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We study the sub-Riemannian geodesic problem in the 2n + 1-Heisenberg group. An independent set of 2n left-invariant vector fields determines a SR structure. We are interested in sub-Riemannian length minimizers for this structure. We use the hamiltonian formalism and apply Pontryagin maximum principle to write the equations for the extremals and describe some properties of the extremal curves. We consider geodesics in the group with a left-invariant Riemannian metric. We obtain their equations and prove that the set of directions of all rays issuing form zero is the sphere of unit horizontal directions.

INTRODUCTION

Let L be the 2n+1-dimensional nilpotent Lie algebra with the following commutation rules in some basis X 1 , Y 1 , X 2 , Y 2 , . . . , X n , Y n , T :

[X i , Y j ] = 2δ ij T, [X i , X j ] = [Y i , Y j ] = ad T = 0,
and G be the connected, simply connected Lie group with the Lie algebra L. We consider X i , Y i , T as left-invariant vector fields on G. The set {X 1 , Y 1 , • • • , X n , Y n } determines a leftinvariant sub-Riemannian structure on G:

D = span (X 1 , Y 1 , • • • , X n , Y n ), X i , Y j = X i , X j = Y i , Y j = δ ij i, j = 1, 2, • • • , n,
called the flat (2n, 2n + 1) sub-Riemannian structure. Such structure is unique, up to isomorphism of Lie groups.

We are interested in sub-Riemannian length minimizers for this sub-Riemannian structure, i.e., in solutions to the fol-lowing optimal control problem:

γ = n i=1 (u i X i (γ) + v i Y i (γ)) (1) γ ∈ G, u i , v i ∈ R, γ(0) = q 0 , γ(T ) = q 1 fixed, (2) 
l = T 0 n i=1 (u 2 i + v 2 i ) → min . (3) 
Problem (1)-(3) was considered by [START_REF] Brockett | Control theory and singular Riemannian geometry[END_REF], and [START_REF] Liu | Shortest paths for sub-Riemannian metrics on rank-two distributions[END_REF] for n = 1. G is a 2-step nilpotent Lie group and

L = D ⊕ [L, L].
In this note we consider also geodesic lines in the Lie group G with a leftinvariant Riemannian metric.

The flat (2n, 2n + 1) sub-Riemannian structure gives a local nilpotent approximation for an arbitrary sub-Riemannian structure with growth vector (2n, 2n + 1), see [START_REF] Montgomery | A tour of Sub-Riemannian geometries, their geodesics and applications[END_REF]. The dynamics of a classical electric charge in the plan un-der the influence of a perpendicular magnetic field can be described by means of flat sub-Riemannian structure.

In general, if G is a 2-step nilpotent Lie group and (D, , ) is a left-invariant sub-Riemannian structure such that L = D ⊕ [L, L], any minimizer is normal in some sub-group of G and hence any minimizer is smooth, see [START_REF] Abib | Sub-Riemannian geodesics on Lie groups[END_REF]. This extends known results on the so-called Gaveau-Brockett problem, Brockett (1981) and [START_REF] Gaveau | Principe de moindre action, propagation de la chaleur et estimes sous elliptiques sur certains groupes nilpotents[END_REF].

MODEL

We choose the following model for the flat (2n, 2n + 1) sub-Riemannian structure:

G = R 2n+1 with coordinates q = (x, z) where x = (x 1 , y 1 , . . . . . . , x n , y n ), z ∈ R, and group law defined as follows:

(x, z)(x ′ , z ′ ) = (x + x ′ , z + z ′ + + n i=1 x i y ′ i - n i=1 x ′ i y i ) X i = ∂ ∂x i -y i ∂ ∂z Y i = ∂ ∂y i + x i ∂ ∂z D = Ker θ θ = dz + n i=1 (y i dx i -x i dy i )
Control system (1) has the full rank and the state space G is connected, thus the systems is globally controllable on G. A standard existence theorem from optimal control theory, see [START_REF] Liu | Shortest paths for sub-Riemannian metrics on rank-two distributions[END_REF], implies that any point can be connected with q 0 ∈ G by an admissible length minimizer.

EXTREMALS

A admissible curve for D is an absolutely continuous curve on G which is tangent to D almost everywhere; applying the Pontryagin maximum principle each minimizer parametrized by arclength is a normal extremal or abnormal extremal, see [START_REF] Liu | Shortest paths for sub-Riemannian metrics on rank-two distributions[END_REF].

Abnormal extremals

An abnormal extremal is a admissible curve for D which is the projection onto G of characteristic curve (in the symplectic sense) of the annihilator D ⊥ of D in T * G. Introduce the linear Hamiltonians corresponding to the basis fields:

h i (λ) = λ(X i ), k i (λ) = λ(Y i ), h(λ) = λ(T ), λ ∈ T * G. D ⊥ is defined by equations h i = k i = 0, i = 1, • • • , n. Assume Γ(t) ∈ T * G -{0} caracteristic curve of D ⊥ , then Γ(t) ∈ span { h i (Γ(t)), k i (Γ(t) ; i = 1, 2, • • • , n} and h i (Γ(t)) = k i (Γ(t)) = 0.
Abnormal extremals are exactly the constant curves.

Normal extremals

Normal biextremals are trajectories of the Hamiltonian system

λ = H(λ), λ ∈ T * G (4) with the sub-Riemannian Hamiltonian H = 1 2 n i=1 (k 2 i + k 2 i ). In the coordinates (q, λ) = (x 1 , • • • , x n , y 1 , • • • , y n , z, ξ 1 , • • • , ξ n , η 1 , • • • , η n , ζ) of T * G system (4) reads ẋi = ξ i + y i ζ (5) ẏi = η i -x i ζ (6) ż = n i=1 ( ẋi y i -ẏi x i ) (7) ξi = ẏi ζ (8) ηi = ẋi ζ (9) ζ = 0 (10)
If the constant ζ is 0, the curve (x(t), y(t)) is the straight line, along which the motion takes place with velocity constant. The function z(t) is then computed by solving (7) and the curve (x(t),

y(t), z(t)) is a straight line in G. If ζ is non zero constant, the equations (8)-(9) imply ẍi -2 ẏi ζ = 0, ÿi + 2 ẋi ζ = 0. So ẋi = A i cos 2ζt + B i sin 2ζt, ẏi = -A i sin 2ζt + B i cos 2ζt, A i , B i
are constant. The condition that our curve q(t) = (x(t), y(t), z(t)) is parametrized by arc-length then says that

n i=1 (A 2 i + B 2 i ) = 1. We obtain x i (t) = r i 2ζ (cos θ i -cos(2ζt + θ i )), y i (t) = r i 2ζ (sin(2ζt + θ i ) -sin θ i ) with A i = r i sin θ i , B i = r i cos θ i . The equation (7) imply z = ζ n i=1 d dt (x 2 i + y 2 i ) and then z(t) = n i=1 r 2 i ( t 2ζ - sin 2ζt (2ζ) 2 ).
The Pontryagin maximum principle, applied to this case, implies that all the minimizers curve parametrized by arc-length are normal extremal q(t).

CONTACT TRANSFORMATIONS

For n = 1, the Lie algebra of symmetries of the flat (2,3) distribution D is parametrized by arbitrary smooth functions of three variables and the Lie algebra of symmetries of the flat (2,3) sub-Riemannian structure is 4-dimensional, see [START_REF] Sachkov | Symmetries of flat rank two distributions and sub-Riemannian structures[END_REF].

For n ≥ 1, let C be the sheaf of germs of infinitesimal automorphisms X such that L X θ = f θ, the function f depending on X. C is the sheaf of contact transformations.

Let X ∈ C vanishing at 0, and φ t be the one parameter group generated by X. Then φ t (0) = 0 and φ * t θ = f t θ. Let V 1 be the subspace of L defined by θ 0 = 0. Then φ t leaves V 1 invariant. Furthermore φ * t dθ = df t ∧ θ + f t dθ. This implies that the form dθ restricted to V 1 is preserved up to scalar factor. If we pass to the infinitesimal we see that the linear isotropy algebra of C is a subalgebra of the algebra g defined as follows:

let u ∈ L not lying in V 1 and g = K + N + M where K is the set of all A ∈ End(L) with Au = 0 and A/V 1 ∈ sp(V 1 ), N is the of all B of the form Bv 1 = 0 for v 1 ∈ V 1 and Bu ∈ V 1 , M is the set of all multiples of the linear trans- formation C where Cv 1 = v 1 for v 1 ∈ V 1 and Cu = 2u.
The space g (1) ⊂ Hom (g, L) called the first prolongation of g, is the set of all T ∈ Hom (g, L) which satisfy (T (ω))(v) = (T (v))(ω) for all ω, v ∈ L. In the case, g (1) = sp (V 1 ) (1) + g and g (k) = sp (V 1 ) (k) + g (k-1) for all k. The algebra sp (V 1 ) is of infinite type because sp (V 1 ) (k) can be identified with S k+2 (V * 1 ); then g is of infinite type.

Corresponding to the coordinates z, x 1 , • • • , x n , y 1 , • • • , y n , let us choose the basis u = e 0 , e 1 , • • • , e n , e n+1 , • • • , e 2 of L. Then it is easy to verify that the following vector fields are all infinitesimal contact transformations (where

θ = dz + n i=1 (y i dx i -x i dy i )): α) ∂ ∂x i + y i ∂ ∂z , ∂ ∂y i -x i ∂ ∂z , ∂ ∂z β) n i,j=1 A ij x i ∂ ∂x j + A i+n,j y i ∂ ∂x j + A i,j+n x i ∂ ∂y j +A i+n,j+n y i ∂ ∂y j where 2n r,s=1 A rs e s ⊗ e * r ∈ sp(V 1 ), 2z ∂ ∂z + n j=1 x j ∂ ∂x j + n j=1 y j ∂ ∂y j , z ∂ ∂x i + y i n j=1 x j ∂ ∂x j + y j ∂ ∂y j + z ∂ ∂z , z ∂ ∂y i + x i n j=1 x j ∂ ∂x j + y j ∂ ∂y j + z ∂ ∂z γ) z n j=1 x j ∂ ∂x j + y j ∂ ∂y j + z ∂ ∂z ¿From α) we see that C is transitive. From β)
we see that the linear isotropy algebra of C is indeed g. A direct computation shows that the vector fields α), β) and γ) form a Lie algebra. C is an non-flat, infinite, transitive LAS (Lie algebra sheaf).

RIEMANNIAN CASE

We define the left-invariant metric on G by taking X i , Y i , T as the orthonormal frame.

Let ∇ the Riemannian connection of leftinvariant metric an {e

h , h = 1, 2, • • • , 2n + 1} = {X 1 , Y 1 , • • • , X n , Y n , T }. Then ∇ ei e j = 1 2 2n k=1 (c k ij + c j ki -c i jk )e k where [e i , e j ] = 2n k=1 c k ij e k .
For G the matrice (∇ ej ei ) i,j is:

         0 T 0 • • • 0 -Y 1 -T 0 0 • • • 0 X 1 . . . . . . . . . 0 • • • • • • 0 T -Y n 0 • • • 0 -T 0 X n -Y 1 X 1 • • • -Y n X n 0          (11) Let ċ(t) = n i=1 (u i (t)X i (t) + v i (t)Y i (t)) + γ(t)T geodesics issuing from 0 ∈ G. Then ∇ ċ(t) ċ(t) = 0 and the table (11) give ui + 2γv i = 0, vi -2γu i = 0, γ = 0.
Therefore, because the parameter t is natural we have n i=1 (u 2 i + v 2 i ) + γ 2 = 1 and we could take γ(t) = γ where the constant γ ∈ [-1, 1] is the cosine of the angle between ċ(0) and the T -axe.

For γ = 0, u i (t) = r i cos(2γt + θ i ) and v i (t) = r i cos(2γt + θ i ) where r 2 i = u 2 i + v 2 i .

In coordinates (x 1 , y 1 , • • • , x n , y n , z) the equations for geodesics c(t) = (x 1 (t), • • • , y n (t), z(t)) are:

ẋi = u i , ẏi = v i , ż = γ + n i=1 v i (t)x i (t) - n i=1 u i (t)y i (t) (12) 
We have

x i (t) = - r i 2γ cos 2γt + a i y i (t) = r i 2γ sin 2γt + b i z(t) = 3γ 2 -1 2γ t + b i 2γ r i cos 2γt + a i 2γ r i sin 2γt + c
for some numbers a i , b i , c which could be defined from the initial condition c(0) = 0. If γ = 0, then they are horizontal and satisfy to the following:

x i (t) = u i (0)t, y i (t) = v i (0)t, z(t) = 0
The non-horizontal geodesics (i.e., with γ = 0) are not rays. Indeed. Let |γ| = 1. For every geodesic c(t) their x i , y i coordinates are periodic functions. Their projection on z = 0 hyperspace is a circle. Take two points on c(t) with difference of their parameters equals π γ . Then, besides the geodesics c(t) their is also the vertical geodesic z(s) = (0, • • • , 0, s) connecting them. Its length is equal to the difference of z coordinates of considering points. But, as easy to check this is always strictly less than π γ , i.e., the length of the interval of the c(t) between them, because t is natural one by definition. Therefore, every geodesic c(t) with |γ| = 1 is not minimal. Vertical geodesic z(s) (with |γ| = 1) also is not minimal, because that the vector field Z(s) = X 1 cos s + Y 1 sin is parallel along it and the sectional curvatures of G in 2-dimensional direction generated by Z(s) and ż(s) equals 1. This means that the index of every interval of z(s) with a length greater than π is positive, and z is not minimal. Now let us check that all horizontal geodesics (with γ = 0) are rays. Suppose that the horizontal geodesic a(t) intersects in some point with another geodesic c(s) issuing the same point 0. Because horizontal geodesics do not intersect, c(s) is non-horizontal one. For c(t) from ( 12) we see that the length l(c) of the projection curve c(t) = (c 1 (t), • • • , c 2n (t), 0), measured in euclidean coordinates, is strictly less than t, i.e., the length of the curve c in the left-invariant metric. Than in the submanifold z = 0 considered as euclidean space the length of every chord, connecting some points of c is less than l(c). If the geodesic c issuing from 0 intersects some horizontal geodesic a(t) also issuing from 0, then a is the chord of the corresponding c. For horizontal geodesics their lengths in the left-invariant metric coincide with the usual euclidean length in z = 0. The argument above means that the length of a is strictly less then that of c. Therefore, we have the following statement: the set of directions of all rays issuing from 0 in the group G is the sphere of unit horizontal directions in the point 0 i.e., {w = (w 1 , • • • , w 2n , 0); w = 1}.