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Abstract

The aim of this article is to simplify Pfanzagl’s proof of consistency for
asymptotic maximum likelihood estimators, and to extend it to more general
asymptotic M -estimators. The method relies on the existence of a sort of
contraction of the parameter space which admits the true parameter as a
fixed point. The proofs are short and elementary.

1 Introduction

After the seminal work1 of Fisher, the asymptotic properties of maximum likelihood
estimators, and in particular their consistency, were studied by various authors, in-
cluding Doob [Doo34], Cramér [Cra46], and Huzurbazar [Huz48]. Nowadays, one of
the best known result regarding consistency goes back to Wald, who gave in [Wal49]
a short and elegant proof of strong consistency of parametric maximum likelihood
estimators. Since that time, several authors studied various versions of such con-
sistency problems, including among others, Le Cam [LC53], Kiefer and Wolfowitz
[KW56], Bahadur [Bah67, Bah71], Huber [Hub67], Perlman [Per72], Wang [Wan85],
and Pfanzagl [Pfa88, Pfa90].

Wald’s original proof relies roughly on local compactness of the parameter space,
on continuity and coercivity2 of the log-likelihood, on the law of large numbers, and
last but not least on local uniform integrability of the log-likelihood. It does not re-
quire differentiability, and makes extensive use of likelihood ratios. The integrability
assumption has been weakened by many authors, including for instance Kiefer and
Wolfowitz in [KW56] and Perlman in [Per72], see also [Bah71]. One can find a mod-
ern presentation of Wald’s method for M-estimators in van der Vaart’s monograph
[vdV98].

Pfanzagl gave in [Pfa88, Pfa90] a proof of strong consistency of asymptotic max-
imum likelihood estimators for nonparametric “concave models” with respect to the

1The interested reader may find a quite recent account in [Ald97] and references therein.
2By coercivity we mean that the log-likelihood tends to −∞ when the parameter tends to ∞.
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estimated parameter, including nonparametric mixtures. His approach relies in par-
ticular on a simplification of an earlier work of Wang in [Wan85] based on uniform
local bound of the likelihood ratio.

The present work was initially motivated by the inverse problems considered in
[CL06]. Our aim is to simplify Pfanzagl’s approach, and to extend the framework
from asymptotic maximum likelihood to more general asymptotic M-estimators. In
particular, log-likelihood ratios are replaced by contrast differences. The hypotheses
appearing in our main Theorem are unnecessarily strong. However, they allow a
simple and short presentation. We emphasize the role played by a sort of contraction
map a∗ defined on the parameter space. We do not assume any coercivity of the
contrast as in [Wal49]. However, we require the compactness of the space of the
estimated parameter, as in [KW56] and [vdV98] for example. This compactness
comes usually for free in the case of fully nonparametric models. We do not make
use of any Uniform Law of Large Numbers. Our method does not belong to the
Glivenko-Cantelli approaches of consistency, as in [Dud98], [Fio00], [AK94], [vdV98]
and [vdG03, vdG00] and references therein.

Let Θ be a separable Hausdorff topological space with countable base. Let
(Pθ)θ∈Θ be a known family of Borel measures on a measurable space X . Let θ∗ ∈ Θ
be some unknown point of Θ such that P ∗ := Pθ∗ is a probability measure. Let
(Xn)n∈N be an i.i.d. sequence of observed random variables defined on a probability

space (Ω,F , P) and taking their values in X , with common law P ∗. Let (θ̂n)n∈N be
a sequence of random variables defined on (Ω,F , P), taking their values in Θ, and

such that (θ̂n)n∈N is Fn-measurable for any n ∈ N, where Fn := σ(X0, . . . , Xn). We

say that (θ̂n)n∈N is strongly consistent if and only if

P − a.s. lim
n→+∞

θ̂n = θ∗. (1)

We use in the sequel the abbreviations “a.s.” for almost sure, “a.a.” for almost all,
and “a.e.” for almost everywhere. Let Θ × X ∋ (θ, x) 7→ m(θ, x) ∈ R be a known
function such that mθ := m(θ, ·) is measurable for any θ ∈ Θ. For any n, we define
the random function Mn : Θ → R by

Mn(θ) :=
1

n

n∑

i=1

m(θ, Xi).

This can be written also Mn(θ) = Pnmθ where Pn := 1
n
(δX1

+ · · · + δXn
) is the

empirical measure. We say that (θ̂n)n is a sequence of asymptotic M-estimators if
and only if

P − a.s. lim
n→+∞

(
sup
Θ

Mn − Mn(θ̂n)

)
= 0. (2)

The term asymptotic is used for the same notion (with the likelihood) by Pfanzagl
in [Pfa88]. In the literature, some authors, including Wald and Perlman, use the
term approximate rather than asymptotic. However, the term approximate has been
used by Bahadur in a different sense in [Bah71, page 34].
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For example, if for large enough n, there exists an Fn-measurable θ̂n in Θ such
that Mn(θ̂n) = supΘ Mn, then such a random sequence (θ̂n)n∈N fulfils (2).

For any probability measure P on X , let L1
+(X , P ) (resp. L1

−(X , P )) be the
set of random variables Z : X → R such that Z+ := max(+Z, 0) (resp. Z− :=
max(−Z, 0)) is in L1(X , P ). On E(X , P ) := L1

−(X , P ) ∪ L1
+(X , P ), the expectation

P (Z) = P (Z+) − P (Z−) makes sense and takes its values in R := R ∪ {±∞}. For
any θ ∈ Θ such that mθ ∈ E(X , P ∗), we define the contrast M∗(θ) ∈ R by

M∗(θ) := P ∗mθ. (3)

In the sequel, we say that the model is identifiable when for any θ ∈ Θ, the condition
Pθ = P ∗ implies that θ = θ∗.

Example 1.1 (Log-Likelihood). Assume that for some fixed Borel measure Q on
X , one has Pθ ≪ Q for any θ ∈ Θ. Let fθ := dPθ/dQ and assume that fθ > 0
on X for any θ ∈ Θ. Define m(θ, x) := log(fθ(x)). Then Mn : Θ → R is the log-
likelihood random functional given by Mn(θ) = Pnmθ = Pn log(fθ). We will speak
about sequences of “asymptotic maximum likelihood estimators”. The log-likelihood
ratio is

Mn(θ1) − Mn(θ2) = Pn log(fθ1
/fθ2

).

As usual for the log-likelihood, when M∗(θ∗) is finite, one can write for any θ

M∗(θ) − M∗(θ∗) = −Ent(Pθ∗ |Pθ) ,

where Ent(Pθ1
|Pθ2

) is the Kullback-Leibler relative entropy of Pθ1
with respect to

Pθ2
. In particular, M∗(θ) ≤ M∗(θ∗) with equality if and only if Pθ = Pθ∗, which

implies θ = θ∗ if the model is identifiable. Notice that when Q is the Lebesgue
measure on X = R

n, then −M∗(θ∗) = −
∫
X

fθ∗(x) log(fθ∗(x)) dx is the Shannon
entropy of fθ∗.

Example 1.2 (Beyond the log-likelihood). Assume that for some fixed Borel
measure Q on X , one has Pθ ≪ Q for any θ ∈ Θ, with Pθ(X ) ≤ 1 and fθ := dPθ/dQ.
Let Φ, Ψ : (0, +∞) → R be two smooth functions. Assume that Ψ(fθ) ∈ L1(X , Q)
for any θ ∈ Θ. Define mθ by

mθ = Φ(fθ) −

∫

X

Ψ(fθ) dQ + Pθ(X ).

This gives rise the the following empirical contrast

Mn(θ) = Pn(Φ(fθ)) −

∫

X

Ψ(fθ) dQ + Pθ(X ).

In particular, if θ ∈ Θ is such that Φ(fθ) ∈ L1(X , P ∗) where here again P ∗ := Pθ∗,

M∗(θ) = P ∗(Φ(fθ)) −

∫

X

Ψ(fθ) dQ + Pθ(X ).
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Assume now that u 7→ uΦ′(u) is locally integrable on R+, and consider the case
where Ψ is the Φ-transform given for any u ∈ (0, +∞) by

Ψ(u) =

∫ u

0

vΦ′(v) dv.

For Φ : u 7→ log(u), one has Ψ : u 7→ u and we recover the log-likelihood contrast

M∗(θ) = P ∗(log(fθ)).

For Φ : u 7→ u, one has Ψ : u 7→ 1
2
u2, and we get the quadratic contrast

M∗(θ) = −1
2
‖fθ − fθ∗‖

2
L2(X ,Q) + 1

2
‖fθ∗‖

2
L2(X ,Q) + Pθ(X ).

In both cases, the map θ 7→ M∗(θ) admits θ∗ as unique maximum provided that the
model is identifiable. More generally, define the Φ-transform Θ : (0, +∞)2 → R by

Θ(u, v) : = uΦ(v) − Ψ(v)

= uΦ(v) −

∫ v

0

wΦ′(w) dw.

When θ and θ∗ are such that both Θ(fθ∗ , fθ∗) and Θ(fθ∗ , fθ) belong to L1(X , Q),

M∗(θ) =

∫

X

(Θ(fθ∗, fθ) − Θ(fθ∗ , fθ∗)) dQ +

∫

X

Θ(fθ∗, fθ∗) dQ + Pθ(X ).

Notice that Θ is linear in Φ. One can consider useful examples for which the function
Φ is bounded, in such a way that mθ is bounded for any θ ∈ Θ. For instance, let us
examine the case where Φ : u 7→ −(1 + u)−2. Then, Ψ : u 7→ −u2(1 + u)−2, and the
map θ 7→ M∗(θ) admits θ∗ as unique maximum, provided identifiability holds, since
for any (u, v) ∈ R

2
+,

Θ(u, v) = −
u + v2

(1 + v)2
and Θ(u, v) − Θ(u, u) = −

(v − u)2

(1 + u)(1 + v)2
.

The function Ψ is additionally bounded here. The similar case Φ : u 7→ −(1 + u2)−1

is also quite interesting. Notice that Θ(u, ·) is concave on (0, +∞) as soon as Φ is
concave, non decreasing, with Φ′(v) + vΦ′′(v) ≥ 0 for any v > 0. Observe that this
is not the approach of Pfanzagl in [Pfa90], which is more related to the log-likelihood
ratio. Notice that in the case of the log-likelihood, one has Φ : u 7→ log(u), which
gives Ψ : u 7→ u and Θ : (u, v) 7→ −u log(v) − v, and thus Θ(u, v) − Θ(u, u) =
u log(u/v)+ u− v. It might be possible to extensively study such “Φ-estimators”, in
the spirit of the “Φ-calculus” developed in [Cha04, Cha06]. This is however outside
the scope of this short article.

One can notice that the observation of Lindsay in [Lin83a, Lin83b] regarding the
nature of maximum likelihood for nonparametric mixture models remains valid for
more general models provided that m is concave.
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2 Main result and Corollaries

With the settings given in the Introduction, the following Theorem holds.

Theorem 2.1. Assume that Θ is compact and that the following assumptions hold.

(A1) For P ∗-a.a. x ∈ X , the map m(·, x) is continuous on Θ;

(A2) There exists a continuous map a∗ : Θ → Θ which may depend on θ∗ such
that for any θ 6= θ∗, there exists a neighborhood V ⊂ Θ of θ for which
supV (m − ma∗) ∈ L1

+(X , P ∗) and P ∗(mθ − ma∗(θ)) < 0.

Then any sequence (θ̂n)n of asymptotic M-estimators is strongly consistent.

Proof. Postponed to section 4.

The quantity P ∗(mθ − ma∗(θ)) in (A2) has a meaning in R since the first part
of (A2) ensures that mθ − ma∗(θ) ∈ L1

+(X , P ∗). Moreover, P ∗(mθ − ma∗(θ)) reads
M∗(θ)−M∗(a∗(θ)) when the couple (mθ, ma∗(θ)) is in L1

−(X , P ∗)× L1
+(X , P ∗) or in

L1
+(X , P ∗) × L1

−(X , P ∗).
Since θ∗ is unknown in practice, each assumption in Theorem 2.1 must hold for

any θ∗ ∈ Θ such that Pθ∗ is a probability measure, in order to make the result useful.

Remark 2.2 (Assumptions). The first part of (A2) is in a way an M-estimator
version of the integrability condition considered by Kiefer and Wolfowitz for the log-
likelihood in [KW56]. The assumptions (A1) and (A2) required by Theorem 2.1
can be weakened. However, they permit a streamlined presentation. In particular,
only lower semi-continuity is needed in (A1), see for instance [Pfa88]. Additionally,
and following for example [Per72, page 266], the uniform integrability assumption
(A2) can be weakened, by considering blocks of k > 1 observations instead of one
observation, see also [vdV98, comments following Theorem 5.14].

As stated in the following Corollary, Theorem 2.1 implies a version of Wald
consistency Theorem for asymptotic M-estimators, see [Wal49], [Per72, Section 2
page 269], and [vdV98, Theorem 5.14].

Corollary 2.3 (Perlman-Wald). Assume that Θ is compact, and that for P ∗-a.a.
x ∈ X , the map m(·, x) is continuous on Θ. Assume that for any θ in Θ, there
exists a neighborhood V such that supV m ∈ L1(X , P ∗). Assume in addition that
M∗ achieves its supremum over Θ at θ∗, and only at θ∗. Then, any sequence of
asymptotic M-estimators is strongly consistent.

Proof. One has mθ ∈ L1(X , P ∗) for any θ in Θ, and thus M∗ : Θ → R is well defined.
Moreover, (A2) holds with a constant map a∗ ≡ θ∗. Namely, for any θ 6= θ∗, one
has on one hand P ∗(mθ − mθ∗) < 0 since M∗(θ) < M∗(θ∗), and on the other hand

sup
V

(m − ma∗) = −mθ∗ + sup
V

m ∈ L1(X , P ∗).
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As stated in the following Corollary, Theorem 2.1 implies the main result of
Pfanzagl in [Pfa88] for concave models, itself based on an earlier result of Wang in
[Wan85]. This is typically the case for mixtures models, for which Θ is a convex set
of probability measures on some measurable space, cf. section 3.

Corollary 2.4 (Pfanzagl-Wang). Let Q be a reference Borel measure on X . Con-
sider the case where Θ is a convex compact subset of a linear space such that for any
θ ∈ Θ, Pθ(X ) ≤ 1 and Pθ ≪ Q with fθ := dPθ/dQ > 0 on X . Suppose that Q-a.e.
on X , the map θ 7→ fθ(x) is concave and continuous on Θ. Assume that the model
is identifiable. Consider mθ := log(fθ) and the related log-likelihood Mn. Then any
sequence of asymptotic log-likelihood estimators is strongly consistent.

Proof. First of all, we notice that it is not possible to take a∗ ≡ θ∗ since we cannot
ensure that the condition mθ∗ − mθ = log(fθ∗/fθ) ∈ L1

+(X , P ∗) of (A2) is true.
However, the concavity of the model allows to take a map a∗ which is a strict
contraction around θ∗. Namely, for an arbitrary λ ∈ (0, 1), let us take

a∗(θ) := λθ∗ + (1 − λ)θ.

The concavity of the model yields

ma∗(θ) − mθ = log

(
fλθ∗+(1−λ)θ

fθ

)
≥ log

(
λfθ∗ + (1 − λ)fθ

fθ

)
≥ log(1 − λ).

Now, we have log(1 − λ) ∈ L1(X , P ∗) since λ < 1. Define the function Φ : R+ → R

by Φ(u) := u log(λu + (1 − λ)). The concavity of the model yields

P ∗(ma∗(θ) − mθ) ≥

∫

X

fθ∗ log

(
λfθ∗ + (1 − λ)fθ

fθ

)
dQ =

∫

X

Φ

(
fθ∗

fθ

)
fθ dQ.

Let us show that the right hand side of the inequality above is strictly positive when
θ 6= θ∗. One has Pθ(X ) > 0 since fθ > 0. Define Ψ(u) := uΦ(1/u). Jensen’s
inequality for the probability measure Pθ(X )−1Pθ and the convex function Φ yields

∫

X

Φ

(
fθ∗

fθ

)
fθ dQ ≥ Ψ(Pθ(X )). (4)

It is enough to show that either (4) is strict or the right hand side of (4) is strictly
positive. Since λ > 0, the function Φ is strictly convex. Thus equality holds in
(4) if and only if Pθ(fθ∗ = αfθ) = 1 for some α ∈ R+. The only admissible case is
α = Pθ(X )−1 > 1 since Pθ∗(X ) = 1 and since identifiability forbids Pθ(fθ∗ = fθ) = 1.
Therefore, if Pθ(X ) = 1, inequality (4) is necessarily strict. On the other hand,
Ψ(1) = 0 and Ψ(u) > 0 when u < 1. Thus the right hand side of (4) is always
non negative, and is strictly positive as soon as Pθ(X ) < 1. We conclude that
P ∗(ma∗(θ) − mθ) > 0 as soon as θ 6= θ∗. This shows that (A2) holds with V = Θ,
and the proof is thus complete.
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Remark 2.5 (About the map a∗). Let a∗ : Θ → Θ be a map which satisfies the
condition P ∗(mθ − ma∗(θ)) < 0 for any θ 6= θ∗ of (A2). Then, the impossibility of
P ∗(mθ − mθ) < 0 for any θ yields that

• a∗(θ) 6= θ for any θ 6= θ∗. In particular,

– the map a∗ cannot be the identity map ;

– if a∗ is constant, then a∗ ≡ θ∗ ;

– the point θ∗ is the only possible fixed point for a∗.

The proof of Corollary 2.3 gives an example where a∗ ≡ θ∗ works and fulfills (A2).
In contrast, Corollary 2.4 provides a situation where a constant a∗ does not fulfill
(A2). However, we have shown in the proof of Corollary 2.4 that an a∗ map which is
a strict contraction around θ∗ fulfills (A2). Actually, when Θ has the structure of a
convex subset of a vector space, any strict contraction around θ∗ fulfills the properties
of a∗ listed above. The existence of a fixed point can be related to Brouwer-like fixed
point Theorems. For instance, any continuous mapping of a non-empty compact
convex subset of R

d into itself contains at least one fixed point. Consequently, when
Θ is a non-empty compact and convex subset of R

d, any continuous a∗ map admits
θ∗ as a unique fixed point. There exists numerous dimension free Brouwer-like fixed
points theorems, due to Schauder, Tikhonov, Kakutani, . . . , see for instance [Zei86]
and [Goe02].

Remark 2.6 (Infinite values of m). Theorem 2.1 does not allow m to take the
value −∞. This limitation is due to the fact that differences of the form mθ − mθ′

do not make sense if m is allowed to take the value −∞. The consistency proof of
Wald does not suffer from such a limitation since it does not rely on m differences,
but it requires however strong uniform integrability assumptions. A careful reading
of the proof of Theorem 2.1 shows that only differences of the form mθ − ma∗(θ) are
involved. On the other hand, according to Remark 2.5, a∗(θ) 6= θ for any θ 6= θ∗.
Consequently, one may allow, in Theorem 2.1, the map m(θ, x) to take the value
−∞ for at most one value of θ. For the log-likelihood, mθ = log(fθ) and one has
mθ(x) = −∞ if and only if fθ(x) = 0. One may allow fθ ≡ 0 for at most one value
of θ in Corollary 2.4.

Remark 2.7. Let θ ∈ Θ such that mθ ∈ E(X , P ∗). Then, the law of large numbers
applies and gives that P ∗-a.s., limn Mn(θ) = M∗(θ) ∈ R, and the a.s. subset of

X may depend on θ. In particular Mn(θ) = M∗(θ) + oP (1). For a sequence (θ̂n)n

satisfying (2), one can write for any θ ∈ Θ with finite Mn(θ)

Mn(θ̂n) = Mn(θ̂n) − Mn(θ) + Mn(θ)

≥ −

(
sup
Θ

Mn − Mn(θ̂n)

)
+ Mn(θ)

= oP (1) + M(θ)

where the last step follows by (2) and the law of large numbers.
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3 Log-Likelihood and mixtures models

For any topological space Z equipped with its Borel σ-field, we denote by M1(Z)
the set of probability measures on Z, and by Cb(Z) the set of bounded real valued
continuous functions on Z. The Prohorov topology on M1(Z) is defined as follows:
θn → θ in M1(Z) if and only if

∫
Z
f dθn →

∫
Z
f dθ for any f ∈ Cb(Z). It is known

that a subset of M1(Z) is compact if and only if it is tight. As a consequence,
M1(Z) is not compact in general. Following [Pfa88, section 5 page 149], the set
sub-probabilities provides a compactification which allows the following consistency
result for asymptotic log-likelihood estimators of nonparametric mixture models.

Corollary 3.1 (Pfanzagl). Let Z be a locally compact Hausdorff topological space
with countable base. Let Q be a measure on a measurable space X . Let k : X ×Z →
(0, +∞) be such that

∫
k(x, z)dQ(x) = 1 for any z ∈ Z and k(x, ·) ∈ Cb(Z) for any

x ∈ X . Let Θ := M1(Z) and consider the family (Pθ)θ∈Θ of probability measures
on X defined by dPθ = fθdQ with fθ(x) :=

∫
k(x, z) dθ(z). Assume that the model

is identifiable. Let m : Θ × X → R be the map defined by m(θ, x) := log fθ(x), and
Mn be the corresponding log-likelihood. Then any sequence of asymptotic maximum
likelihood estimators is strongly consistent for the Prohorov topology.

Proof. As explained above, Θ = M1(Z) is not compact for the Prohorov topology,
and one must consider a suitable compactification, as in [Bah71] for instance. Let
C0(Z) be the set of real valued continuous functions on Z which vanish at infinity.
Let Θ be the set of Borel measures θ on Z such that θ(Z) ≤ 1 (i.e. sub-probabilities),
equipped with the vague topology related to C0(Z). Namely, θn → θ in Θ if and
only if

∫
Z
f dθn →

∫
Z
f dθ for any f ∈ C0(Z). The injection Θ ⊂ Θ is continuous; Θ

is a compact metrizable topological space, and thus has a countable base. Moreover,
Θ is convex, and for any θ ∈ Θ, there exists θ′ ∈ Θ and α ∈ [0, 1] such that θ = αθ′.

We extend the set of probability measures (Pθ)θ∈Θ on X to the set of sub-
probability measures (Pθ)θ∈Θ on X , where dPθ = fθdQ and fθ(x) :=

∫
k(x, z) dθ(z).

One has by virtue of Fubini-Tonelli Theorem that Pθ(X ) = θ(Z), and thus Pθ ∈
M1(X ) if and only if θ ∈ Θ := M1(Z). Notice that θ∗ is taken in Θ.

Let θ ∈ Θ such that Pθ = Pθ∗ . Since θ∗ is taken in Θ, one has that Pθ ∈ M1(X ),
therefore θ ∈ Θ and thus θ = θ∗ by identifiability in Θ. Notice that Θ is the convex
envelope of Θ ∪ {0}. The set Θ contains the null measure 0, for which f0 ≡ 0 and
thus m0 ≡ −∞. If θ ∈ Θ with θ 6= 0, then fθ > 0 on X since k > 0, and thus
mθ(x) := log fθ(x) is finite for any x ∈ X . For any x ∈ X , the map θ ∈ Θ 7→ mθ(x)
is continuous since k(x, ·) is in C0(Z).

For any θ ∈ Θ with θ 6= 0, one can write θ = αθ′ with θ′ ∈ Θ and α := θ(Z) ∈
[0, 1]. One has then fθ = αfθ′ and thus mθ = log α + mθ′ . Therefore,

Mn(θ) = log α + Mn(θ′) ≤ Mn(θ′).

As a consequence, supθ∈Θ Mn(θ) = supθ∈Θ Mn(θ), and one may substitute Θ by Θ

in the definition (2). Now, let (θ̂n)n∈N be a sequence in Θ of asymptotic maximum
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likelihood estimators. Corollary 2.4 and Remark 2.6 for (Pθ)θ∈Θ apply and give the

P ∗-a.s. convergence for the vague topology of (θ̂n)n∈N towards θ∗. Since both the
sequence and the limit are in Θ, the convergence holds for the Prohorov topology,
and the desired result is established.

Remark 3.2. A mixture model can always be seen as a conditional model. The
observed random variables X with values in X is the first component of the couple
(X, Z) with values in X × Z. The component Z is not observed. However, the
conditional law L(X |Z = z) is known, and has density k(·, z) with respect to Q on
X . If θ = L(Z), then L(X) has density fθ with respect to Q on X .

4 Proof of main result

Lemma 4.1 (Reformulation). The random sequence (θ̂n)n is a sequence of asymp-
totic M-estimators if and only if

P–a.s., ∀(θn)n ∈ ΘN, lim
n→+∞

(
Mn(θn) − Mn(θ̂n)

)
≤ 0. (5)

Proof. The proof is done “ω by ω”, and the a.s. sets in (2) and (5) are the same.

Recall that (θ̂n)n is a sequence of asymptotic M-estimators if and only if (2) holds.

Actually, the definition of the supremum gives supθ∈Θ Mn(θ) − Mn(θ̂n) ≥ 0. There-
fore, (2) is equivalent to

P–a.s., lim
n→+∞

(
sup
θ∈Θ

Mn(θ) − Mn(θ̂n)

)
≤ 0. (6)

The Lemma is thus reduced to the equivalence between (6) and (5). We begin by
the proof of the implication (6) ⇒ (5). Let A be some P–a.s. set such that (6) holds.
We proceed by fixing ω ∈ A. We hide the dependency on ω in the notation of Mn

and θ̂n to lightweight the expressions. Let (θn)n be a sequence in Θ. By definition
of the supremum, we have Mn(θn) ≤ supθ∈Θ Mn(θ). Thus, we get

Mn(θn) − Mn(θ̂n) ≤ sup
θ∈Θ

Mn(θ) − Mn(θ̂n).

Taking the limn→+∞ of both sides and using (6) provides the expected result (5). It
remains to establish the implication (5) ⇒ (6). Let A be some P–a.s. set such that
(5) holds. Here again, we proceed by fixing ω ∈ A, and we hide the dependency

on ω in the notation of the random objects like Mn and θ̂n. By definition of the
supremum, there exists, for any n, an element θn ∈ Θ such that

sup
θ∈Θ

Mn(θ) − Mn(θn) −
1

n
≤ 0.
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Notice that θn depends on ω since Mn depends on ω. This yields

lim
n→+∞

(
sup
θ∈Θ

Mn(θ) − Mn(θn)

)
≤ 0. (7)

Now we write the telescopic sum

sup
θ∈Θ

Mn(θ) − Mn(θ̂n) = sup
θ∈Θ

Mn(θ) − Mn(θn) + Mn(θn) − Mn(θ̂n),

which gives

lim
n→+∞

(
sup
θ∈Θ

Mn(θ) − Mn(θ̂n)

)

≤ lim
n→+∞

(
sup
θ∈Θ

Mn(θ) − Mn(θn)

)
+ lim

n→+∞

(
Mn(θn) − Mn(θ̂n)

)
.

The two terms of the right hand side are “≤ 0” by virtue of (7) and (5) respectively.
This provides the desired result (6), as expected.

Lemma 4.2 (Separation). Assume that P–a.s., for any neighborhood U of θ∗, for
any sequence (θn)n in U c, there exists a sequence (θ′n)n in Θ such that

lim
n→+∞

(Mn(θ′n) − Mn(θn)) > 0. (8)

Then, any asymptotic M-estimators sequence (θ̂n)n is strongly consistent.

Proof. Suppose that (8) holds for some a.s. set A, and that (θ̂n)n is a sequence of

asymptotic M-estimators which is not strongly consistent. Saying that (θ̂n)n is not
strongly consistent means that for any P–a.s. set, there exists a neighborhood U
of θ∗ and a subsequence (θ̂nk

)k in U c. In particular, on the a.s. set A, this gives a

neighborhood U of θ∗ and a subsequence (θ̂nk
)k in U c. Now, by virtue of (8),

P–a.s, ∃(θ′nk
)k ∈ ΘN, lim

k→+∞

(
Mnk

(θ′nk
) − Mnk

(θ̂nk
)
)

> 0,

where the a.s. set is A. This contradicts (5) which holds P–a.s. too.

Lemma 4.3 (The a∗ map). Assume that Θ is compact and that there exists a map
a∗ : Θ → Θ such that for any θ 6= θ∗, there exists a neighborhood Uθ of θ such that

P–a.s., lim
n→+∞

inf
Uθ

(Mn(a∗) − Mn) > 0. (9)

Then, any asymptotic M-estimators sequence (θ̂n)n is strongly consistent.
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Proof. Let us show that the assumptions of Lemma 4.2 are fulfilled. We will establish
(8) for an a.s. set A which does not depend on the neighborhood U of θ∗. Namely,
let U be an open neighborhood of θ∗. For any θ ∈ U c, let Uθ and Aθ be the
neighborhood of θ and the P–a.s. set for which (9) holds. Notice that Aθ depends
on Uθ. The set U c ⊂ ∪θ∈UcUθ is compact as a closed subset of the compact set Θ.
We can thus extract a finite sub-covering U c ⊂ ∪k

i=1Uθi
, and write

lim
n

inf
Uc

(Mn(a∗) − Mn) ≥ lim
n

min
1≤i≤k

inf
Uθi

(Mn(a∗) − Mn)

= min
1≤i≤k

lim
n

inf
Uθi

(Mn(a∗) − Mn).

By virtue of (9) we get from the above that

P–a.s., lim
n

inf
Uc

(Mn(a∗) − Mn) > 0, (10)

where the P–a.s. set is AU := ∩k
i=1Aθi

. Recall that U was a freely chosen neighbor-
hood of θ∗. Consider now a countable base (Uk)k for θ∗. Then (10) holds on the
P–a.s. set A := ∩∞

i=1AUk
, which does not depend on U . Notice at this step that

Mn(a∗(θn)) − Mn(θn) ≥ inf
Uc

(Mn(a∗) − Mn)

as soon as θn ∈ U c by definition of the infimum. This gives (8) from (10) on the
P–a.s. set A defined above, with (θ′n)n∈N = (a∗(θn))n∈N.

Proof of Theorem 2.1. The desired result follows from Lemma 4.3. Namely, let us
show that (9) is a consequence of (A1) and (A2). Let θ 6= θ∗ and let a∗ and V as in
(A2). Let Vk ց {θ} be a decreasing local base with V0 ⊂ V . Let Z := infV (ma∗−m)
and Zk := infVk

(ma∗ − m) and Z∞ := ma∗(θ) − mθ. By (A1) and the continuity of

a∗ and the separability of Θ, we get that Zk : X → R is measurable, and that

P
∗–a.s., Z ≤ Zk ր Z∞.

Now, by (A2), we get that Z ∈ L1
−(X , P ∗) and Z∞ ∈ L1

−(X , P ∗) and P ∗(Z∞) > 0.
Observe that Z ≥ −Z− ∈ L1(X , P ∗). Thus, by the monotone convergence Theorem,

lim
k

P ∗(Zk) = P ∗(Z∞) > 0.

Therefore, P ∗(Zk) > 0 for some k (actually for k large enough). Let us denote
Uθ := Vk. Now, by the law of large numbers

P–a.s., lim
n

Pn

(
inf
Uθ

(ma∗ − m)

)
= P ∗

(
inf
Uθ

(ma∗ − m)

)
> 0.

This gives finally (9) since for any n

inf
Uθ

(Mn(a∗) − Mn) = inf
Uθ

Pn(ma∗ − m) ≥ Pn

(
inf
Uθ

(ma∗ − m)

)
.
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