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HERMITE FUNCTIONS AND UNCERTAINTY PRINCIPLES FOR THE

FOURIER AND THE WINDOWED FOURIER TRANSFORMS

ALINE BONAMI, BRUNO DEMANGE & PHILIPPE JAMING

Abstract. We extend an uncertainty principle due to Beurling into a characterization of Hermite
functions. More precisely, all functions f on R

d which may be written as P (x) exp(Ax, x), with A a
real symmetric definite positive matrix, are characterized by integrability conditions on the product

f(x)f̂(y). We then obtain similar results for the windowed Fourier transform (also known, up to
elementary changes of functions, as the radar ambiguity function or the Wigner transform). We
complete the paper with a sharp version of Heisenberg’s inequality for this transform.

1. Introduction and Notations.

Uncertainty principles state that a function and its Fourier transform cannot be simultaneously
sharply localized. To be more precise, let d ≥ 1 be the dimension, and let us denote by 〈., .〉 the scalar
product and by ‖.‖ the Euclidean norm on Rd. Then, for f ∈ L2(Rd), define the Fourier transform of
f by

f̂(y) =

∫

Rd

f(t)e−2iπ〈t,y〉dt.

The most famous uncertainty principle, due to Heisenberg and Weil, can be stated in the following
directional version :

Heisenberg’s inequality. Let i = 1, . . . , d and f ∈ L2(Rd). Then

(1) inf
a∈R

(∫

Rd

(xi − a)2|f(x)|2dx

)
inf
b∈R

(∫

Rd

(ξi − b)2
∣∣∣f̂(ξ)

∣∣∣
2

dξ

)
≥ ‖f‖4

L2

16π2
.

Moreover (1) is an equality if and only if f is of the form

f(x) = C(x1, . . . , xi−1, xi+1, . . . , xn)e−2iπbxie−α(xi−a)2

where C is a function in L2(Rd−1), α > 0, and a and b are real constants for which the two infimums
in (1) are realized.

The usual non-directional uncertainty principle follows easily from this one. We refer to the recent
survey articles by Folland and Sitaram [11] and Dembo, Cover and Thomas [9] as well as the book
of Havin and Jöricke [17] for various uncertainty principles of different nature which may be found in
the literature. One theorem stated in [11] is due to Beurling. Its proof has been written much later
by Hörmander in [18]. Our first aim is to weaken the assumptions so that non zero solutions given by
Hermite functions are also possible. More precisely, we will prove the following theorem :

Theorem 1.1 (Beurling-Hörmander type). Let f ∈ L2(Rd) and N ≥ 0. Then

(2)

∫∫

Rd×Rd

|f(x)||f̂ (y)|
(1 + ‖x‖ + ‖y‖)N

e2π|〈x,y〉|dxdy < +∞
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if and only if f may be written as

f(x) = P (x)e−π〈Ax,x〉,

where A is a real positive definite symmetric matrix and P is a polynomial of degree < N−d
2 .

In particular, for N ≤ d, the function f is identically 0. Beurling-Hörmander’s original theorem
is the above theorem for d = 1 and N = 0. An extension to d ≥ 1 but still N = 0 has been given,
first by S.C. Bagchi and S. K. Ray in [2] in a weaker form, then very recently by S. K. Ray and E.
Naranayan in the present form. Their proof, which relies on the one dimensional case, uses Radon
transform [27].

Let us remark that the idea of characterizing Hermite functions by pointwise vanishing at infinity,
for both the function and its Fourier transform, goes back to Hardy. Indeed, such a characterization
is contained in Hardy’s original theorem [16], (though textbooks usually restrict attention to the
characterization of gaussians in Hardy’s Theorem). One may also consult [26] for extensions. The
proof given here with integrability conditions uses new ingredients compared to the original proof of
Hörmander [18]. At the same time, it simplifies Hörmander’s argument for the case N = 0, d = 1, in
such a way that the proof can now be given in any textbook on Fourier Analysis. We give this last
one in the Appendix, since it may be useful in this context.

The previous theorem has as an immediate corollary the following characterization.

Corollary 1.2. A function f ∈ L2(Rd) may be written as

f(x) = P (x)e−π〈Ax,x〉,

with A a real positive definite symmetric matrix and P a polynomial, if and only if the function

f(x)f̂(y) exp(2π|〈x, y〉|)
is slowly increasing on Rd × Rd.

As an easy consequence of the previous theorem, we also deduce the following corollary, which
generalizes the Cowling-Price uncertainty principle (see [8]).

Theorem 1.3 (Cowling-Price type). Let N ≥ 0. Assume that f ∈ L2(Rd) satisfies
∫

Rd

|f(x)| eπa|xj |
2

(1 + |xj |)N
dx < +∞ and

∫

Rd

|f̂(y)| eπb|yj|
2

(1 + |yj |)N
dy < +∞

for j = 1, · · · , d and for some positive constants a and b with ab = 1. Then f(x) = P (x)e−a‖x‖2

for
some polynomial P .

The Cowling-Price type theorem is given in [8] for d = 1, N = 0, and with p-th powers as well.
This last extension is a trivial consequence of Hölder’s inequality once N is allowed to take positive
values. For higher dimension, we use a trick due to S.C. Bagchi and S. K. Ray to have only directional
conditions. For p = ∞, this gives a directional Hardy type theorem.

It is remarked in [18], as well as in [2], that a theorem of Beurling-Hörmander type implies also a
theorem of Morgan type. But the constant that one obtains when doing this is not the best one. In
fact, the best constant has been given by G. Morgan in [24] which is contemporary of the paper by
Hardy. One may also consult the work of Nazarov [25] as well as [17] for more comments on the work
of Morgan. We give here integrability conditions.

Theorem 1.4 (Morgan type). Let 1 < p < 2, and let q be the conjugate exponent. Assume that
f ∈ L2(Rd) satisfies

∫

Rd

|f(x)|e2π ap

p |xj |
p

dx < +∞ and

∫

Rd

|f̂(y)|e2π bq

q |yj|
q

dy < +∞
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for some j = 1, · · · , d and for some positive constants a and b. Then f = 0 if ab >
∣∣cos(pπ

2 )
∣∣ 1p .

If ab <
∣∣cos(pπ

2 )
∣∣ 1p , one may find a dense subset of functions which satisfy the above conditions for all

j.

From Theorem 1.1, one only gets the first result for ab ≥ 1, which is clearly much weaker. Such a
theorem is sometimes called of “Gel’fand-Shilov type”, as these authors have studied similar conditions
in their work on the classes of distributions that have a Fourier transform.

One way one may hope to overcome the lack of localisation is to use the windowed Fourier transform,
also known as the (continuous) Gabor transform or the short-time Fourier transform. To be more
precise, fix v ∈ L2(Rd), the “window”, and define for u ∈ L2(Rd) :

Svu(x, y) = ̂uv(. − x)(y) =

∫

Rd

u(t)v(t − x)e2iπ〈t,y〉dt.

This transform occurs also in several other forms, for example |Svu|2 is known as a spectrogram. For
sake of symmetry in u and v, we rather focus on the radar ambiguity function defined for u, v ∈ L2(Rd)
by

(3) A(u, v)(x, y) =

∫

Rd

u
(
t +

x

2

)
v
(
t − x

2

)
e−2iπ〈y,t〉dt.

Since |A(u, v)| = |Svu|, there will be no loss in doing so. We refer the reader to [1], [7], [6] and the
references there for the way these functions occur in signal processing, and their basic properties.

Finally, W (u, v), the Fourier transform of A(u, v) in R2d is known in quantum mechanics and in
the PDE community as the Wigner transform or Wigner distribution. Since

W (u, v)(x, y) =

∫

Rd

u

(
x +

t

2

)
v

(
x − t

2

)
e2iπ〈y,t〉dt,

W (u, v) is also related to A(u, v) by

W (u, v)(x, y) = 2dA(u, Zv)(2x,−2y)

where Zv(x) = v(−x). So again, all results stated here can be restated in terms of the Wigner
transform.

Our second aim here is to extend uncertainty principles to the radar ambiguity functions. In
particular, we will show that A(u, v) satisfies theorems of Cowling-Price type on one side, of Morgan
type on the other one. Both results are sharp, with the same characterization of the Hermite functions
in the first case. Let us mention that the Hardy’s theorem has been extended in this context by K.
Gröchenig and G. Zimmermann in a forthcoming paper ([15]).

We also give a version of Heisenberg’s inequality for A(u, v) that is stronger than a previous version
by A.J.E.M. Janssen ([21], see also [10]). The one dimensional case for the Wigner transform W (u, u)
can be found in [3]. This Heisenberg’s inequality may be stated in the following matricial form.

Theorem 1.5. Assume that u and v be in L2(Rd), with ‖u‖L2‖v‖L2 = 1, and
∫

Rd

‖x‖2
(|u|2 + |v|2 + |û|2 + |v̂|2)dx < ∞ .

Let (X, Y ) be a random vector with probability density given on Rd × Rd by the function |A(u, v)|2.
Then X and Y are not correlated, and their two covariance matrices are such that

4π2V (X) − V (Y )−1

is semi-positive definite. Moreover, if it is the zero matrix, then u and v are Gaussian functions.
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In Radar Theory, for which d = 1, the couple (X, Y ) may be given a physical meaning: its first
component is related to the distance to the target, the second to its velocity. So the variance gives
the quadratic error when estimating the distance or the velocity by the corresponding mean.

A different problem consists in minimizing the same quantity A(u, v) for a fixed “window” v, or
more generally to consider uncertainty principles in terms of a function u and its windowed Fourier
transform A(u, v). Such problems have been considered by E. Wilczock [29]. Best results follow from
ours only when the window is Gaussian.

The article is organized as follows : the next section is devoted to the proof of Theorem 1.1, whereas
in section 3, we consider the other mentioned uncertainty principles for the Fourier transform. In
section 4, we recall some basic properties of the ambiguity functions, pursuing in section 5 with
the Heisenberg inequality for these functions. Section 6 is devoted to the extension of uncertainty
principles to ambiguity functions.

2. Generalization of Beurling-Hörmander’s theorem.

The statement of Theorem 1.1 is divided into two propositions. The first one is elementary.

Proposition 2.1. Let f ∈ L2(Rd) be a function of the form

f(x) = P (x)e−π〈(A+iB)x,x〉,

with A and B two real symmetric matrices and P a polynomial. Then the matrix A is positive definite.
Moreover, the three following conditions are equivalent:

(i) B = 0 and deg(P ) < N−d
2 ;

(ii)

∫∫

Rd×Rd

|f(x)||f̂(y)|
(1 + ‖x‖ + ‖y‖)N

e2π|〈x,y〉|dxdy < +∞ ;

(iii)

∫∫

Rd×Rd

|f(x)||f̂(y)|
(1 + ‖x‖)N

2 (1 + ‖y‖)N
2

e2π|〈x,y〉|dxdy < +∞ .

Proof. The fact that A is positive definite is elementary. Then, after a change of variables, we may

assume that A is the identity matrix, so that f may be written as P (x)e−π‖x‖2

e−iπ〈Bx,x〉. The Fourier

transform of f may be written as Q(y)e−π〈(I+iB)−1y,y〉, with deg(P ) = deg(Q) = n.
To prove that (i) implies (iii), it is sufficient to prove that, for α > d

2 , we have the inequality
∫∫

Rd×Rd

(1 + ‖x‖)−α(1 + ‖y‖)−αe−π‖x−y‖2

dxdy < +∞ .

But this integral is twice the integral on the subset where ‖x‖ ≤ ‖y‖. So it is bounded by

2

∫

Rd

[
(1 + ‖x‖)−2α ×

∫

Rd

e−π‖x−y‖2

dy

]
dx < +∞

which allows to conclude.
It is clear that (iii) implies (ii) for all functions f . Let us now prove that (ii) implies (i). First,

writing (1 + iB)−1 = (I − iB)(I + B2)−1, it is immediate that the integrability on f(x)f̂(y) implies

that the homogeneous polynomial ‖x‖2
+
〈
(I + B2)−1y, y

〉
− 2〈x, y〉 is non negative, which implies

that B = 0. Now, let Pn and Qn be the homogeneous terms of maximal degree of the polynomials P
and Q. There exists x(0) ∈ Rd of norm 1 such that Pn(x(0))Qn(x(0)) is different from 0. We call Γε

the cone under consideration. It is obtained as the image of the cone
{
x = (x1, · · · , xd) ; (x2

2 + · · · + x2
d)

1
2 < εx1

}
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under a rotation which maps the point (1, 0, · · · , 0) to x(0). Then, for ε < 1 small enough, there exists
a constant c such that, for x, y ∈ Γε, one has the inequality

|Pn(x)||Qn(y)| ≥ c‖x‖n‖y‖n .

The same inequality is valid for P and Q for x and y large, which implies that
∫∫

Γε×Γε

‖x‖n‖y‖n

(1 + ‖x‖ + ‖y‖)N
e−π‖x−y‖2

dxdy < +∞ .

We remark that if x ∈ Γε then −Γε ⊂ x − Γε. So, a fortiori, we have that
∫∫

Γε×(−Γε)

‖x‖n‖y‖n

(1 + ‖x‖ + ‖t + x‖)N
e−π‖t‖2

dxdt < +∞ .

We know, using Fubini’s theorem, that there exists t for which
∫

Γε

‖x‖n‖y‖n

(1 + ‖x‖ + ‖t + x‖)N
dx < +∞ ,

which proves that N − 2n > d. �

We have written here the equivalence between Conditions (ii) and (iii) to remark that Condition
(iii) could be written in place of (2) in Theorem 1.1.

The next proposition is much deeper.

Proposition 2.2. Let f ∈ L2(Rd). If, for some positive integer N ,

(4)

∫∫

Rd×Rd

|f(x)||f̂(y)|
(1 + ‖x‖ + ‖y‖)N

e2π|〈x,y〉|dxdy < +∞ ,

then f may be written as

f(x) = P (x)e−π〈(A+iB)x,x〉,

where A and B are two symmetric matrices and P is a polynomial.

Proof. We may assume that f 6= 0.

First step. Both f and f̂ are in L1(Rd).

For almost every y,

|f̂(y)|
∫

Rd

|f(x)|
(1 + ‖x‖)N

e2π|〈x,y〉|dx < +∞.

As f 6= 0, the set of all y’s such that f̂(y) 6= 0 has positive measure. In particular, there is a basis

y1 . . . yd of Rd such that, for i = 1, . . . , d, f̂(y(i)) 6= 0 and
∫

Rd

|f(x)|
(1 + ‖x‖)N

e2π|〈x,y(i)〉|dx < +∞.

Since, clearly, there exists a constant C such that

(1 + ‖x‖)N ≤ C

d∑

i=1

exp
[
2π
∣∣∣
〈
x, y(i)

〉∣∣∣
]
,

we get f ∈ L1(Rd). Exchanging the roles of f and f̂ , we get f̂ ∈ L1(Rd). ⋄
Second step. The function g defined by ĝ(y) = f̂(y)e−π‖y‖2

satisfies the following properties (with C
depending only on f)

(5)

∫

Rd

|ĝ(y)|eπ‖y‖2

dy < ∞ ;
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(6) |ĝ(y)| ≤ Ce−π‖y‖2

;

(7)

∫∫

Rd×Rd

|g(x)||ĝ(y)|
(1 + ‖x‖ + ‖y‖)N

e2π|〈x,y〉|dxdy < +∞ ;

(8)

∫

‖x‖≤R

∫

Rd

|g(x)||ĝ(y)|e2π|〈x,y〉|dxdy < C(1 + R)N .

Property (5) is obvious from the definition of g and the fact that f̂ is in L1(Rd). As f ∈ L1(Rd), f̂ is
bounded thus (6) is also obvious. To prove (7), we have

∫∫

Rd×Rd

|g(x)||ĝ(y)|
(1 + ‖x‖ + ‖y‖)N

e2π|〈x,y〉|dxdy ≤
∫∫

|f(t)||f̂(y)|A(t, y)e2π|〈t,y〉|dtdy

with

A(t, y) =

∫
e−π‖x‖2−π‖y‖2+2π|〈x,y〉|

(1 + ‖t − x‖ + ‖y‖)N
dx.

We claim that

(9) A(t, y) ≤ C(1 + ‖t‖ + ‖y‖)−N ,

which allows to conclude. Indeed, separating the cases of 〈x, y〉 being positive or negative, we get

A(t, y) ≤
∫

e−π‖x−y‖2

(1 + ‖t − x‖ + ‖y‖)N
dx +

∫
e−π‖x+y‖2

(1 + ‖t + x‖ + ‖y‖)N
dx

=I1 + I2.

As I2(x, t) = I1(−x, t), it is enough to get a bound for I1. Now, fix 0 < c < 1 and write B =
(1 + ‖t‖ + ‖y‖), then

I1 ≤
∫

‖x−y‖>cB

e−π‖x−y‖2

dx +

∫

‖x−y‖≤cB

e−π‖x−y‖2

(1 + ‖t − x‖ + ‖y‖)N
dx.

We conclude directly for the first integral. For the second one, it is sufficient to note that, if ‖x − y‖ ≤
c(1 + ‖t‖ + ‖y‖), then

1 + ‖t − x‖ + ‖y‖ ≥1 +
1

2
‖t‖ +

1

2
‖y‖ − 1

2
‖x − y‖

≥ (1 − c)

2
(1 + ‖t‖ + ‖y‖).

This completes the proof of (9) and (7).
Let us finally prove (8). Fix c > 2. Then the left hand side is bounded by

∫

‖x‖≤R

|g(x)|
(∫

‖y‖>cR

|ĝ(y)|e2π|〈x,y〉|dy +

∫

‖y‖<cR

|ĝ(y)|e2π|〈x,y〉|dy

)
dx

≤
∫

‖x‖≤R

|g(x)|
(∫

‖y‖>cR

Ce−(π−2 π
c )‖y‖2

dy +

∫

‖y‖<cR

|ĝ(y)|e2π|〈x,y〉|dy

)
dx

≤ K‖g‖L1 +

∫

‖x‖≤R

∫

‖y‖<cR

|g(x)||ĝ(y)|e2π|〈x,y〉|dxdy.
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Then, if we multiply and divide by (1+‖x‖+‖y‖)N in the integral of right side, we get the required
inequality (8). This completes the proof of the claim. ⋄
Third step. The function g admits an holomorphic extension to Cd that is of order 2. Moreover, there
exists a polynomial R such that for all z ∈ Cd, g(z)g(iz) = R(z).

It follows from (6) and Fourier inversion that g admits an holomorphic extension to Cd which we
again denote by g. Moreover,

|g(z)| ≤ Ceπ‖z‖2

,

with C the L1 norm of ĝ. It follows that g is of order 2. On the other hand, for all x ∈ Rd and eiθ of
modulus 1,

(10) |g(eiθx)| ≤
∫

Rd

|ĝ|(y)e2π|〈x,y〉|dy.

Let us now define a new function G on Cd by :

G : z →
∫ z1

0

. . .

∫ zd

0

g(u)g(iu)du.

As g is entire of order 2, so is G. By differentiation of G, the proof of this step is complete once we
show that G is a polynomial.

To do so, we will use (8) and an elementary variant of Phragmèn-Lindelhöf’s principle which we
recall here, and which may be found in [14] : let φ be an entire function of order 2 in the complex
plane and let α ∈]0, π/2[; assume that |φ(z)| is bounded by C(1 + |z|)N on the boundary of some
angular sector {reiβ : r ≥ 0, β0 ≤ β ≤ β0 + α}. Then the same bound is valid inside the angular
sector (when replacing C by 2NC).

Let us fix a vector ξ ∈ Rd and define the function Gξ on C by Gξ(z) = G(zξ). Then Gξ is an
entire function of order 2 which has polynomial growth on R and on iR by (10) and (8). We cannot
directly apply Phragmèn-Lindelhöf’s principle since we are not allowed to do so on angular sectors of
angle π/2. But, to prove that G has polynomial growth in the first quadrant, it is sufficient to prove
uniform estimates of this type inside all angular sectors {reiβ : r ≥ 0, 0 < β0 ≤ β ≤ π/2}. Moreover,

it is sufficient to have uniform estimates for the functions G
(α)
ξ (z) = G(α)(zξ), with 0 < α < β0, and

G(α)(z) =

∫ z1

0

. . .

∫ zd

0

g(e−iαu)g(iu)du.

G
(α)
ξ clearly has polynomial growth on eiαR and on iR, that is

G
(α)
ξ (z) ≤ C(1 + |x|‖ξ‖)N .

The constant C, which comes from the constant in (8), is independent of α. The same estimate is
valid inside the angular sector by the Phragmèn-Lindelhöf’s principle, and extends to Gξ, which we
wanted to prove.

Proceeding in an analogous way in the three other quadrants, we prove that Gξ is an entire function
with polynomial growth of order N , so a polynomial of degree ≤ N . Let us now write

Gξ(z) = a0(ξ) + · · · + aN(ξ)zN .

Then

aj(ξ) =
1

j!

dj

dzj

(
G(zξ)

)∣∣
z=0

shows that aj is a homogeneous polynomial of degree j on Rd.
The entire function G, which is a polynomial on Rd, is a polynomial. Finally,

(11) g(z)g(iz) = R(z),
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where R is a polynomial and the proof of this step is complete.

Step 4. A lemma about entire functions of several variables.

We are now lead to solving the equation (11), where g is an entire function of order 2 of d variables
and R is a given polynomial. It is certainly well known that such functions g can be written as
P (z)eQ(z), with Q(z) a polynomial of degree at most 2. Moreover, the equation implies that Q(z) +
Q(iz) = 0, so that Q is homogeneous of degree 2. So we have completed the proof, up to the study
of the equation (11). Since we did not find a simple reference for it, we include the proof of the next
lemma, which is a little more general than what we need above.

Lemma 2.3. Let ϕ be an entire function of order 2 on Cd such that, on every complex line, either ϕ
is identically 0 or it has at most N zeros. Then, there exists a polynomial P with degree at most N
and a polynomial Q with degree at most 2 such that ϕ(z) = P (z)eQ(z).

Proof. Without loss of generality, we may assume that ϕ(0) does not vanish. Then, for z ∈ Cd, ϕz(t) =
ϕ(tz) is a non-zero entire function of order 2 that has at most N zeros. By Hadamard’s factorisation
theorem, for every z ∈ Cd, there exists a polynomial Pz with deg(Pz) ≤ N and α(z), β(z) ∈ C such
that :

ϕ(tz) = Pz(t)e
α(z)t+β(z)t2 ,

with
Pz(t) = a0(z) + · · · + aN (z)tN .

From the uniqueness in Hadamard’s theorem, we easily see that the functions α and β are homogeneous
of degree 1 and 2 respectively, and aj is of degree j. We may assume that aN (z) is non identically
zero. We have

(12) ϕ(tz)ϕ(−tz)ϕ(itz)ϕ(−itz) = Pz(t)Pz(−t)Pz(it)Pz(−it).

Differentiating (12) 4N times with respect to t, and then taking t = 0, we get that aN(z)4 is a
homogeneous polynomial of degree 4N . Now,

d

dt

(
ϕ(tz)

)
ϕ(−tz)ϕ(itz)ϕ(−itz) =

(
d

dt
Pz(t) + (2β(z)t + α(z))Pz(t)

)
Pz(it)Pz(−it),

and differentiating 4N + 1 times with respect to t at t = 0, we get that aN (z)4β(z) is holomorphic.
Thus β(z) is also holomorphic, and so a homogeneous polynomial of degree 2. An analogous proof
allows to conclude that α(z) is a homogeneous polynomial of degree 1. Define Q(z) = β(z)+α(z) and
P (z) = ϕ(z)e−Q(z). We know that P is holomorphic, and we have to prove that it is a polynomial.
Then

P (tz) = Pz(t) = a0(z) + · · · + aN (z)tN .

In particular,

aj(z) =
1

j!

dj

dtj
(
P (tz)

)∣∣∣∣
t=0

is a holomorphic function, thus a homogeneous polynomial of degree j. It follows that P (z) =
a0(z) + · · · + aN (z) is a polynomial of degree ≤ N , which we wanted to prove to conclude for this
step. �

We have also completed the proof of Proposition 2.2. Indeed, g has the required form thus so has
f . �

Let us make a few comments on the proof. Step 3 is very much inspired, with simplifications, from
the proof of Hörmander [18]. Step 2 is not contained in [18], and simplifies greatly the proof, even
for N = 0. Further, it is easy to see that if the function ϕ in Lemma 2.3 is of order less than k, then
ϕ(z) = P (z)eQ(z), with P a polynomial of degree at most N and Q a polynomial of degree at most k.
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As we said in the introduction, the reader will find separately the proof of Beurling-Hörmander’s
Theorem (N = 0, d = 1) in the Appendix.

3. Applications to other uncertainty principles.

Let us first mention the following immediate corollary of Theorem 1.1 :

Corollary 3.1. Let f ∈ L2(Rd).

(i) If

(13)

∫∫

Rd×Rd

|f(x)||f̂(y)|
(1 + ‖x‖ + ‖y‖)N

e2π
∑d

i=1 |xiyi|dxdy < +∞

then f(x) = P (x)e−
∑d

i=1 βix
2
i with P a polynomial and βi > 0 for i = 1, . . . , d.

(ii) If

(14)

∫∫

Rd×Rd

|f(x)||f̂(y)|
(1 + ‖x‖ + ‖y‖)N

e2π‖x‖‖y‖dxdy < +∞

then f(x) = P (x)e−β‖x‖2

with P a polynomial and β > 0.

Proof. It is enough to see that Conditions (13) and (14) are stronger than Condition (2) of Theorem
1.1. Thus f(x) = P (x)e−〈Ax,x〉 for some positive definite matrix A. A direct computation then shows
that the form of the matrix A imposed by Conditions (13) and (14) are respectively A diagonal and
A = βI. �

The next proposition, which implies the Cowling–Price theorem in one dimension, follows at once
from the last case.

Proposition 3.2. Let N ≥ 0. Assume that f ∈ L2(Rd) satisfies
∫

Rd

|f(x)|eπa‖x‖2

(1 + ‖x‖)N
dx < +∞ and

∫

Rd

|f̂(y)|eπb‖x‖2

(1 + ‖y‖)N
dy < +∞ .

Then, ab > 1 implies f = 0. If ab = 1, then f(x) = P (x)e−πa‖x‖2

for some polynomial P .

Proof of Theorem 1.3. For d = 1, this is exactly Proposition 3.2. For d > 1, we proceed as in [2] to
reduce to the one-dimensional case. For almost every x′ = (x2, · · ·xd), the function fx′ defined by
fx′(x1) = f(x1, x

′) is in L2(R) and has as Fourier transform the function

y1 7→
∫

Rd−1

f̂(y1, y
′)e−2πi〈x′,y′〉dy′ .

So, for almost every x′, the function fx′ satisfies the assumptions of Proposition 3.2, and eπa|x1|
2

f(x1, x
′)

is a polynomial of degree at most N − 2 in the x1 variable. The same is valid in each variable, which
allows to conclude. �

Let us remark that, as in [2] for the case N = 0, it is possible to weaken the assumption when the
conclusion is that f vanishes. We have the immediate corollary :

Corollary 3.3. Assume that f ∈ L2(Rd) satisfies
∫

Rd

|f(x)| eπa|xj|
2

(1 + |xj |)M
dx < +∞ and

∫

Rd

|f̂(y)| eπb|yj|
2

(1 + |yj |)N
dy < +∞

for some j = 1, · · · , d and for some positive constants a and b with ab = 1. If min{M, N} = 1, then
f is identically 0.
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Another remark is that L1 norms may be replaced by Lp norms for 1 ≤ p ≤ ∞ in the previous
statements, using Hölder’s inequality. In particular, we get Corollary 1.2 as well as a modification of
the usual Hardy’s theorem that we state now.

Proposition 3.4 (Hardy type). Let f ∈ L2(Rd) be such that, for all j = 1, · · · , n,

|f(x)| ≤ C(1 + |xj |)Ne−πa|xj |
2

and |f̂(y)| ≤ C(1 + |yj |)Ne−πb|yj|
2

.

We have the following implications.

(1) If ab > 1, then f = 0.

(2) If ab = 1, then f(x) = P (x)e−π‖x‖2

where P is a polynomial of degree ≤ N .
(3) Else, there is a dense subspace of functions satisfying these estimates.

Proof. It is enough to notice that the assumptions of Theorem 1.3 are satisfied (for a larger value of
N). �

Proof of Theorem 1.4. It is sufficient to consider the one-dimensional case: for the first statement
we conclude the general case from the one-dimensional one as before, and to find a dense subset of
functions we use tensorization. So, let us first assume that f ∈ L2(R) is such that

∫

R

|f(x)|e2π ap

p |x|pdx < +∞ and

∫

R

|f̂(y)|e2π bq

q |y|qdy < +∞

for some positive constants a and b, and prove that f is identically zero. Here 1 < p ≤ 2, and q is the
conjugate exponent. It follows from the second inequality that f extends to an entire function, which
satisfies the inequality

|f(x + iy)| ≤ Ce
2π
p | y

b |p .

Moreover, the same inequality is valid when f is replaced by its even part, or its odd part. Such a
function may be written as g(z2), or zg(z2), with g an entire function. One of them is non zero, and
satisfies

|g(x + iy)| ≤ Ce2π b−p

p |z|
p
2

and

∫

R

|g(x)|e2π ap

p |x|
p
2
dx < +∞ .

In the second inequality, a has effectively been replaced by an arbitrarily close smaller constant, which
we write a again for simplification. We then consider the function

G(z) =

∫ z

0

g(u)du −
∫ ∞

0

g(u)du .

Then G is an entire function of order p
2 , and, for positive x,

|G(−x)| ≤ Ce2π b−p

p x
p
2

and |G(x)| ≤ Ce−2π ap

p |x|
p
2

,

eventually changing the value of b into an arbitrary close one. We claim that it follows that G is
constant, which allows to conclude. One may refer to [24] or [25] for this. For sake of completeness,
let us give a simple proof. We may assume that 2πb−p = p, and 2πap = p(1 + ε)

∣∣cos(pπ
2 )
∣∣. Apply the

Phragmèn-Lindelöf principle in the upper-half plane as well as in the lower-half-plane for the function
G(z) exp

(
−(−z)p/2

)
(using the principal branch). We find that this function, which is holomorphic

outside R+, is bounded. In particular, it implies that, for some θ ∈
(
0, 2π

p − π
)

and for positive x, the

quantity G(ei(π±θ)x)G(x) is bounded.
Now, consider the entire function H : z 7→ G(ei(π−θ)z)G(z), which is entire of order p

2 and bounded

on the boundary of the sector Γ = {xeiα : x ≥ 0,−π + θ ≤ α ≤ 0}. Thus, applying the Phragmèn-
Lindelöf principle to H , both on the inside and on the outside of Γ, one gets that H is bounded, thus
constant. But H is the product of G and of z 7→ G(ei(π−θ)z) which are both entire functions of order
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≤ p
2 < 2. As they have no zeros, they are either constant or of the form eaz. The later case is clearly

excluded, so G is constant as claimed.

Let us now prove that, for ab <
∣∣cos(pπ

2 )
∣∣ 1p , there is a dense subset of functions f such that

|f(x)| ≤ Ce−2π ap

p |x|p and |f̂(y)| ≤ Ce−2π bq

q |y|q .

Since this set of functions is stable under multiplications by e2πiy0x (changing b into an arbitrarily
close smaller constant), we see immediately that it is dense, unless it reduces to 0. Indeed, if f is such
a non zero function and φ ∈ L2(R) is orthogonal to all functions e2πiy0xf , then fφ is identically 0.
Since f is analytic, it means that φ is 0. But the existence of such a function has been given by G.
Morgan in [24] (see also [25]). This finishes the proof of Theorem 1.4. �

G. Morgan gives examples of non zero functions which may be used for ab =
∣∣cos(pπ

2 )
∣∣ 1p . Neverthe-

less, it leaves open the complete description of the possible functions, except for the case when p = 2,
for which the previous theorems give precise informations.

4. Properties of the ambiguity function

For sake of self-containedness, let us recall here a few properties of the ambiguity function that we
may use in the sequel. They can be found in [1], [28].

Lemma 4.1. Let u, v in L2(Rd). For a, ω ∈ Rd, λ > 0 define

S(a)u(t) = u(t − a) , M(ω)u(t) = e2iπωtu(t) , Dλu(t) = λ
d
2 u(λt)

and recall that we defined Zu(t) = u(−t). Then

(i) A
(
S(a)u, S(b)v

)
(x, y) = eiπ〈a+b,y〉A(u, v)(x + b − a, y),

(ii) A
(
M(ω1)u, M(ω2)v

)
(x, y) = eiπ〈ω1+ω2,x〉A(u, v)(x, y + ω1 − ω2),

(iii) A
(
Dλu, Dλv

)
(x, y) = A(u, v)

(
λx, y

λ

)
,

(iv) A(Zu, Zv)(x, y) = A(u, v)(x, y),

(v) A(û, v̂)(x, y) = A(u, v)(y,−x) and A(u, v)(x, y) = A(v, u)(−x,−y).

Lemma 4.2. Let u, v ∈ L2(Rd). Then A(u, v) is continuous on R2d and A(u, v) ∈ L2(R2d). Further,

‖A(u, v)‖L2(R2d) = ‖u‖L2(Rd)‖v‖L2(Rd)

Proof. This fact is also well known, however to help the reader get familiar with our notation, let us
recall the proof of the last assertion (see [1], [28]). If u and v are fixed, we will write

(15) hx(t) = u(t +
x

2
)v(t − x

2
)

The change of variables

(16) ξ = t − x

2
and η = t +

x

2
gives ∫∫

|hx(t)|2dtdx =

∫∫
|u(η)|2|v(ξ)|2dηdξ = ‖u‖2

L2(Rd)‖v‖
2
L2(Rd).

In particular, for almost every x, the integral with respect to t is finite, i.e hx ∈ L2. Noticing that

A(u)(x, y) = ĥx(y), and using Parseval’s formula we obtain
∫ (∫

|A(u, v)(x, y)|2dx

)
dy =

∫ (∫ ∣∣∣ĥx(y)
∣∣∣
2

dy

)
dx = ‖u‖2

L2(Rd)‖v‖
2
L2(Rd),

which completes the proof. �
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Finally, we will also need the following lemma from [19], [22] :

Lemma 4.3. Let u, v, w ∈ L2(Rd). Then, for every x, y ∈ Rd,

∫

R2d

A(u, v)(s, t)A(v, w)(s, t)e2iπ(〈s,x〉+〈t,y〉)dsdt = A(u, v)(−y, x)A(v, w)(−y, x).

5. Heisenberg inequality for the ambiguity function.

We show here that the ambiguity function is subject to sharp inequalities of Heisenberg type. We
give first a directional version of Heisenberg’s inequality (1) in the context of ambiguity functions,
with an elementary proof.

Theorem 5.1. For u, v ∈ L2(Rd), for every i = 1, . . . , d and every a, b ∈ R, one has the following
inequality :

(17)

∫∫

R2d

|xi − a|2|A(u, v)(x, y)|2dxdy

∫∫

R2d

|yi − b|2|A(u, v)(x, y)|2dxdy ≥
‖u‖4

L2(Rd)‖v‖
4
L2(Rd)

4π2
.

Moreover equality holds in (17), with u and v non identically 0, if and only if there exists µ, ν ∈
L2(Rd−1), α > 0 and β, γ ∈ R such that

u(t) =µ(t1, . . . , ti−1, ti+1, . . . , td)e
2iπβtie−α/2|ti−γ|2 ,

v(t) =ν(t1, . . . , ti−1, ti+1, . . . , td)e
2iπ(b+β)tie−α/2|ti−a−γ|2 .

To prove the theorem, we will need the following lemma that has its own interest :

Lemma 5.2. Let u, v ∈ L2(Rd) be both non identically zero and let i = 1, . . . , d. The following are
equivalent :

(a)

∫∫
|xi|2|A(u, v)(x, y)|2dxdy < +∞.

(b) For all a ∈ R,

∫∫
|xi − a|2|A(u, v)(x, y)|2dxdy < +∞.

(c)

∫
|ti|2|u(t)|2dt < +∞ and

∫
|ti|2|v(t)|2dt < +∞.

(d) For all a, b ∈ R,

∫
|ti − a|2|u(t)|2dt < +∞ and

∫
|ti − b|2|v(t)|2dt < +∞.

Remark : Note that, if u ∈ L2(Rd) and if

∫
|ti|2|u(t)|2dt < +∞ then ti|u(t)|2 ∈ L1(Rd).

Proof. Let us first remark that (a) ⇔ (b) and (c) ⇔ (d). Indeed, it is sufficient to use the triangle
inequality

|x|2 ≤ 2(|x − a|2 + |a|2) .
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Moreover, (b) and (d) may be replaced by (b′) and (d′), where “for all” has been changed into “for
some”. Let us prove that (a) implies (d′). With the notations of Lemma 4.2, Parseval identity gives :

∫∫
|xi|2|A(u, v)(x, y)|2dxdy =

∫
|xi|2

∫ ∣∣∣ĥx(y)
∣∣∣
2

dydx

=

∫
|xi|2

∫
|hx(t)|2dtdx

=

∫∫
|xi|2

∣∣∣∣u(t +
x

2
)v(t − x

2
)

∣∣∣∣
2

dtdx

=

∫ (∫
|ηi − ξi|2|v(ξ)|2dξ

)
|u(η)|2dη.(18)

So, if (a) holds, for almost every η, |u(η)|2
∫
|ξi − ζi|2|v(ξ)|2dξ < +∞. As we assumed that u 6= 0,

there exists η such that u(η) 6= 0, and the first inequality in (d′) holds with a = η. Since u and v play
the same role, we conclude for the second part similarly.

Conversely, if (c) holds, the right hand side of (18) is finite, and (a) holds also. �

Proof of theorem 5.1. Let us start by proving the inequality. Set A = A(u, v). We may assume that
[∫∫

|xi|2|A(x, y)|2dxdy

] [∫∫
|yi|2|A(x, y)|2dxdy

]
< +∞

so that both factors are finite, and, by homogeneity, that ‖u‖L2(Rd) = ‖v‖L2(Rd) = 1. Moreover,

replacing u and v by translates of these functions (with the same translation), we may assume that

(19) −
∫

ti|u(t)|2dt =

∫
ti|v(t)|2dt =

a

2
.

Heisenberg’s inequality (1) applied to hx(t) = u
(
t + x

2

)
v
(
t − x

2

)
implies that, for any b ∈ Rd :

(20)
1

4π

∫
|hx(t)|2dt ≤

(∫
|ti|2|hx(t)|2dt

)1/2(∫
|yi − b|2|A(u, v)(x, y)|2dy

)1/2

.

Integrating this inequality with respect to the x-variable and appealing to Cauchy-Schwarz’ inequality,
we get :

(21)
1

4π
=

‖u‖2‖v‖2

4π
≤
(∫∫

|ti|2|hx(t)|2dtdx

) 1
2
(∫∫

|yi − b|2|A(u, v)(x, y)|2dxdy

) 1
2

.

Let us now transform the first factor on the right hand side of this expression. We write

|ti|2 =

(
ti +

xi − a

2

)(
ti −

xi − a

2

)
+

|xi − a|2
4

.

The second term which appears is, by Parseval identity, equal to

1

4

∫∫
|xi − a|2|A(x, y)|2dxdy ;

The first term is equal to

(22)

∫∫ (
ηi −

a

2

)(
ξi +

a

2

)
|u(η)|2|v(ξ)|2dηdξ = −1

4
|a − a|2 ≤ 0

using (19). Finally, including these results in (21), we obtain the desired inequality.

Assume now that we have equality. Let us remark that, using properties (a) and (b) of Lemma 4.1,
we may as well assume that the constants a and b are 0. Moreover, up to a same translations in space

and frequency, we may again assume that −
∫

ti|u(t)|2dt =
∫

ti|v(t)|2dt = a
2 , and −

∫
ti|Fu(t)|2dt =



14 ALINE BONAMI, BRUNO DEMANGE & PHILIPPE JAMING

∫
ti|Fv(t)|2dt = b

2 . Let hx(t) = u
(
t + x

2

)
v
(
t − x

2

)
as before. Then, to have equality in (17), we have

equality in (22), i.e. we have a = a = 0. Similarly, exchanging the roles of the x and y variables, we
also have b = b = 0.

We then have equality in Cauchy-Schwarz’s inequality (21). This implies that

x 7→
∫

|ti|2|hx(t)|2dt and x 7→
∫

|yi|2
∣∣∣ĥx(y)

∣∣∣
2

dy

are proportional.
Further, for almost every x, we also have equality in Heisenberg’s inequality (20). From now on,

we assume for simplicity that i = 1. We then get that, for almost every x, hx is a Gaussian in the t1
variable :

hx(t) = C(x, t′)e−πα(x)|t1|
2

.

where t′ = (t2, . . . , td) ∈ Rd−1, C(x, t′) is not identically 0 and α(x) > 0 for those x for which
C(x, t′) 6= 0.

Let us first prove that α does not depend on x. With this expression of hx, we get that
∫

|t1|2|hx(t)|2dt = ‖C(x, .)‖2
L2(Rd−1)

√
π

2

(
1

2πα(x)

) 3
2

whereas (with Parseval identity)
∫

|yi|2
∣∣∣ĥx(y)

∣∣∣
2

dy = ‖C(x, .)‖2
L2(Rd−1)

1

4π

√
α(x)

2
.

But these two functions are proportional only if α(x) is a constant, say α(x) = α.
Taking inverse Fourier transforms, we get that

(23) A(u, v)(x, y) =
1√
α

Ĉ(x,−ŷ′)e−
π
α |y1|

2

,

where Ĉ(x, .) is the Fourier transform in Rd−1 of C(x, .). In particular, as A(u, v) is continuous, Ĉ is
also continuous.

Further, if one has equality in (17) for u, v, one has again this equality if u, v are replaced by their
Fourier transform, as A(û, v̂)(x, y) = A(u, v)(y,−x). So, we have

(24) A(u, v)(x, y) = D(y, x′)e−
π
β |x1|

2

,

for some function D and some β > 0. Comparing (23) and (24), we get that

A(u, v)(x, y) = E(x′, y′)e−
π
β |x1|

2

e−
π
α |y1|

2

for some function E ∈ L2(Rd−1 × Rd−1). Taking the Fourier transform in the y variable, we get

u
(
t +

x

2

)
v
(
t − x

2

)
= Ẽ(x′, t′)e−

π
β |x1|

2

e−πα|t1|
2

.

So, setting again η = t + x
2 , ξ = t − x

2 , we get

u(η)v(ξ) = Ẽ

(
η′ − ξ′,

η′ + ξ′

2

)
e−

π
β (η1−ξ1)

2

e−
πα
4 (η1+ξ1)2 .

This is only possible if β = 4
α and u(x) = µ(x̂i)e

−πα
2 |xi|

2

, v(x) = ν(x̂i)e
−πα

2 |xi|
2

with µ, ν ∈ L2(Rd−1).
�

We now translate the last theorem in terms of inequalities on covariance matrices, as it is classical
for inequality (1) (see for instance [9]).
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Proof of Theorem 1.5. First, it follows from Lemma 5.2 that X and Y have moments of order 2. Let
us prove that X and Y are not correlated. Without loss of generality, we may assume that

∫
ti|u(t)|2dt =

∫
ti|v(t)|2dt =

∫
ti|Fu(t)|2dt =

∫
ti|Fv(t)|2dt = 0

for all i, so that X and Y are centered. Let us show that
∫∫

xiyj |A(u, v)|2dx dy = 0 .

Using Plancherel identity , we are led to consider
∫∫

xi

[
∂tj hx(t)hx(t) + hx(t)∂tj hx(t)

]
dxdt .

Writing xi = t + xi

2 − (t − xi

2 ), and

∂tj hx(t) = u(t +
x

2
)∂tj v(t − x

2
) + ∂tj u(t +

x

2
)v(t − x

2
),

we get eight terms. For four of them we get directly 0. The sum of the last four may be written, after
changes of variables, as

∫

Rd

ti∂tj [|u(t)|2]dt ×
∫

Rd

|v(t)|2dt −
∫

Rd

|u(t)|2dt ×
∫

Rd

ti∂tj [|v(t)|2]dt .

After an integration by parts, the two terms give δij , so that their difference is 0.

Let us now prove the second assertion. Let C be an automorphism of Rd. For a function f ∈ L2(Rd),

we consider fC the function given by fC(t) = |det(C)|−
1
2 f(C−1t). Then a simple change of variables

shows that the probability density of (CX,t C−1Y ) is |A(uC , vC)|2. Eventually changing u and v into
uC and vC we may assume that V (Y ) is the identity matrix. Moreover, we may also assume that
V (X) is diagonal. Then the inequality follows from Theorem 5.1. Equality holds only if all eigenvalues
are equal to 4π2, which means that u and v are Gaussian functions. �

From Theorem 1.5, we immediately obtain that

(25) det(V (X)) × det(V (Y )) ≥ (4π2)−2d .

Equality holds only for Gaussian functions. Another (much less elementary) proof of (25) can be
obtained using the entropy inequality of Lieb and the theorem of Shannon (see [11], Section 6).

The same inequality holds for traces instead of determinants. We state it independently.

Corollary 5.3. Let u, v ∈ L2(Rd) be both non identically zero and a, b ∈ Rd. Then
∫∫

R2d

‖x − a‖2|A(u, v)(x, y)|2dxdy ×
∫∫

R2d

‖y − b‖2|A(u, v)(x, y)|2dxdy

≥
d2‖u‖4

L2(Rd)‖v‖
4
L2(Rd)

4π2
,(26)

with equality if and only if there exists λ, ν ∈ C∗, α > 0 and β, γ ∈ Rd such that

u(t) = λe2iπ〈β,t〉e−α/2‖t−γ‖2

and v(t) = νe2iπ〈b+β,t〉e−α/2‖t−a−γ‖2

.
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6. Uncertainty principles for the ambiguity function.

We first prove the following uncertainty principle for the ambiguity function, which also gives a
characterization of Hermite functions:

Theorem 6.1. Let u, v ∈ L2(Rd) be non identically vanishing. If

(27)

∫∫

R2d

|A(u, v)|2 eπ‖x‖2

(1 + ‖x‖)N
dxdy < +∞ and

∫∫

R2d

|A(u, v)|2 eπ‖y‖2

(1 + ‖y‖)N
dxdy < +∞

for all j = 1, · · · , d, then there exists a, w ∈ Rd such that both u and v are of the form

P (x)e2iπ〈w,x〉e−π‖x−a‖2

,

with P a polynomial.

Let us first remark that when u = v, since the Fourier transform of |A(u, u)|2 taken at (x, y) is

equal to |A(u, u)|2(y,−x), the result follows immediately from Theorem 1.3. Our aim is to prove that
it is also valid in the general case. We first prove a weaker statement.

Proposition 6.2. Let u, v ∈ L2(Rd) be non identically vanishing. If

(28)

∫∫

Rd×Rd

|A(u, v)(x, y)|2
(1 + ‖x‖ + ‖y‖)N

eπ(‖x‖2+‖y‖2)dxdy < +∞ ,

then there exists a, w ∈ Rd such that both u and v are of the form P (x)e2iπ〈w,x〉e−π‖x−a‖2

with P a
polynomial.

Before starting the proof of Proposition 6.2, let us state two lemmas. The first one is elementary
and well known.

Lemma 6.3. Let u, v ∈ L2(Rd) be non identically vanishing. Then

u(x) = P (x)e2iπ〈α,x〉e−π‖x−a‖2

and v(x) = Q(x)e2iπ〈α,x〉e−π‖x−a‖2

with P, Q polynomials and a, α ∈ Rd if and only if there is a polynomial R such that

A(u, v)(x, y) = R(x, y)e2iπ(〈α,x〉+〈a,y〉)e−
π
2 (‖x‖2+‖y‖2).

Moreover, deg(R) = deg(P ) + deg(Q).

Lemma 6.4. Assume that u, v ∈ L2(Rd), with u(x) = P (x)e2iπ〈a,x〉e−π‖x‖2

, where a ∈ Cd. Then the

function A(u, v) can be extended to an entire function on C2d.

Proof. For z, ζ ∈ Cd, we note 〈z, ζ〉 =
∑

ziζi. Then

(29) A(u, v)(x, y) = eiπ〈x,(y+2a)〉 ×
∫

P (t + x)v(t)e−π‖t+x‖2

e2iπ〈t,(a+y)〉dt .

This clearly makes sense for x, y ∈ Cd, and defines an entire function. �

Proof of Proposition 6.2 . By homogeneity, we may assume that ‖u‖L2 = ‖v‖L2 = 1. For each w ∈
L2(Rd), we consider the function

gw = A(u, v)A(v, w) .

By Lemma 4.3, the Fourier transform of gw is given by Fgw(x, y) = gw(y,−x).
First step. There exists a polynomial P such that

(30) A(u, v)(x, y)A(v, u)(x, y) = P (x, y)e−π(‖x‖2+‖y‖2) .
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Proof. We consider here the function gu. As gu is (up to a change of variable) its own Fourier
transform, by Proposition 3.2, it is sufficient to prove that

(31)

∫
|gu(x, y)| eπ(‖x‖2+‖y‖2)

(1 + ‖x‖ + ‖y‖)N
dxdy < ∞ .

It follows immediately from the assumption on A(u, v), using Cauchy-Schwarz inequality and the fact

that A(v, u)(x, y) = A(u, v)(−x,−y). �

To complete the proof of the proposition, it is sufficient to prove that A(u, v) extends to an entire
function of order 2. Indeed, Lemma 2.3 then implies that

A(u, v)(x, y) = R(x, y)eQ(x,y) ,

where R is a polynomial and Q a polynomial of degree at most 2. But, as

A(u, v)(x, y)A(u, v)(−x,−y) = A(u, v)(x, y)A(v, u)(x, y) = P (x, y)e−π(‖x‖2+‖y‖2),

we get Q(x, y) = 〈β, x〉 + 〈γ, y〉 − π
2 (‖x‖2

+ ‖y‖2
) for some constants β, γ ∈ Cd. Next, Condition (28)

implies that β, γ are purely imaginary, β = 2iπα, γ = 2iπa with a, α ∈ Rd so that

A(u, v)(x, y) = R(x, y)e2iπ(〈α,x〉+〈a,y〉)e−
π
2 (‖x‖2+‖y‖2) ,

with R a polynomial. Lemma 6.3 allows to conclude. So, we have finished the proof once we have
proved the second step.

Second step. The function A(u, v) extends to an entire function of order 2.

Proof. To prove this, we first show that, for each w ∈ L2(Rd), the function gw extends to an entire
function of order 2. Since, up to a change of variable, gw coincides with its Fourier transform, it is
sufficient to show that ∫

|gw(x, y)|eπ
4 (‖x‖2+‖y‖2)dxdy < ∞ .

This last inequality follows from the fact that |gw| ≤ |A(u, v)|‖w‖L2 , and from the assumption on
A(u, v). We get the estimate

(32) |gw(z, ζ)| ≤ C‖w‖e4π(‖z‖2+‖ζ‖2) ,

for all (z, ζ) ∈ Cd × Cd, with a constant C which does not depend on w. In order to conclude this
step, it is sufficient to show that there exists a constant C such that, for each (z, ζ) ∈ Cd × Cd, we
may find wz,ζ which is of the form required in Lemma 6.4, such that

(33) |A(wz,ζ , v)(z, ζ)| ≥ C−1e−C(‖z‖2+‖ζ‖2) ,

and

(34) ‖wz,ζ‖ ≤ C−1eC(‖z‖2+‖ζ‖2) .

By density of the Hermite functions we can choose a polynomial P0 such that
∫

P0(t)v(t)e−π‖t‖2

dt = 1 .

We then define wz,ζ by

wz,ζ(t) = P0(t − z)e2π〈z−iζ,t〉e−π‖t‖2

.

It follows from the choice of P0 that

A(wz,ζ , v)(z, ζ) = eπ(〈z,z〉−i〈z,ζ〉) .

Then (33) and (34) follow from direct computations. Finally, since A(u, v)A(v, wz,ζ ) extends to an
entire function for each z, ζ, and since the second factor is also entire and does not vanish in a
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neighborhood of (−z,−ζ) ∈ Cd, A(u, v) extends also to an entire function. The fact that it is of order
2 follows from (32), (33) and (34). �

We have completed the proof of Proposition 6.2. �

Proof of Theorem 6.1. With the weaker assumption (27), we conclude that (30)also holds, using the
directional theorem for Fourier transforms. We claim that A(u, v) is an analytic function of each of the

variables x and y. Indeed, as before, for every function w ∈ L2(Rd), the product A(u, v)A(v, w) extends
to a holomorphic function of x, y being fixed, as well as to a holomorphic function of y, x being fixed.
When choosing w as before, we conclude that the function extends to an entire function of order 2 in

x, for fixed y. So, for almost every fixed y, A(u, v)(x, y) may be written as Ry(x)e2iπ〈α(y),x〉e−
π
2 ‖x‖2

,
with Ry a polynomial of degree at most N . It follows that the continuous function

eπ(‖x‖2+‖y‖2)|A(u, v)(x, y)|2

is a polynomial of degree at most 2N in each variable x, y. So it is a polynomial, and the assumption
(28) is satisfied. We can now use Proposition 6.2 to conclude. �

In particular, it follows from Theorem 6.1 that there does not exist two non zero functions u, v
which satisfy Condition (27) for N ≤ d. In this case, where the conclusion is that u or v is identically
0, the condition can be relaxed into a directional condition as for the case of the Fourier transform.

Corollary 6.5. Assume that

(35)

∫∫

R2d

|A(u, v)|2 eπ|xj |
2

(1 + |xj |)M
dxdy < +∞ and

∫∫

R2d

|A(u, v)|2 eπ|yj|
2

(1 + |yj|)N
dxdy < +∞

for some j = 1, · · · , d. If min{M, N} = 1, then u or v vanishes.

Proof. When d = 1, the result follows from Theorem 6.1. Let us now consider the case d > 1. We
assume that the condition is satisfied for j = 1. For t′ ∈ Rd−1 and for f in L2(Rd), we define
ft′(t1) = f(t1, t

′). It follows from Plancherel identity that
∫

Rd−1

|A(u, v)(x, y)|2dy′ =

∫

Rd−1

∣∣∣A(ut′− x′

2
, vt′+ x′

2
)(x1, y1)

∣∣∣
2

dy′ .

Changing variables, and using Fubini’s Theorem, it follows that, for almost every ξ′ and η′ in Rd−1,
∫∫

R×R

|A(uη′ , vξ′)(x1, y1)|2
(1 + |x1| + |y1|)2

eπ(|x1|
2+|y1|

2)dx1dy1 < +∞ .

It follows from the one dimensional case that either uη′ or vξ′ is identically 0. So, for almost every ξ′

and η′ in Rd−1, A(uη′ , vξ′) = 0. It follows that A(u, v) = 0. �

As in section 3, we may deduce from Theorem 6.1 a version of Hardy’s theorem for the ambiguity
function. Let us remark that the constraints on degrees are always elementary. The case when N = 0
has also been considered in ([15]).

Corollary 6.6. Let u, v ∈ L2(Rd) and assume that

|A(u, v)(x, y)| ≤ K(1 + ‖x‖)Ne−
π
2 〈Bx,x〉 and |A(u, v)(x, y)| ≤ K(1 + ‖y‖)Ne−

π
2 〈Cy,y〉.

We have the following implications.

(1) If B − C−1 is positive, non zero, then either u or v = 0 .
(2) If B = C−1, there are polynomials P, Q of degree ≤ N and constants ω, a ∈ Rd such that

u(x) = P (x)e2iπ〈ω,x〉e−π〈B(x−a),x−a〉 and v(x) = Q(x)e2iπ〈ω,x〉e−π〈C(x−a),x−a〉.
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Remark : This corollary implies in particular that if u0(x) = P0(x)e−α‖x‖2

, v0(x) = Q0(x)e−α‖x‖2

with P0, Q0 polynomials and if |A(u, v)| = |A(u0, v0)| then u, v are of the form

u(x) = P (x)e2iπ〈ω,x〉−α‖x−a‖2

v(x) = Q(x)e2iπ〈ω,x〉−α‖x−a‖2

with P, Q polynomials and ω, a ∈ Rd.
The problem of finding u, v from u0, v0 is known as the radar ambiguity problem and has been

considered by Bueckner [5] and de Buda [4] for u0, v0 as above. This remark corrects the proof of [4].
Further references on this problem may be found in [20] and [12].

Let us finally give a Morgan type theorem.

Theorem 6.7. Let 1 < p < 2, and let q be the conjugate exponent. Assume that u, v ∈ L2(Rd)
satisfy
∫∫

Rd×Rd

|A(u, v)(x, y)|2e2π ap

p |xj |
p

dxdy < +∞ and

∫∫

Rd×Rd

|A(u, v)(x, y)|2e2π bq

q |yj |
q

dxdy < +∞

for some j = 1, · · · , d and for some positive constants a and b. Then either u or v vanish if ab >∣∣cos
(

pπ
2

)∣∣ 1p . If ab <
∣∣cos

(
pπ
2

)∣∣ 1p , there exists a non zero function u such that the two conditions are
satisfied by A(u, u).

Proof. It is sufficient to consider the one dimensional case. Otherwise, the proof works as in Corollary
6.5. Let us prove the first assertion. If we proceed as in the proof of Theorem 6.1, we conclude at
once that

A(u, v)(x, y)A(u, v)(−x,−y) = 0,

using the similar result on Fourier transforms. It remains to show that A(u, v) is an analytic function
of each variable, which is obtained in the same way as before using an auxiliary function w.

Let us now prove that, for ab <
∣∣cos

(
pπ
2

)∣∣ 1p , there exists a non zero function u such that the
two conditions are satisfied by A(u, u). Using Plancherel formula, the first condition may as well be
written as ∫∫

R×R

|u
(
t − x

2

)
|2|u

(
t +

x

2

)
|2e2π ap

p |x|pdxdt < +∞ .

Using the same change of variable as before, and the inequality |η− ξ| ≤ 2p−1(|η|p + |ξ|p), we see that
this integral is bounded by the square of the integral

∫

R

|u(ξ)|2e4π (21−2/pa)p

p |ξ|pdξ .

For the second integral, we use Lemma 4.1 to write it in terms of the Fourier transform of u. We
obtain that it is bounded by ∫

R

|û(ξ)|2e4π (21−2/qa)q

q |ξ|qdξ .

The fact that there is a non zero function u for which both integrals are finite is an easy consequence

of Theorem 1.4 and Schwarz inequality, since
(
21− 2

p a
)
×
(
21− 2

q b
)

<
∣∣cos

(
pπ
2

)
)
∣∣ 1p . �

Remark : At this stage, we would like to point out that we have not been able to replace the conditions
of Theorem 6.1 by the condition
∫∫ |A(u, v)(x, y)|2

(1 + ‖x‖ + ‖y‖)N
e2π|〈x,y〉|dxdy < +∞ or at least

∫∫ |A(u, v)(x, y)|2
(1 + ‖x‖ + ‖y‖)N

e2π‖x‖‖y‖dxdy < +∞.

Also, we do not know whether weaker conditions, with |A(u, v)(x, y)| in place of its square, are
sufficient.



20 ALINE BONAMI, BRUNO DEMANGE & PHILIPPE JAMING

Appendix

We give here a simplified proof of Beurling-Hörmander’s Theorem, which may be useful for ele-
mentary courses on Fourier Analysis. All ideas are contained in Section 2.

We want to prove that a function f ∈ L1(R) which satisfies the inequality

(36)

∫∫

R×R

|f(x)||f̂(ξ)|e2π|x||ξ|dxdξ < +∞

is identically 0. It is sufficient to show that the function g = e−πx2 ∗ f is identically 0. Indeed, the

Fourier transform of g is equal to e−πξ2

f̂ . If it is 0, then f vanishes also. Now g extends to an entire
function of order 2 in the complex plane. We note also g its extension. We claim that, moreover,

(37)

∫∫

R×R

|g(x)||ĝ(ξ)|e2π|x||ξ|dxdξ < +∞

Indeed, replacing g and ĝ by their values in terms of f and f̂ and using Fubini’s theorem, we are led
to prove that the quantity ∫

R

e−π[(x−y)2−2|x||ξ|+2|y||ξ|+ξ2]dx

is bounded independently of y and ξ. Taking x − y as the variable, it is sufficient to prove that
∫

R

e−π[x2−2|x||ξ|+ξ2]dx

is bounded by 2, which follows from the fact that x2 − 2|x||ξ| + ξ2 is either (x − ξ)2 or (x + ξ)2.
Now, for all z ∈ C, we have the elementary inequality

|g(z)| ≤
∫

R

|ĝ(ξ)|e2π|z||ξ|dξ ,

so that there exists some constant C such that

(38)

∫ +∞

−∞

|g(x)| sup
|z|=|x|

|g(z)|dx ≤ C .

We claim that the holomorphic function

G(z) =

∫ z

0

g(u)g(iu)du

is bounded by C. Once we know this, the end of the proof is immediate: G is constant by Liouville’s
Theorem; so g(u)g(iu) is identically 0, which implies that g is identically 0.

It is clear from (38) that G is bounded by C on the axes. Let us prove that it is bounded by C for
z = reiθ in the first quadrant. Assume that θ is in the interval (0, π/2). By continuity, it is sufficient
to prove that

Gα(z) =

∫ z

0

g(e−iαu)g(iu)du

is bounded by C for all α ∈ (0, θ). But the function Gα is an entire function of order 2, which is
bounded by C on the y-axis and on the half-line ρeiα. By Phagmèn–Lindelhöf principle, it is bounded
by C inside the angular sector, which gives the required bound for |Gα(z)|. A similar proof gives the
same bound in the other quadrants.
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