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Balanced Sequences and Optimal RoutingEitan ALTMAN� Bruno GAUJALy Arie HORDIJKzSeptember, 1997AbstractThe objective pursued in this paper is two-fold. The �rst part gives an overviewof the following combinatorial problem: is it possible to construct an in�nite sequenceover n letters where each letter is distributed as �evenly� as possible and appears witha �xed rate? The second objective of the paper is to relate this construction to theframework of optimal routing in queueing networks. We show under rather generalassumptions that the optimal deterministic routing in stochastic event graphs is sucha sequence.Keywords Balanced sequences, multimodularity, stochastic event graphs, opti-mal control.1 IntroductionIt is a rather general problem to consider a system with multiple resources and tasks. Taskscan be performed by any resource and arrive in the system sequentially. The problem is toconstruct a routing of the tasks to the resources to minimize a given cost function. Suchmodels are common in multiprocessor systems and communication networks, where thecost function may be the combined load in the resources.Here, we show that under rather general assumptions, the optimal routing sequence interms of expected average workload in each resource is given by a balanced sequence, thatis a sequence in which the option to route towards a given resource, is taken in an evenlydistributed fashion.�INRIA, BP 93, 2004 Route des Lucioles, 06902 Sophia Antipolis Cedex, France. E-mail: alt-man@sophia.inria.fr. URL:http://www.inria.fr:80/mistral/personnel/Eitan.Altman/me.htmlyINRIA/CNRS/INRIA, BP 93, 2004 Route des Lucioles, 06902 Sophia Antipolis Cedex, France. E-mail:gaujal@sophia.inria.fr.zDept. of Mathematics and Computer Science, Leiden University, P.O.Box 9512, 2300RA Leiden, TheNetherlands. E-mail: hordijk@wi.leidenuniv.nl. The research of Arie Hordijk was done while he was onsabbatical leave at INRIA, Sophia-Antipolis; it has been partially supported by the Ministère Français del'Éducation Nationale et de l'Enseignement Supérieur et de la Recherche.1



This motivates the �rst part of the paper which is essentially based on word combi-natorics and uses its speci�c vocabulary. This part relies heavily on results in [9, 17].The problem of balanced sequences and exactly covering sequences has been studied usingcombinatorial as well as arithmetic techniques [20, 23, 18, 7, 16].However, in these studies, the analysis of balanced sequences was done per se and didnot present any motivations or applications. In particular, the use of these constructionsin discrete event dynamic systems may not have been discovered before the seminal workof Hajek, [10] in 1985. This work solves the one dimensional case problem, further gen-eralized in [1]. The goal of the present paper is to extend the same type of results to amultidimensional case, which is surprisingly more di�cult and of di�erent nature as theone dimensional case.This is done in the second part of this paper, where we will show an application of bal-anced sequences for routing problems. This part uses results from convex analysis, mainlyfrom [10, 2, 1]. The main results that are used here are of two di�erent kinds. First, weuse the fact that the workload as well as the waiting time of customers entering a (max,+)linear system are multimodular functions, under fairly general assumption ( stationarity ofthe arrival process and of the service times)([1]). Then, we use general theorems from [2]that prove that multimodular functions are minimized by regular sequences. The super-position of several such sequences being a balanced sequence, this is the basis of the mainresult of this paper.It is interesting to exhibit this link between balanced sequences and scheduling prob-lems, such as routing among several systems.More precisely, the paper is structured as follows. In the second section, we introducea formal de�nition of balanced sequence and we present an overview on their properties.The section 3 makes the link between the notion of balanced sequences and the optimalscheduling in networks and is also devoted to prove the optimality of balanced sequencesfor routing customers is a multiple queue system. Section 4 presents special cases for whichthe optimal rates can be computed.2 Balanced sequencesIn this section, we will present the notion of balanced sequences, which is closely relatedto the notion of Sturmian sequences [14] as well as exactly covering sequences. Thispresentation is not exhaustive and many other related articles can be consulted for furtherinvestigation on this topic [22, 11, 3, 5, 20, 7]. Although the section is self-contained andpresents several result which are of interest by their own, we mostly focus the rate problem(see Problem 2), which will be used in the application section (� 3).2.1 PreliminariesLet A be a �nite alphabet and AZ the set of sequences de�ned on A.2



If u 2 AZ, then a word W of u is a �nite subsequence of consecutive letters in u:W = uaua+1 � � �ua+k�1. The integer k is the length of W and will be denoted jW j.If a 2 A, jW ja is the number of a's in the word W .De�nition 2.1. The sequence u 2 AZ is balanced if for any two words W and W 0 in u ofsame length, and any a 2 A, �1 6 jW ja � jW 0ja 6 1:If a 2 A, we also de�ne the indicator in u of the letter a as the function �a(u) : AZ!f0; 1gZ by, �a(u)i = 1 if u(i) = a and 0 otherwise. The support in u of the letter a is theset Sa = fi 2 Z : �a(u)i = 1g.For any real number x, bxc will denote the largest integer smaller or equal to x anddxe will denote that smallest integer larger or equal to x.Lemma 2.2. If a sequence u 2 AZ is balanced, then for any a 2 A, there exists a realnumber p, 0 6 p 6 1 such thatlimn!1 1n nXi=0 �a(u)i = limn!�1 1n 0Xi=n �a(u)i = pa:pa is called the rate of �a(u).Proof. Let us de�ne sn =Pni=0 �a(u)i and remark that sn + sm � 1 6 sn+m 6 sn + sm + 1.The rest of the proof is classical by sub-additivity arguments. The proof for f�a(u)ngn60is similar. The fact that both limits coincide is obvious.Note that the sum of the rates for all letters in a sequence u is one.Xa2A pa = 1:Now, we can present the main result which founds the theory of balanced sequences.Theorem 2.3 (Morse and Hedlund). Suppose a sequence d 2 f0; 1gZ is balanced withasymptotic rate p = 1=� for letter 1. The support S1 of d satis�es one of the followingcases.(a) (irrational case) p is irrational and that exists � 2 R such thatS1 = fbi� + �cgi2Z or S1 = fdi� + �egi2Z:(b) (periodic case) p 2 Q and there exists � 2 Q such thatS1 = fbi� + �cgi2Z:3



(c) (skew case) p 2 Q (p = k=n) and there exists m 2 Z such thatS1 = fbin=k +mcgi<k [ fbin=k � 1=k +mcgi>0or S1 = fbin=k +mcgi>0 [ fbin=k � 1=k +mcgi<kSequences for which the support is of the form S1 = fbi� + �cgi2Z are called bracketsequences. This theorem shows the relation that exists between balanced sequences andbracket sequences. The irrational case is the easiest case and can be characterized (seeTheorem 2.17). The two rational cases are more di�cult to study. Our main objective forstudying balanced sequences is their application in routing control (see sections 3 and 4).In our analysis, only the right tail of a sequence, that is fuigi>i0 for some i0 in N maters.Also, a sequence u and a shifted version, u0 will have the same asymptotic performance(see equation (7)). Hence, we consider such two sequences as being equivalent. Note thatthis allows us to consider that the skew case and the rational case are equivalent.De�nition 2.4. A sequence d 2 f0; 1gZ is (ultimately) regular if there exists two realnumbers � and p (and an integer k) such that for all (n > k) n, dn = b(n+1)p+�c�bnp+�c:Note that dn = b(n + 1)p + �c � bnp + �c is equivalent to S1 = fdn1p + �egn2Z with� = �1� �=p.Theorem 2.5. Let u 2 AZ.(i)- If �a(u) is regular for all a 2 A, then u is balanced.(ii)- If u is balanced, then �a(u) is ultimately regular for all a 2 A.Proof. (i) is straightforward.(ii) is a direct consequence of Theorem 2.3, since in all three cases, the sequence �a(u) isultimately regular. An elementary proof of (ii) which does not use Theorem 2.3 can befound in [21].In [13], the sequence u is said to have the reduction property if �u(a) is regular for alla 2 A. Corollary 2.5 shows that u has the reduction property (ultimately) if and only if itis balanced.2.2 Constant gap sequencesConstant gap sequences are strongly balanced sequences, in the following sense.De�nition 2.6. A sequence G is constant gap if for any letter a, �a(G) is periodic, witha period of the form 0 � � � 010 � � �0.Note that this explains the fact that G is said to have constant gaps for the letter a,since each a is separated from the next a in G by a constant number of letters.4



Proposition 2.7. Constant gap sequences are balanced.Proof. For each letter a, �a(G) is of the form (0n10m)!. Therefore, �a(G) is regular withp = 1=(m+n+1) and � = m=(m+n+1). Using the characterization of balanced sequencesgiven in Theorem 2.5, this shows that G is balanced.Proposition 2.8. Constant gap sequences are periodic.Proof. For each letter a, �a(G) is periodic with period pa. The period of G is lcm(pa; a 2A).In the next lemma, we give a characterization of constant gap sequences that stressesthe fact that constant gap is some kind of strong balance.Proposition 2.9. G is constant gap if and only if, for any two �nite words, W and W 0included in G with jjW j � jW 0jj 6 1, then for each letter a, jjW ja � jW 0jaj 6 1.Proof. Let a be a letter in the alphabet.First, assume that G is constant gap. If jW ja�jW 0ja > 2, then, necessarily, jW j�jW 0j > 2.Conversely, letW = aUa andW 0 = aU 0a be any two words in G with no a in the subwordsU and U 0. If jU j > jU 0j+ 1, then we have jjU j � jW 0jj 6 1 and jjU ja � jW 0jaj = 2. This isa contradiction. Therefore jU j = jU 0j and G is constant gap.Since a constant gap sequence is balanced, each letter appears with a given rate in thesequence. note however that since a constant gap sequence is necessarily periodic, the rateof each letter is rational.As we will do in section 2.4 for the case of balanced sequences, we now address thefollowing question:Problem 1: Given a set (p1; � � � ; pN), with p1 + � � � + pN = 1 is it possible toconstruct a constant gap sequence on N letters with rates (p1; � � � ; pN)?.We will not solve this problem for a general N . We will only give some properties ofthe set (p1; � � � ; pN) which will be useful in the following. A non-e�ective characterizationof such (p1; � � � ; pN) is given in [23], under the name exact covering sequences.De�nition 2.10. The set of couples f(�i; gi); i = 1 � � �Ng is called an exact covering se-quence if for every nonnegative integer n, there exists one and only one 1 6 i 6 N suchthat n = �i mod gi.As a general remark, note that (p1; � � � ; pN) are rational numbers of the form pi = ki=d,with d the smallest period of G. Therefore, we have,Pi ki=d = 1 and for each i, ki dividesd. By de�nition of the rates, we also have pa = 1=qa for all letters.We have the following result.Proposition 2.11. The rates (p1; � � � ; pN) are constant gap if there exists N numberscalled phases, �1; � � � �N such that the couples f(�i; qi); i = 1 � � �Ng form an exact coveringsequence. 5



Proof. This property is a simple rewriting of the fact that each letter ai in a constant gapsequence appears every f�i + kqi; k 2 Ng.Now, suppose that f(�i; qi); i = 1 � � �Ng is an exact covering sequence. Then in theseries S(x) def= kXi=1 Xk>0 x�i+kqi;the coe�cient of xn in this series is equal to 1; 8n > 0. Therefore, we haveS(x) = kXi=1 x�i1� xqi = 11� x:Using this characterization we have the following interesting property.Lemma 2.12 ([18]). Assume f(�i; qi); i = 1 � � �Ng is an exact covering sequence and thatP = maxi qi. Then P appears at least twice in the set q1; � � � ; qN .Proof. The proof given here is similar to the discussion in [23] on exact covering sequences.Let w def= e2i�=r for some integer r > 1. By de�nition, w is a primitive r-th root of one. Wehave: (w � x)S(x) = kXi=1 (w � x)x�i1� xqi = w � x1� x :Let x ! w. This yields Xi:rjqi �w�i�qiwqi�1 = 0: (1)Now, take r = P . The set fi : P jqig is exactly the set fi : P = qig. Equation (1)speci�ed for r = P can be written Xi:qi=P w�i = 0:This implies that the set fi : P = qig cannot be reduced to a single point since w is notzero.To give some concrete examples, we consider the cases where N is small. First, notethat in the case where the ki are not all equal, (assume k1 is the largest of all), we haveXi6=1 ki=k1 = d=k1 � 1 = l1;where l1 is the gap between two letters a1. This implies,l1 6 N � 2: (2)6



Proposition 2.13. There exists a constant gap sequence G with rates (p; 1�p) if and onlyif p = 1=2.Proof. Let a be a letter in G with gap l. Since the alphabet contains only two letters,l = 1. This means p = 1=2.Proposition 2.14. There exists a constant gap sequence G with rates (p1; p2; p3) if andonly if the following holds: (p1; p2; p3) = (1=3; 1=3; 1=3) or (1=2; 1=4; 1=4) (up to a permu-tation).Proof. Assume that (p1; p2; p3) 6= (1=3; 1=3; 1=3) (otherwise, G = (abc)! is constant gap).Using Equation (2), l1 = 1 and p1 = 1=2. Therefore, the sequence obtained from G whenremoving all the letters a1 is constant gap. Applying Lemma 2.13 shows that p2 = p3. Theonly solution is p1 = 1=2; p2 = 1=4 and p3 = 1=4. The associated constant gap sequence is(a1a2a1a3)!.Proposition 2.15. There exists a constant gap sequence G with rates (p1; p2; p3; p4) if andonly if fp1; p2; p3; p4g belongs to the set (up to a permutation),f(1=4; 1=4; 1=4; 1=4); (1=2; 1=4; 1=8; 1=8); (1=2; 1=6; 1=6; 1=6); (1=3; 1=3; 1=6; 1=6)g:Proof. We give a sketch of an elementary proof of this fact. If the rates are all equal, then(p1; p2; p3; p4) = (1=4; 1=4; 1=4; 1=4). Now, note that Equation 2 implies that if the ratesare not all equal l1 6 2. We consider any letter ai; i 6= 1, assume that the number ofa1's in between two ai's is not constant and takes values m and n, m > n. then we haveli > (n � 1)l1 + n on one hand and li 6 n(l1) � 3 on the other hand. This is impossiblesince l1 6 2. Therefore, the number of a1's in between two ai's is constant. This is truefor all i. The sequence formed by removing all a1's is still constant gap. It has rates ofthe form (1=3; 1=3; 1=3) or (1=2; 1=4; 1=4). From this point a case analysis shows that theoriginal sequence has rates (1=2; 1=4; 1=8; 1=8); (1=2; 1=6; 1=6; 1=6)or(1=3; 1=3; 1=6; 1=6)g byinserting the letter a1 in a constant gap sequence over the letters a2; a3; a4.These few examples of constant gap sequences illustrate the fact that the rates in thesesequences have very strong constraints.2.3 Characterization of balanced sequencesSeveral studies have been recently done on balanced (or bracket) sequences [13, 20, 21, 16,15]. In [9], a characterization involving constant gap sequences is given.Proposition 2.16 (Graham). Let U be a balanced sequence on the alphabet f0; 1g. Con-struct a new sequence S by replacing in U , the subsequence of zeros by a constant gapsequence G on an alphabet A1, and the subsequence of ones by a constant gap sequence Hon a disjoint alphabet A2. Then S is balanced on the alphabet A1 [ A2.7



Proof. We give a proof similar to Hubert's proof ([11]). Let a be a letter in A1 (the proofis similar for a letter in A2. Let W and W 0 be two words of S of the same length. Then,the corresponding words X and X 0 in U verify jjW j0 � jW 0j0j 6 1 since U is balanced. Ifwe keep only the 0's in X and X 0, then the corresponding Z and Z 0 words in G satisfyjjZj � jZ 0jj 6 1. Since G is constant gap, and using Lemma 2.9, jjZja � jZ 0jaj 6 1.We end the proof noting that the construction of Z and Z 0 implies jZja = jW ja andjZ 0ja = jW 0ja.Conversely, we have the following theorem.Theorem 2.17 (Graham). Let u 2 AZ be balanced and non periodic. Then there existsa partition of A into two sets A1 and A2 such that the sequence v de�ned by:vn = 1 if un 2 A1; (3)vn = 0 if un 2 A2; (4)is regular. Furthermore, the sequences z1 and z2 constructed from u by keeping only theletters from A1 and A2 respectively have constant gaps.The proof of this theorem was given by Graham [9] for bracket sequences. An indepen-dent later proof can be found in [11] for balanced sequences. The relation between balancedand bracket sequences given in Theorem 2.5 makes both proofs more or less equivalent.2.4 Rates in balanced sequencesNow, also note that a balanced sequence has several asymptotic properties, such as thefollowing lemma.Let us formulate precisely the problem which we will study in this section.Problem 2: Given a set (p1; � � � ; pN), is it possible to construct a balancedsequence on N letters with rates (p1; � � � ; pN)?We will see in the following that this construction is not possible for all the values ofthe rates (p1; � � � ; pN). If a n-tuple (p1; � � � ; pN) makes the construction possible, such atuple is said to be balanceable. A similar problem has been addressed in [9, 15, 7], Whererelations between the rates in balanced sequences are studied.2.5 The case N = 2This case is well known and balanced sequences with two letters have been extensivelystudied (see for example [6, 14]). The following result is known even if it is often givenunder di�erent forms.Theorem 2.18. For all p, 0 6 p 6 1, the set of rates (p; 1� p) is balanceable.8



Proof. The proof is similar to the proof of the �rst part of Theorem 2.5. We constructa sequence S as the support of the function s(n) = bpnc � bp(n � 1)c. S is a balancedsequence because the interval ]k; k+m] contains exactly e = bpk+ pmc� bpkc elements ofS. Now, bpmc+bpkc�bpkc 6 e 6 dpme+bpkc�bpkc. This shows the value of e can di�erby at most one when k varies so S is a balanced sequence. If S 0 is the complementary setof S, then it should be clear that S 0 has asymptotic rate 1� p and S 0 is balanced becauseS 0]k;k+m] contains m� e elements.Note that the proof of Theorem 2.18 also gives a construction of a balanced sequencewith the given rates.2.6 The case N = 3The case N = 3 is essentially di�erent from the case N = 2. In the case N = 2, allpossible rates are balanceable while when N = 3, there is essentially only one set of rateswhich is balanceable. This result, when formulated under this form, was partly provedand conjectured in [13] and proved in [20]. In earlier papers by Morikawa, [16], a similarresult is proved for bracket sequences. If Theorem 2.5 is used, then the result of Morikawacan be used directly to prove the following theorem. Therefore, we attribute this result toMorikawa, even if the result was stated di�erently.Theorem 2.19 (Morikawa). A set of rates (p1; p2; p3) is balanceable if and only if,(p1; p2; p3) = (4=7; 2=7; 1=7)or two rates are equal.Proof. The proof of Morikawa is very technical since it does not use the balanced propertyfor bracket sequences. If the balanced property is used, then the proof becomes very easy.We give a proof slightly simpler than the proof in [20]. First, assume that p1 = p2. Then,let S be a balanced sequence with two letters fa; bg constructed with the rates (p1+p1; p3).In S, replace alternatively the �a�s by the letters a1; a2, we get a sequence S 0 on alphabetfa1; a2; bg with rates (p1; p1; p3). Let us show that S 0 is balanced. Since S is balanced, thenumber of �a�s in an interval of length m is k or k+1, for some k. Now, for S 0, the numberof �a1�s (resp. �a2�s) in such an interval is either (k� 1)=2 or (k+1)=2 if k is odd and k=2or k=2 + 1 is k is even. This proves that S 0 is balanced.Now, assume that (p1; p2; p3) are three di�erent numbers. We assume that p1 > p2 > p3.We will try to construct a sequence W with these respective rates on the alphabet fa; b; cg.step 1: the sequence �aca� must appear in W .There exists a pair of consecutive �a� with no �b� in between since p1 > p2 . This means thatthe sequences �aa� or �aca� appear. If �aa� appears, then a �c� is necessarily surroundedby two �a�s.step 2: the sequence �baab� must appear in W .There exist a pair of consecutive �b� with no �c� in between. This sequence is of the form9



\banb�. Now, n 6 1 is not possible because of the presence of �aca� and b-regularity.n > 3 implies the existence of �an�1can�1� by a-regularity which is incompatible with�banb� because of b-regularity. Therefore n = 2. Note that this also implies the existenceof �aa� and of �abaaba�.step 3: the sequence �abacaba� appears in W .the sequence W must contain a �c�. This �c� is necessarily surrounded by two �a�s since�aa� exists by a-regularity. This group is necessarily surrounded by two �b�s since �baab�exists, and consequently, necessarily surrounded by two �a�s, since �abaaba� exists. We getthe sequence �abacaba�.Last step: W = (abacaba)!.No letter around this word can be a �c� because �baab� exists. None can be a �b� since�aca� exists. Therefore, they have to be two �a�s. Then note that the following two letterscannot be a �c� (because of the existence of �abaaba�), nor an �a� (because of the existenceof �bac�) so it is a �b�, then followed necessarily by an �a� (because �aa� exists). At thispoint, we have the sequence �?abaabacabaaba?�. Both ?s are necessarily �c�s.To end the proof, note that a �c� necessarily has the word �abaaba� on its right andthe same word on its left. Finally note that the word �abaaba� is necessarily surroundedby two �c�s. Therefore the sequence W is periodic of the form (abacaba)!.2.7 The case N = 4The case N = 4 is very similar to the case N = 3 for distinct rates. However when tworates are equal, this case is more complicated.Theorem 2.20. A rate tuple (p1; p2; p3; p4) with four distinct rates is balanceable if andonly if (p1; p2; p3; p4) = (8=15; 4=15; 2=15; 1=15).Proof. Again, it seems Morikawa has proved a similar result for bracket sequences. How-ever, using the balanced property, the proof becomes much simpler. We suppose thatp1 > p2 > p3 > p4 and we show that there is only one balanced sequence with frequenciesp1 > p2 > p3 > p4 and those frequencies are (8=15; 4=15; 2=15; 1=15).As a preliminary remark, note that if pi > pj, then there exists at least one word�ai � � �ai� that does not contain any aj. This fact will be used several times in the followingarguments.The proof involves di�erent steps.Step 1: W contains the words �aca� or �ada� or �acda� or �adca�.There exists two consecutive �a�s with no �b� in between because p1 > p2. Therefore,either �aa� or �aca� or �ada� or �acda� or �adca� exist. If �aa� exists, then, a �c� issurrounded by two �a�s.Step 2: W contains the word �baab�First, we show that if a word �banb� exists, then n = 2. Indeed, the fact that �ada�or �aca� or �acda� or �adca� exist makes �bb� and �bab� impossible. On the other hand, ifn > 3, the existence of �an�1can�1� is necessary by a-regularity and is incompatible withthe existence of �banb� because of b-regularity.10



Now, if no word of the form �banb� exists, then there exist two consecutive �b�s withone �d� and no �c� in between. This word (s1) is of the form: �aibajdakbal�. Note that thenumbers i; j; k; l may be equal to zero but i + j + k + l > 1 by b-regularity.There also exist two consecutive �c�s with no �d� in between. This word (s2), is ofthe form: �cambanc�. Note that i; j; k; l;m; n are integers that can di�er by at most one,the length of s1, js1j > max(4; 2(n +m) + 1) > n +m + 3 = js2j. This is impossible byc-regularity.step 3: the word �abacabaabacaba� exists in W . There exists two consecutive �c�swith no �d� in between. From step 3 in the proof of Lemma 2.19, we know that a �c� isnecessarily surrounded by the word �aba�. Moreover, from step 4 in the proof of Lemma2.19, we have: �abacabaabaUcaba�, where U is a word that contains no �d� and no �c�. Ucannot start with an �a� (because of �bacab�) cannot start with a �b� (because of �aca�)cannot start with a �c� and cannot start with a �d� by construction. Therefore U has tobe empty.Step 4: W is uniquely de�ned and is periodic of period �abacabadabacaba�.Somewhere, W contains a �d�. From this point on, we can extend the word uniquely as:�abacabadabacaba� around this �d�, and the word �abacabaabacaba� has to be surroundedby two �d�s. This ends the proof.To complete the picture, it is not di�cult to see that,Proposition 2.21. if the tuple (p1; p2; p3; p4) is made of less than two distinct numbers,then it is balanceable.Proof. First, if the rates are all equal, they are obviously balanceable. If three of them areequal, say p1 = p2 = p3, then, we can construct a balanced sequence with rates (3p1; p4)and we construct a balanced sequence with rates (p1; p1; p1; p4) by using Proposition 2.16(where we take G the constant gap sequence (a1a2a3)! and H def= (a4)!). If two pairs ofrates are equal, say p1 = p2 and p3 = p4, then we construct a balanced sequence with rates(2p1; 2p3) and we apply Proposition 2.16.If the tuple (p1; p2; p3; p4) is made of exactly three distinct numbers, then this is a morecomplex case which is not studied here.2.8 The general caseIn this section, we are interested in the case of arbitrary N . First, note that Proposition2.21 easily generalizes to any dimension.Proposition 2.22. If the tuple (p1; p2; p3; � � � ; pN) is made of less than two distinct num-bers, then it is balanceable.Proof. The proof is similar to the proof of Proposition 2.21.11



Proposition 2.23. If (p1; p2; � � � ; pN) is balanceable, then (p1=k; � � � ; p1=k| {z }k ; p2; � � � ; pN)isbalanceable.Proof. The proof is very similar to that of Proposition 2.16. If W is a balanced sequencewith letters fa1; � � � ; aNg, consider the sequence W 0 constructed starting from W andreplacing each �a1� by an element of (b1�, �b2�, � � � , �bk) in a cyclic way. Note that W 0 hasthe following set of rates, (p1=k; � � � ; p1=k; p2; � � � ; pN).Next, we show that W 0 is balanced. Since W is balanced, for an arbitrary integer m, thenumber of �a1�s in an interval of length m is n or n + 1, for some n. Now, for W 0, thenumber of �bi�s in such an interval is either b(n � 1)=kc or b(n + 1)=kc. This proves thatW 0 is balanced.For the general case and distinct rates , it is natural to give the following conjecture(due to Fraenkel for bracket sequences):Conjecture 2.24. A set of distinct rates fp1; � � � ; pNg is balanceable if and only iffp1; � � � ; pNg = f2N�1=(2N � 1); � � � ; 2N�i=(2N � 1); � � � ; 1=(2N � 1)g:We have not been able to prove this fact. Morikawa has also given some insight in thisproblem. It is not clear whether it has been completely proven. Here, we only have partialresults given in the following lemmas.Lemma 2.25. The rates (2N�1=(2N �1); � � � ; 2N�i=(2N �1); � � � ; 1=(2N �1)) are balance-able, for all N 2 N.This lemma is the �if� direction of the conjecture.Proof. We construct a balanced sequence WN in the following inductive way. V1 = a1,VN = VN�1aNVN�1 and WN = (VN)!. First note that WN has rates (2N�1=(2N �1); � � � ; 2N�i=(2N � 1); � � � ; 1=(2N � 1)). Then, we show that WN is balanced by induc-tion. In the sequence WN , any letter (say letter j) appears 2N�j times in one period andis of the form of 2N�j � 1 intervals of the same length (2j) and one of length 2j � 1.By construction ofWN+1, this properties still hold and therefore,WN+1 is balanced.Lemma 2.26. Let W be balanced with rates p1 > � � � > pN , then, W is periodic. Inparticular, this means that pi 2 Q ; 81 6 i 6 N .Proof. If W is not periodic, Theorem 2.17 says that W is composed of two constant gapsequences. At least one of these sequences has at least two letters, and therefore two lettershave rates which are equal by Lemma 2.12. Therefore, the rates in W of these two lettersare also equal.Lemma 2.27. Let W be balanced with rates p1 > � � � > pN , with the following property:for any 1 6 i 6 N , there exists two consecutive letters �ai� with no aj in between, withj > i. Then, (p1; � � � ; pN) = (2N�1=(2N � 1); � � � ; 2N�i=(2N � 1); � � � ; 1=(2N � 1)).12



This lemma is a partial �only if� result for the conjecture.Proof. The proof holds by induction. Let Vk denote the period of the balanced sequencewith rates (2k�1=(2k � 1); � � � ; 2k�i=(2k � 1); � � � ; 1=(2k � 1)) given in Lemma 2.25. Werecall that according to the construction in the proof of lemma 2.25, Vk = Vk�1akVk�1. Wewill prove by induction that W is periodic with period VN .We �rst prove by induction on k that W contains the word Vk�1akVk�1Vk�1akVk�1 andthat each letter in W , �aj�, j > k is surrounded by Vk�1, for all possible 1 < k 6 N .Now, for the �rst step of the induction (k = 1), note that according to the property onW , W contains the word �a1a1� which is the same as �V1V1�. Therefore any other letteris surrounded by two �a1�s. This also implies the existence of �a1a2a1a1a2a1� by using asimilar argument as step 2 in the proof of Theorem 2.20, which ends the case k = 1.For the general case, by the induction assumption, ak is surrounded by Vk�2, and wehave the word �Vk�2akVk�2�. The existence of �Vk�2ak�1Vk�2Vk�2ak�1Vk�2� proves that thisword is surrounded with two �ak�1�s. Therefore, two consecutive ak form the wordVk�2ak�1Vk�2akVk�2ak�1Vk�2UVk�2ak�1Vk�2akVk�2ak�1Vk�2;where U does not contain any letter �aj�, j > k. If U contains �ak�1�, then U is�Vk�2ak�1Vk�2�. This is impossible because of the existence of �ak�1Vk�2akVk�2ak�1�. IfU contains any other letter �ai�, then U is reduced to this letter, and by construction ofVk�2, the presence of �aiVi�1ai� contradicts the existence of �aiVi�1Vi�1ai�. Therefore, U isempty and we have the second part of the proof.Now, we �nish the proof by noticing that the letter aN is surrounded by VN�1 and bynoting that VN�1 is necessarily surrounded by �aN �.Lemma 2.28. Assume that W is balanced. Assume that pa > 0:5. Then the projectionW 0 of W over the alphabet A� fag is also balanced.Proof. Choose two words V 01 ; V 02 of length n in W 0. Let V1 and V2 be any two words inW whose projections over the alphabet A � fag are V 01 and V 02 , respectively. Assume,furthermore, that the �rst and last letters in V1 and V2 are not a. Let k = jV1j � n andl = jV2j � n denote the number of appearances of the letter a in V1 and V2, resp.Step 1: If l = k then the di�erence in the number of occurrences of any letter b in V 01and in V 02 is at most 1, since W is most regular, and since the number of b's in V1 (resp.V2) is the same as its number in V 01 (resp. V 02).Step 2: Assume that l > k + 1.- Let V̂2 be the word obtained from V2 by truncating the �rst and last letter. ThenjV̂2j = n+ l � 2, and the number of a's in V̂2 is l.- Let V̂1 be the word obtained from V1 by adding to it the next m = l � k � 2 letters thatappears after V1 in the sequence W . Then jV̂1j = n + l � 2 = jV̂2j, and the number of a'sin V̂1 is not larger than k + m = l � 2. This is a contradiction with the fact that W isbalanced.Step 3: It remains to check l = k+1. Add to V1 the next letter that occurs in W to itsright, to form the new word V 1. If it is not a then we have two successive letters that are13



not a, which contradicts the fact that a has an asymptotic frequency of at least 1/2. If itis a, then V 1 and V2 have the same number of a's. We can now apply the same argumentas in step 1 and conclude that the number number of occurrences of any letter b in V 01 andin V 02 is at most 1.Combining the above steps, we conclude that W 0 is balanced.2.9 Extensions of the original problemSo far we have only analyzed the case where all the rates add up to one. The di�erentresults tend to prove that very few rates are balanced.Now let us look at a generalization when all the rates do not add up to one. Assumethat S is a sequence on the alphabet fa1; a2; � � � ; ak; �g. We only require that S is balancedfor the letters a1; � � � ; ak, but not for the special letter �.On a more practical point of view, the question can be viewed as whether this allowsmore possibilities for rates to be balanced when �losses� are allowed (represented by theletter �). Then again, in general, the rates are not balanced, even if the total sum is verysmall as illustrated by the following lemma.Lemma 2.29. For an arbitrary " > 0, there exists two real numbers p1 and p2 such thatp1 + p2 < " and no sequence S on the alphabet fa; b; �g with asymptotic rate p1 for letter aand p2 for letter b which is balanced for a and b.Proof. Choose two irrational numbers p1 and p2 with p1 + p2 < " such that p1; p2 and 1are not linearly dependent on Z. Now assume that there exists a sequence S on fa; b; �gwith asymptotic rate p1 for letter a and p2 for letter b which is balanced for a and b. ByTheorem 2.5, then there exists two real numbers x; y such that �a(S)(n) = 1 if x + p1nmod 1 2 [1 � p1; 1] and 0 otherwise. �b(S)(n) = 1 if y + p2n mod 1 2 [1 � p2; 1] and 0otherwise. In the cube [0; 1]2, the set of points (x; y)+n(p1; p2) mod (1; 1) is dense (see forexample, Weyl's ergodic theorem [19]) and therefore hits the rectangle [(1�p1; 1�p2); (1; 1)].This is not possible.More on this kind of problems can be found in [21].To end this short overview on balanced sequences, we must mention on the positiveside that �usual� rates, such as (1=k; 1=k; � � � ; 1=k) are often balanceable. In Appendix 4.3,some examples of balanced sequences and their rates are given.3 Routing of customers in multiple queuesThe notion of balanced sequences gives birth to an large set of elegant properties in wordcombinatorics. However, they are rarely used in other domains. The balanced sequencesin dimension N = 2 have been used for discrete line drawing [14] and also for schedulingoptimization in [10, 8].However, the case N = 2 behaves di�erently than for higher dimension (as illustratedby theorem 2.18) and does not really grasp all the complexity of the model.14



Here, we present an application of balanced sequences in arbitrary dimensions toscheduling optimization.We consider a system where a sequence of tasks have to be executed by several process-ing units. The tasks arrive sequentially and each task can be processed by any server. Therouting control consists in assigning to each task a server on which it will be processed.The routing is optimal it it minimizes some cost function that measures the performanceof the system.These kinds of models have used to study load balancing within several processors inparallel processing problems as well as for e�cient network utilization in telecommunicationsystems.3.1 Presentation of the modelIn this section we consider a more precise queueing model of the system that we described.Customers enter a multiple queue system composed of K nodes. Each node is made ofseveral queues which form an event graph. Event graphs are a subset of Petri nets with nomore than one input transition and one output transition per place. More details on thedynamics of event graphs can be found in [4]. In particular, their dynamical behavior islinear in the so-called (max,+) algebra ([4]). Many queueing networks can be representedas event graphs, as long as there is no inside choice for the route followed by the customers.(see [1] for a more complete discussion on this issue).The routing of customers to the di�erent nodes is controled by a sequence of vectorsfang, with an is in f0; 1gK and ain = 1 means that the n-th customer is routed to queue i.Note that a is a feasible admission sequence as long as for all n, Pi ain = 1.The link between a feasible routing policy and an in�nite sequence on a �nite alphabetcomes from choosing the alphabet A composed by the lettersf(1; 0; � � � ; 0); (0; 1; 0; � � � ); � � � ; (0; � � � ; 0; 1)g:Using this alphabet on K letters, a feasible routing policy can be viewed as an in�nitesequence on A.Figure 1 shows an illustration of the system we are considering.We denote by Tn the epoch when the n-th customer enters the system. We assume thatT1 = 0. The inter-arrival time sequence is f�kg def= fTi+1� Tig. Finally, �i;jn will denote theservice time of the n-th customer entering the j-th queue in node i.The sequences f�kg and f�i;jk g will be considered as random processes. We also makestochastic assumption on these sequences. The inter-arrival time of the customers and theservice times form stationary processes, and we assume that the inter-arrival times areindependent of the service times.3.2 Optimal admission sequenceIn each node i we pick an arbitrary server si (which may be the last server in the nodefor example). The performance criteria for node i will be the traveling time to server si15



node 2node 1
node KFigure 1: Illustration of the routing of customers in a K node systemof a virtual customer that would enter node i at time Tn. Under the routing policy a,this quantity only depends on the values of the n �rst routing choices. From the routingsequence a, we can isolate the routing decision for node i: if ain = 1 then the customer isadmitted in node i and if ain = 0 then the customer is rejected (for node i). We denotethe traveling time at time Tn by W in(ai1; � � � ; ain). We will be more particularly interestedin the expected value of the traveling time with respect to the service times in all theservers contained in node i and with respect to the inter-arrival times: Win(ai1; � � � ; ain) def=E�;�f(W in(ai1; � � � ; ain)), where f : R ! R is any convex increasing function.If we focus on a single node i, the functionWin(ai1; � � � ; ain) has been studied in [1]. Itsmost remarkable property is the fact that this function is multimodular. See [10, 2] for aprecise de�nition and several properties of multimodular functions. Here, we merely pointout that multimodularity is closely to convexity (see [2]).Proposition 3.1 ([1]). Under the foregoing assumptions, the function Win(ai1; � � � ; ain)satis�es the following properties.(1)-Win(ai1; � � � ; ain) is increasing in aik; 1 6 k 6 n,(2)-Wim(0; � � � ; 0; ai1; � � � ; ain) =Win(ai1; � � � ; ain), if m > n,(3)-Win(ai1; � � � ; ain) is multimodular.Proof. These properties are shown in [1].Using these properties, one can derive as in [2], a lower bound Bi(�; p) (which is in-creasing in � and p and continuous) for any routing ai, for the following discounted cost.1Xn=1(1� �)�n�1Win(ai1; ai2:::; ain) > Bi(�; p�); (5)where p� def= (1� �)P1k=1 �k�1aik.Also, for a given p, we de�ne the regular sequence with rate p and arbitrary phase �,ap(�) def= bnp+ �c � b(n� 1)p+ �c;16



(see the de�nition 2.4). One can show as in [2] that ap(�) satis�eslimm!1 1m mXn=1Win(ap1(�); � � � ; apn(�)) = Bi(1; p): (6)Here, however, we are interested in the performance of all nodes together. Therefore,we choose as a cost function, the undiscounted average on n of some linear combination ofthe expected traveling time in all nodes.Let h be any increasing linear function, h : RK ! R. We consider the undiscountedaverage cost of a feasible routing sequence a,g(a) def= limN!1 1N NXn=1 h(W1n; :::;WKn ): (7)From this point on, we mimic the general method developed in [2] for our case.We use the following notation.Bi(pi) def= sup�61 Bi(�; pi):Our objective is to minimize g(a).Theorem 3.2. The following lower bound holds for all policies:g(a) > infp1+:::+pK=1 h(B1(p1); :::; BK(pK)):Proof. Due to Littlewood's and Jensen's inequalities as well as Equation 5, we havelimN!1 1N NXn=1 h(W1n; :::;WKn )> lim�!1(1� �) 1Xn=1 �n�1h(W1n; :::;WKn )> lim�!1 h (1� �) 1Xn=1 �n�1W1n; :::; (1� �) 1Xn=1 �n�1WKn !> lim�!1 h (B1(�; pa1(�)); :::; BK(�; paK(�))) (8)where pai (�) def= (1� �) 1Xk=1 �k�1aik: (9)17



We note that PKi=1 pai (�) = 1. Hence, one may choose a sequence �n " 1 such that thefollowing limits exist: limn!1 pai (�n) = pi; i = 1; :::; K (10)and PKi=1 pi = 1. From the continuity of Bi(�; pi) in p and � we get from (8)g(a) > h(B1(p1); :::; ; BK(pK)) (11)> infp1+:::+pK=1 h(B1(p1); :::; BK(pK)):Note that there exists some p� that achieves the in�muminfp1+:::+pK=1 h(B1(p1); :::; BK(pK));since h(B1(p1); :::; BK(pK)) is continuous in p = (p1; � � � ; pK).Consider � = (�1; � � � ; �K) and the routing policy ap�(�) given for each i byai;p�k (�i) = bkp�i + �ic � b(k � 1)p�i + �ic: (12)There are some p�'s for which the condition of feasibility of the policy ap�(�) is satis�ed,that is, there exists some � = (�1; :::; �K), such that the regular policy ap�(�) is feasible.Using the correspondence between a routing policy and a sequence on the alphabet A,these p�'s correspond precisely to balanceable rates.Theorem 3.3. Assume that p� is balanceable. Then ap�(�) is optimal for the average cost,i.e. it minimizes g(a) over all feasible policies.Proof. The proof follows directly from Theorem 3.2 and Equation (6).4 Study of some special casesThe problem which remains to be addressed is to �nd in which cases, the rate vector p� isbalanceable. We will present several simple examples for which we can make sure that theoptimal rate p� is balanceable.4.1 The case K = 2If K = 2, then, the optimal rate vector is of the form p� = (p�1; 1 � p�1). Theorem 2.18says that p� is always balanceable and therefore, the optimal routing sequence is given byan associated balanced sequence. Note that this approach does not give any direct way tocompute the value of p�, however, it gives the structure of the optimal policy.18



Figure 2: Routing in homogeneous queues.4.2 The homogeneous caseNow let K be arbitrary and each node is made of a single server, all servers being identical.This model is displayed in Figure 2.Also assume that the function h is symmetrical in all coordinates (for example, justthe sum of all waiting times) By symmetry and convexity in (p1; � � � ; pK) of the functionh(V 11 (p1); :::; V 1K(pK)), then, p� = (1=K; � � � ; 1=K), which is balanceable. The associatedbalanced sequence is the round robin routing scheme. Applying Theorem 3.3 yields thefollowing result which is new (to the best of the author's knowledge).Theorem 4.1. The round robin routing to K identical ./G/1 queues, minimizes the totalaverage expected workload of all the queues over all admission sequences with no informa-tion on the state of the system.In [12], the round robin routing is proved to be optimal in separable-convex increasingorder for K identical ./GI/1 queues. Their method uses an intricate coupling argument,whereas our proof is a simple corollary of the general theory on multimodular functions.To illustrate the advantage of our approach, we further generalize the result to a systemcomposed of K identical (max,+) linear systems with a single entry. In this case, thesymmetry argument used in the case of simple queues still holds. Then again, the roundrobin routing policy minimizes the traveling time in each system. This case includes modelssuch as routing among several identical systems composed of queues in tandem, for example(see Figure 3).4.3 Two sets of identical serversAs a consequence of the two previous cases, we can consider a system composed of K1identical queues of type 1 and K2 queues of type 2. Again, assume that h is symmetrical inthe K1 nodes of type 1 and symmetrical in the K� 2 nodes of type 2. Then, by symmetryarguments, the optimal rate vector p� is of the form( pK1 ; � � � ; pK1 ; 1� pK2 ; � � � ; 1� pK2 ):19



Figure 3: Routing in queues in tandemThis rate vector is balanceable indeed. This implies that for the weighted total averageexpected workload, the optimal routing is of balanced type, if nodes of the same type havethe same weight.Many other examples of this kind can be derived from these examples through similarconstructions.AppendixHere is a collection of balanceable rates. We also give a corresponding balanced sequence.� (1=7; 2=7; 4=7) is balanceable and S = (abacaba)!.� (1=11; 2=11; 4=11; 4=11) is balanceable and S = (abcababcabd)! .� (1=11; 2=11; 2=11; 6=11) is balanceable and S = (abacaabacad)!.� (1=11; 1=11; 3=11; 6=11) is balanceable and S = (acabaabadab)! .� (1=14; 1=14; 4=14; 8=14) is balanceable and S = (abacabaabadaba)! .� For all real number 0 < p 6 1, the rates (1 � p; p=4; p=4; p=2) are balanceable, witha corresponding balanced sequence constructed from a regular sequence with rate pwhere all 1 are replaced in turn by the sequence (abac)! and each 0 by the letter d.� for all N , ((2N�1=(2N � 1); � � � ; 2N�i=(2N � 1); � � � ; 1=(2N � 1))) is balanceable. Theassociated balanced sequence is constructed recursively as in Lemma 2.25.� (1=k; � � � ; 1=k) is balanceable. A balanced sequence is: S = (a1a2a3 � � �ak)!.� (p; � � � ; p; �; � � � ; �) is balanceable. A balanced sequence with those rates is con-structed in the following way: Choose a balanced sequence S on letters, (A;B) withrate (Pki=1 p;Phi=1 �). In S replace all the A (resp. B) by a1; a2; � � � ; ak (resp.b1; � � � ; bh) in a round robin fashion to get a balanced sequence with the requiredrates. 20
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