HAL
open science

Harmonic Functions on the Real Hyperbolic Ball I: Boundary Values and Atomic Decompositions of Hardy Spaces

Philippe Jaming

- To cite this version:

Philippe Jaming. Harmonic Functions on the Real Hyperbolic Ball I: Boundary Values and Atomic Decompositions of Hardy Spaces. Colloquium Mathematicum, 1999, 80, pp.63-82. hal-00005820

HAL Id: hal-00005820
https://hal.science/hal-00005820
Submitted on 4 Jul 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HARMONIC FUNCTIONS ON THE REAL HYPERBOLIC BALL I : BOUNDARY VALUES AND ATOMIC DECOMPOSITION OF HARDY SPACES

PHILIPPE JAMING ${ }^{1}$

Abstract

In this article we study harmonic functions for the Laplace-Beltrami operator on the real hyperbolic space \mathbb{B}_{n}. We obtain necessary and sufficient conditions for this functions and their normal derivatives to have a boundary distribution. In doing so, we put forward different behaviors of hyperbolic harmonic functions according to the parity of the dimension of the hyperbolic ball \mathbb{B}_{n}. We then study Hardy spaces $H^{p}\left(\mathbb{B}_{n}\right), 0<p<\infty$, whose elements appear as the hyperbolic harmonic extensions of distributions belonging to the Hardy spaces of the sphere $H^{p}\left(\mathbb{S}^{n-1}\right)$. In particular, we obtain an atomic decomposition of this spaces.

1. Introduction

In this article, we study boundary behavior of harmonic functions on the real hyperbolic ball, partly in view of establishing a theory of Hardy and Hardy-Sobolev spaces of such functions.

While studying Hardy spaces of Euclidean harmonic functions on the unit ball \mathbb{B}_{n} of \mathbb{R}^{n}, one is often lead to consider estimates of this functions on balls with radius smaller than the distance of the center of the ball to the boundary \mathbb{S}^{n-1} of \mathbb{B}_{n}. Thus hyperbolic geometry is implicitly used for the study of Euclidean harmonic functions, in particular when one considers boundary behavior. As Hardy spaces of Euclidean harmonic functions are the spaces of Euclidean harmonic extensions of distributions in the Hardy spaces on the sphere, it is tempting to study these last spaces directly through their hyperbolic harmonic extension.

The other origin of this paper is the study of Hardy and Hardy-Sobolev spaces of \mathcal{M}-harmonic functions related to the complex hyperbolic metric on the unit ball, as exposed in [1] and [2]. Our aim is to develop a similar theory in the case of the real hyperbolic ball. In the sequel, n will be an integer, $n \geq 3$ and p a real number, $0<p<\infty$.

Let $S O(n, 1)$ be the Lorenz group. It is well known that $S O(n, 1)$ acts conformly on \mathbb{B}_{n}. The corresponding Laplace-Beltrami operator, invariant for the considered action, is given by

$$
D=\left(1-|x|^{2}\right)^{2} \Delta+2(n-2)\left(1-|x|^{2}\right) N
$$

with Δ the Euclidean laplacian and $N=\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}}$ the normal derivation operator. Functions u that are harmonic for this laplacian will be called \mathcal{H}-harmonic. The "hyperbolic" Poisson kernel that solves the Dirichlet problem for D is defined for $x \in \mathbb{B}_{n}$ and $\xi \in \mathbb{S}^{n-1}$ by

$$
\mathbb{P}_{h}(x, \xi)=\left(\frac{1-|x|^{2}}{1+|x|^{2}-2<x, \xi>}\right)^{n-1}
$$

With help of this kernel, one can extend distributions on \mathbb{S}^{n-1} to \mathcal{H}-harmonic functions on \mathbb{B}_{n} in the same way as the Euclidean Poisson kernel extends distributions on \mathbb{S}^{n-1} to Euclidean harmonic functions on \mathbb{B}_{n}. Our first concern is to determine which \mathcal{H}-harmonic functions are obtained in this way. We then study the boundary behavior of their normal derivatives. In doing so, we put forward

[^0]that, in odd dimension, normal derivatives of \mathcal{H}-harmonic functions behave similarly to \mathcal{M}-harmonic functions whereas they behave like Euclidean harmonic functions in even dimension.

Finally, define $H^{p}\left(\mathbb{S}^{n-1}\right)$ as $L^{p}\left(\mathbb{S}^{n-1}\right)$ if $1<p<\infty$ and as the real analog of Garnett-Latter's atomic H^{p} space if $p \leq 1$. Let $H^{p}\left(\mathbb{B}_{n}\right)$ be the space of Euclidean harmonic functions \mathbb{B}_{n} such that $\zeta \mapsto \sup _{0<r<1}|u(r \zeta)| \in L^{p}\left(\mathbb{S}^{n-1}\right)$. Garnett-Latter's theorem asserts that this space is the space of Euclidean harmonic extensions of distributions in $H^{p}\left(\mathbb{S}^{n-1}\right)$. We prove here that the space $\mathcal{H}^{p}\left(\mathbb{B}_{n}\right)$ of \mathcal{H}-harmonic functions such that $\zeta \mapsto \sup _{0<r<1}|u(r \zeta)| \in L^{p}\left(\mathbb{S}^{n-1}\right)$ is the space of \mathcal{H}-harmonic extensions of distributions in $H^{p}\left(\mathbb{S}^{n-1}\right)$.

This article is organized as follows : in section 2 we present the setting of the problem and a few preliminary results. Section 3 is devoted to the study of boundary behavior of \mathcal{H}-harmonic functions and concludes with the study of the behavior of their normal derivatives. We conclude in section 4 with the atomic decomposition theorem.

2. Setting

2.1. $S O(n, 1)$ and its action on \mathbb{B}_{n}. Let $S O(n, 1) \subset G L_{n+1}(\mathbb{R}),(n \geq 3)$ be the identity component of the group of matrices $g=\left(g_{i j}\right)_{0 \leq i, j \leq n}$ such that $g_{00} \geq 1$, $\operatorname{det} g=1$ and that leaves invariant the quadratic form $-x_{0}^{2}+x_{1}^{2}+\ldots+x_{n}^{2}$.

Let $|$.$| be the Euclidean norm on \mathbb{R}^{n}, \mathbb{B}_{n}=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$ and $\mathbb{S}^{n-1}=\partial \mathbb{B}_{n}=\left\{x \in \mathbb{R}^{n}\right.$: $|x|=1\}$. It is well known ($c f$. 12]) that $S O(n, 1)$ acts conformaly on \mathbb{B}_{n}. The action is given by $y=g \cdot x$ with

$$
y_{p}=\frac{\frac{1+|x|^{2}}{2} g_{p 0}+\sum_{l=1}^{n} g_{p l} x_{l}}{\frac{1-|x|^{2}}{2}+\frac{1+|x|^{2}}{2} g_{00}+\sum_{l=1}^{n} g_{0 l} x_{l}} \quad \text { for } p=1, \ldots, n \text {. }
$$

The invariant measure on \mathbb{B}_{n} is given by

$$
d \mu=\frac{d x}{\left(1-|x|^{2}\right)^{n-1}}=\frac{r^{n-1} d r d \sigma}{\left(1-r^{2}\right)^{n-1}}
$$

where $d x$ is the Lebesgue measure on \mathbb{B}_{n} and $d \sigma$ is the surface measure on \mathbb{S}^{n-1}.
We will need the following fact about this action (see $\overline{7}$):
Fact 1 Let $g \in S O(n, 1)$ and let $x_{0}=g$. 0 . If $0<\varepsilon<\frac{1}{6}$, then

$$
B\left(x_{0}, \frac{\sqrt{2}}{8}\left(1-\left|x_{0}\right|^{2}\right) \varepsilon\right) \subset g \cdot B(0, \varepsilon) \subset B\left(x_{0}, 6\left(1-\left|x_{0}\right|^{2}\right) \varepsilon\right)
$$

2.2. The invariant laplacian on \mathbb{B}_{n} and the associated Poisson kernel. From 12] we know that the invariant laplacian on \mathbb{B}_{n} for the considered action can be written as

$$
D=\left(1-r^{2}\right)^{2} \Delta+2(n-2)\left(1-r^{2}\right) \sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}}
$$

where $r=|x|=\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)^{1 / 2}$ and Δ is the Euclidean laplacian $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$.
Note that D is given in radial-tangential coordinates by

$$
D=\frac{1-r^{2}}{r^{2}}\left[\left(1-r^{2}\right) N^{2}+(n-2)\left(1+r^{2}\right) N+\left(1-r^{2}\right) \Delta_{\sigma}\right]
$$

with $N=r \frac{d}{d r}=\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}}$ and Δ_{σ} the tangential part of the Euclidean laplacian.

Definition A function u on \mathbb{B}_{n} is \mathcal{H}-harmonic if $D u=0$ on \mathbb{B}_{n}.
The Poisson kernel that solves the Dirichlet problem associated to D is

$$
\mathbb{P}_{h}(r \eta, \xi)=\left(\frac{1-r^{2}}{1+r^{2}-2 r<\eta, \xi>}\right)^{n-1}
$$

for $0 \leq r<1, \eta, \xi \in \mathbb{S}^{n-1}$ i.e. for $r \eta \in \mathbb{B}_{n}$ and $\xi \in \mathbb{S}^{n-1}$.
Recall that the Euclidean Poisson kernel on the ball is given by

$$
\mathbb{P}_{e}(r \eta, \xi)=\frac{1-r^{2}}{\left(1+r^{2}-2 r<\eta, \xi>\right)^{\frac{n}{2}}}
$$

Notation : For a distribution φ on \mathbb{S}^{n-1}, we define $\mathbb{P}_{e}[\varphi]: \mathbb{B}_{n} \mapsto \mathbb{R}$ and $\mathbb{P}_{h}[\varphi]: \mathbb{B}_{n} \mapsto \mathbb{R}$ by

$$
\begin{aligned}
\mathbb{P}_{e}[\varphi](r \eta) & =<\varphi, \mathbb{P}_{e}(r \eta, .)> \\
\mathbb{P}_{h}[\varphi](r \eta) & =<\varphi, \mathbb{P}_{h}(r \eta, .)>
\end{aligned}
$$

$\mathbb{P}_{e}[\varphi]$ is the Poisson integral of φ, and $\mathbb{P}_{h}[\varphi]$ will be called the \mathcal{H}-Poisson integral of φ.
Finally, \mathcal{H}-harmonic functions satisfy mean value equalities : let $a \in \mathbb{B}_{n}$ and $g \in S O(n, 1)$ such that $g .0=a$. Then, for every \mathcal{H}-harmonic function u,

$$
u(a)=\frac{1}{\mu(B(0, r))} \int_{g \cdot B(0, r)} u(x) d \mu(x)
$$

Thus, with fact 1 and $d \mu=\frac{d x}{\left(1-|x|^{2}\right)^{n-1}}$, we see that

$$
\begin{equation*}
|u(a)| \leq \frac{C}{\left(1-|a|^{2}\right)^{n}} \int_{B\left(a, 6\left(1-|a|^{2}\right) \varepsilon\right)}|u(x)| d x \tag{2.1}
\end{equation*}
$$

2.3. Expansion of \mathcal{H}-harmonic functions in spherical harmonics.

Notation : For $a \in \mathbb{R}$, write $(a)_{k}=\frac{\Gamma(a+k)}{\Gamma(a)}$ thus $(a)_{0}=1$ and $(a)_{k}=a(a+1) \ldots(a+k-1)$ if $k=1,2, \ldots$. For a, b, c three real parameters, ${ }_{2} F_{1}$ denotes Gauss' hyper-geometric function defined by

$$
{ }_{2} F_{1}(a, b, c ; x)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k} k!} x^{k} .
$$

Let $F_{l}(x)={ }_{2} F_{1}\left(l, 1-\frac{n}{2}, l+\frac{n}{2} ; x\right)$ and $f_{l}(x)=\frac{F_{l}(x)}{F_{l}(1)}$. (See 4] for properties of ${ }_{2} F_{1}$).

Remark: If $n>2$ is even, $1-\frac{n}{2}$ is a negative integer thus ${ }_{2} F_{1}\left(l, 1-\frac{n}{2}, l+\frac{n}{2}, r^{2}\right)$ is a polynomial in r of degree n.

In 10, 11] and 12, the spherical harmonic expansion of \mathcal{H}-harmonic functions has been obtained. An other proof based on (1] can be found in [7]. We have the following :

Theorem 1 Let u be an \mathcal{H}-harmonic function of class \mathcal{C}^{2} on \mathbb{B}_{n}. Then the spherical harmonic expansion of u is given by

$$
u(r \zeta)=\sum_{l} F_{l}\left(r^{2}\right) u_{l}(r \zeta)
$$

where this series is absolutely convergent and uniformly convergent on every compact subset of \mathbb{B}_{n}.
Moreover if $\varphi \in \mathcal{C}\left(\mathbb{S}^{n-1}\right)$, the Dirichlet problem $\left\{\begin{array}{cc}D u=0 & \text { in } \mathbb{B}_{n} \\ u=\varphi & \text { on } \mathbb{S}^{n-1}\end{array}\right.$ has a unique solution $u \in \mathcal{C}\left(\overline{\mathbb{B}_{n}}\right)$ given by

$$
u(z)=\int_{\mathbb{S}^{n-1}} \varphi(\zeta) \mathbb{P}_{h}(z, \zeta) d \sigma(\zeta)=\mathbb{P}_{h}[\varphi](z)
$$

also given by

$$
u(r \zeta)=\sum_{l} f_{l}\left(r^{2}\right) r^{l} \varphi_{l}(\zeta)
$$

where $\varphi=\sum_{l} \varphi_{l}$ is the spherical harmonic expansion of φ.

3. Boundary values of \mathcal{H}-harmonic functions

In this chapter we prove results about the behavior on the boundary of \mathcal{H}-harmonic functions and their normal derivatives. For \mathcal{H}-harmonic functions, the results are similar to the results for Euclidean harmonic functions. On the opposite, for the normal derivatives of \mathcal{H}-harmonic functions, the boundary behavior depends on the dimension of the space.

3.1. Definition of Hardy spaces.

Notation : For u a function defined on \mathbb{B}_{n}, define the radial maximal function $\mathcal{M}[u]: \mathbb{S}^{n-1} \mapsto \mathbb{R}_{+}$by

$$
\mathcal{M}[u](\zeta)=\sup _{0<t<1}|u(t \zeta)| .
$$

We will now study \mathcal{H}^{p} spaces of \mathcal{H}-harmonic functions defined as follows:

Definition Let $0<p<\infty$. Let \mathcal{H}^{p} be the space of \mathcal{H}-harmonic functions u such that $\mathcal{M}[u] \in$ $L^{p}\left(\mathbb{S}^{n-1}\right)$, endowed with the "norm"

$$
\|u\|_{\mathcal{H}^{p}}=\|\mathcal{M} u\|_{L^{p}\left(\mathbb{S}^{n-1}\right)}=\left\|\sup _{0<t<1}|u(t .)|\right\|_{L^{p}\left(\mathbb{S}^{n-1}\right)}
$$

We will call \mathcal{H}^{p} the Hardy space of \mathcal{H}-harmonic functions.

Remark : If $0<p<1$, the application $u \mapsto\|u\|_{\mathcal{H}^{p}}$ is not a norm, however the application $u, v \mapsto$ $\|u-v\|_{\mathcal{H}^{p}}$ defines a metric on \mathcal{H}^{p}. In the sequel, we will often use the abuse of language to call $\|\cdot\|_{\mathcal{H}^{p}}$ a norm whatever p might be.

Definition A function u on \mathbb{B}_{n} is said to have a distribution boundary value if for every $\Phi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$, the limit

$$
\lim _{r \rightarrow 1} \int_{\mathbb{S}^{n}-1} u(r \zeta) \Phi(\zeta) d \sigma(\zeta)
$$

exists. In case u is \mathcal{H}-harmonic, this is equivalent to the existence of a distribution f such that $u=\mathbb{P}_{h}[f]$.
3.2. Boundary distributions of functions in \mathcal{H}^{p}. In this section, we are going to characterize boundary values of functions in \mathcal{H}^{p}. The characterizations we obtain are similar to those obtained for harmonic functions on \mathbb{R}_{+}^{n+1} or for \mathcal{M}-harmonic functions. The proofs are inspired by [1] and [5].

The first result concerns functions in $\mathcal{H}^{p}, p \geq 1$.

Proposition 2 Let u be an \mathcal{H}-harmonic function.
(1) If $1<p<\infty$, then

$$
\sup _{0<r<1} \int_{\mathbb{S}^{n-1}}|u(r \zeta)|^{p} d \sigma(\zeta)<+\infty
$$

if and only if there exists $f \in L^{p}\left(\mathbb{S}^{n-1}\right)$ such that $u=\mathbb{P}_{h}[f]$.
(2) For $p=1$,

$$
\sup _{0<r<1} \int_{\mathbb{S}^{n}-1}|u(r \zeta)| d \sigma(\zeta)<+\infty
$$

if and only if there exists a measure μ on \mathbb{S}^{n-1} such that $u=\mathbb{P}_{h}[\mu]$.
Proof. Assume that $u=\mathbb{P}_{h}[f]$ with $f \in L^{p}\left(\mathbb{S}^{n-1}\right)$. As

$$
\left\|\mathbb{P}_{h}(r \zeta, .)\right\|_{L^{1}\left(\mathbb{S}^{n-1}\right)}=1
$$

Hölder's inequality gives

$$
|u(r \zeta)|^{p} \leq \int_{\mathbb{S}^{n-1}} \mathbb{P}_{h}(r \zeta, \xi)|f(\xi)|^{p} d \sigma(\xi)=\int_{\mathbb{S}^{n-1}} \mathbb{P}_{h}(\zeta, r \xi)|f(\xi)|^{p} d \sigma(\xi)
$$

an integration in ζ and Fubini leads to the desired result.
Conversely, if the $L^{p}\left(\mathbb{S}^{n-1}\right)$ norms of $\zeta \mapsto u(r \zeta)$ are uniformly bounded, there exists a sequence $r_{m} \rightarrow 1$ and a function $\varphi \in L^{p}$ such that $u\left(r_{m} \zeta\right) \rightarrow \varphi(\zeta) *$-weakly thus weakly in $L^{p}\left(\mathbb{S}^{n-1}\right)$. But then, for $r \zeta \in \mathbb{B}_{n}$ fixed,

$$
\begin{aligned}
\mathbb{P}_{h}[\varphi](r \zeta) & =\lim _{m \rightarrow+\infty} \int_{\mathbb{S}^{n-1}} \mathbb{P}_{h}(r \zeta, \xi) u\left(r_{m} \xi\right) d \sigma(\xi) \\
& =\lim _{m \rightarrow+\infty} \sum_{l \geq 0} \frac{F_{l}\left(r_{m}^{2}\right)}{F_{l}(1)} r_{m}^{l} \int_{\mathbb{S}^{n-1}} \mathbb{P}_{h}(r \zeta, \xi) u_{l}(\xi) d \sigma(\xi) \\
& =\lim _{m \rightarrow+\infty} \sum_{l \geq 0} \frac{F_{l}\left(r_{m}^{2}\right)}{F_{l}(1)} r_{m}^{l} f_{l}(r) r^{l} u_{l}(\zeta) \\
& =\sum_{l \geq 0} f_{l}(r) r^{l} u_{l}(\zeta)=u(r \zeta) .
\end{aligned}
$$

The proof in the case $p=1$ is obtained in a similar fashion using the duality $\left(L^{1}, \mathcal{M}\left(\mathbb{S}^{n-1}\right)\right)$.
We are now going to prove that \mathcal{H}-harmonic functions have a boundary distribution if and only if they satisfy a given growth condition. For this, we will need the folowing lemma ([1], lemma 10).

Lemma 3 Let $F \in \mathcal{C}^{2}\left(\left[\frac{1}{2}, 1\right]\right)$ and $h \in \mathcal{C}^{1}\left(\left[\frac{1}{2}, 1\right]\right)$. Assume that

$$
F^{\prime \prime}(x)+\frac{h(x)}{1-x} F^{\prime}(x)=O(1-x)^{-\alpha}
$$

when $x \rightarrow 1$. Then
(1) If $\alpha>2$ then $F(x)=O(1-x)^{-\alpha+1}$.
(2) If $1<\alpha<2$ Then $\lim _{x \rightarrow 1} F(x)$ exists.

We are now in position to prove

Theorem 4 Let u be an \mathcal{H}-harmonic function. Then u admits a boundary value in the sense of distributions if and only if there exists a constant A such that

$$
u(r \zeta)=O(1-r)^{-A}
$$

Proof. Recall that

$$
\begin{equation*}
D=\frac{1-r^{2}}{r^{2}}\left[\left(1-r^{2}\right) N^{2}+(n-2)\left(1+r^{2}\right) N+\left(1-r^{2}\right) \Delta_{\sigma}\right] \tag{3.1}
\end{equation*}
$$

Assume that $D u=0$ and that $u(r \zeta)=O\left((1-r)^{-A}\right)$. Let $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$ and let

$$
F(r)=\int_{\mathbb{S}^{n}-1} u(r \zeta) \varphi(\zeta) d \sigma(\zeta)
$$

Formula (3.1) with $D u=0$ tells us that

$$
\left(1-r^{2}\right) N^{2} F+(n-2)\left(1+r^{2}\right) N F+\left(1-r^{2}\right) \Delta_{\sigma} F=0
$$

where $\Delta_{\sigma} F$ stands for

$$
\Delta_{\sigma} F(r)=\int_{\mathbb{S}^{n-1}} \Delta_{\sigma} u(r \zeta) \varphi(\zeta) d \sigma(\zeta)=\int_{\mathbb{S}^{n-1}} u(r \zeta) \Delta_{\sigma}^{*} \varphi(\zeta) d \sigma(\zeta)
$$

with Δ_{σ}^{*} the adjoint operator to Δ_{σ}. Recall that $N=r \frac{d}{d r}$ thus

$$
\begin{equation*}
r^{2} F^{\prime \prime}(r)+\frac{(n-1)+(n-3) r^{2}}{1-r^{2}} r F^{\prime}(r)+\Delta_{\sigma} F=0 \tag{3.2}
\end{equation*}
$$

Write $\psi=-\Delta_{\sigma}^{*} \varphi$ and T the differential operator

$$
T=r^{2} \frac{d^{2}}{d r^{2}}+\frac{(n-1)+(n-3) r^{2}}{1-r^{2}} r \frac{d}{d r}
$$

so that equation (3.2) reads

$$
T F(r)=\int_{\mathbb{S}^{n-1}} u(r \zeta) \psi(\zeta) d \sigma(\zeta)
$$

One then immediately deduces the existence for $k=1,2, \ldots$ of a function $\psi_{k} \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$ such that

$$
T^{k} F(r)=\int_{\mathbb{S}^{n-1}} u(r \zeta) \psi_{k}(\zeta) d \sigma(\zeta)
$$

But we assumed that $u(r \zeta)=O(1-r)^{-A}$. We thus have

$$
T^{k} F(r)=O(1-r)^{-A}
$$

and applying lemma 3 we obtain

$$
T^{k-1} F(r)=O(1-r)^{-A+1}
$$

Therefore, starting from T^{k} with $k=[A]+1$ and iterating the process k times, one gets that $\lim _{r \rightarrow 1} F(r)$ exists.

Conversely, if u admits a boundary distribution f, then $u=\mathbb{P}_{h}[f]$ i.e. $u(r \zeta)=<f, \mathbb{P}_{h}(r \zeta,)>$.. But then f being a compactly supported distribution, it is of finite order, thus there exists $k \geq 0$ such that

$$
|u(r \zeta)|=\left|<f, \mathbb{P}_{h}(r \zeta, .)>\right| \leq C\left\|\nabla_{\xi}^{k} \mathbb{P}_{h}(r \zeta, .)\right\|_{L^{\infty}} \leq \frac{C}{(1-r)^{n-1+k}}
$$

which gives the desired estimate.

Proposition 5 Let $0<p<+\infty$ and u be an \mathcal{H}-harmonic function. Assume that

$$
\sup _{0<r<1} \int_{\mathbb{S}^{n-1}}|u(r \zeta)|^{p} d \sigma(\zeta)<\infty
$$

Then, there exists a constant C such that for every $a \in \mathbb{B}_{n}$,

$$
|u(a)| \leq \frac{C}{(1-|a|)^{\frac{n-1}{p}}}
$$

In particular, u has a boundary distribution f i.e. $u=\mathbb{P}_{h}[f]$.
Proof. The mean value inequality implies that

$$
|u(a)|^{p} \leq \frac{C}{(1-|a|)^{n}} \int_{B(a,(1-|a|) \varepsilon)}|u(x)|^{p} d x
$$

for ε small enough. But $B(a,(1-|a|) \varepsilon) \subset\{r \zeta:(1-\varepsilon)(1-|a|) \leq 1-r \leq(1+\varepsilon)(1-|a|)\}$ thus

$$
|u(a)|^{p} \leq \frac{C}{(1-|a|)^{n}} \int_{1-(1+\varepsilon)(1-|a|)}^{1-(1-\varepsilon)(1-|a|)} \int_{\mathbb{S}^{n}-1}|u(r \zeta)|^{p} d \sigma(\zeta) r^{n-1} d r \leq \frac{C}{(1-|a|)^{n-1}}
$$

Remark: Theorem 4 is well known. It has been proved by J.B. Lewis [9] in the case of symmetric spaces of rank 1 and eigenvectors of the Laplace-Beltrami operator (for arbitrary eigenvalues) and further generalized by E.P. van den Ban and H. Schlichtkrull 14].

3.3. Distribution boundary values of \mathcal{H}-harmonic functions.

Notation : For $1 \leq i, j \leq n, i \neq j$, let $\mathcal{L}_{i, j}=x_{i} \frac{\partial}{\partial x_{j}}-x_{j} \frac{\partial}{\partial x_{i}}$. Then the $\mathcal{L}_{i, j}$'s commute and commute with N. Further, if u is \mathcal{H}-harmonic, then $\mathcal{L}_{i, j}$ is also \mathcal{H}-harmonic. Finally, N and $\left\{\mathcal{L}_{i, j}\right\}_{1 \leq i \neq j \leq n}$ generate ∇^{k} outside a neighbourhood of the origin.

Recall that $D u=0$ if and only if

$$
\begin{equation*}
\left(1-r^{2}\right) N^{2} u+(n-2)\left(1+r^{2}\right) N u+\left(1-r^{2}\right) \Delta_{\sigma} u=0 \tag{3.3}
\end{equation*}
$$

Apply N^{k-1} on both sides of this equality and isolate terms of order $k+1$ and k :

$$
\begin{align*}
& \left(1-r^{2}\right) N^{k+1} u-2(k-1) r^{2} N^{k} u+(n-2)\left(1+r^{2}\right) N^{k} u \\
& =r^{2} \sum_{j=0}^{k-3}\binom{k-1}{j} 2^{k-j-1} N^{j+2} u+r^{2} \sum_{j=0}^{k-2}\binom{k-1}{j} 2^{k-j-1} N^{j} \Delta_{\sigma} u \\
&
\end{aligned} \begin{aligned}
& -(n-2) r^{2} \sum_{j=0}^{k-2}\binom{k-1}{j} 2^{k-j-1} N^{j+1} u-\left(1-r^{2}\right) N^{k-1} \Delta_{\sigma} u \tag{3.4}
\end{align*}
$$

We are now in position to prove the following lemma:

Lemma 6 Let u be an \mathcal{H}-harmonic function with a boundary distribution. Let \mathbb{Y} be a product of operators of the form $\mathcal{L}_{i, j}$ and let $\mathbb{X}=N^{k} \mathbb{Y}$. Then if $k \leq n-2, \mathbb{X} u$ has a distribution boundary value in the sense that

$$
\lim _{r \rightarrow 1} \int_{\mathbb{S}^{n-1}} \mathbb{X} u(r \zeta) \Phi(\zeta) d \sigma(\zeta)
$$

exists for every function $\Phi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$.
If $k=n-1$, the previous integral is a $O\left(\log \frac{1}{1-r}\right)$, in particular

$$
\lim _{r \rightarrow 1}\left(1-r^{2}\right) \int_{\mathbb{S}^{n-1}} \mathbb{X} u(r \zeta) \Phi(\zeta) d \sigma(\zeta)=0
$$

Remark 1: If u has a boundary distribution, then $\mathcal{L}_{i, j} u$ has a boundary distribution.

Remark 2: As ∇^{k} is generated outside a neighbourhood of the origin by operators of the form $N^{l} \mathbb{Y}$ where \mathbb{Y} is a product of at most $k-l$ operators of the form $\mathcal{L}_{i, j}$, We deduce from the lemma that if $k \leq n-2, \nabla^{k}$ has a boundary distribution, whereas

$$
\int_{\mathbb{S}^{n-1}} \nabla^{n-1} u(r \zeta) \Phi(\zeta) d \sigma(\zeta)
$$

has a priori logarithmic growth.
Proof. Proceed by induction on k. Fix $\Phi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$ and let \mathbb{Y} be a product of operators of the form $\mathcal{L}_{i, j}$. Let

$$
\psi_{k}(r)=\int_{\mathbb{S}^{n-1}} N^{k} \mathbb{Y} u(r \zeta) \Phi(\zeta) d \sigma(\zeta) ; \quad 0<r<1
$$

Applying \mathbb{Y} to formula (3.4) and noticing that \mathbb{Y} and N commute, the induction hypothesis implies that the function

$$
\begin{equation*}
g(r)=\left(1-r^{2}\right) N \psi_{k}(r)-2(k-1) r^{2} \psi_{k}(r)+(n-2)\left(1+r^{2}\right) \psi_{k}(r) \tag{3.5}
\end{equation*}
$$

has a limit L when $r \rightarrow 1$.
But, solving the differential equation (3.5), $\left(N=r \frac{d}{d r}\right)$, we get

$$
\psi_{k}(r)=\lambda \frac{\left(1-r^{2}\right)^{n-k-1}}{r^{n-2}}+\frac{1}{r^{n-2}}\left(1-r^{2}\right)^{n-k-1} \int_{0}^{r} \frac{g(s) s^{n-3}}{(1+s)^{n-k}}(1-s)^{-(n-k-1)-1} d s
$$

Thus, if $k<n-1$, we obtain that $\psi_{k}(r)$ has limit $\frac{L}{2(n-k-1)}$ whereas if $k=n-1, \psi_{k}(r)$ has logarithmic growth.

Remark: We will show at the end of this section that if n is even, $N^{n-1} u$ can have a better than logarithmic growth, whereas if n is odd, only constant functions have a better than logarithmic growth.

Corollary 7 Let P_{k} be the sequence of polynomials defined by $P_{0}=2(n-1), P_{1}=0$ and for $2 \leq k \leq n$,

$$
\begin{aligned}
P_{k}(X)= & 2^{k-1}(k-1)!\sum_{j=2}^{k-2} \frac{n(j-1)-(n-2) k}{2^{j}(n-j-1)(k-j+1)!(j-1)!} P_{j}(X) \\
& +2^{k-2}(k-1)!\sum_{j=2}^{k-3} \frac{1}{2^{j}(n-j-1)(k-j-1)!j!} X P_{j}(X)+2^{k-1} X
\end{aligned}
$$

Then, for every \mathcal{H}-harmonic function u having a distribution boundary value, and for every $1 \leq k \leq$ $n-2, N^{k} u=\frac{1}{2(n-k-1)} P_{k}\left(\Delta_{\sigma}\right) u$ as boundary distributions, i.e. for every $\Phi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$,

$$
\lim _{r \rightarrow 1} \int_{\mathbb{S}^{n-1}}\left(N^{k} u(r \zeta)-\frac{1}{2(n-k-1)} P_{k}\left(\Delta_{\sigma}\right) u(r \zeta)\right) \Phi(\zeta) d \sigma(\zeta)=0
$$

Proof. For convenience, write $Q_{k}=\frac{1}{2(n-k-1)} P_{k}$. As $n \geq 3$, for $u \mathcal{H}$-harmonic having a boundary distribution, formula (3.3) and lemma 6 impliy that $N u=0$ on the boundary, thus the result for $k=1$.

Next, notice that $N^{k} u=Q_{k}\left(\Delta_{\sigma}\right) u$ on the boundary implies $\Delta_{\sigma} N^{k} u=\Delta_{\sigma} Q_{k}\left(\Delta_{\sigma}\right) u$ on the boundary.

Assume now that $N^{j} u=Q_{j}\left(\Delta_{\sigma}\right) u$ on the boundary for $j \leq k-1$. If $k \leq n-2$, lemma 6 tells us that $\left(1-r^{2}\right) N^{k+1} u=0$ on the boundary and that $\left(1-r^{2}\right) N^{k-1} \Delta_{\sigma} u=0$ on the boundary. Formula (3.4) gives then, when $r \rightarrow 1$,

$$
\begin{aligned}
(-2(k-1)+2(n-2)) N^{k} u= & \sum_{j=0}^{k-3}\binom{k-1}{j} 2^{k-j-1} N^{j+2} u+\sum_{j=0}^{k-3}\binom{k-1}{j} 2^{k-j-1} N^{j} \Delta_{\sigma} u \\
& -(n-2) \sum_{j=0}^{k-2}\binom{k-1}{j} 2^{k-j-1} N^{j+1} u
\end{aligned}
$$

But, by the induction hypothesis, $N^{j} u=Q_{j}\left(\Delta_{\sigma}\right) u$ and with the previous remark $N^{j} \Delta_{\sigma} u=\Delta_{\sigma} N^{j} u=$ $\Delta_{\sigma} Q_{j}\left(\Delta_{\sigma}\right) u$, therefore

$$
\begin{aligned}
(-2(k-1)+2(n-2)) N^{k} u= & \sum_{j=0}^{k-3}\binom{k-1}{j} 2^{k-j-1} Q_{j+2}\left(\Delta_{\sigma}\right) u+\sum_{j=0}^{k-3}\binom{k-1}{j} 2^{k-j-1} \Delta_{\sigma} Q_{j}\left(\Delta_{\sigma}\right) u \\
& -(n-2) \sum_{j=0}^{k-2}\binom{k-1}{j} 2^{k-j-1} Q_{j+1}\left(\Delta_{\sigma}\right) u
\end{aligned}
$$

finally, using $Q_{0}=1$ and $Q_{1}=0$ and grouping terms, we get the desired result.

Remark 1 : One easily sees that P_{k} is a polynomial of degree $\left[\frac{k}{2}\right]$ and that for $k \geq 2, P_{k}$ has no constant term.

Remark 2 : According to corollary $7, N u=0$ on the boundary. On the other hand, an easy computation leads to $D N u=-4(n-2) N u$ i.e. $N u$ is an eigenvector of D for an eigenvalue of the form $\left(s^{2}-1\right)(n-1)^{2}$ (with $s=\frac{n-3}{n-1}$) thus $(s+1) \frac{n-1}{2}=n-2 \in \mathbb{N}^{*}$. This is precisely the case where it is impossible to reconstruct $N u$ with help of a convolution by a power of the Poisson kernel (see (12]).

Remark 3: The fact that for every \mathcal{H}-harmonic function $u, N u=0$ on the boundary is in strong contrast with Euclidean harmonic functions. Actually, if v is an Euclidean harmonic function on \mathbb{B}_{n}, and if $N v=0$ on the boundary, then v is a constant.
3.4. Boundary distribution of the $n-1^{\text {th }}$ derivative. In this section we prove that, in odd dimension, normal derivatives of \mathcal{H}-harmonic functions have a boundary behavior similar to the complex case of \mathcal{M}-harmonic functions as exhibited in [2] (with pluriharmonic functions playing the role of constant functions) whereas, in even dimension, the behavior is similar to the Euclidean harmonic case.

Theorem $8 \diamond$ Assume n is odd.
Let u be an \mathcal{H}-harmonic function having a boundary distribution. The following assertions are equivalent :
(1) u is a constant,
(2) $N^{n-1} u$ has a boundary distribution,
(3) $\int_{\mathbb{S}^{n-1}} N^{n-1} u(r \zeta) \Phi(\zeta) d \sigma(\zeta)=o\left(\log \frac{1}{1-r}\right)$ for every $\Phi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$.
\diamond Assume n is even, then if $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right), \mathbb{P}_{h}[\varphi] \in \mathcal{C}^{\infty}\left(\overline{\mathbb{B}_{n}}\right)$. In particular, if u is \mathcal{H} harmonic with a boundary distribution, then for every $k \geq 0, N^{k} u$ has a boundary distribution.
Proof. \diamond Assume first n is odd. The implications $(1) \Rightarrow(2)$ and $(2) \Rightarrow(3)$ being obvious, let us prove $(3) \Rightarrow(1)$. Theorem 1 tells us that an \mathcal{H}-harmonic function u admits an expansion in spherical harmonics

$$
\begin{equation*}
u(r \zeta)=\sum_{l \geq 0} f_{l}\left(r^{2}\right) r^{l} u_{l}(\zeta) \tag{3.6}
\end{equation*}
$$

where u_{l} is a spherical harmonic of degree l and f_{l} is the hypergeometric function

$$
f_{l}(x)=\frac{{ }_{2} F_{l}\left(l, 1-\frac{n}{2}, l+\frac{n}{2}, x\right)}{{ }_{2} F_{l}\left(l, 1-\frac{n}{2}, l+\frac{n}{2}, 1\right)}=\sum_{k=0}^{\infty} \frac{\Gamma(l+k) \Gamma\left(1-\frac{n}{2}+k\right) \Gamma\left(l+\frac{n}{2}\right) \Gamma(1)}{\Gamma(l) \Gamma\left(1-\frac{n}{2}\right) \Gamma\left(l+\frac{n}{2}+k\right) \Gamma(1+k)} x^{k} .
$$

Moreover the sum (3.6) converges uniformly on compact subsets of \mathbb{B}_{n}, in particular

$$
\left\|u_{l}\right\|_{L^{2}(\mathbb{S} n-1)} f_{l}\left(r^{2}\right) r^{l}=\int_{\mathbb{S}^{n}-1} u(r \zeta) u_{l}(\zeta) d \sigma(\zeta)
$$

On the other hand, if $l \neq 0$ as n is odd,

$$
\frac{\Gamma(l+k) \Gamma\left(1-\frac{n}{2}+k\right) \Gamma\left(l+\frac{n}{2}\right) \Gamma(1)}{\Gamma(l) \Gamma\left(1-\frac{n}{2}\right) \Gamma\left(l+\frac{n}{2}+k\right) \Gamma(1+k)}=\frac{\Gamma\left(l+\frac{n}{2}\right) \Gamma(1)}{\Gamma(l) \Gamma\left(1-\frac{n}{2}\right)} \frac{1}{k^{n}}\left[1+O\left(\frac{1}{k}\right)\right]
$$

thus the $n-2$ first derivatives of F_{l} have a limit when $x \rightarrow 1$, whereas the $n-1$-st derivative grows like $\log (1-x)$ when $x \rightarrow 1$, thus (3) implies that $u_{l}=0$ for $l \neq 0$, that is u is constant.
\diamond Assume now n is even and write $n=2 p$. Then if $\varphi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right), \varphi$ admits a decomposition into spherical harmonics $\varphi=\sum_{l=0}^{+\infty} \varphi_{l}$ with $\left\|\varphi_{l}\right\|_{\infty}=O\left(l^{-\alpha}\right)$ for every $\alpha>0$ (13] appendix C). But then

$$
\mathbb{P}_{h}[\varphi](r \zeta)=\sum_{l=0}^{+\infty} f_{l}(r) r^{l} \varphi_{l}(\zeta)
$$

with

$$
f_{l}(r) r^{l}=\frac{{ }_{2} F_{1}\left(l, 1-p, l+p, r^{2}\right)}{{ }_{2} F_{1}(l, 1-p, l+p, 1)} r^{l}=\frac{\Gamma(l+2 p-1) \Gamma(p)}{\Gamma(l+p) \Gamma(2 p-1)} \sum_{j=0}^{p} \frac{(l)_{j}(1-p)_{j}}{(l+p)_{j} j!} r^{2 j+l}
$$

But, for every $k \geq 0$,

$$
N^{k}\left(\sum_{j=0}^{p} \frac{(l)_{j}(1-p)_{j}}{(l+p)_{j} j!} r^{2 j+l}\right)=\sum_{j=0}^{p} \frac{(l)_{j}(1-p)_{j}}{(l+p)_{j} j!}(2 j+l)^{k} 2^{k} r^{2 j+l}
$$

Therefore $N^{k}\left(f_{l} r^{l}\right)(1)=O\left(l^{k+p-1}\right)$. But $\left\|\varphi_{l}\right\|_{\infty}=O\left(l^{-(k+p+1)}\right)$ thus $\sum_{l=0}^{+\infty} N^{k} f_{l}(r) \varphi_{l}(\zeta)$ converges uniformly on $\overline{\mathbb{B}_{n}}$ and $\mathbb{P}_{h}[\varphi] \in \mathcal{C}^{\infty}\left(\overline{\mathbb{B}_{n}}\right)$.

The fact that for $u \mathcal{H}$-harmonic with a boundary distribution, $N^{k} u$ has also a boundary distribution then results from the symmetry of the Poisson kernel : $\mathbb{P}_{h}(r \zeta, \xi)=\mathbb{P}_{h}(r \xi, \zeta)$.

Remark 1: Normal derivatives of \mathcal{H}-harmonic functions have two opposite behaviors depending on the dimension of \mathbb{B}_{n}. In odd dimension, the behavior is similar to the complex case (see [2] , in this case, the analog of constant functions are pluriharmonic functions).

In opposite, in even dimension, the behavior is similar to that of Euclidean harmonic functions.

Remark 2: The similarity with the Euclidean case can be seen in a different way. In 12, the following link between Euclidean harmonic functions and \mathcal{H}-harmonic functions has been proved:

Lemma 9 For every \mathcal{H}-harmonic function u, there exists a unique Euclidean harmonic function v such that $v(0)=0$ and :

$$
u(r \zeta)=u(0)+\int_{0}^{1} v(r t \zeta)\left[(1-t)\left(1-t r^{2}\right)\right]^{\frac{n}{2}-1} \frac{d t}{t}
$$

for every $0 \leq r<1$ and every $\zeta \in \mathbb{S}^{n-1}$.
Moreover, let $f=\sum_{l} u_{l}$ is the spherical harmonics expansion of $f \in L^{2}\left(\mathbb{S}^{n-1}\right)$ and if $g=$ $\sum_{l} \frac{\Gamma(l+n-1)}{\Gamma(n-1) \Gamma(l)} u_{l}$, then lemma 9 links $u=\mathbb{P}_{h}[f]$ to $v=\mathbb{P}_{e}[g]$.

But, if $f=\sum_{l} u_{l} \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$ and $g=\sum_{l} \frac{\Gamma(l+n-1)}{\Gamma(n-1) \Gamma(l)} u_{l}$. Then, as $\left\|u_{l}\right\|_{\infty}=O\left(l^{-\alpha}\right)$ for every $\alpha>0$, $g \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$ thus $v=\mathbb{P}_{e}[g] \in \mathcal{C}^{\infty}\left(\overline{\mathbb{B}_{n}}\right)$.

Moreover, if n is even $\left(1-t r^{2}\right)^{\frac{n}{2}-1}$ is a polynomial and is therefore \mathcal{C}^{∞}, we then find again that $u \in \mathcal{C}^{\infty}\left(\overline{\mathbb{B}_{n}}\right)$.

In opposite, if n is odd, we find again the $n-1$ obstacle since the highest order term of $(1-$ $t)^{\frac{n}{2}-1} N^{k}\left(1-t r^{2}\right)^{\frac{n}{2}-1}$ is

$$
(1-t)^{\frac{n}{2}-1}\left(1-t r^{2}\right)^{\frac{n}{2}-1-k} \simeq(1-t)^{n-2-k}
$$

when $r \rightarrow 1$, and since $(1-t)^{n-2-k}$ is not integrable for $k \geq n-1$.

4. Atomic decomposition of \mathcal{H}^{p} Spaces

In this section we prove that \mathcal{H}^{p} spaces admit an atomic decomposition. In 4.2 we define $\mathcal{H}_{a t}^{p}$ and show that this space is included in \mathcal{H}^{p}. Conversely, we have seen in the previous chapter that \mathcal{H}-harmonic functions in \mathcal{H}^{p} are obtained by \mathcal{H}-Poisson integration of distributions on \mathbb{S}^{n-1}, thus they are extensions of distributions from \mathbb{S}^{n-1} to \mathbb{B}_{n}. An other mean to extend a distribution on \mathbb{S}^{n-1} to \mathbb{B}_{n} is integration with respect to the Euclidean Poisson kernel. In 4.1 we study the links between this two extensions, which allows us in 4.3 to obtain the inclusion $\mathcal{H}^{p} \subset \mathcal{H}_{a t}^{p}$ from the atomic decomposition of H^{p} spaces of Euclidean harmonic functions.
4.1. Links between Euclidean harmonic functions and \mathcal{H}-harmonic functions. We will now prove a "converse" to lemma 9.

Lemma 10 There exists a function $\eta:[0,1] \times[0,1] \mapsto \mathbb{R}^{+}$such that
i: $\mathbb{P}_{e}(r \zeta, \xi)=\int_{0}^{1} \eta(r, \rho) \mathbb{P}_{h}(\rho r \zeta, \xi) d \rho$,
ii: there exists a constant C such that for every $r \in[0,1], \int_{0}^{1} \eta(r, \rho) d \rho \leq C$.
Proof. Note that $\frac{1}{(x+y)^{\frac{n}{2}}}=c_{n} \int_{0}^{\infty} \frac{z^{\frac{n}{2}-2}}{(x+y+z)^{n-1}} d z$. Writing $X=2(1-<\zeta, \xi>)$, with an obvious abuse of language, we then get

$$
\begin{aligned}
\mathbb{P}_{e}(r, X) & =\frac{1-r^{2}}{\left((1-r)^{2}+r X\right)^{\frac{n}{2}}}=\frac{1-r^{2}}{r^{\frac{n}{2}}} \frac{1}{\left[\frac{(1-r)^{2}}{r}+X\right]^{\frac{n}{2}}} \\
& =\frac{1-r^{2}}{r^{\frac{n}{2}}} c_{n} \int_{0}^{\infty} \frac{z^{\frac{n}{2}-2}}{\left[X+\frac{(1-r)^{2}}{r}+z\right]^{n-1}} d z
\end{aligned}
$$

The following change of variable $z=\frac{(1-\rho)^{2}}{\rho}-\frac{(1-r)^{2}}{r}=\frac{(r-\rho)(1-\rho r)}{\rho r}$, leads to

$$
\begin{aligned}
\mathbb{P}_{e}(r, X) & =\frac{1-r^{2}}{r^{\frac{n}{2}}} c_{n} \int_{0}^{r} \frac{[(r-\rho)(1-\rho r)]^{\frac{n}{2}-2}}{\left[X+\frac{(1-\rho)^{2}}{\rho}\right]^{n-1}(\rho r)^{\frac{n}{2}-2}} \frac{1-\rho^{2}}{\rho^{2}} d \rho \\
& =\frac{1-r^{2}}{r^{n-2}} c_{n} \int_{0}^{r} \frac{[(r-\rho)(1-\rho r)]^{\frac{n}{2}-2}\left(1-\rho^{2}\right)}{\left[\rho X+\left(1-\rho^{2}\right)\right]^{n-1} \rho^{1-\frac{n}{2}}} d \rho \\
& =\frac{1-r^{2}}{r^{n-2}} c_{n} \int_{0}^{r} \mathbb{P}_{h}(\rho, X)\left(1-\rho^{2}\right)^{2-n}[(r-\rho)(1-\rho r)]^{\frac{n}{2}-2} \rho^{\frac{n}{2}-1} d \rho \\
& =c_{n}\left(1-r^{2}\right) \int_{0}^{1} \mathbb{P}_{h}(r s, X)\left(1-r^{2} s^{2}\right)^{2-n}\left[(1-s)\left(1-s r^{2}\right)\right]^{\frac{n}{2}-2} s^{\frac{n}{2}-1} d s
\end{aligned}
$$

We thus obtain i/ with

$$
\eta(r, s)=c_{n}\left(1-r^{2}\right)\left(1-r^{2} s^{2}\right)^{2-n}\left[(1-s)\left(1-s r^{2}\right)\right]^{\frac{n}{2}-2} s^{\frac{n}{2}-1}
$$

Of course $\eta \geq 0$ and one easily checks that $\int_{0}^{1} \eta(r, s) d s \leq C$, since $n \geq 3$.

Corollary 11 Let η be the function defined by lemma 10. Let f be a distribution on \mathbb{S}^{n-1} and let $u=\mathbb{P}_{h}[f]$ and $v=\mathbb{P}_{e}[f]$. Then u and v are linked by

$$
v(r \zeta)=\int_{0}^{1} \eta(r, s) u(r s \zeta) d s
$$

In particular, if $u \in \mathcal{H}^{p}$, then $v \in H^{p}\left(\mathbb{B}_{n}\right)$ and $\|v\|_{H^{p}\left(\mathbb{B}_{n}\right)} \leq C\|u\|_{\mathcal{H}^{p}}$.

4.2. The inclusion $\mathcal{H}_{a t}^{p} \subset \mathcal{H}^{p}$.

Definition A function a on \mathbb{S}^{n-1} is called a p-atom on \mathbb{S}^{n-1} if either a is a constant or a is supported in a ball $\tilde{B}\left(\xi_{0}, r_{0}\right)$ and if

1: $|a(\xi)| \leq \sigma\left[\tilde{B}\left(\xi_{0}, r_{0}\right)\right]^{-\frac{1}{p}}$, for almost every $\xi \in \mathbb{S}^{n-1}$,
2: for every function $\Phi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$,

$$
\left|\int_{\mathbb{S}^{n-1}} a(\xi) \Phi(\xi) d \sigma(\xi)\right| \leq\left\|\nabla^{k(p)} \Phi\right\|_{L^{\infty}\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right) r_{0}^{k(p)} \sigma\left[\tilde{B}\left(\xi_{0}, r_{0}\right)\right]^{1-\frac{1}{p}}, ~}^{\text {. }}
$$

with $k(p)$ an integer strictly bigger than $(n-1)\left(\frac{1}{p}-1\right)$.

Proposition 12 There exists a constant C_{p} such that, for every p-atom a on $\mathbb{S}^{n-1}, A=\mathbb{P}_{h}[a]$ satisfies

$$
\|A\|_{\mathcal{H}^{p}\left(\mathbb{B}_{n}\right)} \leq C_{p}
$$

Proof. Let a be a p-atom on \mathbb{S}^{n-1}, with support in $\tilde{B}\left(\xi_{0}, r_{0}\right)$. We want to estimate

$$
\begin{aligned}
& \int_{\mathbb{S}^{n-1}} \sup _{t \in[0,1]}\left|\int_{\tilde{B}\left(\xi_{0}, r_{0}\right)} \mathbb{P}_{h}(t \zeta, \xi) a(\xi) d \sigma(\xi)\right|^{p} d \sigma(\zeta) \\
&= \int_{\tilde{B}\left(\xi_{0}, c r_{0}\right)} \sup _{t \in[0,1]}\left|\int_{\tilde{B}\left(\xi_{0}, r_{0}\right)} \mathbb{P}_{h}(t \zeta, \xi) a(\xi) d \sigma(\xi)\right|^{p} d \sigma(\zeta) \\
&+\int_{\mathbb{S}^{n-1} \backslash \tilde{B}\left(\xi_{0}, c r_{0}\right)} \sup _{t \in[0,1]}\left|\int_{\tilde{B}\left(\xi_{0}, r_{0}\right)} \mathbb{P}_{h}(t \zeta, \xi) a(\xi) d \sigma(\xi)\right|^{p} d \sigma(\zeta) \\
&= I_{1}+I_{2}
\end{aligned}
$$

with $c>1$ a constant. But, by Hölder's inequality,

$$
\begin{aligned}
I_{1} & =\int_{\tilde{B}\left(\xi_{0}, c r_{0}\right)} \sup _{t \in[0,1]}\left|\mathbb{P}_{h}[a](t \zeta)\right|^{p} d \sigma(\zeta) \leq c \sigma\left(\tilde{B}\left(\xi_{0}, c r_{0}\right)\right)^{1-\frac{p}{2}}\left[\int_{\tilde{B}\left(\xi_{0}, c r_{0}\right)} \sup _{t \in[0,1]}\left|\mathbb{P}_{h}[a](t \zeta)\right|^{2} d \sigma(\zeta)\right]^{\frac{p}{2}} \\
& \leq c \sigma\left(\tilde{B}\left(\xi_{0}, c r_{0}\right)\right)^{1-\frac{p}{2}}\left\|\mathbb{P}_{h}[a]\right\|_{\mathcal{H}^{2}\left(\mathbb{B}_{n}\right)}^{p} \leq c \sigma\left(\tilde{B}\left(\xi_{0}, c r_{0}\right)\right)^{1-\frac{p}{2}}\|a\|_{L^{2}\left(\mathbb{S}^{n-1}\right)}^{p}
\end{aligned}
$$

since \mathbb{P}_{h} is bounded $L^{2}\left(\mathbb{S}^{n-1}\right) \mapsto \mathcal{H}^{2}\left(\mathbb{B}_{n}\right)$. Using property (1) of atoms, we see that

$$
I_{1} \leq C\left(\frac{\sigma\left(\tilde{B}\left(\xi_{0}, c r_{0}\right)\right)}{\sigma\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)}\right)^{1-\frac{p}{2}} \leq C_{p}
$$

Let us now estimate I_{2}. Using property (2) of atoms, we have, for $\zeta \in \mathbb{S}^{n-1} \backslash \tilde{B}\left(\xi_{0}, c r_{0}\right)$

$$
\begin{aligned}
\left|\int_{\tilde{B}\left(\xi_{0}, r_{0}\right)} \mathbb{P}_{h}(t \zeta, \xi) a(\xi) d \sigma(\xi)\right|^{p} & \leq r_{0}^{p k(p)}\left\|\nabla_{\xi}^{k(p)} \mathbb{P}_{h}(t \zeta, \xi)\right\|_{L^{\infty}}^{p} \sigma\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)^{p-1} \\
& \leq C_{p} r_{0}^{p k(p)}\left(1-t^{2}\right)^{n-1} \times \sup _{\xi \in \tilde{B}\left(\xi_{0}, r_{0}\right)} \frac{1}{d(\zeta, \xi)^{p(n+k(p)-1)}} \sigma\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)^{p-1}
\end{aligned}
$$

thus

$$
\begin{aligned}
I_{2} & \leq C_{p} r_{0}^{p k(p)} \sigma\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)^{p-1} \int_{\mathbb{S}^{n-1} \backslash \tilde{B}\left(\xi_{0}, c r_{0}\right)} \sup _{\xi \in \tilde{B}\left(\xi_{0}, r_{0}\right)} \frac{1}{d(\zeta, \xi)^{p(n+k(p)-1)}} d \sigma(\zeta) \\
& \leq C_{p} \frac{r_{0}^{p k(p)} r_{0}^{(n-1)(p-1)}}{r_{0}^{\left[p\left(1+\frac{k(p)}{n-1}\right)-1\right](n-1)}}
\end{aligned}
$$

since $p(n+k(p)-1)>n-1$ i.e. $k(p)>(n-1)\left(\frac{1}{p}-1\right)$. Thus $I_{2} \leq C_{p}$.

Remark 1: Condition (2) implies with $\Phi=1$ that

$$
\int_{\mathbb{S}^{n-1}} a(\xi) d \sigma(\xi)=0
$$

Remark 2 : Condition (2) is equivalent to the a priori weaker condition :
2^{\prime} : For every spherical harmonic P of degree $\leq k(p)$,

$$
\left|\int_{\mathbb{S}^{n}-1} a(\xi) P(\xi) d \sigma(\xi)\right| \leq\left\|\nabla^{k(p)} P\right\|_{L^{\infty}\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)} r_{0}^{k(p)} \sigma\left[\tilde{B}\left(\xi_{0}, r_{0}\right)\right]^{1-\frac{1}{p}} .
$$

Proof. Assume this condition is fulfilled and let $\Phi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$. There exists P, a linear combination of spherical harmonics of degree $\leq k(p)$ and $R \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n-1}\right)$ such that
(1) $\Phi=P+R$,
(2) $\|R\|_{\mathrm{L}^{\infty}\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)} \leq C_{p} r_{0}^{k(p)}\left\|\nabla^{k(p)} \Phi\right\|_{L^{\infty}\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)}$.

Then

$$
\begin{aligned}
\left|\int_{\mathbb{S}^{n}-1} a(\xi) \Phi(\xi) d \sigma(\xi)\right| \leq & \left|\int_{\mathbb{S}^{n-1}} a(\xi) P(\xi) d \sigma(\xi)\right|+\left|\int_{\mathbb{S}^{n-1}} a(\xi) R(\xi) d \sigma(\xi)\right| \\
\leq & C_{p}\left\|\nabla^{k(p)} P\right\|_{L^{\infty}\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)} r_{0}^{k(p)}\left[\sigma\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)\right]^{1-\frac{1}{p}} \\
& +\|a\|_{L^{\infty}\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)}\|R\|_{L^{\infty}\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)} \sigma\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right) \\
\leq & C\left\|\nabla^{k(p)} \Phi\right\|_{L^{\infty}\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)} r^{r k(p)}\left[\sigma\left(\tilde{B}\left(\xi_{0}, r_{0}\right)\right)\right]^{1-\frac{1}{p}}
\end{aligned}
$$

We could also impose the following weaker condition
3: For every spherical harmonic P of degree $\leq k(p)$,

$$
\left|\int_{\mathbb{S}^{n-1}} a(\xi) P(\xi) d \sigma(\xi)\right|=0
$$

We would than obtain a stronger atomic decomposition theorem. However this version is sufficient for our needs. It is also more intrinsic, the estimates we impose are directly those that are needed in the proof and finally it allows us to stay near to the proof in [8].

Definition A function A on \mathbb{B}_{n} is called an \mathcal{H}^{p}-atom on \mathbb{B}_{n} if there exists a p-atom a on \mathbb{S}^{n-1} such that $A=\mathbb{P}_{h}[a]$.

We define $\mathcal{H}_{a t}^{p}\left(\mathbb{B}_{n}\right)$ as the space of distributions u on \mathbb{B}_{n} such that there exists :
(1) a sequence of \mathcal{H}_{p}-atoms $\left(A_{j}\right)_{j=1}^{\infty}$ on \mathbb{B}_{n},
(2) a sequence $\left(\lambda_{j}\right)_{j=1}^{\infty} \in \ell^{p}$ such that

$$
\begin{equation*}
u=\sum_{j=1}^{\infty} \lambda_{j} A_{j} \tag{4.1}
\end{equation*}
$$

with uniform convergence on compact subsets of \mathbb{B}_{n}.
We write

$$
\|u\|_{\mathcal{H}_{a t}^{p}}=\inf \left\{\left(\sum_{i=1}^{\infty}\left|\lambda_{j}\right|^{p}\right)^{\frac{1}{p}}\right\}
$$

where the infimum is taken over all decompositions of u of the form (4.1).

Proposition 13 For $0<p \leq 1, \mathcal{H}_{a t}^{p}\left(\mathbb{B}_{n}\right) \subset \mathcal{H}^{p}\left(\mathbb{B}_{n}\right)$ there exists a constant C_{p} such that for every $u \in \mathcal{H}_{a t}^{p}\left(\mathbb{B}_{n}\right)$,

$$
\|u\|_{\mathcal{H}^{p}} \leq C_{p}\|u\|_{\mathcal{H}_{a t}^{p}}
$$

Proof. It is mutatis mutandis the proof of theorem 2.2 in [8].

Let $\varepsilon>0$ and let $u=\sum_{j=1}^{\infty} \lambda_{j} A_{j}$ be a function in $\mathcal{H}_{a t}^{p}$ and take an atomic decomposition such that $\sum_{i=1}^{\infty}\left|\lambda_{j}\right|^{p} \leq(1+\varepsilon)\|u\|_{\mathcal{H}_{a t}^{p}}^{p}$.

Property 2 of atoms implies that

$$
\begin{aligned}
\left|\nabla^{k} A_{j}(x)\right| & =\left|\nabla^{k} \mathbb{P}_{h}\left[a_{j}\right]\right| \leq\left\|\nabla_{\xi}^{k(p)} \nabla_{x}^{k} \mathbb{P}_{h}(x,)\right\|_{L^{\infty}\left(B\left(\xi_{0}, r_{0}\right)\right)} r^{r_{0}^{k(p)}} \sigma\left(B\left(\xi_{0}, r_{0}\right)\right)^{1-\frac{1}{p}} \\
& \leq \frac{C_{p, k}}{(1-|x|)^{k_{p, l}}}
\end{aligned}
$$

the series $\sum_{j=1}^{\infty} \lambda_{j} \nabla^{k} A_{j}(x)$ converge uniformly on every compact subset of \mathbb{B}_{n}, thus $\sum_{j=1}^{\infty} \lambda_{j} A_{j}(x)$ defines an \mathcal{H}-harmonic function on \mathbb{B}_{n}.

Moreover

$$
\left|\sum_{j=1}^{\infty} \lambda_{j} A_{j}(x)\right|^{p} \leq \sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p}\left|A_{j}(x)\right|^{p}
$$

Therefore

$$
\begin{aligned}
\int_{\mathbb{S}^{n-1}} \sup _{0<r<1}\left|\sum_{j=1}^{\infty} \lambda_{j} A_{j}(r \zeta)\right|^{p} d \sigma(\zeta) & \leq \int_{\mathbb{S}^{n}-1} \sup _{0<r<1} \sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p}\left|A_{j}(r \zeta)\right|^{p} d \sigma(\zeta) \\
& \leq C_{p}^{p} \sum_{j=1}^{\infty}\left|\lambda_{j}\right|^{p} \\
& \leq(1+\varepsilon)^{p} C_{p}^{p}\|u\|_{\mathcal{H}_{a t}^{p}}^{p}
\end{aligned}
$$

which means that $\|u\|_{\mathcal{H}^{p}} \leq C\|u\|_{\mathcal{H}_{a t}^{p}}^{p}$.
4.3. The inclusion $\mathcal{H}^{p} \subset \mathcal{H}_{a t}^{p}$. We will here use the fact that the space $H^{p}\left(\mathbb{B}_{n}\right)$ of Euclidean harmonic functions v such that $\mathcal{M}[v] \in L^{p}\left(\mathbb{S}^{n-1}\right)$ admits an atomic decomposition i.e. that for every function $v \in H^{p}$, there exists a sequence $\left(\lambda_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$ and a sequence $\left(a_{k}\right)_{k \in \mathbb{N}}$ of p-atoms on \mathbb{S}^{n-1} such that

$$
\begin{equation*}
v(r \zeta)=\sum_{k \in \mathbb{N}} \lambda_{k} \mathbb{P}_{e}\left[a_{k}\right](r \zeta) \tag{4.2}
\end{equation*}
$$

and moreover

$$
\|v\|_{H^{p}} \simeq\left(\sum_{k \in \mathbb{N}}\left|\lambda_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

This result is well known, however it seems difficult to find an adequate reference. One may for instance adapt the proof of Garnett and Latter [6] as outlined in [3].

Let $u \in \mathcal{H}^{p}$, then u admits a boundary distribution f and $u=\mathbb{P}_{h}[f]$. Then let $v=\mathbb{P}_{e}[f]$. By lemma $10, v \in H^{p}\left(\mathbb{B}_{n}\right)$ thus v admits an atomic decomposition i.e. there exists a sequence $\left(\lambda_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$ and a sequence $\left(a_{k}\right)_{k \in \mathbb{N}}$ of p-atoms on \mathbb{S}^{n-1} such that v is given by (4.2), thus

$$
f=\sum_{k=0}^{\infty} \lambda_{k} a_{k}
$$

in the sense of distribution. Therefore $u=\mathbb{P}_{h}\left[\sum \lambda_{k} a_{k}\right]=\sum \lambda_{k} \mathbb{P}_{h}\left[a_{k}\right]$, the series being convergent in \mathcal{H}^{p} by proposition 13. We have thus proved the following theorem:

Theorem 14 For every $0<p \leq 1, \mathcal{H}^{p}=\mathcal{H}_{a t}^{p}$ and the norms are equivalent.

References

[1] Ahern P., Bruna, J. and Cascante C. H^{p}-theory for generalized \mathcal{M}-harmonic functions in the unit ball. Indiana Univ. Math. J., 45:103-145, 1996.
[2] Bonami A., Bruna, J. and Grellier S. On Hardy, BMO and Lipschitz spaces of invariant harmonic functions in the unit ball. Proc. London Math. Soc., 77:665-696, 1998.
[3] Colzani L. Hardy spaces on unit spheres. Boll. U.M.I. Analisi Funzionale e Applicazioni VI, IV - C:219-244, 1985.
[4] Erdély and al, editor. Higher Transcendental Functions I. Mac Graw Hill, 1953.
[5] Fefferman C. and Stein E.M. H^{p} spaces of several variables. Acta Math., 129:137-193, 1972.
[6] Garnett J.B. and Latter R.H. The atomic decomposition for Hardy spaces in several complex variables. Duke J. Math., 45:815-845, 1978.
[7] Jaming Ph. Trois problèmes d'analyse harmonique. PhD thesis, Université d'Orléans, 1998.
[8] Krantz S.G. and Li S.Y. On decomposition theorems for Hardy spaces on domains in \mathbb{C}^{n} and applications. J. Fourier Anal. and Appl., 2:68-107, 1995.
[9] Lewis J.B. Eigenfunctions on symmetric spaces with distribution-valued boundary forms. Jour. Func. Anal, 29:287307, 1978.
[10] Minemura K. Harmonic functions on real hyperbolic spaces. Hiroshima Math. J., 3:121-151, 1973.
[11] Minemura K. Eigenfunctions of the Laplacian on a real hyperbolic spaces. J. Math. Soc. Japan, 27:82-105, 1975.
[12] Samir H. Les Transformations de Poisson dans la Boule Hyperbolique. PhD thesis, Université Nancy 1, 1982.
[13] Stein E.M. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970.
[14] van den Ban E.P. and Schlichtkrull H. Assymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces. J. Reine angew. Math., 380:108-165, 1987.

Université d'Orléans, Faculté des Sciences, Département de Mathématiques, BP 6759, F 45067 ORLEANS Cedex 2, FRANCE

E-mail address: jaming@labomath.univ-orleans.fr

[^0]: 1991 Mathematics Subject Classification. 48A85, 58G35.
 Key words and phrases. real hyperbolic ball, harmonic functions, boundary values, Hardy spaces, atomic decomposition.
 ${ }^{1}$ Most of the results in this paper are part of my Ph.D. thesis "Trois problèmes d'analyse harmonique" written at the University of Orléans under the direction of Aline Bonami, to whom I wish to express my sincere gratitude. I also want to thank Sandrine Grellier for valuable conversations.

