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A Loosely Synchronized Execution Model for aSimple Data-Parallel Language(Extended Abstract)Yann Le Guyadec2, Emmanuel Melin1, Bruno Ra�n1Xavier Rebeuf1 and Bernard Virot1?1 LIFO - IIIA Universit�e d'Orl�eans4, rue L�eonard De Vinci - BP 6759 F-45067 Orl�eans Cedex 02 - FRANCE2 Currently a�liated to VALORIA 8 rue Montaigne - BP 1104F-56014 Vannes - FRANCEAbstract. Data-parallel languages o�er a programming model struc-tured and easy to understand. The challenge consists in taking advantageof the power of present parallel architectures by a compilation processallowing to reduce the number and the complexity of synchronizations.In this paper, we clearly separate the synchronous programming modelfrom the asynchronous execution model by the way of a translation from asynchronous data-parallel programming language into an asynchronoustarget language. The synchronous data-parallel programming languageallows to temporarily mask local computations. The asynchronous targetlanguage handles explicit and partial synchronizations through the use ofstructural clocks.In the area of parallel programming, a crucial step has been performed withthe emergence of the data-parallel programming model. Parallelism is expressedby means of data-types which are promoted from scalars to vectors. Its leads toa distribution mechanism which maps components of data-types over a networkof virtual processors. From the programmer's point of view, a program is a se-quential composition of operations (local computations or global rearrangements)which are applied to restricted parts of large data-structures. The distributionmechanism is easily scalable and the model is adapted to many scienti�c ap-plications. The challenge consists in taking advantage of the power of presentparallel architectures by a compilation process allowing to reduce the numberand the complexity of synchronizations. The e�ort is then transferred to thecompiler which has to �ll the gap between the abstract synchronous and central-ized programming model and an asynchronous and distributed execution modelthat depends on the target architecture. Data-parallel compilers have to performcomplex data-
ow analysis to manage data distribution and desynchronizationsbetween processors, especially in loop structures. The e�ciency of the produced? Authors contact : Bernard Virot (Bernard.Virot@lifo.univ-orleans.fr). Thiswork has been partly supported by the French CNRS Coordinated Research Pro-gram on Parallelism PRS.



code heavily depends on static informations relating to data dependences whichare available at compile time. Automatic parallelizers can detect regular depend-ences especially in nested loops. When complex and irregular data-structuresmust be handled, explicit expression of dependences is mandatory in order toobtain automatic and e�cient desynchronizations.In existing data-parallel languages data-dependence is the default and onlyindependence is made explicit (cf. the FORALL and INDEPENDENT constructsin HPF [2]). We propose a kernel data-parallel language called TML (whichstands for Twin Memory Language) which purpose is to o�er both a synchron-ous programming model and an asynchronous execution model. In this languageindependence is the default and data dependence is made explicit in the syntax.To achieve this aim, we reuse the twin memory model, previously introducedfor the language D [10], to temporarily mask local computations. The TMLlanguage yields a synchronous programming model, similar to classical data-parallel languages such as C� [12], HyperC [9], Data{Parallel C [8] or L [1].Taking advantage of the absence of implicit dependence in the language, ourmain contribution consists in showing that it is possible to perform an automaticdesynchronization of TML programs.We propose an execution model relying onthe translation of TML programs into the asynchronous and non-deterministicdata-parallel language SCL, previously introduced in [5, 7]. The desynchroniza-tion is based on a partial synchronization algorithm relying on structural clocks.We extend the SCL language with a wait instruction performing a point to pointsynchronization. Determinism of translated SCL programs yields the correctnessof the translation function.In this paper, we �rst introduce the data-parallel model. We give an informaldescription of the TML language. Next, we brie
y recall the semantics of theSCL language. The translation of TML towards SCL is presented in the thirdsection. Finally we illustrate the bene�t of our approach with an example.1 The TML languageWe turn now to the description of the TML language (which stands for TwinMemory Language) which aim is to o�er both a synchronous programmingmodeland an asynchronous execution model.1.1 The data-parallel programming modelIn the data-parallel programming model, basic objects are arrays with paral-lel access, called vectors. They are denoted with uppercase initial letters. Thecomponent of the parallel variable X located at index u is denoted by Xju. Ex-pressions are evaluated by applying operators componentwise to parallel values.Each action is associated with the set of array indices to which it is applied. Thisset is called the activity context or extent of parallelism. Indices to which an op-eration is applied are called active, whereas others are idle. Legal expressions are



usual pure expressions, i.e. without side e�ect, like the de�nition of pure func-tions in HPF [2]. The value of a pure expression at each index u only dependson the values of variable components at index u. We make use of a special vectorconstant called This. The value of its component at each index u is the value uitself : Thisju = u.1.2 The twin memory modelTML reuses the twin memory management previously introduced for the lan-guage D [10]. The model relies on an abstract machine where each index u ownsa private memory containing the components of all vector variables at index u,and a public memory containing a copy of the private memory of the same index.Private memories are dedicated to local computations (evaluation of pure expres-sions or assignments) whereas public memories are referred by communications.Public memory updates are explicitly executed through a speci�c instruction(dump). As only the dump instruction makes a local transition visible for otherindices, this mechanism suppresses all implicit dependences.1.3 Informal description of the TML languageWe turn now to an informal description of the T ML language.No action : skip. This instruction does nothing and just terminates.Memory copy : dump. All active indices copy their private memory into theirpublic one.Assignment: X := E. For each active index u, the component Xju of theprivate memory is updated with the local value Eju. As E is a pure expres-sion, Eju is evaluated in the private memory of the index u.Communication: get X from A into Y . The address A is a pure expression.Each active index u evaluates Aju in its private memory. Then, u fetches theremote value of X in the public memory of the index Aju. The result isassigned to the component Y ju, in the private memory of the index u.Sequence : S;T . At the end of the execution of the last instruction of S, theexecution of the instructions of T starts.Conditioning: where B do S elsewhere T end. This construct splits the setof currently active indices into two disjoint subsets depending on the valueof the pure expression B. The active indices evaluating B to true executeS. Next, the other active indices execute T . This is the instruction if/else ofmpl [3] or where/elsewhere of HyperC [9].Iteration: loopwhere B do S end. Iteration is expressed by classical loopunfolding. Only the active indices evaluating the pure expression B to trueexecute S with the new extent of parallelism. The other ones do not executethe loop. Note that the set of active indices may decrease at each loop it-eration. An execution of a loop terminates if all active indices evaluate Bto false. This is the instruction while of mpl [3] or the whilesomewhere ofHyperC [9].



Example. In this TML program (Fig. 1), after the �rst instruction, all the in-dices copy their private memory in their public one. Then, the indices executingthe �rst branch of the where/elsewhere construct execute a dump again. Hence,at the end of the execution, the indices for which This > 3 store the value 0 intheir component of Y and the index 3 stores 1. The data dependences betweenindices occur only through the dump and the get instructions.X := 0;dump;where (This < 3) doX := 1;dumpelsewhereget X from This � 1 into YendFig. 1. A TML program.2 The target language SCLFor the sake of completeness, in this section we brie
y present the target lan-guage SCL previously introduced in [6, 7]. It yields an asynchronous and non-deterministic execution model.2.1 Informal descriptionLet us turn now to an informal description of the SCL language. Like TML, thislanguage uses a twin memory management. From TML, it reuses some instruc-tions with the same semantics : assignment, skip, get, dump. We only present theother SCL instructions concerning sequence, loop, conditioning and synchroniz-ation.Asynchronous sequence : S;T . Each index independently executes S and thenT . Hence, the sequence yields only local synchronizations : an index may ex-ecute T before the other indices terminate the execution of S.Concurrent conditioning : where B do S elsewhere T end. This statementis an asynchronous double-branched conditioning construct as found in someoptimizations of HyperC [11]. It was also introduced in the D language [10]to express parallel execution of disjoint programs. The set of active indicesis divided into two sets depending on the value of the pure expression B,



which is evaluated in the private memories. An active index u which evalu-ates the expression Bju to true (respectively false) executes the program S(respectively T ). In contrast to the where/elsewhere statement of TML, thetwo branches are executed concurrently.Asynchronous loop : loopwhere B do S end. This is an asynchronous ver-sion of the TML instruction loopwhere. Each currently active index u repeatsthe computation of the block S while the pure expression Bju evaluates totrue in its private memory. Note that the set of active indices may decreaseafter each loop iteration. When an index terminates the loop, it goes onexecuting instructions that directly follow the loop without any implicit syn-chronization.Waiting : wait A. The wait A statement is used to manage the consistency ofpublic memory references by serializing instructions which interfere with thismemory. The expression A is pure. The instruction wait A delays the indexu which is executing it, until the target index Aju has stepped over all theinstructions referencing public memory and preceding the wait instruction.Since where and loopwhere govern the activity, if the wait point is nested insuch control structures, it becomes possible that v could never reach somepreceding instruction referencing the public memory. In this case u can stepover the wait point as soon as v is engaged in a di�erent branch from uin a where/elsewhere structure, or as soon as v has terminated the currentloopwhere executed by u. We call meaningful the instructions that play apart in the wait management, namely dump, get, where and loopwhere. Tosum up, the instruction wait A can terminate if and only if the two followingconditions C1 and C2 are satis�ed.{ C1 : The index Aju has evaluated the boolean conditions of all enclosingwhere and loopwhere constructs.{ C2 : If the index Aju enters the innermost instruction block inside whichu is waiting, it must have passed allmeaningful statements coming beforethe wait instruction.Remark. Note that an index may step over a waiting point even if the waitedindex needs to execute non-meaningful statements before reaching it.Synchronization: wait all. This instruction is a generalization of the wait in-struction. An index terminates this instruction when it has performed a waittowards all other indices. Note that this instruction is a partial synchroniza-tion since some indices may not execute it.2.2 Structural Clocks presentationIn order to formalize index positions we introduce Structural Clocks [7]. Eachindex owns a clock that encodes its current position, during program execution,with regard to the meaningful statements. An index position is de�ned by themeaningful control structures it is nested in, and by the last meaningful instruc-tion executed in the innermost one. The Structural Clock tu of an index u is



expressed by a list of pairs. Each term of the list corresponds to a nesting level.Each pair (l; c) is composed of a label l and an instruction counter c. The counterc represents the number of meaningful instructions already executed in the cor-responding instruction block. The label l is used to distinguish which branch ofa where/elsewhere statement an index is inside. Lists are built up by popping orpushing pairs on their right hand side.{ When the index u executes a get or a dump instruction its clock tu = t(l; c)becomes tu = t(l; c+ 1).{ After evaluating the conditionB of a where/elsewhere statement, ifBju is true(resp. false) its clock tu = t becomes tu = t(1; 0) (resp. tu = t(2; 0)). Whenthe index u exits a where or a elsewhere branch, its clock tu = t(l; c)(m; d)becomes tu = t(l; c+ 1).In a loopwhere, an index which does not compute an iteration directly exitsthe loop. Therefore, it turns out that we do not have to consider each iteration asa new nesting level for the structural clock list. We only push a new term on thelist at the �rst loop iteration and next, we count instructions already executedin the loopwhere body.{ When the index u enters for the �rst time a loopwhere instruction, if thecondition Bju evaluates to true, then its clock tu = t becomes tu = t(1; 0).Otherwise, its clock tu = t(l; c) becomes tu = t(l; c+ 1).{ If it has already executed at least one loop iteration, then if Bju = trueits clock tu = t remains unchanged, otherwise tu = t(l; c)(1; d) becomestu = t(l; c+ 1).Remark. At the beginning of the execution, each index initializes its structuralclock to (0; 0).Structural clock ordering. To order two structural clocks, we compare thelocal counters corresponding to the common instruction block of the innermostnested level. We so de�ne this partial ordering as a lexicographical order basedon partially ordered pairs.De�nition. An index u is said to be later than an other index v (denoted bytu � tv) if one of the following conditions holds :{ there exists t not empty such that tv = tu t ;{ there exists t1; t2; t3 (possibly empty) and cu; cv; l such thattu = t1(l; cu)t2; tv = t1(l; cv)t3 and cu < cv:Handling wait statements using structural clocks. Structural clocks yielda general mechanism to handle wait statements. The conditionsC1 andC2 aboveare formalized by the following theorem.Theorem1. Consider an index u with structural clock tu that executes an in-struction wait A. This index can terminate the wait statement if and only if theindex v = Aju holds a structural clock tv which satis�es :(tv � tu).



3 Translation from TML into SCLIn this section, we show that it is possible to perform an automatic desynchron-ization of TML programs by the way of a translation function F from TMLprograms to SCL ones.We introduce some necessary notations to explain the translation function.The predicate Hasdump allows to know if a program S contains an instructiondump: Hasdump(S) = true if S contains at least one dump, Hasdump(S) =false otherwise. In the same way, the predicate Hasget(S) denotes the presenceof get instructions in the program S.The function F (Fig. 2) must translate a program while preserving its se-mantics. We guarantee determinism using several mechanisms:{ To prevent wrong references, an index can perform a dump instruction only ifthere is no index later than it. Since all the indices can refer a dump, the func-tion F introduces a partial synchronization wait all before each instructiondump (cf. 1, Fig. 2).{ An index can perform a communication only if the referred index has updatedits public memory. Moreover, the instruction get points out accurate indexdependences. Therefore the function F introduces an instruction wait beforeeach instruction get (cf. 2, Fig. 2).{ Since the two branches of a SCL conditioning structure are concurrent, aTML where/elsewhere can be directly replaced by a SCL where/elsewhereonly if the two branches are independent. The translation is based on asimple syntactic analysis. Independence between the two branches is ensuredif a get instruction does not occur in a branch whereas a dump instructionoccurs in the other one (cf. 4, Fig. 2). If the analysis does not prove theindependence, the TML where/elsewhere is replaced by a sequence of twoSCL where/elsewhere. The former triggers the execution of the �rst branchof the T ML where/elsewhere, whereas the latter is concerned by the secondbranch (cf. 3, Fig. 2).We turn now to the correctness proof of the translation function. The intuitiveidea is the following. The unique (synchronous) computation of a TML programS can be seen as a particular computation of the translated program F(S).Therefore, to ensure the correctness of the translation function, it is su�cientto prove that all computations of the translated program are equivalent, i.e.translated programs are deterministic.De�nition. A synchronous execution of a SCL program is a computation per-forming a global synchronization after the execution of each instruction.The next theorem states that for the execution of a TML program S and thesynchronous execution of F(S) are equivalent.Theorem2. The execution of a T ML program terminates if and only if thesynchronous execution of F(S) terminates. If they both terminate, they yield thesame �nal state for the twin memories.



TML �! SCLF(skip) skipF(X := E) X := EF(dump) wait all;dump (1)F(get X from A into Y ) wait A;get X from A into Y (2)F(S;T ) F(S);F(T )If (Hasdump(S) ^Hasget(T ))_(Hasget(S) ^Hasdump(T ))thenF where B do Selsewhere Tend ! 8>>>>>><>>>>>>:Tmp := B;where Tmp do F(S)elsewhere skipend;where Tmp do skipelsewhere F(T )end (3)otherwiseF where B do Selsewhere Tend ! (where B do F(S)elsewhere F(T )end (4)F(loopwhere B do S end) loopwhere B do F(S) endFig. 2. The translation function F .Theorem3. All SCL programs produced by the translation function F are de-terministic.From the two previous theorems, we deduce that all the executions of a trans-lated TML program always compute the expected result. The correctness of thetranslation function F is thus proven.3.1 ExampleThe example (Fig. 3) illustrates the TML and SCL potentialities. Thanks to thesynchronous programming model, the behavior of the T ML program is simple.Initially each index u holds a value Xju. First, it computes the maximum of thevalues belonging to the indices on its left side, by using a scan. Then, it computesan average between its result and its neighbor ones.The translated SCL program is loosely synchronized. Overlapping of com-munications by computations can occur. For instance, the index 1 can executethe instruction of the line 15 (Fig. 3) while the index 2 refers its public memorythrough the instruction get of the line 7. But the index 1 must wait the index 2



line instruction clock1 V al := X; (0; 0)2 wait all; (0; 0)3 dump; (0; 1)4 I := 1; (0; 1)5 loopwhere This� I > 0 do (0; 1)(1; 3j)6 wait This� I; (0; 1)(1; 3j)7 get V al from This� I into Y ; (0; 1)(1; 3j + 1)8 V al := max(V al; Y ); (0; 1)(1; 3j + 1)9 wait all; (0; 1)(1; 3j + 1)10 dump; (0; 1)(1; 3j + 2)11 I := I � 2 (0; 1)(1; 3j + 2)12 end; (0; 2)13 wait This� 1; (0; 2)15 get V al from This � 1 into Aux1; (0; 3)16 wait This+ 1; (0; 3)17 get V al from This + 1 into Aux2; (0; 4)18 V al := (V al +Aux1 +Aux2)=3 (0; 4)Fig. 3. The second column displays a TML program and its SCL translation. For thesake of consistness, the new SCL instructions added by the translation are displayed onthe right hand side. For each instruction, the structural clock an index owns, when it has�nished to execute it, appears in the third column. The variable j denotes the numberof loop iterations already executed. We consider an array of 2n indices numbered from1 to 2n. The get instructions addressing a non existing index return the default value0.before it executes the instruction of the line 17. The structural clock mechanismforbids the index 1 to step over the wait of the line 16 since its structural clock(0; 3) is greater than the structural clock (0; 1)(1; 0) of the index 2.Remark. The partial synchronization wait all (line 2, Fig. 3) introduced by thetranslation function is useless since in the program there is no communicationbefore. A more precise syntactic analysis can permit to detect such con�gurations.4 ConclusionIn this paper, we have presented a kernel data-parallel language TML relying ona twin memory management. It o�ers a synchronous data-parallel programmingmodel where dependences between indices are explicit in the syntax and simple toexpress. The execution model based on a translation into SCL is asynchronous,and thereby adapted to present MIMD architectures.The translation suppresses some useless synchronizations and preserves theinitial semantics of TML programs by only imposing waiting points. It is pos-sible to take advantage of more syntactic information to reduce synchronization



requirements [5]. We also provide formal semantics of TML and SCL languagesin [5]. This theoretical framework allows us to validate the correctness of thetranslation function. The extension of the SCL language to other structures,especially functions and escape operators, is a current research direction.An implementation of the TML language is under progress. This is a meaningstep to tackle the problem of comparison with other approaches of compilationand optimization of data-parallel programs [4, 8].References1. L. Boug�e and J.-L. Levaire. Control Structures for Data{Parallel SIMD Languages:Semantics and Implementation. In Future Generation Computer Systems, pages363{378. North Holland, 1992.2. C.H.Koelbel, D.B.Loveman, R.S.Schreiber, G. Jr., and M.E.Zosel. The High Per-formance Fortran Handbook. The MIT Press, 1994.3. Digital Equipment Corporation. DECmpp Programming Langage, ReferenceManual, 1992.4. F.Coelho, C.Germain, and J. Pazat. State of the Art in Compiling HPF. In SpringSchool on Data Parallelism. Springer-Verlag, 1996. (To appear).5. Y. L. Guyadec, E. Melin, B. Ra�n, X. Rebeuf, and B. Virot. A Loosely Synchron-ized Execution Model For a Simple Data-Parallel Language. Technical ReportRR96-5, LIFO, Orl�eans, France, February 1996.6. Y. L. Guyadec, E. Melin, B. Ra�n, X. Rebeuf, and B. Virot. Horloges struc-turelles pour la d�esynchronisation de programmes data-parall�eles. In Actes deRenPar'8, pages 77{80. Universit�e de Bordeaux, France, may 1996.7. Y. L. Guyadec, E. Melin, B. Ra�n, X. Rebeuf, and B. Virot. Structural Clocks fora Loosely Synchronized Data-Parallel Language. In MPCS'96 . IEEE, may 1996.(To appear).8. P. J. Hatcher and M. J. Quinn. Data{Parallel Programming on MIMD Computers.The MIT Press, 1991.9. Hyperparallel Technologies. HyperC Documentation, 1993.10. Y. Le Guyadec. D�esynchronisation des programmes data-parall�eles: une approches�emantique. TSI, 14(5):619{638, 1995.11. N. Paris. Compilation du 
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