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Abstract

The aim of this article is to provide a strong consistency Theorem
for approximated M -estimators. It contains both Wald and Pfanzagl
type results for maximum likelihood. The proof relies, in particu-
lar, on the existence of a sort of contraction of the parameter space
which admits the true parameter as a fixed point. In a way, it can be
seen as a simplification of ideas of Wang and Pfanzagl, generalised to
approximated M -estimators. Proofs are short and elementary.
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1 Introduction

After the seminal work1 of Fisher during the first third of the twentieth cen-
tury, the asymptotic properties of maximum likelihood estimators, and in
particular their consistency, were studied by various authors, including Doob
[Doo34], Cramér [Cra46], and Huzurbazar [Huz48]. Nowadays, one of the
most known result regarding consistency goes back to Wald, who gave in
[Wal49] a short and elegant proof of strong consistency of parametric max-
imum likelihood estimators. Since that time, several authors studied vari-
ous versions of such consistency problems, including among others, Le Cam

1The interested reader may find a quite recent account in [Ald97] and references therein.
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[LC53], Kiefer and Wolfowitz [KW56], Bahadur [Bah67], Huber [Hub67],
Perlman [Per72], Wang [Wan85], and Pfanzagl [Pfa88, Pfa90].

Wald’s original proof relies roughly on local compactness of the param-
eter space, on continuity and coercivity of the log-likelihood, on the law of
large numbers, and last but not least on local uniform integrability of the
log-likelihood. It does not require differentiability, and makes extensive use
of likelihood ratios. One can find a modern presentation of the method of
Wald for M-estimators in van der Vaart’s monography [vdV98]. Kiefer and
Wolfowitz have shown in [KW56] that a compactification trick allows to ex-
tend Wald’s approach to semiparametric situations, provided that a local
uniform integrability holds. In particular, they successfully address a semi-
parametric mixture model example. However, the local uniform integrability
condition makes such results of difficult usage in many semiparametric and
nonparametric situations.

Mixture models are very delicate inverse problems, which pose serious
difficulties even in relatively simple cases, cf. for example [EL01], [MP00],
[BL97], [Ish99], [Pat01], [JPM01], [CRI03], [BMV04], [FLS05], and references
therein. It turns out that nonparametric mixture models are linear and thus
concave with respect to the parameter. Pfanzagl gave in [Pfa88, Pfa90] a
proof of consistency of approximated maximum likelihood estimators for non-
parametric concave models, including nonparametric mixtures. His approach
relies in particular on a simplification of an earlier work of Wang in [Wan85]
based on uniform local bound of the likelihood ratio. Our Theorem can be
seen as a unification of Pfanzagl’s result with van der Vaart’s formulation of
Wald’s result. We replace the log-likelihood ratio by contrast differences. We
do not assume any coercivity of the contrast as in [Wal49]. However, we re-
quire the compactness of the space of the estimated parameter, as in [KW56]
and [vdV98] for example. In turns out that such a compactness comes for free
when dealing with fully nonparametric models. We do not make use of any
Uniform Law of Large Numbers. In other words, our result does not belong
to the Glivenko-Cantelli approaches of consistency, as in [Dud98], [Fio00],
[AK94] for example, see also [vdV98] and [vdG03, vdG00] and references
therein. The article ends up with an examination of some mixture models,
following the historical example of Kiefer and Wolfowitz and the motivations
of Pfanzagl. We emphasise the simplicity of the proofs.

Let Θ be a separable Hausdorff topological space with countable base.
Let (Pθ)θ∈Θ be a known family of Borel measures on a measurable space X .
Let θ∗ ∈ Θ be some unknown point of Θ such that P ∗ := Pθ∗ is a probability
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measure. Let (Xn)n∈N be an i.i.d. sequence of observed random variables

taking their values in X with common law P ∗. Let (θ̂n)n∈N be a random

sequence of Θ such that θ̂n is Fn-measurable, where Fn := σ(X1, . . . , Xn).

We say that (θ̂n)n∈N is strongly consistent if and only if

P ∗ − a.s. lim
n→+∞

θ̂n = θ∗. (1)

We use in the sequel the abbreviations “a.s.” for almost sure, “a.a.” for
almost all, and “a.e.” for almost everywhere. Let Θ×X ∋ (θ, x) 7→ m(θ, x) ∈
R be a known function such that mθ := m(θ, ·) is measurable for any θ ∈ Θ.
For any n, we define the random function Mn : Θ → R by

Mn(θ) :=
1

n

n∑

i=1

m(θ, Xi).

This can be written also Mn(θ) = Pnmθ where Pn := 1
n
(δX1

+ · · · + δXn
)

is the empirical measure. We say that (θ̂n)n is a sequence of approximated
M-estimators if and only if

P ∗ − a.s. lim
n→+∞

(
sup
Θ

Mn − Mn(θ̂n)

)
= 0. (2)

Suppose that for large enough n, there exists an Fn-measurable θ̂n in Θ such
that Mn(θ̂n) = supΘ Mn, then such a random sequence (θ̂n)n∈N fulfils (2).

For any probability measure P on X , let L1
+(X , P ) (resp. L1

−(X , P )) be
the set of random variables Z : X → R such that Z+ := max(+Z, 0) (resp.
Z− := max(−Z, 0)) is in L1(X , P ). On E(X , P ) := L1

−
(X , P ) ∪ L1

+(X , P ),
the expectation P (Z) = P (Z+)−P (Z−) makes sense and takes its values in
R := R ∪ {±∞}. For any θ ∈ Θ such that mθ ∈ E(X , P ∗), we define the
contrast M∗(θ) ∈ R by

M∗(θ) := P ∗mθ. (3)

In the sequel, we say that the model is identifiable when for any θ ∈ Θ, the
condition Pθ = P ∗ implies that θ = θ∗.

Example 1.1 (Log-Likelihood). Assume that for some fixed Borel measure
Q on X , one has Pθ ≪ Q for any θ ∈ Θ. Let fθ := dPθ/dQ and assume that
fθ > 0 on X for any θ ∈ Θ. Define m(θ, x) := log(fθ(x)). Then Mn : Θ → R

is the log-likelihood random functional given by Mn(θ) = Pnmθ = Pn log(fθ).
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We will speak about sequences of “approximated maximum likelihood esti-
mators”. The log-likelihood ratio is

Mn(θ1) − Mn(θ2) = Pn log(fθ1
/fθ2

).

As usual for the log-likelihood, when M∗(θ∗) is finite, one can write for any
θ

M∗(θ) − M∗(θ∗) = −Ent(Pθ∗ |Pθ) ,

where Ent(Pθ1
|Pθ2

) is the Kullback-Leibler relative entropy of Pθ1
with re-

spect to Pθ2
. In particular, M∗(θ) 6 M∗(θ∗) with equality if and only if Pθ =

Pθ∗ , which implies θ = θ∗ if the model is identifiable. Notice that when Q is
the Lebesgue measure on X = R

n, then −M∗(θ∗) = −
∫
X

fθ∗(x) log(fθ∗(x)) dx
is the Shannon entropy of fθ∗ .

Example 1.2 (Beyond the log-likelihood). Assume that for some fixed Borel
measure Q on X , one has Pθ ≪ Q for any θ ∈ Θ, with Pθ(X ) 6 1 and
fθ := dPθ/dQ. Let Φ, Ψ : (0, +∞) → R be two smooth functions. Assume
that Ψ(fθ) ∈ L1(X , Q) for any θ ∈ Θ. Define mθ by

mθ = Φ(fθ) −

∫

X

Ψ(fθ) dQ + Pθ(X ).

This gives rise the the following empirical contrast

Mn(θ) = Pn(Φ(fθ)) −

∫

X

Ψ(fθ) dQ + Pθ(X ).

In particular, if θ ∈ Θ is such that Φ(fθ) ∈ L1(X , P ∗) where here again
P ∗ := Pθ∗ ,

M∗(θ) = P ∗(Φ(fθ)) −

∫

X

Ψ(fθ) dQ + Pθ(X ).

Assume now that u 7→ uΦ′(u) is locally integrable on R+, and consider the
case where Ψ is the Φ-transform given for any u ∈ (0, +∞) by

Ψ(u) =

∫ u

0

vΦ′(v) dv.

For Φ : u 7→ log(u), one has Ψ : u 7→ u and we recover the log-likelihood
contrast

M∗(θ) = P ∗(log(fθ)).
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For Φ : u 7→ u, one has Ψ : u 7→ 1
2
u2, and we get the quadratic contrast

M∗(θ) = −1
2
‖fθ − fθ∗‖

2
L2(X ,Q) + 1

2
‖fθ∗‖

2
L2(X ,Q) + Pθ(X ).

In both cases, the map θ 7→ M∗(θ) admits θ∗ as unique maximum provided
that the model is identifiable. More generally, define the Φ-transform Θ :
(0, +∞)2 → R by

Θ(u, v) : = uΦ(v) − Ψ(v)

= uΦ(v) −

∫ v

0

wΦ′(w) dw.

When θ and θ∗ are such that both Θ(fθ∗ , fθ∗) and Θ(fθ∗ , fθ) belong to
L1(X , Q),

M∗(θ) =

∫

X

(Θ(fθ∗ , fθ) − Θ(fθ∗ , fθ∗)) dQ +

∫

X

Θ(fθ∗ , fθ∗) dQ + Pθ(X ).

Notice that Θ is linear in Φ. One can consider useful examples for which the
function Φ is bounded, in such a way that mθ is bounded for any θ ∈ Θ.
For instance, let us examine the case where Φ : u 7→ −(1 + u)−2. Then,
Ψ : u 7→ −u2(1 + u)−2, and the map θ 7→ M∗(θ) admits θ∗ as unique
maximum, provided identifiability, since for any (u, v) ∈ R

2
+,

Θ(u, v) = −
u + v2

(1 + v)2
and Θ(u, v) − Θ(u, u) = −

(v − u)2

(1 + u)(1 + v)2
.

The function Ψ is additionally bounded here. The similar case Φ : u 7→
−(1+u2)−1 is also quite interesting. Notice that Θ(u, ·) is concave on (0, +∞)
as soon as Φ is concave, non decreasing, with Φ′(v) + vΦ′′(v) > 0 for any
v > 0. Observe that this is not the approach of Pfanzagl in [Pfa90], which
is more related to the log-likelihood ratio. Notice that in the case of the
log-likelihood, one has Φ : u 7→ log(u), which gives Ψ : u 7→ u and Θ :
(u, v) 7→ −u log(v) − v, and thus Θ(u, v) − Θ(u, u) = u log(u/v) + u − v. It
might be possible to extensively analyse such “Φ-estimators”, in the spirit
of the “Φ-calculus” developed in [Cha04, Cha05]. This will be hopefully the
subject of a forthcoming article, with possible links with [BM93].

One can notice that the observation of Lindsay in [Lin83a, Lin83b] re-
garding the nature of maximum likelihood for nonparametric mixture models
remains valid for more general models provided that m is concave.
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2 Main result and Corollaries

With the settings given in the Introduction, the following Theorem holds.

Theorem 2.1. Assume that Θ is compact and that the following assumptions
hold.

(A1) For P ∗-a.a. x ∈ X , the map m(·, x) is continuous on Θ;

(A2) There exists a continuous map a∗ : Θ → Θ which may depend on θ∗

such that for any θ 6= θ∗, there exists a neighbourhood V ⊂ Θ of θ for
which supV (m − ma∗) ∈ L1

+(X , P ∗) and P ∗(mθ − ma∗(θ)) < 0.

Then any sequence (θ̂n)n of approximated M-estimators is strongly consistent.

Proof. Postponed to section 4.

The quantity P ∗(mθ − ma∗(θ)) in (A2) has a meaning in R since the
first part of (A2) ensures that mθ−ma∗(θ) ∈ L1

+(X , P ∗). Moreover, P ∗(mθ−
ma∗(θ)) reads M∗(θ)−M∗(a∗(θ)) when the couple (mθ, ma∗(θ)) is in L1

−(X , P ∗)×
L1

+(X , P ∗) or in L1
+(X , P ∗) × L1

−
(X , P ∗).

Since θ∗ is unknown in practice, each assumption in Theorem 2.1 must
hold for any θ∗ ∈ Θ such that Pθ∗ is a probability measure, in order to make
the result useful.

The assumptions (A1) and (A2) required by Theorem 2.1 are far to
be as weak as possible. However, they permit a lightweighted presentation.
The first part of (A2) is in a way an M-estimator version of the integrability
condition considered by Kiefer and Wolfowitz for the log-likelihood. As stated
in the following Corollary, Theorem 2.1 implies a version of Wald consistency
Theorem for approximated M-estimators, cf. [Wal49] and [vdV98, Theorem
5.14].

Corollary 2.2 (van der Vaart-Wald). Assume that Θ is compact, and that
for P ∗-a.a. x ∈ X , the map m(·, x) is continuous on Θ. Assume that for
any θ in Θ, there exists a neighbourhood V such that supV m ∈ L1(X , P ∗).
Assume in addition that M∗ achieves its supremum over Θ at θ∗, and only at
θ∗. Then, any sequence of approximated M-estimator is strongly consistent.

Proof. One has mθ ∈ L1(X , P ∗) for any θ in Θ, and thus M∗ : Θ → R is well
defined. Moreover, (A2) holds with a constant map a∗ ≡ θ∗. Namely, for
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any θ 6= θ∗, one has in one hand P ∗(mθ − mθ∗) < 0 since M∗(θ) < M∗(θ∗),
and in the other hand

sup
V

(m − ma∗) = −mθ∗ + sup
V

m ∈ L1(X , P ∗).

As stated in the following Corollary, Theorem 2.1 implies the main result
of Pfanzagl in [Pfa88] for concave models, itself based on an earlier result of
Wang in [Wan85]. This is typically the case for mixtures models, for which Θ
is a convex set of probability measures on some measurable space, cf. section
3.

Corollary 2.3 (Pfanzagl-Wang). Let Q be a reference Borel measure on X .
Consider the case where Θ is a convex compact subset of a linear space such
that for any θ ∈ Θ, Pθ(X ) 6 1 and Pθ ≪ Q with fθ := dPθ/dQ > 0 on X .
Suppose that Q-a.e. on X , the map θ 7→ fθ(x) is concave and continuous on
Θ. Assume that the model is identifiable. Consider mθ := log(fθ) and the
related log-likelihood Mn. Then any sequence of approximated log-likelihood
estimators is strongly consistent.

Proof. For an arbitrary λ ∈ (0, 1), let us take a∗(θ) := λθ∗ + (1 − λ)θ. The
concavity of the model yields

ma∗(θ) − mθ = log

(
fλθ∗+(1−λ)θ

fθ

)
> log

(
λfθ∗ + (1 − λ)fθ

fθ

)
> log(1 − λ).

One has log(1−λ) ∈ L1(X , P ∗) since λ < 1. Define the function Φ : R+ → R

by Φ(u) := u log(λu + (1 − λ)). The concavity of the model yields

P ∗(ma∗(θ) − mθ) >

∫

X

fθ∗ log

(
λfθ∗ + (1 − λ)fθ

fθ

)
dQ =

∫

X

Φ

(
fθ∗

fθ

)
fθ dQ.

Let us show that the right hand side of the inequality above is strictly positive
when θ 6= θ∗. One has Pθ(X ) > 0 since fθ > 0. Define Ψ(u) := uΦ(1/u).
Jensen’s inequality for the probability measure Pθ(X )−1Pθ and the convex
function Φ yields ∫

X

Φ

(
fθ∗

fθ

)
fθ dQ > Ψ(Pθ(X )). (4)

It is enough to show that either (4) is strict or the right hand side of (4)
is strictly positive. Since λ > 0, the function Φ is strictly convex. Thus
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equality holds in (4) if and only if Pθ(fθ∗ = αfθ) = 1 for some α ∈ R+.
The only admissible case is α = Pθ(X )−1 > 1 since Pθ∗(X ) = 1 and since
identifiability forbids Pθ(fθ∗ = fθ) = 1. Therefore, if Pθ(X ) = 1, inequality
(4) is necessarily strict. In the other hand, Ψ(1) = 0 and Ψ(u) > 0 when
u < 1. Thus the right hand side of (4) is always non negative, and is strictly
positive as soon as Pθ(X ) < 1. We conclude that P ∗(ma∗(θ) − mθ) > 0 as
soon as θ 6= θ∗. This shows that (A2) holds with V = Θ, and the proof is
thus completed.

Remark 2.4 (About the map a∗). Let a∗ : Θ → Θ be a map which satisfies
the condition P ∗(mθ − ma∗(θ)) < 0 for any θ 6= θ∗ of (A2). Then,

• a∗ never meets the diagonal, and in particular, it cannot be the identity
map;

• if a∗ is constant, then a∗ ≡ θ∗;

• θ∗ is the unique fixed point of a∗, and for any θ, the sequence (θn)n∈N

defined by θ0 := θ and θn+1 = a∗(θn) converges towards θ∗ provided
that Θ is compact. One can notice that the existence of a fixed point
can be related to Brouwer like fixed point Theorems, cf. [Goe02].

In some sense, the map a∗ is a contraction around θ∗, and that is clear for
instance on the specific a∗ maps considered in the proofs of Corollaries 2.2
and 2.3.

Remark 2.5 (Infinite values of m). Theorem 2.1 does not allow m to take
the value −∞. This limitation is due to the fact that differences of the form
mθ − mθ′ do not make sense if m is allowed to take the value −∞. The
consistency proof of Wald does not suffer from such a limitation since it does
not rely on m differences, but it requires however strong uniform integrability
assumptions. A careful reading of the proof of Theorem 2.1 shows that only
differences of the form mθ−ma∗(θ) are involved. In the other hand, according
to Remark 2.4, a∗ never meet the diagonal. Consequently, one may allow, in
Theorem 2.1, the map m(θ, x) to take the value −∞ for at most one value of
θ. For the log-likelihood, mθ = log(fθ) and one has mθ(x) = −∞ if and only
if fθ(x) = 0. One may allow fθ ≡ 0 for at most one value of θ in Corollary
2.3.

Remark 2.6. Let θ ∈ Θ such that mθ ∈ E(X , P ∗). Then, the law of large
numbers applies and gives that P ∗-a.s., limn Mn(θ) = M∗(θ) ∈ R, and the
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a.s. subset of X may depend on θ. In particular Mn(θ) = M∗(θ) + oP (1).

For a sequence (θ̂n)n satisfying (2), one can write for any θ ∈ Θ with finite
Mn(θ)

Mn(θ̂n) = Mn(θ̂n) − Mn(θ) + Mn(θ)

> −

(
sup
Θ

Mn − Mn(θ̂n)

)
+ Mn(θ)

= oP (1) + M(θ)

where the last step follows by (2) and the law of large numbers.

3 Log-Likelihood and mixtures models

For any topological space Z equipped with its Borel σ-field, we denote by
M1(Z) the set of probability measures on Z, and by Cb(Z) the set of bounded
real valued continuous functions on Z. The Prohorov topology on M1(Z) is
defined as follows: θn → θ in M1(Z) if and only if

∫
Z
f dθn →

∫
Z
f dθ for any

f ∈ Cb(Z). It is known that a subset of M1(Z) is compact if and only if it is
tight. As a consequence, M1(Z) is not compact in general. Following [Pfa88,
section 5 page 149], the set sub-probabilities provides a compactification
which allows the following consistency result for approximated log-likelihood
estimators of nonparametric mixture models.

Corollary 3.1 (Pfanzagl). Let Z be a locally compact Hausdorff topological
space with countable base. Let Q be a measure on a measurable space X .
Let k : X × Z → (0, +∞) be such that

∫
k(x, z)dQ(x) = 1 for any z ∈ Z

and k(x, ·) ∈ Cb(Z) for any x ∈ X . Let Θ := M1(Z) and consider the
family (Pθ)θ∈Θ of probability measures on X defined by dPθ = fθdQ with
fθ(x) :=

∫
k(x, z) dθ(z). Assume that the model is identifiable. Let m :

Θ × X → R be the map defined by m(θ, x) := log fθ(x), and Mn be the
corresponding log-likelihood. Then any sequence of approximated maximum
likelihood estimators is strongly consistent for the Prohorov topology.

A mixture model can always be seen as a conditional model. The observed
random variables X with values in X is the first component of the couple
(X, Z) with values in X×Z. The component Z is not observed. However, the
conditional law L(X |Z = z) is known, and has density k(·, z) with respect
to Q on X . If θ = L(Z), then L(X) has density fθ with respect to Q on X .
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Proof. As explained above, Θ = M1(Z) is not compact for the Prohorov
topology, and one must consider a well chosen compact over-set. Let C0(Z)
be the set of real valued continuous functions on Z which vanish at infinity.
Let Θ be the set of of Borel measures θ on Z such that θ(Z) 6 1 (i.e. sub-
probabilities), equipped with the vague topology related to C0(Z). Namely,
θn → θ in Θ if and only if

∫
Z
f dθn →

∫
Z
f dθ for any f ∈ C0(Z). The injection

Θ ⊂ Θ is continuous; Θ is a compact metrisable topological space, and thus
has a countable base. Moreover, Θ is convex, and for any θ ∈ Θ, there exists
θ′ ∈ Θ and α ∈ [0, 1] such that θ = αθ′.

We extend the set of probability measures (Pθ)θ∈Θ on X by the set of
sub-probability measures (Pθ)θ∈Θ on X , where dPθ = fθdQ and fθ(x) :=∫
k(x, z) dθ(z). One has by virtue of Fubini-Tonelli Theorem that Pθ(X ) =

θ(Z), and thus Pθ ∈ M1(X ) if and only if θ ∈ Θ := M1(Z). Notice that θ∗

is taken in Θ.
Let θ ∈ Θ such that Pθ = Pθ∗ . Since θ∗ is taken in Θ, one has that

Pθ ∈ M1(X ), therefore θ ∈ Θ and thus θ = θ∗ by identifiability in Θ. Notice
that Θ is the convex envelope of Θ∪{0}. The set Θ contains the null measure
0, for which f0 ≡ 0 and thus m0 ≡ −∞. If θ ∈ Θ with θ 6= 0, then fθ > 0 on
X since k > 0, and thus mθ(x) := log fθ(x) is finite for any x ∈ X . For any
x ∈ X , the map θ ∈ Θ 7→ mθ(x) is continuous since k(x, ·) is in C0(Z).

For any θ ∈ Θ with θ 6= 0, one can write θ = αθ′ with θ′ ∈ Θ and
α := θ(Z) ∈ [0, 1]. One has then fθ = αfθ′ and thus mθ = log α + mθ′ .
Therefore,

Mn(θ) = log α + Mn(θ′) 6 Mn(θ′).

As a consequence, supθ∈Θ Mn(θ) = supθ∈Θ Mn(θ), and one may substitute

Θ by Θ in the definition (2). Now, let (θ̂n)n∈N be a sequence in Θ of ap-
proximated maximum likelihood estimators. Corollary 2.3 and Remark 2.5
for (Pθ)θ∈Θ apply and give the P ∗-a.s. convergence for the vague topology

of (θ̂n)n∈N towards θ∗. Since both the sequence and the limit are in Θ, the
convergence holds for the Prohorov topology, and the desired result is estab-
lished.

An emblematic mixture model example is the location scale Gaussian
mixture, for which X = R

p, and k(·, z) is the probability density function
of the Gaussian distribution N (α(z), diag(β(z)2)) on R

p, where α and β
are known functions from Z to R

p. Let us give a more general example. Let
α : Z → R

p and β : Z → GLp(R) be two continuous functions, where GLp(R)
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denotes the linear group of R
p. Let g be a probability density function on

X with respect to some fixed Borel measure Q. The support of g may be
strictly smaller than X . Consider the mixture model with kernel k given for
any (x, z) ∈ X × Z by

k(x, z) = g
(
β(z)−1(x − α(z))

)
det(β(z))−1.

The associated model is often referred as a “location scale mixture”, with
“location function” α, “scale function” β, “base density” g, and “Markov
kernel” k. It can also be seen as a particular elliptic model. Geometrically
speaking, one can see k as the result of the action on g of the similitude
group of X equipped with a law constructed from an unknown law on Z via
α and β. When β is constant, the corresponding mixture models are far more
simple. However, such pure location models are less realistic in many non
trivial applications. Recall that the triple α, β, k is known, and that k(·, z)
is the probability density function with respect to Q of the conditional law
L(X |Z = z). One can write X in terms of Z as

X = α(Z) + β(Z)(ε),

where ε an independent random variable on X , independent of Z, with prob-
ability density g. We set typically Θ := M1(Z), and we are interested for
instance in the nonparametric estimation of the law of Z, from the observa-
tion of an i.i.d. sample of X. The random variables Z and ε are not observed,
and we end up actually with a stochastic inverse problem, cf. [CL04]. It turns
out that the method of Kiefer and Wolfowitz in [KW56] allows to derive the
consistency of the associated nonparametric maximum likelihood estimator
(NPMLE), provided quite reasonable assumptions on α, β and g. Pfanzagl’s
result in [Pfa88] shows in particular that such a consistency remains valid
for approximate NPMLE. Finally, our result allows to switch to more gen-
eral approximate M-estimators. Lindsay developed an alternative approach
based on convexity, cf. [Lin95, LL95], for which the result of Pfanzagl en-
sures consistency. The approach of Kiefer and Wolfowitz permits to consider
semiparametric extensions of mixture models, where α and β may depend on
an extra finite dimensional parameter, which is jointly estimated. However,
these approaches do not lead to any asymptotic normality for the infinite
dimensional part of the parameter. The consistency rates of convergence are
also of difficult access. A true alternative approach, based on the seminal
work of Dudley, cf. [Dud98] and [vdVW00], is to consider Uniform Law
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of Large Numbers (ULLN). It relies roughly on empirical processes anal-
ysis based on Glivenko-Cantelli-Donsker like functional classes, and allows
the derivation of Hellinger consistency of the NPMLE, under conditions on
k which are stronger than the one considered by Kiefer and Wolfowitz, cf.
[vdG00, Ex. 4.2.4]. To the authors knowledge, the role of Hellinger distance
for maximum likelihood goes back to Le Cam, cf. for instance [LC86, LCY00].
The reader may find an elegant presentation in the survey [vdG03] and in
the monography [vdG00] by van de Geer. Despite the genericity loss on k,
the ULLN approach permits to derive the asymptotic normality for some
linear functionals of the infinite dimensional parameter. Notice that the fi-
nite dimensional part of the parameter in semiparametric mixture models
may often be analysed alone by considering the infinite dimensional part as
a nuisance, cf. for instance [vdV98].

4 Proof of main result

One can replace “= 0” by “6 0” in (2) by definition of the supremum.
Actually, (2) is equivalent to state that P ∗ − a.s. , for any sequence (θn)n of
Θ

lim
n→+∞

(
Mn(θn) − Mn(θ̂n)

)
6 0. (5)

The necessity comes from Mn(θn) 6 supΘ Mn by definition of the supremum.
The sufficiency is due to the fact that by definition of the supremum, one
can take θn such that supΘ Mn 6 Mn(θn) + 1/n.

Lemma 4.1. Assume the following separation property: P ∗ − a.s. , for any
neighbourhood U of θ∗, for any sequence (θn)n in U c, there exists a sequence
(θ′n)n in Θ such that

lim
n→+∞

(Mn(θ′n) − Mn(θn)) > 0. (6)

Then, any approximated M-estimator sequence (θ̂n)n is strongly consistent.

Proof. Let (θ̂n)n be a sequence of approximated M-estimators. Assume con-

dition (6) holds and that (θ̂n)n is not strongly consistent. Then, for any
measurable subset A ⊂ X with P ∗(A) = 1, there exists a neighbourhood U

of θ∗ and a subsequence (θ̂nk
)k in U c on A. For such a subsequence, (6) holds

P ∗–a.s, and contradicts (5) which holds P ∗–a.s. too.
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Proof of Theorem 2.1. The desired result follows from Lemma 4.1. Let us
show that (6) is a consequence of the following property: there exists a map
a∗ : Θ → Θ such that for any θ 6= θ∗, there exists a neighbourhood Uθ of θ
such that

P ∗ − a.s., lim
n→+∞

inf
Uθ

(Mn(a∗) − Mn) > 0. (7)

Namely, let U be an open neighbourhood of θ∗. For any θ ∈ U c, let Uθ be the
neighbourhood of θ given by (7), on the P ∗–a.s. set Aθ. Then, U c = ∪θ∈UcUθ

is compact as a closed subset of the compact set Θ. One can thus extract a
finite sub-covering U c = ∪k

i=1Uθi
, and write

lim
n

inf
Uc

(Mn(a∗) − Mn) = lim
n

min
16i6k

inf
Uθi

(Mn(a∗) − Mn)

> min
16i6k

lim
n

inf
Uθi

(Mn(a∗) − Mn).

By virtue of (7) we get from the above that

P ∗ − a.s., lim
n

inf
Uc

(Mn(a∗) − Mn) > 0,

where the P ∗–a.s. set is AU := ∩k
i=1Aθi

. Let (Uk)k be a countable base for
θ∗, then the result holds on the P ∗–a.s. subset A := ∩∞

i=1AUk
, which does

not depend on U . This gives (6) with (θ′n)n∈N = (a∗(θn))n∈N since

Mn(a∗(θn)) − Mn(θn) > inf
Uc

(Mn(a∗) − Mn)

as soon as θn ∈ U c by definition of the infimum. This shows as announced
that (6) follows from (7). Let us show now that (7) is a consequence of (A2).
Let θ 6= θ∗ and let a∗ and V as in (A2). Let Vk ց {θ} be a decreasing
local base with V0 ⊂ V . Let Zk := supVk

(m − ma∗) and Z := supV (m −
ma∗) ∈ L1

+(P ). Notice that (A2) implies that ma∗(θ) − mθ ∈ L1
+(X , P ∗) and

P ∗(ma∗(θ) −mθ) > 0. By (A1) and the continuity of a∗ and the separability

of Θ, we get that Zk : X → R is measurable, and that P ∗–a.s.

Z > Zk ց Z∞ = mθ − ma∗(θ).

Fatou Lemma 4.2 for the sequence (−Zk)k gives that

lim
k

P ∗

(
inf
Vk

(ma∗ − m)

)
> P ∗(ma∗(θ) − mθ) > 0.
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One has then P ∗(infVk
(ma∗−m)) > 0 for some k (actually for k large enough).

Let us denote Uθ := Vk. Now, by the law of large numbers

P ∗ − a.s., lim
n

Pn

(
inf
Uθ

(ma∗ − m)

)
= P ∗

(
inf
Uθ

(ma∗ − m)

)
> 0.

This gives finally (7) since for any n

inf
Uθ

(Mn(a∗) − Mn) = inf
Uθ

Pn(ma∗ − m) > Pn

(
inf
Uθ

(ma∗ − m)

)
.

Lemma 4.2 (Fatou Lemma). Let µ be a non-negative Borel measure on
a measurable space X . Let (Zn)n be a sequence of measurable real valued
functions. Assume that there exists Z ∈ L1

−
(X , µ) such that µ-a.s., Z 6 Zn

for any n. Then
∫

limn Zn dµ makes sense in [0, +∞] and limn

∫
Zn dµ >∫

limn Zn dµ.

Proof. First, one can replace Z ∈ L1
−(X , µ) by Z ∈ L1(X , µ) since Z > −Z−.

The desired result follows from standard Fatou Lemma for the non-negative
sequence (Zn −Z)n∈N. Notice that limn Zn −Z > 0 and thus

∫
limn Zn dµ =∫

limn(Zn − Z) dµ +
∫

Z dµ.
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