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CONFIGURATIONS OF LINES

AND MODELS OF LIE ALGEBRAS

L. MANIVEL

Abstract. The automorphism groups of the 27 lines on the smooth
cubic surface or the 28 bitangents to the general quartic plane curve
are well-known to be closely related to the Weyl groups of E6 and E7.
We show how classical subconfigurations of lines, such as double-sixes,
triple systems or Steiner sets, are easily constructed from certain models
of the exceptional Lie algebras. For e7 and e8 we are lead to beautiful
models graded over the octonions, which display these algebras as plane
projective geometries of subalgebras. We also interprete the group of
the bitangents as a group of transformations of the triangles in the
Fano plane, and show how this is related to an interpretation of the
isomorphism PSL(3, F2) ≃ PSL(2, F7) in terms of harmonic cubes.

1. Introduction

Such classical configurations of lines as the 27 lines on a complex cubic
surface or the 28 bitangents to a smooth quartic plane curve have been
extensively studied in the 19th century (see e.g. [21]). Their automorphism
groups were known, but only at the beginning of the 20th century were
their close connections with the Weyl groups of the root systems E6 and
E7, recognized, in particular through the relation with Del Pezzo surfaces
of degree three and two, respectively [8, 9]. Del Pezzo surfaces of degree one
provide a similar identification of the diameters of the root system E8, with
the 120 tritangent planes to a canonical space curve of genus 4.

Can we go beyond the Weyl groups and find a connection with the Lie
groups themselves? The 27 lines on the cubic surface are in natural corre-
spondence with the weights of the minimal representation of E6, from which
the Lie group can be recovered as the stabilizer of a cubic form that already
appears in Elie Cartan’s thesis; Faulkner showed how to define this form in
terms of the 45 tritangent planes. A similar phenomenon holds for the 28
bitangents to the quartic plane curve, which can be put in correspondence
with pairs of opposite weights of the minimal representation of E7. In both
cases the connection between the Lie group and its Weyl group is particu-
larly close because of the existence of a minuscule representation. For E8

the minimal representation is the adjoint one and is no longer minuscule.
The first aim of this paper is to use these connections with the Lie groups,

or rather the Lie algebras e6, e7, e8, to shed a new light on the work of the
classical geometers on line configurations. Our main idea is that each time
we consider a semisimple Lie subalgebra, the restriction of the minimal repre-
sentation branches into a direct sum of subrepresentations, and consequently
the weights split into special subsets forming interesting subconfigurations.
In the case of e6 and the 27 lines we get the following correspondence:

1
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Subalgebra Subconfiguration

spin10 Line
spin8 Tritangent plane

sl2 × sl6 Double-six
sl3 Steiner set

sl3 × sl3 × sl3 Triple system

In the case of e7 and the 28 bitangents the notion of Steiner complexes
of bitangents make a natural appearance. They are special sets of 12 bitan-
gents which can be put in correspondence with positive roots, and also with
points of a 5-dimensional projective space over F2. This space is endowed
with a natural symplectic form, and indeed the Weyl group of E7 is closely
connected with the finite symplectic group Sp(6, F2). This leads to a very
interesting finite symplectic geometry whose lines are known to correspond
to the so called syzygetic triads of Steiner sets. We prove that planes in this
geometry are in correspondence with what we call Fano heptads of bitan-
gents. The upshot is a finite geometry modeling the symplectic geometries
related to the third line of Freudenthal Magic Square, whose last term is
precisely e7 [27].

Very interestingly, this leads to a beautiful model of e7 and its minimal
representation which, rather unexpectedly, turns out to be closely related
with the Fano plane and the octonionic multiplication. Indeed, recall that
O, the Cayley algebra of octonions, can be defined as the eight-dimensional
algebra with a basis e0 = 1, e1, . . . , e7, with multiplication rule encoded in
an oriented Fano plane.

e2 e6

e4e1 e5

e3

e7

Figure 1. Octonionic multiplication

This means that eiej = ±ek if i, j, k are three distinct points on one of
the projective lines in this plane, with a plus sign if and only if (ijk) gives
the cyclic orientation fixed on the line.

We define an O-grading on a Lie algebra g to be a decomposition

g = h0e0 ⊕
⊕

1≤i≤7

hiei

such that [hi, hj ] ⊂ hk if eiej = ±ek. In particular h0 is a subalgebra and
each hi is an h0-module. More is true: for any point i and any line ℓ in the
Fano plane, the direct sums

gi = h0 ⊕ hi, gℓ = h0e0 ⊕
⊕

j∈ℓ

hjej
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are subalgebras of g, so that we really have a configuration of Lie algebras
defined by a plane projective geometry.

Our discussion of Fano heptads lead us to discover that e7 has a natural
structure of an O-graded algebra, compatible with its action on the minimal
representation V . Indeed, attach to each line ℓ of the Fano plane a two
dimensional vector space Aℓ. Then we can describe e7 and V as follows:

e7 = ×ℓsl(Aℓ)e0 ⊕
⊕

1≤i≤7

(⊗i/∈ℓAℓ) ei,

V =
⊕

1≤j≤7

(⊗j∈ℓAℓ) ej .

Going a little deeper in the Lie algebra structure, we will discover a natural
connection with the multiplication table of the Cayley algebra. This leads
to an amusing interpretation of the isomorphism PSL(3, F2) ≃ PSL(2, F7)
in terms of harmonic cubes, and a permutation representation of the group
of the bitangents on the triangles of the Fano plane.

A similar description of e8 also exists, and the biggest two exceptional
Lie algebras appear as plane projective geometries whose points are copies
of so8 and so8 × so8, and whose lines are copies of so12 and so16, respec-
tively. Moreover, this octonionic model of e8 makes obvious the existence
of the multiplicative orthogonal decomposition that was a key ingredient in
Thompson’s construction of the sporadic simple group denoted Th or F3

(see [26], Chapters 3 and 13). It would certainly be interesting to use this
octonionic model, suitably adapted, to construct forms of e8 over arbitrary
fields.

Classically, two unifying perspectives on the line configurations we are
interested in have been particularly successful. We briefly discuss the con-
nection with our present approach.

Theta characteristics. Bitangents to the plane quartic curve (a canonical
curve of genus g = 3), as well as tritangent planes to the canonical curve of
genus g = 4, can be interpreted as odd theta-characteristics. Since the theta-
characteristics can be seen as points of an affine space over the half-periods
of the curve, this leads to an interpretation in terms of finite symplectic
geometries in dimension 2g over the field F2. This was developped in great
detail by the classical geometers, in particular by Coble ([3], Chapter II).
For example the theta-characteristics can be understood as the quadrics
whose associated polarity is the natural symplectic form. Isotropic linear
spaces also have natural geometric interpretations. For g = 3 one recovers
the connection that we already mentionned between W (E7) and Sp(6, F2).
For g = 4, the Weyl group W (E8) is the automorphism group of the lines
in the Del Pezzo surface of degree one, whose canonical model is a double
covering of a quadratic cone, branched along a canonical sextic curve. As
noticed by Schottky, there is a unique even theta-characteristic vanishing at
the vertex of the cone, which explains why the automorphism group of the
tritangent planes is an orthogonal group O(8, F2)

+ rather than a symplectic
group.
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Semi-regular polytopes. Gosset seems to have been the first, at the very
beginning of the 20th century, to understand that the lines on the cubic
surface can be interpreted as the vertices of a polytope, whose symmetry
group is precisely the automorphism group of the configuration. Coxeter
extended this observation to the 28 bitangents, and Todd to the 120 tritan-
gent planes. Du Val and Coxeter provided systematic ways to construct the
polytopes, which are denoted n21 for n = 2, 3, 4 and live in n + 4 dimen-
sions [13, 6, 8]. They have the characteristic property of being semi-regular,
which means that the automorphism group acts transitively on the vertices,
and the faces are regular polytopes. In terms of Lie theory they are best
understood as the polytopes in the weight lattices of the exceptional simple
Lie algebras en+4, whose vertices are the weights of the minimal representa-
tions. Coxeter investigated in great detail their semi-regular sub-polytopes
[6]. Algebraically, this amounts to identifying certain Lie subalgebras of the
en+4. But Coxeter does not describe how the full polytopes are organized
around these special sub-polytopes. In a sense this is what we will be doing
in this paper, with the nice conclusion that it leads to a very natural, unified
and easy-going description of (at least part of) the classical combinatorics
of the line configurations, as well as new insights in the fascinating structure
of the exceptional Lie algebras.

Acknowledgements: I thank I. Dolgachev and P.E. Chaput for their useful
comments.

2. Models of the exceptional Lie algebras

The Reye configuration and triality. A classical elementary configu-
ration of lines is the Reye configuration below, obtained from a cube in a
three dimensional projective space (see [22] and [11]). This configuration
can be understood as a central projection of the 24-cell, one of the regular
polytopes in four dimensions. The vertices of this polytope are given by
the roots of the root system D4 (we use [2] as a general reference on root
systems).

Figure 2. The Reye configuration
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As one can easily see on Figure 2, there is a unique way to partition the
points of the Reye configuration into three types, in such a way that each
line contains exactly one point of each type. This decomposes the 24-cell
into three 16-cells given by the vertices of three hypercubes. Each of these
defines a root subsystem of D4 of type A4

1.
Restricting the adjoint representation of spin8 to the corresponding sub-

algebra, a product of four copies of sl2, we obtain the four-ality model [28]

spin8 = sl(A1) × sl(A2) × sl(A3) × sl(A4)⊕ (A1 ⊗A2 ⊗A3 ⊗A4),

whose existence is indicated by the shape of the affine Dynkin diagram D̃4.
(Here A1, A2, A3, A4 are two dimensional complex vector spaces. Note that
the construction works on the reals to give the split form so4,4.) Four-
ality reduces to the classical Cartan triality through the morphism S4 → S3

induced by the permutation of the three partitions of four objects in two
pairs. In terms of representations, this translates into the permutation of
the three non equivalent eight dimensional representations of spin8:

∆1 = (A1 ⊗A2)⊕ (A3 ⊗A4),

∆2 = (A1 ⊗A3)⊕ (A2 ⊗A4),

∆3 = (A1 ⊗A4)⊕ (A2 ⊗A3).

Binary, ternary, and triality models. Among the models of the excep-
tional Lie algebras that we will meet in the sequel, most will be derived
from the triality model first defined, in a more general context, by Allison
in [1], and rediscovered in [29]. The idea is to associate to a (complexified)
real normed algebra A = R, C, H, O, its triality algebra t(A) with its three
natural modules A1, A2, A3. Then for any pair A, B of normed algebras, the
direct sum

g(A, B) = t(A) × t(B)⊕ (A1 ⊗B1)⊕ (A2 ⊗B2)⊕ (A3 ⊗B3)

has a natural Lie algebra structure. This leads to the famous Freudenthal
Magic Square, whose fourth line g(A, O) is the series of exceptional Lie
algebras f4, e6, e7, e8.

The Lie algebras on the second and third lines of the Magic Square are
endowed each with a special module: g(A, C) with the cubic Jordan algebra
J3(A), and g(A, H) with the Zorn algebra z2(A). The natural inclusions
g(A, C) ⊂ g(A, H) ⊂ g(A, O) then lead to the binary and ternary models for
the exceptional Lie algebras:

g(A, O) = sl2 × g(A, H)⊕ (C2 ⊗ z2(A)),

g(A, O) = sl3 × g(A, C)⊕ (C3 ⊗ J3(A))⊕ (C3 ⊗ J3(A))∗.

This extends to spin8 = t(O), whose ternary model is the four-ality model
related to the Reye configuration. Note also that the triality models can be
interpreted as H-graded Lie algebras, with a similar definition to the one we
introduced for O-gradings.

3. Lines on the cubic surface

The configuration of the 27 lines on a smooth cubic surface in CP
3 have

been thoroughly investigated by the classical algebraic geometers. It has
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been known for a long time that the automorphism group of this configura-
tion can be identified with the Weyl group of the root system of type E6,
of order 51 840 [8]. Moreover, the minimal representation J of the simply
connected complex Lie group of type E6 has dimension 27. This is a minus-
cule representation, meaning that the weight spaces are lines and that the
Weyl group W (E6) acts transitively on the weights. In fact one can recover
the lines configuration of the cubic surface by defining two weights to be
incident if they are not orthogonal with respect to the unique (up to scale)
invariant scalar product.

Conversely, one can recover the action of the Lie group E6 on J from the
line configuration. Faulkner defines a cubic form on J as the sums of signed
monomials associated to the tritangent planes [18]. The stabilizer of that
cubic form in GL(J) is precisely E6. Note that the polarization of this cubic
form is a symmetric bilinear map J × J → J∗. Identifying appropriately J
with J∗ we get an algebra structure which is known to cöıncide with the
exceptional complex Jordan algebra J3(O).

The closed E6-orbit in the projectivization PJ3(O) is known as the com-
plex Cayley plane OP

2 and should be thought of as the projective plane over
the Cayley algebra of octonions. Being the orbit of any weight space it is
circumscribed to the Schoute polytope 221, which appears as a discrete ver-
sion of the Cayley plane. In particular the 10 lines incident to a given line
correspond to the polar quadric or O-line (whose Euler characteristic is 10).
The property that two general O-lines on the Cayley plane have a unique
intersection point, thus mirrors the obvious fact that, two concurrent lines
on the cubic surface being given, there exists a unique line meeting both.

It is well known that most of the interesting subgroups of W (E6) can be
realized as stabilizers of some subconfigurations. It seems not to have been
noticed before that most of them also have natural interpretations in terms
of branching. By this we mean that we can find a subalgebra of e6 such
that the restriction of the representation in J splits in such a way that the
relevant subconfiguration can immediately be read off.

There is a general recipe to identify semisimple subalgebras of a simple
complex Lie algebra, that we illustrate with the case of e6 (see [31], Chapter
6). One begins with the affine Dynkin diagram, which in the case we are
interested in has a remarkable threefold symmetry:

◦ ◦ ◦ ◦ ◦

◦

◦

Then we choose a set of nodes, that we mark in black. Suppressing these
nodes we get the Dynkin diagram (usually disconnected) of a semisimple
Lie subalgebra h of e6 which is uniquely defined up to conjugation. The
Weyl group W of this semisimple Lie algebra is a subgroup of W (E6), also
uniquely defined up to conjugation. We get three types of data:

(1) Combinatorial data: W can be realized as the stabilizer of a cer-
tain subconfiguration of the 27 lines, encoded in the marked Dynkin
diagram;



CONFIGURATIONS OF LINES AND MODELS OF LIE ALGEBRAS 7

(2) Representation theoretic data: as an h-module, J splits into a direct
sum of irreducible components;

(3) Geometric data: the h-components encode certain special subvari-
eties of the Cayley plane.

Example 1. We mark two of the three extreme nodes. Then h = spin10 and
W = W (D5) = Z

4
2 ⋊ S5.

◦ ◦ ◦ ◦ ◦• •

◦

◦

The index of W in W (E6) is 27: this subgroup is just the stabilizer of
some line in the configuration. In fact h is the semisimple part of the Lie
algebra of the stabilizer of a one-dimensional weight space ℓ, which defines a
point on the Cayley plane and can be identified with one of the lines of the
configuration. The branching, i.e. the decomposition of J as an h-module,
gives

J = ℓ⊕∆⊕U.

The 16-dimensional half-spin representation ∆ can be identified with the
tangent space to the Cayley plane at ℓ; combinatorially, the sixteen weight
spaces generating ∆ give the sixteen lines which do not meet ℓ; geometrically,
the intersection of the Cayley plane with its tangent space at ℓ is a cone over
a ten dimensional spinor variety.

The 10-dimensional natural representation U encodes the normal space to
the Cayley plane at ℓ; combinatorially, the ten weight spaces generating U
give the ten incident lines to ℓ. Note that this representation is self-dual, so
its weights occur in opposite pairs corresponding to incident pairs of incident
lines to ℓ. Geometrically, the intersection of the Cayley plane with PU is
the polar eight-dimensional quadric, a copy of the projective line OP

1 over
the Cayley algebra.

Example 2. We mark the three extreme nodes. In this case h = spin8 and
W = W (D8) = Z

3
2 ⋊ S4.

◦ ◦ ◦ ◦ ◦• •

◦

•

By restricting the previous case we get the branching

J = ℓ1 ⊕ ℓ2 ⊕ ℓ3 ⊕∆1 ⊕∆2 ⊕∆3,

where ∆1,∆2,∆3 are the three eight dimensional representations of Spin8,
which we deliberately avoid to distinguish since they are exchanged by Car-
tan’s triality. The three lines ℓ1, ℓ2, ℓ3 are pairwise incident, hence they are
the three intersection lines of the cubic surface with a tritangent plane. Note
that the index of W in W (E6) is 270 = 6× 45. Since we have a sixfold am-
biguity on the order of the three lines, we recover the classical fact that the
cubic surface has exactly 45 tritangent planes.
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Once we have fixed these three lines, each of them has eight more incident
lines coming into four pairs, and corresponding to the pairs of opposite
weights of one of the eight-dimensional representations of spin8. Note that
this exhausts the 27 lines.

ℓ1

ℓ2

ℓ3

Figure 3. Triality from the 27 lines

The sum of the weights of ℓ1, ℓ2, ℓ3 is zero, and this characterizes triples
of lines on a tritangent plane.

Geometrically, we have three eight-dimensional quadrics on the Cayley
plane, any two of them meeting exactly in one point. In terms of plane
projective geometry, these three quadrics are projective lines which are the
sides of a self-polar triangle.

Example 3. Now we mark a unique node, which is neither extremal nor
central. Then h = sl2 × sl6 and W = S2 × S5. This leads to the binary
model of e6.

◦ ◦ ◦ ◦ ◦

•

◦

The index of W in W (E6) is 36. The branching gives

J = U ⊗ A⊕Λ4U,

where U denotes the six-dimensional natural representation of sl6, and A
the natural representation of sl2. The twelve weights of U ⊗A split into six
pairs (ℓi, ℓ

′
i) where ℓ1, . . . , ℓ6 have the same component over A. Of course

(

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6

ℓ′1 ℓ′2 ℓ′3 ℓ′4 ℓ′5 ℓ′6

)

is a double-six, and there are exactly 36 double-sixes on the cubic surface.
Note that the node that we have marked is the node of the Dynkin dia-

gram of E6 that defines the adjoint representation. This explains the cor-
respondence between double-sixes and pairs of opposite roots of E6 ([10],
10.1.5).

Geometrically, such a pair of roots defines a point of the adjoint variety,
the projectivization of the minimal nilpotent orbit in the Lie algebra e6. The
image of its action on J has minimal rank, namely 6 [24], and is a maximal
linear space in the Cayley plane, with a weight basis given by one half of the
double-six. The other half can be recovered from the similar action on J∗,
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whose image is again a maximal linear space in (a dual copy of) the Cayley
plane.

Explicitely, let P (J) denote the set of weights of J (the W (E6)-orbit of
the fundamental weight ω1, in the notation of [2]). Then the double-six Dα

associated to a root α (up to sign), considered as a set of such weights, is

Dα = {γ ∈ P (J), γ + α or γ − α ∈ P (J)}
= {γ ∈ P (J), (γ, α) 6= 0}.

Now given two double-sixes Dα and Dβ, they can have only two different
relative positions, following that (α, β) = 0 or not. In the first case they are
said to be azygetic, and #(Dα ∩ Dβ) = 6. Then α + β or α − β is again a
root and defines a third double-six Dα±β , which is azygetic to both Dα and
Dβ. There exist 120 such azygetic triads of double-sixes, corresponding to
the 120 subsystems of type A2 of the root system E6.

In the latter case the double-sixes are syzygetic, and #(Dα ∩Dβ) = 4. As
indicated by the marked Dynkin diagram

◦ ◦ ◦ ◦ ◦

•

• •

◦

we can complete such a pair of double-sixes into a syzygetic tetrad of double-
sixes. If we let A1, A2, A3, A4 be the two-dimensional natural representations
of the four copies of sl2 corresponding to the white nodes of the diagram,
the minimal representation of e6 branches to

J = C
3 ⊕

⊕

i<j

Ai ⊗Aj ,

and the associated tetrad of double-six is given by the weights of the four
submodules

Di =
⊕

j 6=i

Ai ⊗Aj.

The number of syzygetic tetrads is the number of root subsystems of type
A4

1 in E6, that is 135.

Example 4. Now we mark the central node. Then h = sl3 × sl3 × sl3 and
W = S3 × S3 × S3. This leads to the ternary model of e6.

◦ ◦ ◦ ◦ ◦•

◦

◦

The index of W in W (E6) is 240. The branching gives

J = (A∗ ⊗ B)⊕ (B∗ ⊗ C)⊕ (C∗ ⊗ A),

where A,B,C denote the natural representations of the three copies of sl3
in h. The 27 weights are thus split into three bunches of nine.

Consider for example the nine weights ǫ′i − ǫj of A∗ ⊗B, where the ǫj are
the weights of A and the ǫ′i those of B (note that both sets sum to zero).
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Display these weights on a 3 × 3 square by putting ǫ′i+j−1 − ǫi+2j−2 in the

box (i, j), the indices being considered modulo three. Then three weights
on the same line or column have they sum equal to zero, and thus define a
tritangent plane. We have obtained what is called a Steiner set – nine lines
obtained as the intersections of two trihedra.

Moreover, we have split the 27 lines into three such sets forming a so-
called Steiner triple system. Steiner sets are in correspondence with root
subsystems of type A2 of the root system E6. The orthogonal to such a
subsystem is the orthogonal product of two other A2-subsystems. This is
why, a Steiner set being given, there is a unique way to complete it into a
triple system ([10], 10.1.7). Of course this is another manifestation of triality
(see [17])!

Note also that the invariant cubic form on J can be characterized, up to
scalar, as the unique W (E6)-invariant cubic form whose restriction to each
factor of type A∗ ⊗B is proportional to the determinant.

Geometrically, three Steiner sets correspond to three P
8’s in PJ , each

cutting the Cayley plane along a copy of the Segre variety P
2 × P

2.

Remark. Define two Steiner sets to be incident if they have no common tri-
tangent plane. Each Steiner set is incident to exactly 56 other sets, including
the two special ones which complete it into a triple system. If we choose
one of these, exactly 28 Steiner sets are incident to both, including the re-
maining set in the triple system. Contrary to what we could be tempted to
believe, the configuration of the remaining 27 Steiner sets is not combina-
torially equivalent to that of the 27 lines. Indeed, one can check that each
of the 27 Steiner sets is incident to only eight of the other ones. Neverthe-
less, the Steiner sets define an interesting regular graph, which has the same
number of edges and vertices than the graph defined by the diameters of the
polytope 421, although it is not combinatorially equivalent.

Coxeter already noticed in [7] that the 40 triple systems can be interpreted
as hexagons on the polytope 421

4. Bitangents to the plane quartic curve

The 28 bitangents to a smooth plane quartic curve give rise to 56 lines
on the Del Pezzo surface of degree two defined as the double cover of the
projective plane, branched over the quartic [9]. This line configuration has
for automorphism group the index two normal subgroup W (E7)

+ of the
Weyl group of E7, which has order 2 903 040 = 210 × 34 × 5 × 7.

The Lie group of type E7 has a minimal representation V of dimension
56, which is again minuscule. The invariant forms are a symplectic form –
so that the 56 weights split into 28 pairs of opposite weights – and a quartic
form which cannot be deduced, contrary to the case of the 27 lines, solely
from the configuration. The weights of this representation form the Gosset

polytope 321. This polytope appears as a discrete version of the minimal
E7-orbit in PV , which we call the Freudenthal variety.

The affine Dynkin diagram of type E7 has a two fold symmetry:
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◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Again we deduce classical configurations of bitangents from markings of
this diagram.

Example 1. We mark the two opposite extreme nodes. Then h = e6, and
W = W (E6) has index 28 in W (E7).

◦ ◦ ◦ ◦ ◦• •

◦

Indeed it is well-known that the stabilizer of any bitangent is a copy of
the automorphism group of the 27 lines. Since the action of the latter is
irreducible, the branching has to give an irreducible supplement, up to the
sign of the weights. And indeed we have the decomposition into h-modules

V = C⊕ J ⊕ J∗⊕C.

Geometrically, the factor J = J3(O) appears as the tangent space to the
Freudenthal variety, and J∗ is the first normal space. Note that the inter-
section of the Freudenthal variety with its tangent space is a cone over the
Cayley plane, whose discrete skeleton is precisely given by the 27 lines.

Example 2. Mark only one node next to one of the opposite extremal nodes.
Then h = sl2 × spin12, and W has index 63 in W (E7). This leads to the
binary model of e7.

◦ ◦ ◦ ◦ ◦ ◦ ◦•

◦

Let A,W denote the natural representations of sl2 and spin12. Here the
branching gives the very simple decomposition

V = A⊗W ⊕∆,

where ∆ is one of the half-spin representations, of dimension 32. The factor
A⊗W corresponds to a set of twelve bitangents. Since W has an invariant
quadratic form, its weights come into pairs of opposite weights. We thus get
six pairs of bitangents forming a Steiner complex ([10], 6.1.2).

Since the node that we have marked defines the adjoint representation of
e7 on the Dynkin diagram of type E7, the 63 Steiner complexes are in natural
correspondence with the 63 pairs of opposite roots in the root system E7.
From this perspective they play the same role as the double-sixes of lines on
the cubic surface.

Geometrically, the twelve weight spaces of a Steiner complex generate a
P

11 in PW whose intersection with the Freudenthal variety is a ten dimen-
sional quadric. If we denote by P (V ) the set of weight of V (the W (E7)-orbit
of the fundamental weight ω1, in the notation of [2]), the Steiner complex
associated to the root α (up to sign) is

Sα = {γ ∈ P (V ), γ + α or γ − α ∈ P (V )}.
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Now if β 6= ±α is another root, we can have (α, β) = 0 or not, with respec-
tively 30 and 32 possibilities for β, up to sign.

In the first case, the corresponding root spaces generate in e7 a copy
of sl2 × sl2, and the Steiner complexes are syzygetic, which means that
#(Sα ∩ Sβ) = 4. The roots which are orthogonal both to α and β form a
reducible root system of type A1×D4. In particular, there is a third Steiner
complex Sγ canonically associated to the pair (Sα, Sβ), and syzygetic to
both of them. The characteristic property of the triple (Sα, Sβ, Sγ) is that
its union is the whole set of bitangents (see Example 6 below). The number
of such syzygetic triads of Steiner complexes is 63 × 30/6 = 315.

In the second case, the root spaces generate a copy of sl3, and the Steiner
complexes are azygetic: #(Sα ∩ Sβ) = 6. Then α + β (or α − β) is again a
root, and Sα+β is azygetic both to Sα and Sβ: we obtain an azygetic triad

of Steiner complexes. The number of such triads is 63 × 32/6 = 336.

Example 3. We mark the lowest node. Then h = sl8, and W = S8 has index
36 in W (E7).

◦ ◦ ◦ ◦ ◦ ◦ ◦

•

If we denote by U the natural representation of sl8, the branching gives

V = Λ2U ⊕Λ2U∗,

e7 = sl8 ⊕Λ4U.

Once we fix a basis u1, . . . , u8 of U , we can therefore identify each bitangent
with a pair (ij), with 1 ≤ i < j ≤ 8. Such a notation seems to have been first
introduced by Hesse. Moreover, the Weyl group of E7 is generated by the
symmetric group S8 and the symmetries associated to the roots coming from
the factor Λ4U . These symmetries are indexed by partitions (pqrs|xyzt) of
[1, 8] into disjoints fourtuples. The induced action on the bitangents is given
by

s(pqrs|xyzt)(ij) =







(pqrs/ij) if {ij} ⊂ {pqrs},
(xyzt/ij) if {ij} ⊂ {xyzt},
(ij) otherwise.

This is classicaly called a bifid transformation.

Example 4. We mark two extreme but not opposite nodes. Then h = sl7,
and W = S7 has index 288 in W (E7).

◦ ◦ ◦ ◦ ◦ ◦•

•

Obviously this example comes from the previous one: we have just passed
from sl8 to sl7. If we denote by U the natural representation of sl7, the
branching gives

V = U ⊕Λ2U ⊕Λ2U∗⊕U∗.

We have thus distinguished a set of seven bitangents forming what is called
an Aronhold set ([10], 6.1.3). Geometrically, the seven weight spaces of
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an Aronhold set generate a P
6 which is a maximal linear space inside the

Freudenthal variety.
Note that the Aronhold sets generate the remaining basic representation

R of e7, the one corresponding to the lowest extremal node of the Dynkin
diagram. By this we mean that among the lines of Λ7V generated by the
weight vectors forming Aronhold sets, one has a dominant weight and gen-
erates a copy of R. We know that any irreducible representation of e7 can
then be constructed from V , R and the adjoint representation by natural
tensorial operations.

Example 5. We mark the central node. Then h = sl4 × sl4 × sl2, and
W = S4 × S4 × S2 has index 1260 in W (E7).

◦ ◦ ◦ ◦ ◦ ◦ ◦•

◦

Denote by C the two-dimensional natural representation, by A,B the two
four dimensional ones. Then the branching gives

V = (Λ2A⊕Λ2B) ⊗ C ⊕ (A⊗B ⊕A∗ ⊗B∗).

Note that Λ2A and Λ2B are self-dual, as well as C, so we have distinguished
two sets of 6 bitangents forming a Steiner complex.

The remaining sixteen bitangents are indexed by the weights of A⊗B.
Recall that four bitangents form a syzygetic tetrad when their eight tangency
points are the eight intersection points of the plane quartic with some conic
([10], 6.1.1). In terms of weights, this means that the four bitangents can
be represented by weights summing to zero. Here we observe a phenomenon
very similar to the property of a Steiner set of lines on the cubic surface:
our sixteen bitangents can be split into four syzygetic tetrads in essentially
twelve different ways. Indeed our tetrads must be of the form

Tσ = {ǫi + ǫσ(i), 1 ≤ i ≤ 4}

for some permutation σ, and we have to find four permutations σ1, σ2, σ3, σ4

such that σj(i) 6= σk(i) for each i and each j 6= k. The twelve possibilities are
given by the four-tuples of permutations of the form (pqrs), (qpsr), (rspq),
(srqp) or (pqrs), (qpsr), (rsqp), (srpq).

Example 6. Now we mark a non extremal node next to the central one.
Then h = sl3 × sl6, and W = S3 × S6 has index 336 in W (E7). This case
leads to the ternary model of e7.

◦ ◦ ◦ ◦ ◦ ◦ ◦•

◦

Let A,B denote the natural representations of sl3 and sl6. The branching
gives the decomposition

V = A⊗B ⊕Λ3B ⊕A∗⊗B∗,

where the middle factor is self-dual. The factor A⊗B splits, following the
A-component, into three sixers of bitangents. Aggregating them two by two
we get an azygetic triad of Steiner sets.
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Example 7. We mark the two nodes next to the two opposite extremal nodes.
Then h = sl2 × sl2 × spin8, and W has index 2 × 315 in W (E7).

◦ ◦ ◦ ◦ ◦ ◦ ◦• •

◦

Let A,B denote the natural representations of the two copies of sl2. Up to
triality we may suppose that the natural (non spinorial) eight-dimensional
representation W of spin8 is given by the lowest node. Then the branching
gives the decomposition

V = A⊗∆+ ⊕B ⊗∆−⊕ 2W ⊕ 2A⊗B,

where the last two factors are two copies of the same module, put on duality
by the symplectic form.

The symmetry of the picture suggests that we should introduce a sup-
plementary copy of sl2, hence three copies with natural representations
A1, A2, A3 such that

V = A1 ⊗∆1 ⊕A2 ⊗∆2 ⊕A3 ⊗∆3 ⊕A1 ⊗A2 ⊗A3.

Indeed this is precisely what the trialitarian description of e7 tells us (see
[29], Theorem 4.1). We get a partition of the 28 bitangents into three groups
of eight and a group of four. Adding the latter to the three former we get a
syzygetic triad of Steiner complexes.

We have exactly 315 such triads, and this is also the number of syzygetic
tetrads ([10], Corollary 6.1.4). Indeed the weights of A1 ⊗A2 ⊗A3 define
such a tetrad.

We recapitulate:

Proposition 1. There are natural correspondences between:

(1) Steiner complexes of bitangents and root subsystems of type A1;

(2) azygetic triples of Steiner complexes and subsystems of type A2;

(3) syzygetic triples of Steiner complexes and root subsystems of type D4

of the root system E7.

Symplectic geometry. We have already mentionned that the Weyl group
of E7 can (almost) be identified with a classical group over a finite field (see
[2], Exercice 3 of section 4, p. 229), namely

W (E7)
+ ≃ Sp(6, F2).

This means that the incidence geometry of the 28 bitangents should be inter-
preted as a symplectic six-dimensional geometry over the field with two ele-
ments. Such symplectic geometries appear on the third line of Freudenthal’s
magic square, and the 28 bitangents give a finite model of these geometries
(see e.g. [28]).

Recall that a symplectic five-dimensional projective geometry has three
types of elements: points, isotropic lines and isotropic planes. In the E7

geometry, points and isotropic lines are points and lines in the Freuden-
thal variety, while isotropic planes are in correspondence with maximal, ten
dimensional quadrics on the Freudenthal variety.
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In our finite geometry, we have seen that the points correspond to the
63 Steiner complexes. The 315 isotropic lines are in correspondence with
the syzygetic triads of Steiner complexes, where we split the 28 bitangents
into three sets of twelve, with four bitangents common to the three. It
is obvious from that point of view that two syzygetic complexes can be
uniquely completed into a syzygetic triad: indeed, they are syzygetic if they
generate an isotropic line, and there is a unique other point on that line.

What are the 135 planes? Classically, they are called Göpel spaces (see
[3], Chapter II, 22, and [12], Chapter IX) and play an important role in the
study of the Schottky problem. But let us rather skip to our representation
theoretic point of view.

A projective plane over F2 is a Fano plane. It has 7 points and 7 lines.
So to get an isotropic plane we should be able to partition the 28 bitangents
into 7 quadruples, in such a way that the complement of each of them can
be split into three octuples defining syzygetic Steiner complexes. This looks
like a combinatorial challenge but representation theory tell us what to do!
We have already used the fact that e7 has a maximal semisimple Lie algebra
isomorphic to so8 × sl32. Thanks to the four-ality model of so8 we can take
four two-dimensional spaces A4, A5, A6, A7 and decompose

so8 = sl(A4) × sl(A5) × sl(A6) × sl(A7)⊕ (A4 ⊗A5 ⊗A6 ⊗A7).

Then the three eight-dimensional representations decompose as

∆1 = (A4 ⊗A5)⊕ (A6 ⊗A7),

∆2 = (A4 ⊗A6)⊕ (A5 ⊗A7),

∆3 = (A4 ⊗A7)⊕ (A5 ⊗A6).

Then we plug that in the decomposition of the 56-dimensional represen-
tation of E7 given in Example 7 above. We obtain, if we denote Aijk =
Ai ⊗Aj ⊗Ak:

V = A123 ⊕A145 ⊕A167 ⊕A246 ⊕A257 ⊕A347 ⊕A356.

The seven Steiner complexes that we are looking for are the sets of weights
of the submodules

Si =
⊕

ijk

Aijk,

and the seven syzygetic triads they form are given by the weights of the three
submodules Si, Sj , Sk for (ijk) one of the seven triples in the decomposition
of V .

Note that these seven triples of indices have the crucial property that any
pair of integers between one and seven, appear in one and only one of them.
Otherwise said, they form a Steiner triple system S(2, 3, 7) (see e.g. [5]).
Up to isomorphism there is only one such system, given by the lines of the
Fano plane, as one can see on the next picture:
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In particular, by projective duality these lines can be represented by
points of another Fano plane. We deduce that the stabilizer of our con-
figuration in W (E7) is the product of 7 copies of A2 by the automor-
phism group of the Fano plane, which is nothing else than the Klein group
PSL(3, F2) ≃ PSL2(F7), with 168 elements. The index of this stabilizer is
135, as expected. We call the corresponding configurations Fano heptads of

Steiner complexes. Let us recapitulate the correspondence:

Symplectic geometry Number Bitangents

Points 63 Steiner complexes
Lines 315 syzygetic triads
P lanes 135 Fano heptads

The quartic form. The E7-module V has two basic invariants tensors,
such that E7 can be described as the group of linear transformations of
V preserving these tensors: a symplectic form and a quartic form. The
existence of such invariant forms is clear on our previous decomposition of
V . Indeed, each factor Aijk has a symplectic form induced by the choice
of two-forms on each factor Al. Moreover, Aijk has an invariant quartic
form given by the Cayley hyperdeterminant, which is an equation of the
dual variety of the Segre product PAi × PAj × PAk ⊂ PAijk [20].

Proposition 2. The invariant quartic form on V is the unique W (E7)-
invariant quartic form whose restriction to each factor Aijk is proportional

to the Cayley hyperdeterminant.

Proof. Since their is a unique invariant quartic form on a factor Aijk, up to
scalar, it certainly cöıncides with the restriction of the invariant quartic form
on V . Conversely, we know that up to the action of the Weyl group, the
monomials in the invariant quartic form on V are of three types (see [30]):
products of two, equal or distinct, products of two variables associated to
opposite weights; other products of four variables associated to fourtuples
of weights of sum zero (thus defining syzygetic tetrads of bitangents). Then
we must give suitable relative coefficients to the sums of monomials of each
type. This is fixed by restriction to a single factor Aijk since the three types
of monomials appear in the hyperdeterminant (see [20]). �

Reconstructing e7. From the trialitarian construction of e7 and the four-
ality for so8 we deduce the model:

e7 = ×7
i=1sl(Ai) ⊕

⊕

(ijkl)∈I

Ai ⊗Aj ⊗Ak ⊗Al,
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where I is the following set of 7 quadruples:

1247 1256 1346 1357 2345 2367 4567

These quadruples are in natural correspondence with lines: simply associate
to a line the four points of its complement. Moreover, the action on V can be
recovered geometrically: each quadruple (ijkl) in I can be seen as a complete
quadrangle in the Fano plane, with three pairs of opposite sides which are
sent one to the other by the e7-action restricted to Ai ⊗Aj ⊗Ak ⊗Al.

Let us rather try to reconstruct the Lie bracket. Consider two factors
Ai ⊗Aj ⊗Ak ⊗Al and Ai ⊗Aj ⊗Am ⊗An: we have two indices i, j in com-
mon, and the third point of the line generated by α = (ijkl) and β = (ijmn)
is α + β = (klmn). The restriction of the Lie bracket defines a map

Ai ⊗Aj ⊗Ak ⊗Al × Ai ⊗Aj ⊗Am ⊗An −→ Ak ⊗Al ⊗Am ⊗An

such that for some non zero constant θα,β,

[xi ⊗xj ⊗xk ⊗xl, yi ⊗ yj ⊗ ym ⊗ yn] = θα,βω(xi, yi)ω(xj , yj)xk ⊗xl ⊗ ym ⊗ yn.

Indeed this is the unique equivariant map up to scalar, and it must be non
zero because of the properties of the Lie bracket in a semisimple Lie algebra.
The skew symmetry of the Lie bracket then implies that

θβ,α = −θα,β.

The Jacobi identity can be expressed in the following way: for each triangle
(α, β, γ) in the Fano plane, we have the relation

θα,βθα+β,γ = θβ,γθβ+γ,α = θγ,αθγ+α,β.

The Fano plane has 28 triangles, hence 56 quadratic relations.

Lemma 3. Let θα,β = ±1 according to the following rule: the multiplication

table of the canonical basis e1, . . . , e7 of the imaginary octonions is given by

eαeβ = θα,βeα+β for α 6= β.

Then the relations above are satisfied.

Proof. Denote by e0, eα, where α = 1, . . . , 7, the canonical basis of the oc-
tonions, (see the Introduction). Our claim amounts to the identity

(eαeβ)eγ = (eβeγ)eα

when α, β, γ are distinct and not aligned. To prove this we need to remem-
ber that the Cayley algebra, although not associative, is alternative [28].
This means that the associator A(x, y, z) = (xy)z − x(yz) is an alternating
function of the arguments. Using the fact that eαeβ = −eβeα when α, β are
distinct, we deduce that

(eβeγ)eα − eβ(eγeα) = A(eβ , eγ , eα)
= −A(eβ, eα, eγ) = (eαeβ)eγ − eβ(eγeα),

which proves our claim. �

This means that the model that we have found for e7 really has a very
close connection with the octonions. We can reformulate our discussion as
follows.
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Theorem 4. The exceptional complex Lie algebra e7 has a natural structure

of an O-graded algebra, given in terms of points i and lines ℓ on the Fano

plane by

e7 = ×7
i=1sl(Ai)e0 ⊕

⊕

ℓ

(⊗i/∈ℓAi) eℓ.

Moreover, its minimal representation decomposes as

V =
⊕

ℓ

(⊗i∈ℓAi) eℓ.

Note that there is a quaternionic analogue of this construction, where
instead of the Fano plane we consider only one of its lines. This means that
we glue three copies of so8 along the product of four copies of sl2. The
resulting algebra is so12.

We conclude that the Lie algebra e7 is the support of a finite plane pro-
jective geometry whose points represent 7 copies of so8, and whose lines
represent 7 copies of so12.

A sign problem and the isomorphism PSL(3, F2) ≃ PSL(2, F7). We
have just seen that the octonionic multiplication table gives a solution to
the problem of finding a set of constants θα,β satisfying the skewsymmetry
condition and the 56 quadratic relations associated to the 28 triangles in the
Fano plane. What are the other solutions such that θα,β = ±1?

Proposition 5. There exist exactly sixteen such solutions, falling into two

PSL(3, F2)-orbits. Each orbit can be identified, as a PSL(2, F7)-set, with a

copy of the projective line F7P
1.

Proof. We proceed as follows. We first check that on a line the orientations
must be coherent in the following sense: put an arrow from α to β if θαβ =
+1. Then the three arrows on a line, if we draw it as a circle, must go in the
same direction. In particular there are only two possible choices of signs on
a line, one for each cyclic orientation. We can switch from one to the other
by changing one of the basis vectors in its opposite. Moreover, the possible
solutions to our problem can now be interpreted as a coherent orientation
of the seven lines in the plane.

Now we choose a triangle in the Fano plane. We have eight possible
orientations for the three sides. We observe that once we choose one, the
orientation of the line joining the three middle points of the sides of the trian-
gle is fixed, and that there are only two possibilities for the three remaining
lines, those passing through the center of the triangle. Moreover we pass
from one to the other by changing the sign of the basis vector corresponding
to the center.

Finally we check that once we fix a coherent orientation, we can trans-
form it by PSL3(F2) to an arbitrarily chosen orientation on the triangle of
reference. This implies that we have 16 possible orientations splitting in at
most two orbits. But there cannot be a single orbit since 16 does not divide
the order of PSL3(F2). To identify the two orbits with a projective line over
F7, there just remains to observe that PSL3(F2), up to conjugation, has a
unique subgroup of index 8 (see [4]). �
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This suggests an interpretation of the isomorphism between PSL(3, F2)
and PSL(2, F7). We obtained the following one which we could not find
in the litterature. It is conveniently expressed in terms of cubes in a pro-
jective line, by which we simply mean a graph with eight vertices, which is
topologically the incidence graph of a cube.

Definition. A cube in a projective line P
1 is harmonic if each of its faces

(wxyz) is harmonic, that is, the opposite vertices (wy) and (xz) are in
harmonic position.

Proposition 6. There exist fourteen harmonic cubes in F7P
1, made of 42

harmonic faces. They split uniquely into two PSL(2, F7)-orbits in such a

way that each harmonic face belongs to exactly one cube of each family.
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Figure 4. The fourteen harmonic cubes in F7P
1
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We thus get an interpretation of these two sets of harmonic cubes in F7P
1

as points and lines in a Fano plane. We arbitrarily distinguish these two
sets by calling them p-cubes and ℓ-cubes, respectively. (Note an interesting
analogy with the construction of the projective space over F2 given in [32]
from the Fano plane: there exists 30 unequivalent labelings of the seven
vertices up to the PSL(3, F2) action, and they are split into two families of
15 labelings by the property that each line appears only once in each family.)

The incidence relations can be defined as follows:

• Given a p-cube (respectively ℓ-cube), there exist exactly three ℓ-
cubes (respectively p-cubes) sharing a pair of opposite faces with
it.

• Given two p-cubes (respectively ℓ-cubes), there exists a unique p-
cube (respectively ℓ-cube) such that the three cubes can be split
each into two pairs of opposite edges forming squares with the same
fourtuples of vertices.

Note that each pair (ij) is the diagonal of exactly one p-cube and one
ℓ-cube.

A nice feature of the correspondence is that each pair of points in F7P
1

defines an edge of exactly three cubes in each family, corresponding to the
three vertices and to the three edges of a triangle in the Fano plane. There-
fore:

Proposition 7. There is an equivariant correspondence between the 28 tri-

angles in the Fano plane, and the 28 pairs of points in the projective line

over F7.

Explicitely, this correspondence is as follows, where the triples in boldface
are the vertices of a triangle in the Fano plane:

01 256 12 145 24 235 3∞ 146

02 346 13 234 25 247 45 456

03 457 14 136 26 126 46 157

04 124 15 357 2∞ 567 4∞ 347

05 167 16 467 34 267 56 134

06 237 1∞ 127 35 125 5∞ 236

0∞ 135 23 137 36 356 6∞ 245

What about the orientations of the Fano planes that we were interested
in? We can associate such an orientation, in a PSL(2, F7)-equivariant way,
to each point p ∈ F7P

1 as follows. For each point x in the Fano plane,
consider the point qx ∈ F7P

1 such that pqx is a diagonal of the harmonic cube
corresponding to x. (This defines a bijection between F2P

2 and F7P
1−{p}.)

Then the line ℓ = (xyz) will we positively oriented if the cross-ratio

(pqxqyqz) = 3.

On can easily check that in F7, this condition is invariant under a cyclic
permutation of (xyz), so that this definition really makes sense! This makes
explicit the identification that we obtained between the projective line over
F7 and half of the coherent orientations of the Fano plane. Of course we
obtain the other half by reversing all the arrows.
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Our correspondence has the property to transform certain special config-
urations of bitangents into nice sets of triangles. We mention three instances
of that.

1. When we index the bitangents by pairs of points in a set with eight
elements, we give a special role to the eight Aronhold sets Ai defined as
the seven bitangents (ij), j 6= i. Indeed, this follows from the discussion
of Example 4 above. We thus get eight sets of seven triangles Ti in the
Fano plane (corresponding to the eight points in F7P

1) with the following
properties: given a line ℓ and two points on it, there is a unique triangle in
Ti they are vertices of which; in particular, Ti is a copy of the Steiner triple
system S(2, 3, 7); from the three pairs of points in ℓ we thus deduce three
triangles in Ti; the three vertices of these triangles which do not belong to
ℓ are the vertices of a fourth triangle in Ti; this defines a natural bijection
between the lines of the Fano plane and the triangles in Ti.

123 174 156 246 257 345 376

T0 475 265 273 135 364 167 142
T1 467 265 234 375 163 172 154
T2 576 253 247 173 364 126 154
T3 475 356 234 173 146 276 125
T4 456 253 374 157 163 276 142
T5 456 236 247 375 134 167 125
T6 467 356 273 157 134 126 245
T∞ 576 236 374 135 465 172 245

This gives a remarkable configuration of eight Steiner triple systems formed
on 28 triangles in such a way that each of them appears exactly twice.

Moreover, each point and each line in the Fano plane belongs to exactly
three of the seven triangles in each system. And the centers of the seven
triangles are the seven points of the plane.

2. We have seen in Example 5 that syzygetic tetrads of bitangents are
defined by fourtuples of weights in the fundamental representation of e7
summing to zero, but not in two opposite pairs. There are two types of such
tetrads in Hesse’s notations: 105 are permutations of (01)(23)(45)(6∞) and
210 are permutations of (01)(23)(02)(13). Each of these tetrads defines a
special configuration of four triangles, a typical one being
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The four triangles in this picture are the great exterior triangle, plus the
three triangles having the center of the picture for vertex, plus two others
on the middle points of two of the sides of the first one.
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3. A triple of points on the projective line over F7 defines three pairs,
hence three triangles in the Fano plane. The following statement leads us
back to the orientation problem which was the starting point of this long
digression.

Proposition 8. There is an induced equivariant correspondence between

triples of points on the projective line over F7, and oriented triangles in the

Fano plane.

This goes as follows. Consider an oriented triangle in F2P
2. For each

vertex, consider the middle point on the opposite side, and then go to the
next vertex following the orientation. We thus get three (non oriented)
triangles, which can be checked to be in correspondence with three pairs
(ab), (bc), (ac) of a unique triple (abc) of points on F7P

1.
Given a pair (pq) of points in F7P

1, it defines a triangle in the Fano plane,
hence two oriented triangles, hence two triples of points in the projective
line. How can we obtain them directly? Simply by considering the unique
harmonic cube in one of our two families having (pq) for diagonal. Then the
three points on an edge of this cube passing to p (respectively q) give the
two triples.

Another setting for the bitangents. The natural inclusion SL(3, F2) ⊂
Sp(6, F2) = W (E7)

+ suggests to encode the 28 bitangents and their symme-
try group, directly in the geometry of the Fano plane. This can indeed be
done in a very natural way, once we have identified the bitangents with the
28 triangles in the Fano plane. Recall that the group of the bitangents is
generated by the transpositions sij and the bifid tranformations s(pqrs|xyzt).
We have checked that they have a simple geometric interpretation in terms
of triangles.

Transpositions. Let T be the triangle associated to the pair (ij). There is
a unique point in the Fano plane which does not belong to a side of T , and
we call this point the center of the triangle. Up to the action of SL(3, F2)
we can draw the Fano plane in such a way that the exterior of the picture
is precisely T . Then the involution σT on the set of triangles exchanges
triangles as shown in the following picture:
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Otherwise said, a triangle whose vertices are a vertex v of T , the center c
of T and the middle point p of a side of T , is mapped to the triangle whose
vertices are p, its symmetric point w with respect to c, and the middle point
of the side vw – and conversely, while the other triangles remain unchanged.

Bifid transformations. One can check that the 35 bifid transformations,
when we interprete them as operations on the triangles, split into three
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types which are naturally associated to the seven points p, the seven lines
ℓ, and the 21 pairs of incident points and lines p ∈ ℓ in the Fano plane. We
get the following transformations.

Associated to a point p is a transformation σp who takes a triangle with
a side whose middle point is p, and changes the opposite vertex to the
symmetric point with respect to p.
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Associated to a line ℓ is a transformation σℓ who takes a triangle with a
unique vertex v on ℓ, and changes the two other vertices to the symmetric
points with respect to v.
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Note that these two types of transformations are exchanged by the po-
larity transformation on the set of triangles, which exchanges vertices and
sides in the Fano plane with sides and vertices in the dual Fano plane.

Finally, associated to a pair p ∈ ℓ is a transformation σp,ℓ who takes a
triangle with a unique vertex v 6= p on ℓ, whose opposite side s has p for
middle point, to the triangle with vertex the symmetric point of v with
respect to p, and opposite side the symmetric of s with respect to ℓ.
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The group of the bitangents is isomorphic with the group of permutations
of the triangles generated by the elementary tranformations σT , σp, σℓ, σp,ℓ.
It contains SL(3, F2) as the group of collinations acting on the triangles.
This makes clear the natural inclusions

SL(3, F2) ⊂ S8 ⊂ Sp(6, F2) = W (E7)
+.
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5. Del Pezzo surfaces of degree one

The bicanonical model of a Del Pezzo surface of degree one is the double
cover of a quadratic cone, branched over a canonical space curve of genus 4
and degree 6 given by the complete intersection of the cone with a unique
cubic surface ([9] V.1). The 240 lines on the Del Pezzo surface arise in
pairs from the 120 tritangent planes to the canonical curve, which can be
identified with its odd theta characteristics. Moreover, the fact that the
unique quadric containing this curve is a cone distinguishes one of the 136
even theta characteristic by the property that it vanishes at the vertex of
that cone.

The automorphism group of the 240 lines is the Weyl group W (E8) of the
root system of type E8. Its order is 696 729 600 = 128×27×5×8! = 21335527.
The automorphism group of the 120 tritangent planes is the quotient by
the normal subgroup {±1} and can be identified with the orthogonal group
O(8, F2)

+ which preserves the quadratic form given by half the natural norm
on the root lattice mod 2 ([2], Exercice 1 of section 4, p. 228). Among the
28 = 256 points in F

8
2, those with norm one can be identified with the

odd theta-characteristics, and those with norm zero with the even theta-
characteristics, including the special one which identifies with the origin.

If we consider the action of the adjoint group E8 on the projectivized
adjoint representation Pe8, the 240 root spaces can be interpreted as a kind
of finite skeleton of the closed orbit, the adjoint variety of E8. This vari-
ety parametrizes the so-called symplecta in Freudenthal’s metasymplectic
geometry (see [27]).

The affine Dynkin diagram of E8 is

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Relevant configurations will be provided by the simplest markings.

Example 1. We mark the node next to the rightmost extremal node. Then
h = sl2 × e7 and W has index 120 in W (E8).

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

•

The branching gives the binary model

e8 = sl2 × e7 ⊕A ⊗ V,

where V is again the minimal 56-dimensional representation of e7. In par-
ticular, this associates to each root α (up to sign) of e8 a complex Sα of
56 tritangent planes. Two complexes Sα and Sβ have two possible relative
positions, distinguished by the fact that (α, β) = 0 or not.

In the latter case, exactly as for e7 the two complexes are azygetic and can
be completed uniquely with a third complex Sγ , with γ = α ± β, azygetic
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to both of them. There exists 1120 such azygetic triads of complexes. This
leads to the ternary model of e8,

e8 = sl3 × e6 ⊕ (B ⊗ J)⊕ (B ⊗ J)∗.

The 120 tritangent planes are partitioned into the triple (α, β, γ), three sets
Sαβ, Sαγ , Sβγ of cardinality 27, and their complement of cardinality 36, with

Sα = {β, γ} ∪ Sαβ ∪ Sαγ .

In the former case, the two complexes are syzygetic. Since their common
orthogonal subsystem is a root system of type A1 × A1 × D4, we can de-
fine a syzygetic tetrad of complexes to consist in four syzygetic complexes
orthogonal to a D4-subsystem of the root system E8. Note that we have
three syzygetic tetrads for each D4-subsystem, making a total of 9450 such
tetrads.

A pair of syzygetic complexes can be completed uniquely into a syzygetic
tetrad (α, β, γ, δ). The other 116 tritangent planes are then partitioned
into a set Sαβγδ of cardinality 8, six sets Sαβ, Sαγ , Sαδ, Sβγ , Sβδ, Sγδ of
cardinality 16, and their complement of cardinality 12. Here

Sα = Sαβγδ ∪ Sαβ ∪ Sαγ ∪ Sαδ.

Example 2. We mark the leftmost node. Then h = spin16 and W has index
135 in W (E8).

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

•

The branching gives another very nice model,

e8 = spin16 ⊕∆,

where ∆ is a half-spin representation, of dimension 128.
Geometrically, we get twelve dimensional quadrics in the adjoint variety.

Example 3. We mark the lowest node. Then h = sl9 and W = S9 has index
1920.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

•

The branching gives one of the prettiest models of e8, namely

e8 = sl9 ⊕Λ3U ⊕Λ6U,

where U denotes the natural nine dimensional representation. The sl9 fac-
tor defines what Du Val calls an α8 configuration in the uniform polytope
421. (Note that there are 960 such configurations rather than 1920. This
is because of the invariance by −1, the longest element in W (E8): indeed
its restriction to the root system A8 of sl9 does not belong to W (A8) but
defines an order two outer automorphism). It can be interpreted as a spe-
cial system of then even theta-characteristics ([13], p. 51). One deduces a
special set of 84, and the complementary set of 36 tritangent planes: the
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odd theta-characteristics of the former set are obtained as sums of three of
the distinguished even theta-characteristics (which is visible from the fact
that they correspond to weights of a third wedge power), and the latter as
sums of only two of them.

Geometrically, we obtain copies of P
7 in the adjoint variety. From this

point of view there is a close analogy with Aronhold sets of bitangents to
the plane quartic curve.

There is also a strong analogy with the decomposition of e7 that we de-
scribed in Example 2 above, from which we recovered Hesse’s notation for
the bitangents to the plane quartic, and the so called bifid transformations.
Here the roots of e8, up to sign, are split in two types by the model we are
discussing. The roots that are weights of the factor Λ3U are indexed by
a triple (ijk) of integers between 1 and 9. The roots or sl9 are indexed,
up to sign, by a pair (ij) that we can identify with the triple (0ij). The
tritangent planes are then indexed by the 120 triples of integers between 1
and 10, a notation first introduced by Pascal (see [6]). Moreover, the group
of the tritangent planes is generated by the symmetric group S9 plus the
symmetries associated to the triples (ijk), which are again called bifid trans-

formations (but beware that it does not contain the symmetric group S10).
An easy computation shows that the bifid transformation associated to (ijk)
exchanges (ijℓ) with (0kℓ) and sends a triple (abc) to (pqr) if ijkabcpqr is
a permutation of 123456789 – while the other triples are fixed.

There is a connection with the model for e6 discussed in Example 4 of
section 3, as we can see by splitting the nine dimensional representation U
into three supplementary spaces of dimension three. In fact the correspond-
ing subroot system of type A3

2 in E8 is orthogonal to another A2 subsystem,
and we get another interesting model for e8, which is graded over Z3 × Z3:

e8 = sl(A1) × sl(A2) × sl(A3) × sl(A4)⊕
⊕A1234 ⊕A1∗234 ⊕A12∗34 ⊕A1234∗

⊕A∗
1234 ⊕A∗

1∗234 ⊕A∗
12∗34 ⊕A∗

1234∗ ,

where A1, A2, A3, A4 are three dimensional and we used the notation A1∗234 =
A∗

1 ⊗A2 ⊗A3 ⊗A4. But this grading does not seem to be supported by any
interesting geometry.

Example 2, continued. The trialitarian model of e8 arises when we extract
from spin16 two orthogonal copies of spin8. This can be seen from the affine
Dynkin diagram of type D8:

◦ ◦ ◦ ◦ ◦

◦

◦

@@

��
•

◦

◦

��

@@

Indeed, we get

e8 = spin8 × spin8 ⊕ (O1 ⊕O
′
1)⊕ (O2 ⊕O

′
2)⊕ (O3 ⊕O

′
3),

where O1, O2, O3 are the three eight-dimensional irreducible representations
of spin8. This models splits the 120 tritangent planes into two groups of 12
and three groups of 32. With which geometric characterization?
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Then we can split each spin8 using four copies of sl2; we know that each of
its eight-dimensional representation has a nice decomposition, and putting
them together we obtain

e8 = ×8
i=1sl(Ai)⊕

⊕

(ijkl)∈I

Ai ⊗Aj ⊗Ak ⊗Al,

where I is the following set of 14 quadruples:

1234 5678
1256 3478
1278 3456
1357 2468
1368 2457
1458 2367
1467 2358

As in the case of e7 these fourteen quadruples form a Steiner quadruple sys-

tem S(3, 4, 8). In fact there exists a unique such system up to isomorphism.

Remark. Such a decomposition is induced by the choice of a root subsystem
of type A8

1 inside the root system E8. This is equivalent to what Du Val
calls a β8 configuration in the polytope 421. There is also a correspondence
with the 135 even theta-characteristics, or the 135 norm one vectors in the
root lattice mod 2, which can be seen as follows. Consider such a vector, for
example θ = ω1 + ω2 + ω3 + ω4 + ω5 + ω6 + ω7 + ω8 if we denote by ±ωi the
weights of Ai. Among the 127 projective lines through θ, 63 are contained
in the quadric, 56 are tangents and only 8 are true bisecants; on each of
these bisecants there is a unique point outside the quadric and we obtain a
set of eight points defining a subsystem of type A8

1.

Let us consider our Steiner quadruple system is some detail. We first
note that each quadruple (ijkl) ∈ I defines a copy of so8 ≃ sl(Ai)× sl(Aj)×
sl(Ak) × sl(Al)⊕ (Ai ⊗Aj ⊗Ak ⊗Al) inside e8. We have thus constructed
e8 by gluing together fourteen copies of so8 overlapping over eight copies of
sl2!

We can interprete the 14 quadruples in I as points of a configuration
whose lines are triples of type (ijkl), (klmn), (ijmn). A straightforward
inspection shows that there are exactly 28 lines. Moreover, each line has
three points and each point belongs to 6 lines. In other words, we have
obtained a (146, 283)-configuration.

This configuration has the following interpretation. Consider F2P
3, the

three dimensional projective space over the field with two elements. It has
fifteen points. Choose one, say p∞, and throw it away. Since F2P

3 contains
35 lines, 7 of which passing through p∞, we remain with 14 points and 28
lines whose incidence configuration is the one we are interested in.

In particular, note the following properties:

(1) each point p has an antipodal point p∗, the unique point to which it
is not joined by a line – in F2P

3, this is the third point of the line
pp∞;

(2) the 6 lines passing through a point p split naturally into three pairs,
in such a way that the four points different from p on each pair,
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belong to a pair of lines passing through p∗; in F2P
3, these three

pairs are cut by the three planes containing the line pp∞;
(3) the configuration is made of eight copies of the Fano plane, corre-

sponding to the eight planes in F2P
3 not containing p∞; the other

seven planes give sub-configurations of type (62, 43) which are pointed
Fano planes.

But the most satisfactory way to understand our configuration is probably
to see it as a doubled Fano plane. By this we mean that we can associate to
each point of the Fano plane a pair of antipodal quadruples, in such a way
that the 28 lines of the configuration correspond four by four to the lines
of the Fano plane. In terms of Lie subalgebras of e8, this associates to each
point of the Fano plane a copy of so8 × so8, and to each line a copy of so16.
Moreover, there exists four copies of so12 inside the so16 defined by a line,
meeting each so8 × so8 corresponding to one of its points, along one of the
two so8 factors.

We have even more structure if we note that each integer i between 1
and 8 determines a copy of e7 inside e8. Two such copies meet along one
of the so12 indexed by the 28 lines. This has an interesting combinatorial
interpretation. Consider the following 8 × 8 array:

0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0

It is symmetric with respect to the main diagonal, and each number j be-
tween 0 and 7 appears once and only once in each line and in each column.
If we associate to j the four pairs (lc) of numbers indexing the lines and
columns of the boxes where j appears, this means that we obtain a parti-
tion of [1, 8] into four pairs, for a total number of 28 distinct pairs:

(12)(34)(56)(78)
(13)(24)(57)(68)
(14)(23)(58)(67)
(15)(26)(37)(48)
(16)(25)(38)(47)
(17)(28)(35)(46)
(18)(27)(36)(45)

(Note that this array can also be obtained from the diagonals of each family
of seven harmonic cubes of Figure 5.) These seven partitions index our
seven lines in the following way: to each (ij)(kl)(pq)(rs) are associated the
six quadruples obtained by selecting two of the four pairs. The incidence
is given by the following rule: two lines being given, they can always be
indexed by partitions of type (ij)(kl)(pq)(rs) (ik)(jl)(pr)(qs), and then their
intersection point is indexed by the pair of antipodal quadruples (ijkl) and
(pqrs).
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We recapitulate the main conclusions of our discussion:

Theorem 9. The exceptional complex Lie algebra e8 has a natural structure

of an O-graded Lie algebra, obtained by gluing seven copies of so8 × so8

indexed by the points of a Fano plane.

This occurs in such a way that the three copies indexed by three points of

a same line are glued together in a copy of so16.

First application. This construction of e8 isolates eight tritangent planes
corresponding to the roots of the eight copies of sl2, the remaining 112
tritangent planes being split into fourteen groups of eight.

Define a syzygetic tetrad of tritangent planes by the property that their
twelve tangency points are the twelve intersection points of the sextic canon-
ical curve with some quadric hypersurface. This means that they can be
defined by four roots summing to zero. We claim that the eight tritangent
planes associated to each factor Ai ⊗Aj ⊗Ak ⊗Al in our decomposition of
e8, can be split in two syzygetic tetrads in exactly six ways. Indeed, the
corresponding roots are the ±ǫi ± ǫj ± ǫk ± ǫl and two syzygetic tetrads are
given by the following two sign tables:

+ + + + + − + −
+ + − − + − − +
− − + − − + + +
− − − + − + − −

The other five are obtained by permuting the three last columns of each
table.

Second application. An orthogonal decomposition (OD) of a semisimple Lie
algebra g is a decomposition g = ⊕h

i=0ti into a direct sum of Cartan subal-
gebras. Such an OD is multiplicative if for each pair (i, j), there exists an
integer k such that [ti, tj ] ⊂ tk. A trivial example is that of sl2 = sl(A), once
we have chosen a basis (e, f) of A. If X,Y,H is the associated canonical
basis of sl2(A), a multiplicative OD (or MOD) is given be the three lines
generated by H,X + Y and X − Y .

Multiplicative OD’s have been used by Thompson to construct the finite
sporadic simple group denoted Th or F3. Indeed, his construction relied on
the existence of a multiplicative OD for e8.

In fact there exists, up to isomorphism, a unique multiplicative OD of e8
([26], Chapter 3). Our construction provides it for free! Indeed we just need
to notice that each component Ai ⊗Aj ⊗Ak ⊗Al can be split into the direct
sum of two Cartan subalgebras t±ijkl by choosing a basis (ei, fi) of each Ai,
and letting

t±ijkl = 〈xi ⊗xj ⊗xk ⊗xl ± yi ⊗ yj ⊗ yk ⊗ yl〉,

where (xi, yi) is (ei, fi) or (fi, ei). This gives 28 Cartan subalgebras of e8,
and we add three others, say t0, t+ and t−, by putting together the OD’s
of the sl(Ai)’s associated to the basis of the Ai’s that we have chosen. We
obtain:
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Theorem 10. The direct sum decomposition

e8 = t0 ⊕ t+ ⊕ t− ⊕
⊕

(ijkl)∈I

(t+ijkl ⊕ t−ijkl)

is a multiplicative OD of e8.
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Astérisque 165, SMF 1988.
[13] Du Val P., On the directrices of a set of points in a plane, Proc. Lond. Math.

Soc., II. Ser. 35 (1933), 23-74.
[14] Dye R.H., A plane sextic curve of genus 4 with A5 for collineation group, J.

London Math. Soc. (2) 52 (1995), no. 1, 97–110.
[15] Edge W.L., Tritangent planes of Bring’s curve, J. London Math. Soc. (2) 23

(1981), no. 2, 215–222.
[16] Edge W.L., Bring’s curve, J. London Math. Soc. (2) 18 (1978), no. 3, 539–545.
[17] Edge W.L., Quadrics over GF(2) and their relevance for the cubic surface group,

Canad. J. Math. 11 (1959), 625–645.
[18] Faulkner J., Generalized quadrangles and cubic forms, Comm. Algebra 29 (2001),

no. 10, 4641–4653.
[19] Frame J.S., A symmetric representation of the 27 lines on a cubic surface by

lines in a finite geometry, Bull. Amer. Math. Soc. 44 (1938), 658-661.
[20] Gelfand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, resultants, and

multidimensional determinants, Birkhäuser 1994.
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