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Abstract. Data-parallel languages offer a programming model struc-
tured and easy to understand. The challenge consists in taking advantage
of the power of present parallel architectures by a compilation process
allowing to reduce the number and the complexity of synchronizations.
In this paper, we clearly separate the synchronous programming model
from the asynchronous execution model by the way of a translation from a
synchronous data-parallel programming language into an asynchronous
target language. The synchronous data-parallel programming language
allows to temporarily mask local computations. The asynchronous target
language handles explicit and partial synchronizations through the use of
structural clocks.

In the area of parallel programming, a crucial step has been performed with
the emergence of the data-parallel programming model. Parallelism is expressed
by means of data-types which are promoted from scalars to vectors. Tts leads to
a distribution mechanism which maps components of data-types over a network
of wirtual processors. From the programmer’s point of view, a program is a se-
quential composition of operations (local computations or global rearrangements)
which are applied to restricted parts of large data-structures. The distribution
mechanism is easily scalable and the model 1s adapted to many scientific ap-
plications. The challenge consists in taking advantage of the power of present
parallel architectures by a compilation process allowing to reduce the number
and the complexity of synchronizations. The effort is then transferred to the
compiler which has to fill the gap between the abstract synchronous and central-
1zed programming model and an asynchronous and distributed execution model
that depends on the target architecture. Data-parallel compilers have to perform
complex data-flow analysis to manage data distribution and desynchronizations
between processors, especially in loop structures. The efficiency of the produced
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code heavily depends on static informations relating to data dependences which
are available at compile time. Automatic parallelizers can detect regular depend-
ences especially in nested loops. When complex and irregular data-structures
must be handled, explicit expression of dependences is mandatory in order to
obtain automatic and efficient desynchronizations.

In existing data-parallel languages data-dependence is the default and only
independence is made explicit (cf. the FORALL and INDEPENDENT constructs
in HPF [2]). We propose a kernel data-parallel language called TML (which
stands for Twin Memory Language) which purpose is to offer both a synchron-
ous programming model and an asynchronous execution model. In this language
independence is the default and data dependence is made explicit in the syntax.
To achieve this aim, we reuse the twin memory model, previously introduced
for the language D [10], to temporarily mask local computations. The TML
language yields a synchronous programming model, similar to classical data-
parallel languages such as C* [12], HyPERC [9], Data Parallel C [8] or L [1].
Taking advantage of the absence of implicit dependence in the language, our
main contribution consists in showing that it 1s possible to perform an automatic
desynchronization of T ML programs. We propose an execution model relying on
the translation of T ML programs into the asynchronous and non-deterministic
data-parallel language SCL, previously introduced in [5, 7]. The desynchroniza-
tion is based on a partial synchronization algorithm relying on structural clocks.
We extend the SCL language with a wait instruction performing a point to point
synchronization. Determinism of translated SCL programs yields the correctness
of the translation function.

In this paper, we first introduce the data-parallel model. We give an informal
description of the TMUL language. Next, we briefly recall the semantics of the
SCL language. The translation of T ML towards SCL is presented in the third

section. Finally we illustrate the benefit of our approach with an example.

1 The T ML language

We turn now to the description of the TML language (which stands for Twin
Memory Language) which aim is to offer both a synchronous programming model
and an asynchronous execution model.

1.1 The data-parallel programming model

In the data-parallel programming model, basic objects are arrays with paral-
lel access, called vectors. They are denoted with uppercase initial letters. The
component of the parallel variable X located at index u is denoted by X|,,. Ex-
pressions are evaluated by applying operators componentwise to parallel values.
Each action is associated with the set of array indices to which it is applied. This
set 1s called the activity context or extent of parallelism. Indices to which an op-
eration 1s applied are called active, whereas others are idle. Legal expressions are



usual pure expressions, i.e. without side effect, like the definition of pure func-
tions in HPF [2]. The value of a pure expression at each index u only depends
on the values of variable components at index u. We make use of a special vector
constant called This. The value of its component at each index u is the value u
itself: This|, = u.

1.2 The twin memory model

TML reuses the twin memory management previously introduced for the lan-
guage D [10]. The model relies on an abstract machine where each index u owns
a private memory containing the components of all vector variables at index u,
and a public memory containing a copy of the private memory of the same index.
Private memories are dedicated to local computations (evaluation of pure expres-
sions or assignments) whereas public memories are referred by communications.
Public memory updates are explicitly executed through a specific instruction
(dump). As only the dump instruction makes a local transition visible for other
indices, this mechanism suppresses all implicit dependences.

1.3 Informal description of the T ML language
We turn now to an informal description of the T ML language.

No action: skip. This instruction does nothing and just terminates.

Memory copy: dump. All active indices copy their private memory into their
public one.

Assignment: X = F. For each active index u, the component X|, of the

private memory is updated with the local value F|,. As F is a pure expres-

sion, F|, 1s evaluated in the private memory of the index u.
Communication: get X from A into Y. The address A is a pure expression.

Each active index u evaluates A|, in its private memory. Then, u fetches the

remote value of X in the public memory of the index Al,. The result is
assigned to the component, Y|,,, in the private memory of the index u.

Sequence: S;T. At the end of the execution of the last instruction of S, the
execution of the instructions of T' starts.

Conditioning: where B do S elsewhere 7' end. This construct splits the sef
of currently active indices into two disjoint subsets depending on the value
of the pure expression B. The active indices evaluating B to frue execute
S. Next, the other active indices execute T. This is the instruction if/else of
MPT. [3] or where/elsewhere of HyPERC [9].

Iteration: loopwhere B do S end. Tteration is expressed by classical loop
unfolding. Only the active indices evaluating the pure expression B to true
execute S with the new extent of parallelism. The other ones do not execute
the loop. Note that the set of active indices may decrease at each loop it-
eration. An execution of a loop terminates if all active indices evaluate B
to false. This is the instruction while of MPT, [3] or the whilesomewhere of

HyprrC [9].



Ezample. Tn this TML program (Fig. 1), after the first instruction, all the in-
dices copy their private memory in their public one. Then, the indices executing
the first branch of the where/elsewhere construct execute a dump again. Hence,
at the end of the execution, the indices for which This > 3 store the value (0 in
their component of Y and the index 3 stores 1. The data dependences between
indices occur only through the dump and the get instructions.

X =0
dump;
where (This < 3) do
X =1,
dump
elsewhere
get X from This—1 into YV
end

Fig.1. A T ML program.

2 The target language SCL

For the sake of completeness, in this section we briefly present the target lan-
guage SCL previously introduced in [6, 7]. Tt yields an asynchronous and non-
deterministic execution model.

2.1 Informal description

Let us turn now to an informal description of the SCL language. Like T ML, this
language uses a twin memory management. From 7ML it reuses some instruc-
tions with the same semantics : assignment, skip, get, dump. We only present the
other SCL instructions concerning sequence, loop, conditioning and synchroniz-
ation.

Asynchronous sequence: S;7T. Each index independently executes S and then
T'. Hence, the sequence yields only local synchronizations: an index may ex-
ecute T before the other indices terminate the execution of S.

Concurrent conditioning: where B do S elsewhere T’ end. This statement
18 an asynchronous double-branched conditioning construct as found in some
optimizations of HyPERC [11]. Tt was also introduced in the D language [10]
to express parallel execution of disjoint programs. The set of active indices
18 divided into two sets depending on the value of the pure expression B,



which is evaluated in the private memories. An active index u which evalu-
ates the expression B|, to true (respectively false) executes the program S
(respectively T). Tn contrast to the where/elsewhere statement of TML, the
two branches are executed concurrently.

Asynchronous loop: loopwhere B do S end. This is an asynchronous ver-
sion of the T ML instruction loopwhere. Fach currently active index u repeats
the computation of the block S while the pure expression B[, evaluates to
true in its private memory. Note that the set of active indices may decrease
after each loop iteration. When an index terminates the loop, it goes on
executing instructions that directly follow the loop without any implicit syn-
chronization.

Waiting : wait A. The wait A statement is used to manage the consistency of
public memory references by serializing instructions which interfere with this
memory. The expression A is pure. The instruction wait A delays the index
u which is executing it, until the target index A|, has stepped over all the
instructions referencing public memory and preceding the wait instruction.
Since where and loopwhere govern the activity, if the wait point is nested in
such control structures, it becomes possible that v could never reach some
preceding instruction referencing the public memory. In this case u can step
over the wait point as soon as v i1s engaged in a different branch from u
in a where/elsewhere structure, or as soon as v has terminated the current,
loopwhere executed by u. We call meaningful the instructions that play a
part in the wait management, namely dump, get, where and loopwhere. To
sum up, the instruction wait A can terminate if and only if the two following
conditions C1 and C2 are satisfied.

C1: The index Al, has evaluated the boolean conditions of all enclosing
where and loopwhere constructs.

C2: Tf the index Al, enters the innermost instruction block inside which
1 1s waiting, it must have passed all meaningful statements coming before
the wait instruction.

Remark. Note that an index may step over a waiting point even if the waited
index needs to execute non-meaningful statements before reaching 1t.

Synchronization: wait_all. This instruction is a generalization of the wait in-
struction. An index terminates this instruction when 1t has performed a wait
towards all other indices. Note that this instruction is a partial synchroniza-
tion since some indices may not execute it.

2.2  Structural Clocks presentation

Tn order to formalize index positions we introduce Structural Clocks [7]. Each
index owns a clock that encodes 1ts current position, during program execution,
with regard to the meaningful statements. An index position is defined by the
meaningful control structures it is nested in, and by the last meaningful instruc-
tion executed in the innermost one. The Structural Clock t,, of an index w is



expressed by a list of pairs. Each term of the list corresponds to a nesting level.
Each pair (I, ¢) is composed of a label I and an instruction counter ¢. The counter
¢ represents the number of meaningful instructions already executed in the cor-
responding instruction block. The label [ is used to distinguish which branch of
a where/elsewhere statement an index is inside. Tists are built up by popping or
pushing pairs on their right hand side.

When the index u executes a get or a dump instruction its clock 4, = i(/,¢)
becomes t,, = 1(l, ¢+ 1).
After evaluating the condition B of a where/elsewhere statement, if B|,, istrue
(resp. false) its clock t,, =1 becomes 1,, = #(1,0) (resp. £, = #(2,0)). When
the index u exits a where or a elsewhere branch, its clock 1, = (I, ¢)(m, d)
becomes t,, = 1(l, ¢+ 1).

In a loopwhere, an index which does not compute an iteration directly exits
the loop. Therefore, it turns out that we do not have to consider each iteration as
a new nesting level for the structural clock list. We only push a new term on the
list at the first loop iteration and next, we count instructions already executed
in the loopwhere body.

When the index u enters for the first time a loopwhere instruction, if the
condition B|, evaluates to true, then its clock #,, = ¢ becomes t,, = (1,0).
Otherwise, its clock ¢, = i(l, ¢) becomes 1, = t(l, ¢+ 1).

If it has already executed at least. one loop iteration, then if B|, = true
its clock 1, = t remains unchanged, otherwise t,, = (I, ¢)(1,d) becomes
ty, =1, c+1).

Remark. At the beginning of the execution, each index initializes its structural

clock to (0,0).

Structural clock ordering. To order two structural clocks, we compare the
local counters corresponding to the common instruction block of the innermost
nested level. We so define this partial ordering as a lexicographical order based
on partially ordered pairs.

Definition. An index u is said to be later than an other index v (denoted by
t,, < 1,) if one of the following conditions holds:

there exists £ not empty such that ¢, = ¢, 1 ;
there exists #', #2, 3 (possibly empty) and ¢, ¢,, [ such that
tue =t (1, el)t?, 1, =1'(1,¢,)1? and ¢, < ¢,

Handling wait statements nsing structural clocks. Structural clocks yield
a general mechanism to handle wait statements. The conditions C1 and C2 above
are formalized by the following theorem.

Theorem 1. Consider an indexr u with structural clock t,, that erecutes an in-
struction wait A. This indexr can terminate the wait statement if and only of the
inder v = Al, holds a structural clock t,, which satisfies —(t,, < 1,,).



3 Translation from T ML into SCL

In this section, we show that it 1s possible to perform an automatic desynchron-
ization of T ML programs by the way of a translation function F from 7T ML
programs to SCL ones.

We introduce some necessary notations to explain the translation function.
The predicate Hasdumyp allows to know if a program S contains an instruction
dump: Hasdump(S) = true if S contains at least one dump, Hasdump(S) =
false otherwise. Tn the same way, the predicate Hasget(S) denotes the presence
of get instructions in the program S.

The function F (Fig. 2) must translate a program while preserving its se-
mantics. We guarantee determinism using several mechanisms:

To prevent wrong references, an index can perform a dump instruction only if
there 18 no index later than it. Since all the indices can refer a dump, the func-
tion F introduces a partial synchronization wait_all before each instruction
dump (ef. 1, Fig. 2).

An index can perform a communication only if the referred index has updated
its public memory. Moreover, the instruction get points out accurate index
dependences. Therefore the function F introduces an instruction wait before
each instruction get (cf. 2, Fig. 2).

Since the two branches of a SCL conditioning structure are concurrent, a
TML where/elsewhere can be directly replaced by a SCL where/elsewhere
only if the two branches are independent. The translation is based on a
simple syntactic analysis. Independence between the two branches is ensured
if a get instruction does not occur in a branch whereas a dump instruction
occurs in the other one (cf. 4, Fig. 2). Tf the analysis does not prove the
independence, the T ML where/elsewhere is replaced by a sequence of two
SCL where/elsewhere. The former triggers the execution of the first branch
of the T ML where/elsewhere, whereas the latter is concerned by the second

branch (ef. 3, Fig. 2).

We turn now to the correctness proof of the translation function. The intuitive
idea is the following. The unique (synchronous) computation of a T ML program
S can be seen as a particular computation of the translated program F(S).
Therefore, to ensure the correctness of the translation function, it is sufficient
to prove that all computations of the translated program are equivalent, i.e.
translated programs are deterministic.

Definition. A synchronous execution of a SCL program is a computation per-
forming a global synchronization after the execution of each instruction.

The next theorem states that for the execution of a TML program S and the
synchronous execution of F(S) are equivalent.

Theorem 2. The execution of a T ML program terminates if and only if the
synchronous execution of F(S) terminates. If they both terminate, they yield the
same final state for the twin memories.



| TML — scC |

F(skip) skip
F(X:=F) X :=F
F(dump) (Vj”j;;;)a”’ (1)
F(get X from A into V) wait A; . (2)
get X from A into YV
F(S;T) F(S); F(T)
If (Hasdump(S) A Hasget(T))V
(Hasget(S) A Hasdump(T))
then
Tmp := B,
where Tmp do F(5)
where B do S elsewhere skip
F (elsewhere T ) end; (3)
end where T'mp do skip
elsewhere F(T')
end
otherwise
where B do S where B do F(S)
F (elsewhere T ) { elsewhere F(T) (4)
end end
F(loopwhere B do S end) loopwhere B do F(S) end

Fig. 2. The translation function F.

Theorem 3. All SCL programs produced by the translation function F are de-
terministic.

From the two previous theorems, we deduce that all the executions of a trans-
lated T ML program always compute the expected result. The correctness of the
translation function F is thus proven.

3.1 Example

The example (Fig. 3) illustrates the TML and SCL potentialities. Thanks to the
synchronous programming model, the behavior of the T ML program is simple.
Initially each index u holds a value X|,. First, it computes the maximum of the
values belonging to the indices on its left side, by using a scan. Then, 1t computes
an average between 1ts result and its neighbor ones.

The translated SCL program is loosely synchronized. Overlapping of com-
munications by computations can occur. For instance, the index 1 can execute
the instruction of the line 15 (Fig. 3) while the index 2 refers its public memory
through the instruction get of the line 7. But the index 1 must wait the index 2



|line| nstruction | clock

1 Val .= X; (0,0)

2 wait_all; (0,0)

3 |dump; (0,1)

4 I:.=1; (07 1)

5  |loopwhere This — T > 0 do (0,1)(1,35)

6 wait This — T;|(0,1)(1, 35)

7 get Val from This — 1T into V; (0,1)(1,37+ 1)
8 Val := maz(Val, V); (0,1)(1,37+ 1)
9 wait_all; (0,1)(1,354+ 1)
10 dump; (0,1)(1,35 4+ 2)
M| T:=Tx2 (0,1)(1,35 +2)
12 |end; (0,2)

13 wait This — 1;|(0, 2)

15 |get Val from This —1 into Auri; (0,3)

16 wait This + 1;|(0, 3)

17 |get Val from This+ 1 into Auzs; (0,4)

18 |Val := (Val + Auzi + Auz2)/3 (0,4)

Fig. 3. The second column displays a 7ML program and its SCL translation. For the
sake of consistness, the new SCL instructions added by the translation are displayed on
the right hand side. For each instruction, the structural clock an index owns, when it has
finished to erecute it, appears in the third column. The variable 7 denotes the number
of loop iterations already executed. We consider an array of 2" indices numbered from
1 to 2™. The get instructions addressing a non existing index return the default value
0.

before it executes the instruction of the line 17. The structural clock mechanism
forbids the index 1 to step over the wait of the line 16 since its structural clock
(0,3) is greater than the structural clock (0,1)(1,0) of the index 2.

Remark. The partial synchronization wait_all (line 2, Fig. 3) introduced by the
translation function is useless since in the program there is no communication
before. A more precise syntactic analysis can permit to detect such configurations.

4 Conclusion

In this paper, we have presented a kernel data-parallel language T ML relying on
a twin memory management. It offers a synchronous data-parallel programming
model where dependences between indices are explicit in the syntax and simple to
express. The execution model based on a translation into SCL 1s asynchronous,
and thereby adapted to present MTIMTD architectures.

The translation suppresses some useless synchronizations and preserves the
initial semantics of T ML programs by only imposing waiting points. Tt is pos-
sible to take advantage of more syntactic information to reduce synchronization



requirements [5]. We also provide formal semantics of TML and SCL languages

in [5]. This theoretical framework allows us to validate the correctness of the
translation function. The extension of the SCL language to other structures,

especially functions and escape operators, is a current research direction.

An implementation of the T ML language is under progress. Thisis a meaning

step to tackle the problem of comparison with other approaches of compilation

and optimization of data-parallel programs [4, §].
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