π̂+

xi+1
and π̂−

xi+1
depends on Γn(ω̃n∪{xj , 1 ≤

j ≤ i}), but not on the xj for j > i+1, reduces the problem to checking whether
none of the influence paths π̂+

xi+1
, π̂−

xi+1
hits the t-axis before xi, in which case

Ai+1 is connected to Ai (see figure 3).
For a single point x added to the initial configuration, each influence path

π+
x

, π−
x

has the same statistical properties as what is known as a “second-class
particle” in the framework of exclusion processes. Since in the definition of
an attractor an important role is played by the (possible) return times of the
influence paths to the t-axis, several things must be settled:

1. The first return time to the t-axis of a single influence path. It is be-
lieved (but remains a challenging open problem) that in the case of a
one-dimensional exclusion process, a second-class particle behaves super-
diffusively. Though some bounds are available, and we know the mean
deviations of the second class particle [12], they do not provide good con-
trol on return times;

2. The joint behavior of the influence paths π̂+
x

and π̂−
x

. Generally, it is
a complicated question too, but for our purposes we need to have such
control only up to the first times when one of π̂+

x
, π̂−

x
returns to the t-axis.

Before such a time, both paths stay apart from each other, and some good
mixing properties of the system come into play; so the question reduces
to how efficiently we control point 1.

The fact that the influence lines of “younger” points (with smaller indices,
i.e. sitting more to the right) repeal the influence lines of “older” points, leads
to the following observation: Once the attractor Ai+m of an older point reaches
the younger point xi, then it cannot end before the attractor Ai ends. If the
attractor Ai ends before reaching the next point xi−1, then Ai+m can still go
forward, and possibly itself reach xi−1. Observe that at the time Ai ends, the
boundaries of Ai+m are necessarily at a positive distance from the t-axis.

That, together with the fact that the evolution of p+
xi

and p−
xi

in the slab
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(ti, ti−1) × R depends only on Γn(ω̃n) brings some notion of week dependence
to the system from one side, and the idea of a “re-start point” from another.
This reduces the study of percolation of attractors to a more general problem
of one-dimensional, long-range, dependent percolation which we formulate in
the next section. There we also mention some of the interesting mathematical
questions that have arisen.

3. Stick percolation

In this section we introduce two “stick percolation” models, which will serve
as toy models in the study of the propagation of influence in the broken-line
model. In spite of their apparent simplicity, these models can be very useful
studying effects of columnar defects and establishing (bounds for) critical val-
ues for asymptotic shape changes for some well known one-dimensional growth
systems (see [4]).

3.1. Overlapping sticks

Let (xi)i∈N be a Poisson point process of intensity λ > 0 on the positive real line.
We call the points of this process “seeds”, and assume that they are ordered,
x0 being the point closest to the origin. To each seed xi we associate a positive
random variable Si (a “length”) and assume that the (Si)i∈N are i.i.d. with
common distribution function F .

The system we consider is then the following: For every i ∈ N, construct the
segment Ŝi = [xi, xi + Si] (which we will call the i-th “stick”). We say that the

sticks Ŝi and Ŝj , i < j are connected if xj < xi +Si, i.e. if they have non-empty
intersection; the system percolates if and only if there is an infinite chain of
distinct, pairwise connected sticks, which (with probability 1) is equivalent to
saying that the union of the sticks contains a half-line.

It is easy to see that the system percolates with probability 0 or 1 (it is a tail
event for the obvious filtration); and in fact there is a complete characterization
of both cases:

Proposition 3.1. ([4]) Let R(x) = P (S1 > x) be the tail of the stick length dis-
tribution, and let ϕ(x) =

∫ x

0 R(u)du. Then the system percolates with probability
1 if and only if ∫ +∞

0

e−λϕ(x)dx < +∞. (3.1)

This leads us to the following definition:

Definition 3.2. The distribution F governing the stick process is said to be
cluster-stable if the system percolates for every positive value of λ.
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Example 1: Return times of random walks. One natural distribution for
the length of the sticks, in view of the previous construction, is the following: At
time xi, start two random walks with no drift (the specifics, e.g. whether they
are discrete or continuous time walks, will not matter at this point — for that
matter we could also take two Brownian motions), one from +1 and the other
from −1. Then, let xi +Si be the first time when these two walks meet. It is well
known that, up to multiplicative constants, P (Si > t) behaves as t−1/2 for large
t, as soon as the walks are irreducible and their step distribution have finite
variance. It is easy to check that the obtained distribution is cluster-stable.

Example 2: Change the previous example a little, as follows: For every value
of i, start a two-dimensional Brownian motion (or random walk), and let xi +Si

be the first hitting point of the axis by this Brownian motion; but erase the stick
if Si < 0. Then the distribution F is Cauchy restricted to be positive, and its
tail is equivalent to P (Si > t) ∼ c/t as t goes to infinity. In that case, the stick
length distribution is not cluster-stable for model 1, and there exists a critical
value λc = 1/c, such that for λ > λc the system percolates while it does not if
λ < λc.

3.2. Reinforced sticks

There are several ways to mimic the interaction between “funnels”. One of
the most simple possibilities is to add extra rules to Model 1 to account for the
interaction. The basic idea behind this modification, is that if two or more sticks
from Model 1 overlap, then there is a certain reinforcement of the system, which
depends on how many sticks overlap, and then the whole connected component
is enlarged correspondingly.

One way to do that can be described informally as the following dynamic
process. First, see each stick Ŝi as the flight time of a particle πi born at time
xi. We want to model the fact that if πi wants to land when a younger one
(say πj) is still flying, instead πi “bounces” on πj ; πj on the other hand should
not be affected by πi, if the process is to look like the propagation of influence
described in he previous section.

Assign to each particle a “counter of chances” Ni which is set to 1 when
the particle is born (formally it should be a function from R+ to N, and we
let Ni(xi) = 1). Then, two things can happen. If xi + Si < xi+1, there is no
interaction and πi dies at time xi + Si. If on the other hand xi + Si ≥ xi+1, at
time xi+1 the particle πi gets a “bonus”, so that Ni(xi+1) = 2; and similarly, it
gets a bonus each time it passes above a seed point, so that Ni(xi + Si−)− 1 is

the number of seed points in Ŝi. Now when π lands, its counter is decreased by
1, but if it is still positive the particle bounces on the axis and restarts using an
independent copy of S. If all the chances are exhausted before the closest seed
is reached, πi gets killed.

Again, we may ask a similar question: Given λ > 0, for which distribution
functions F is the probability for a given particle to survive up to infinity posi-
tive? It is obvious that even with E(S) < +∞ we can obtain infinite trajectories
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for certain (large) values of λ. We will call F cluster-stable for the reinforced
process if this happens for every positive λ.

Example: The Cauchy distribution used in the previous example cluster-
stable for the reinforced model.

It is easy to see (e.g. by a coupling argument) that if the original system per-
colates, the reinforced version (for the same value of λ and the same length dis-
tribution F ) percolates too. In particular a cluster-stable distribution is cluster-
stable for the reinforced problem. Nevertheless it is an interesting open problem
to give full characterization of distributions which are cluster-stable for the re-
inforced models.
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