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ALMOST COMPLEX STRUCTURES ON THE COTANGENT BUNDLE

FLORIAN BERTRAND

Abstract. We construct some lift of an almost complex structure to the cotangent bundle,
using a connection on the base manifold. This generalizes the complete lift defined by I.Sato
and the horizontal lift introduced by K.Yano and S.Ishihara. We study some geometric
properties of this lift and its compatibility with symplectic forms on the cotangent bundle.

Introduction

In the recent paper [4], L.Lempert and R.Szöke defined an almost complex structure on
the tangent bundle over an almost complex manifold. This lift of the ambient structure
defined on the base manifold is characterized via a deformation property. This structure is
also studied by K.Yano and S.Ishihara ([9]) as the complete lift of the ambient structure (see
also [1] by P.Gauduchon and [3] by B.Kruglikov for related results). From a symplectic point
of view, the cotangent bundle certainly plays a very important role. This is the phase space
in mechanics and this carries a canonical symplectic structure induced by the Liouville form.
The aim of this paper is to introduce some “natural lift” of an almost complex structure to
the cotangent bundle and to study its compatibility with symplectic forms.

We construct this lift, which will be called the generalized horizontal lift, via a connection
(not necessarily symmetric, minimal or almost complex). This generalizes the lift introduced
by I.Sato ([6]) as a correction of the complete lift, and the horizontal lift constructed by
K.Yano-S.Ishihara ([9]). We establish its geometric properties (Theorems 1.2 and 1.3). As
an application, we prove that the structure defined by I.Sato may be characterized generically
by the holomorphicity of the complex fiberwise multiplication (Corollary 4.2).

Finally we study the compatibility between lifts and symplectic forms on the cotangent
bundle. The non existence of a lifted almost complex structure compatible with the canonical
symplectic form on the cotangent bundle follows from the expression of such a lift in local
coordinates (Proposition 5.1). The conormal bundle of a strictly pseudoconvex hypersurface
is a totally real maximal submanifold in the cotangent bundle endowed with the structure
defined by Sato in [6]. This was proved by S.Webster ([8]) for the standard complex structure,
and by A.Spiro ([7]) for the almost complex case (see also [2]). One can search for a symplectic
proof of this since every Lagrangian submanifold in a symplectic manifold is totally real for
almost complex structures compatible with the symplectic form. We prove that for every
almost complex manifold and every symplectic form on T ∗M compatible with the generalized
horizontal lift, the conormal bundle of a strictly pseudoconvex hypersurface is not Lagrangian
(Proposition 1.1).

The structure of the paper is the following. In section one we introduce some notations and
we present the results. In section two we recall some facts about almost complex manifolds,
tensors and connections. In section three we construct the generalized horizontal lift to the
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2 FLORIAN BERTRAND

cotangent bundle of an almost complex manifold. This lift depends on the introduction of
some connection; we study the dependence of the lift on the connection. We prove that the
correction of the complete lift and the horizontal lift are particular cases of the generalized
horizontal lift (Theorem 1.1). Section four contains proofs of Theorems 1.2 and 1.3; we give
necessary and sufficient condition for a lift of a diffeomorphism to be holomorphic (Theorem
1.2). We also characterize the holomorphicity of the multiplication map on the cotangent
bundle (Theorem 1.3). Finally in section five we are interested in the compatibility between
the generalized horizontal structure and symplectic forms on the cotangent bundle.

1. Notations and results

Let M be a real smooth manifold of even dimension n. We denote by TM and T ∗M

the tangent and cotangent bundles over M , by Γ(TM) and Γ(T ∗M) the sets of sections of
these bundles and by π : T ∗M −→ M the fiberwise projection. Locally, we work with local
coordinates systems x = (x1, · · · , xn) in M and (x, p) = (x1, · · · , xn, p1, · · · , pn) in T ∗M . We
denote by δi

j the Kronecker symbol. For convenience we do not write any sum symbol; we
use Einstein’s summation.

We assume that M is endowed with an almost complex structure J and we denote by
NJ the Nijenhuis tensor of J . Let ∇ be a connection on M and let T be the torsion of ∇.
Finally we define two tensors A and S by :

A(X, Y ) = ∇XJY − J∇XY

S(X, Y ) = −A(X, Y ) + A(Y, X) + T (JX, Y ) − JT (X, Y ) ,

for every X, Y ∈ Γ(TM).
We first construct some general lift, called the generalized horizontal lift and denoted by

JG,∇ (subsection 3.1). Let J̃ be the correction of the complete lift defined by I.Sato and let
JH,∇ be the horizontal lift introduced by K.Yano and S.Ishihara. The precise definitions of

these two structures are reminded in Subsection 3.2. The link between JG,∇, J̃ and JH,∇ is
given by the following Theorem :

Theorem 1.1. We have :

(1) JG,∇ = J̃ if and only if S(X, Y ) = −1
2
JNJ ,

(2) JG,∇ = JH,∇ if and only if T (J., .) = T (., J.) and,

(3) For every almost complex and minimal connection, we have JG,∇ = J̃ = JH,∇.

Theorem 1.1 really explains in what sense the generalized horizontal lift generalizes the
complete and the horizontal lifts.

We prove that the generalized horizontal lift JG,∇ satisfies the following properties :

Theorem 1.2.

(1) The projection π : T ∗M −→ M is (JG,∇, J)-holomorphic.
(2) The zero section s : M −→ T ∗M is (J, JG,∇)-holomorphic.
(3) The lift of a diffeomorphism f : (M1, J1,∇1) −→ (M2, J2,∇2) to the cotangent bundle

is (JG,∇1

1 , J
G,∇2

2 )-holomorphic if and only if f is a (J1, J2)-holomorphic map satisfying
f∗S1 = S2.
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We recall that the lift f̃ of a diffeomorphism f : M1 −→ M2 to the cotangent bundle is

defined by f̃ = (f, t(df)−1). Locally the differential df̃ is given by the matrix :

df̃ =

(
df 0
(∗) t(df)−1

)
∈ M2n(R),

where (∗) denotes a (n × n) block of derivatives of f with respect to (x1, · · · , xn).
Let Z denote the complex fiberwise multiplication on the cotangent bundle. This is defined,

in local coordinates, by : Z(x, p) = (a + ib)(x, p) = (x, (a + btJ(x))p) where b 6= 0.

Theorem 1.3. The multiplication map Z is JG,∇-holomorphic if and only if A(J., .) =
A(., J.).

We point out that if b is identically equal to zero then the map Z is always JG,∇-
holomorphic.

The existence of a symplectic form on the cotangent bundle compatible with the structure
defined by I.Sato and such that the conormal bundle of a strictly pseudoconvex hypersurface
is Lagrangian would imply that the conormal bundle is totally real.

In this way, we have :

Proposition 1.1. Assume (M, J,∇) is an almost complex manifold equipped with a connec-
tion. Let ω′ be a nondegenerate two-form on T ∗M compatible with the generalized horizontal
lift JG,∇. If Γ is a strictly pseudoconvex hypersurface of M then there exist X, Y ∈ TN∗(Γ)
such that ω′(X, Y ) 6= 0.

It is sufficient to consider nondegenerate two-forms for two reasons. Firstly, the fact that
Lagrangian submanifolds are totally real for compatible almost complex structures does not
depend on the closedness of the symplectic form. Secondly the existence of a symplectic
form compatible with a prescribed almost complex structure is not guaranted (see the case
of S

6, the unit sphere in R
7).

2. Preliminaries

Let M be a real smooth manifold of even dimension n.

2.1. Almost complex structures.

Definition 2.1. An almost complex structure on M is a tensor field J of type (1, 1) which
satisfies J2 = −Id. The pair (M, J) is called an almost complex manifold.

In local coordinates, J is given by Jk
l dxl ⊗ ∂xk.

We say that a map f : (M, J) −→ (M ′, J ′) between two almost complex manifolds is
(J, J ′)-holomorphic if :

J ′(f(x)) ◦ dxf = dxf ◦ J(x), for every x ∈ M.

If f : (M, J) −→ M ′ is a diffeomorphism, we define the direct image of J by f by :

f∗J(y) = df−1(y)f ◦ J(f−1(y)) ◦ dyf
−1, for every y ∈ M ′.

The tensor field f∗J is an almost complex structure on M ′ for which f is (J, f∗J)-holomorphic.
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We recall that the Nijenhuis tensor of the almost complex structure J is defined by :

NJ(X, Y ) = [JX, JY ] − J [X, JY ] − J [JX, Y ] − [X, Y ] pour X, Y ∈ Γ(TM).

It is important to notice that NJ(X, JY ) = −JNJ (X, Y ).

2.2. Tensors and contraction. Let θ be the Liouville form on T ∗M . This one-form is
locally given by θ = pidxi. The two-form ωst = dθ is the canonical symplectic form on the
cotangent bundle, with local expression ωst = −dxk ∧ dpk. We stress out that these forms do
not depend on the choice of coordinates on T ∗M .

We denote by T r
q M the space of q covariant and r contravariant tensors on M ; according

to this notation we have NJ ∈ T 1
2 M. For positive q, we consider the following contraction

map γ : T 1
q M → T 1

q−1(T
∗M) defined by :

γ(R) = pkR
k
i1,··· ,iqdxi1 ⊗ · · · ⊗ dxiq−1 ⊗ ∂piq

for R = Rk
i1,··· ,iqdxi1 ⊗ · · · ⊗ dxiq ⊗ ∂xk.

We also define a q-form on T ∗M by θ(R) = pkR
k
i1,··· ,iqdxi1 ⊗ · · · ⊗ dxiq for a (1, q)-tensor

R on M . We notice that θ(R)(X1, · · · , Xq) = θ(R(dπ(X1), · · · , dπ(Xq))) for X1, · · · , Xq ∈
Γ(T ∗M).

Since the canonical symplectic form ωst establishes a correspondence between q-forms and
(1, q − 1)-tensors, one may define the contraction map γ using the Liouville form θ and the
canonical symplectic form ωst on T ∗M by setting, for X1, · · · , Xq ∈ Γ(T ∗M) :

t(θ(R))(X1, · · · , Xq) = −ωst(X1, γ(R)(X2, · · · , Xq)),

where t(θ(R))(X1, · · · , Xq) = θ(R)(X2, · · · , Xq, X1).

When R is a (1, 2)-tensor, we have a matricial interpretation of the contraction γ; if Rk
i,j

are coordinates of R then γ(R) is given by :

γ(R) =

(
0 0
ai

j 0

)
∈ M2n(R), with ai

j = pkR
k
j,i.

2.3. Connections. Let ∇ be a connection on M . We denote by Γk
i,j its Cristoffel symbols

defined by ∇∂xi
∂xj = Γk

i,j∂xk. Let also Γi,j defined in local coordinates (x1 · · · , xn, p1, · · · , pn)

on T ∗M by the equality pkΓ
k
i,j = Γi,j.

Remark 2.1. By the definition of ∇, we have : ∇∂xi
(J∂xj) = ∂xiJ

k
j ∂xk + Γk

i,lJ
l
j∂xk.

The torsion T of ∇ is defined by :

T (X, Y ) = ∇XY −∇Y X − [X, Y ], for every X, Y ∈ Γ(TM).

There are “natural” families of connections on an almost complex manifold.

Definition 2.2. A connection ∇ on M is called :

(1) almost complex when ∇X(JY ) = J∇XY for every X, Y ∈ Γ(TM),
(2) minimal when its torsion T is equal to 1

4
NJ , and

(3) symmetric when its torsion T is identically zero.
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A.Lichnerowicz, in [5], proved that the set of almost complex and minimal connections is
nonempty. This fact is crucial in the following.

To the connection ∇ we associate three other connections :

• ∇ := ∇− T . The Cristoffel symbols Γ
k

i,j of ∇ are given by Γ
k

i,j = Γk
j,i.

• ∇̃ := ∇− 1
2
T. The connection ∇̃ is a symmetric connection and its Cristoffel symbols

Γ̃k
i,j are given by : Γ̃k

i,j = 1
2
(Γk

i,j + Γk
j,i).

• a connection on (M, T ∗M), still denoted by ∇, and defined by :

(∇Xs)(Y ) := X.s(Y ) − s∇XY for every X, Y ∈ Γ(TM) and s ∈ Γ(T ∗M).

Let x ∈ M and let ξ ∈ T ∗M be such that π(ξ) = x. The horizontal distribution H∇ of ∇ is
defined by :

H∇
ξ = {dxs(X), X ∈ TxM, s ∈ Γ(T ∗M), s(x) = ξ,∇Xs = 0} ⊆ TξT

∗M.

We recall that dξπ induces an isomorphism between H∇
ξ and TxM. Moreover we have the

following decomposition : TξT
∗M = H∇

ξ ⊕ T ∗
xM. So an element Y ∈ TξT

∗M decomposes as

Y = (X, v∇(Y )), where v∇ : TξT
∗M −→ T ∗

x M is the projection on the vertical space T ∗
xM

parallel to H∇
ξ .

We introduce a tensor A on M , which measures the “lack of complexity” of the connection
∇ :

A(X, Y ) = ∇XJY − J∇XY for every X, Y ∈ Γ(TM).

Locally we have Ak
i,j = ∂xiJ

k
j − Jk

l Γl
i,j + J l

jΓ
k
i,l. We denote by Ã the tensor associated to the

symmetrization ∇̃ of ∇ : Ã(X, Y ) = ∇̃XJY − J∇̃XY.

3. Generalized horizontal lift on the cotangent bundle

Let (M, J) be an almost complex manifold. We define an almost complex lift of J to the
cotangent bundle T ∗M over M and we prove that this generalizes the complete lift ([6]) and
the horizontal lift ([9]).

3.1. Generalized horizontal lift. Let x ∈ M and let ξ ∈ T ∗M be such that π(ξ) = x. We
locally have the following decomposition TξT

∗M = TxM ⊕T ∗
x M . From an algebraic point of

view it seems natural to lift an almost complex structure J as a product structure, that is
J ⊕ tJ with respect to TxM ⊕ T ∗

xM . More generally if H is a distribution such that we have
the decomposition TξT

∗M = Hξ ⊕ T ∗
xM , one can define a lift of J by J ⊕ tJ with respect

to Hξ ⊕ T ∗
xM . We call such a lift the generalized horizontal lift. Since any such distribution

determines a unique connection it is possible to define this lift using a connection; this point
of view is inspired by the construction of an almost complex structure on the space of 1-jets
of an almost complex manifold due to P.Gauduchon in [1].

Let ∇ be a connection on M . We consider the connection induced by ∇ on (M, T ∗M),
defined in subsection 2.3. For a vector Y = (X, v∇(Y )) ∈ TξT

∗M = H∇
ξ ⊕ T ∗

xM , we define :

JG,∇(Y ) = (JX, tJ(v∇(Y ))).

Let us explain the meaning of JX. Since the map dξπ|H∇

ξ
is a bijection between H∇

ξ and

TxM , we define JX as (dξπ|H∇

ξ
)−1(J(x)dξπ(X)).
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This almost complex structure is given by JG,∇ = J ⊕ tJ in the decomposition TξT
∗M =

H∇
ξ ⊕ T ∗

xM.

Definition 3.1. The almost complex structure JG,∇ is called the generalized horizontal lift
of J associated to the connection ∇.

We first describe locally the horizontal distribution H∇ :

Lemma 3.1. We have H∇
ξ =

{(
X

Γj,kX
j

)
, X ∈ TxM

}
.

Proof. Let us prove that H∇
ξ ⊆

{(
X

Γj,kX
j

)
, X ∈ TxM

}
.

Let Y ∈ H∇
ξ ; Y is equal to dxs(X) where X ∈ TxM and s is a section of the cotangent

bundle such that ∇Xs = 0. Locally we have s = sidxi, X = X i∂xi and so :

Y =

(
X

Xj∂xjsi

)
.

Since ∇Xs = 0 we obtain :

0 = Xj∇∂xj
(sidxi) = Xjsi∇∂xj

dxi + Xj∂xjsidxi = −XjsiΓ
i
j,kdxk + Xj∂xjskdxk.

Therefore Xj∂xjsk = XjsiΓ
i
j,k = XjΓj,k. This proves the inclusion.

Moreover the following decomposition insures us the equality :

TξT
∗M =

{(
X

Γj,kX
j

)
, X ∈ TxM

}
⊕ T ∗

xM.

�

We study the dependence of JG,∇ on the connection ∇. We introduce the set H := {L ∈
T 1

2 M, L(J., .) = L(., J.)} of (1, 2)-tensors L satisfying L(J., .) = L(., J.).

Proposition 3.1. Assume that ∇ and ∇′ are two connections on M . Then JG,∇ = JG,∇′

if
and only if the tensor ∇′ −∇ belongs to H.

So let ∇′ be another connection on M ; there exists a tensor L ∈ T 1
2 (M) such that ∇′ =

∇ + L. We notice that, considering the induced connections on (M, T ∗M), we have :

∇′
Xs = ∇Xs − s(L(X, .)).

Moreover :

v∇′

(Y ) = v∇(Y ) − ξ(L(dξπ(X), .)),

where Y = (X, v∇(Y )) ∈ TξT
∗M .

Proof of Proposition 3.1. A vector Y ∈ TξT
∗M can be written Y = (X, v∇(Y )) in the

decomposition H∇
ξ ⊕T ∗

x M of TξT
∗M and Y = (X ′, v∇′

(Y )) in the decomposition H∇′

ξ ⊕T ∗
xM ,

with dξπ(X) = dξπ(X ′). By construction we have dξπ(JX) = dξπ(JX ′). Thus JG,∇′

= JG,∇

if and only if v∇(JG,∇′

Y ) = v∇(JG,∇Y ) for every ξ ∈ T ∗M and Y ∈ T ∗
ξ M .
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Let us compute v∇(JG,∇′

Y ) :

v∇(JG,∇′

Y ) = v∇′

(JG,∇′

Y )) + ξ(L(Jdξπ(X), .))
= tJ(v∇′

(Y )) + ξ(L(Jdξπ(X), .))
= tJ(v∇(Y )) − tJξ(L(dξπ(X), .)) + ξ(L(Jdξπ(X), .))
= v∇(JG,∇Y ) − ξ(L(dξπ(X), J.)) + ξ(L(Jdξπ(X), .)).

So JG,∇′

= JG,∇ if and only if L(dξπ(X), J.) = L(Jdξπ(X), .). Since dξπ|H∇

ξ
is a bijection

between H∇
ξ and TxM , we obtain the result. �

A consequence of Proposition 3.1 is the following Corollary :

Corollary 3.1. Let ∇ and ∇′ be two minimal almost complex connections. One has JG,∇′

=
JG,∇.

We see from corollary 3.1 that minimal almost complex connections are “natural” connec-
tions in almost complex manifolds, to construct generalized horizontal lifts.

Proof of Corollary 3.1. Since ∇ and ∇′ have the same torsion, the tensor L := ∇ − ∇′ is
symmetric. Moreover, since ∇ and ∇′ are almost complex, we have L(., J.) = JL(., .). Thus
L(J., .) = JL(., .) = L(., J.). �

The following Proposition gives local and tensorial expressions of the generalized horizontal
lift. In order to obtain the tensorial expression it seems useful to consider the complete lift
denoted by Jc and defined by I.Sato ([6]) as follows : let θ(J) be the one-form on T ∗M with
local expression θ(J) = pkJ

k
l dxl. We define Jc by the identity d(θ(J)) = ωst(J

c., .). Then Jc

is locally given by :

Jc =

(
J i

j 0

pk(∂xjJ
k
i − ∂xiJ

k
j ) J

j
i

)
.

Proposition 3.2.

(1) With respect to local coordinates system (x1, · · · , xn, p1, · · · , pn), JG,∇ is equal to :

JG,∇ =

(
J i

j 0

Γl,iJ
l
j − Γj,lJ

l
i J

j
i

)
.

(2) We have JG,∇ = Jc + γ(S), where S(X, Y ) = −A(X, Y ) + A(Y, X) + T (JX, Y ) −
JT (X, Y ).

Proof of Proposition 3.2. We first prove part (1). With respect to local coordinates system
(x1, · · · , xn, p1, · · · , pn), structure JG,∇ is locally given by :

JG,∇ =

(
J i

j 0

ai
j J

j
i

)
.

Since

(
δ

j
i

Γi,j

)
∈ H∇

ξ , it follows from definition of JG,∇X where X ∈ H∇ and from lemma

3.1, that for every i ∈ {1, · · · , n} :

JG,∇

(
δ

j
i

Γi,j

)
=

(
J

j
i

Γk,jJ
k
i

)
.
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Hence we have : ai
j = Γl,iJ

l
j − Γj,lJ

l
i . This concludes the proof of part (1).

Then we prove part (2). Using the local expression of Jc, we have :

JG,∇ = Jc +

(
0 0

−pk∂xjJ
k
i + pk∂xiJ

k
j + Γl,iJ

l
j − Γj,lJ

l
i 0

)
.

It follows from Remark 2.1 that :

−pk∂xjJ
k
i + pk∂xiJ

k
j + Γl,iJ

l
j − Γj,lJ

l
i = pkdxk[−∇∂xj

(J∂xi) + ∇∂xi
(J∂xj)].

We denote by S ′(X, Y ) = −∇X(JY )+∇Y (JX) = −∇X(JY )+∇Y JX+T (JX, Y ) and we
notice that S ′(∂xi, ∂xj) = −∇∂xi

(J∂xj) +∇∂xj
(J∂xi). We point out that S ′ is not a tensor.

However with a correction term, we obtain the tensor S :

S(X, Y ) = S ′(X, Y ) + J [X, Y ]
= −∇X(JY ) + ∇Y (JX) + T (JX, Y ) + J∇XY − J∇Y X − JT (X, Y )
= −A(X, Y ) + A(Y, X) + T (JX, Y ) − JT (X, Y ).

The components of S are given by S(∂xi, ∂xj) = S ′(∂xi, ∂xj) and so JG,∇ = Jc+γ(S). �

3.2. Generalization of the complete and horizontal lifts. The complete lift Jc defined
by I.Sato is an almost complex structure on T ∗M if and only if J is an integrable structure
on M , that is if and only if M is a complex manifold. Introducing a correction term which
involves the non integrability of J , I.Sato obtained an almost complex structure on the
cotangent bundle; this latter one is given by :

J̃ = Jc −
1

2
γ(JNJ).

For convenience we will also call J̃ the complete lift of J .

Remark 3.1. By definition of θ(J), if Y is a vector field on T ∗M locally defined by Y =
X i∂xi+P i∂pi, then we have θ(J)(Y ) = pkJ

k
i Xi. This justifies the following local expression :

θ(J)(Y ) = θ(J)(X i∂xi) = θ(J(X i∂xi)).

The local expression of J̃ is obtained by finding the coordinates of the tensor JNJ .

Since JNJ(X, Y ) is equal to J [JX, JY ] + [X, JY ] + [JX, Y ] − J [X, Y ], we find :

JNJ(∂xi, ∂xj) = [−∂xjJ
k
i + ∂xiJ

k
j + Jk

s J
q
i ∂xqJ

s
j − Jk

s J
q
j ∂xqJ

s
i ]dxk.

Thus we have the following expression :

J̃ =

(
J i

j 0

Bi
j J

j
i

)
, with Bi

j =
pk

2
[∂xjJ

k
i − ∂xiJ

k
j + Jk

s J
q
i ∂xqJ

s
j − Jk

s J
q
j ∂xqJ

s
i ].

We now recall the definition of the horizontal lift of an almost complex structure. Let

∇ be a connection on M and ∇̃ its symmetrized. K.Yano and S.Ishihara defined in [9] the
horizontal lift of J by :

JH,∇ = Jc + γ([∇̃J ]),

where [∇̃J ] is a (1, 2)-tensor given by :

[∇̃J ](X, Y ) = (∇̃Y J)X − (∇̃XJ)Y = −Ã(X, Y ) + Ã(Y, X), for every X, Y ∈ Γ(TM).
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They proved that JH,∇ is an almost complex structure. It is important to notice that if we
do not symmetrize ∇, the horizontal lift of J is no more an almost complex structure. The
horizontal lift is locally given by :

JH,∇ =

(
J i

j 0

Γ̃i,lJ
l
j − Γ̃j,lJ

l
i J

j
i

)
.

From tensorial expressions of the generalized horizontal, the complete and the horizontal
lifts, we can link these three lifted structures. When we consider “natural” connections on
M we have the equality of the three structures. This is stated by the third part of Theorem
1.1.

Proof of Theorem 1.1. We compare the three lifted structures via the intrinsic expressions :

• JG,∇ = Jc + γ(S) with S(X, Y ) = −A(X, Y ) + A(Y, X) + T (JX, Y ) − JT (X, Y ),

• J̃ = Jc − 1
2
γ(JNJ ) and,

• JH,∇ = Jc + γ([∇̃]) with [∇̃](X, Y ) = −Ã(X, Y ) + Ã(Y, X).

Then part (1) is a direct lecture of the tensorial expressions of JG,∇, J̃ and JH,∇.
To prove (2), it is enough to notice that :

[∇̃](X, Y ) = −Ã(X, Y ) + Ã(Y, X)
= −A(X, Y ) + A(Y, X) + 1

2
T (X, JY ) + 1

2
T (JX, Y ) − JT (X, Y ).

Let us prove part (3). The equality JG,∇ = J̃ follows from the fact that A = 0 because ∇
is almost complex and from −T (J., .) + JT (., ) = 1

4
JNJ + 1

4
JNJ = 1

2
JNJ . Since T = 1

4
NJ

and NJ(J., .) = NJ(., J.) we have JG,∇ = JH,∇. �

We end this section with the study of a distribution associated to the horizontal lift. We
begin with an important Corollary of Theorem 1.1.

Corollary 3.2. We have the equality JH,∇ = JG,∇̃.

Proof. We first notice that JH,∇ is equal to JH,∇̃ and since ∇̃ is symmetric, Theorem 1.1

implies the equality JG,∇̃ = JH,∇.
�

Remark 3.2. Previous Corollary 3.2 can be also proved using the local expression of JG,∇̃

and JH,∇.

Let x ∈ M and let ξ ∈ T ∗M be such that π(ξ) = x. We consider the horizontal lift of ∂xi

and vertical lift of dxi on the cotangent defined by K.Yano and S.Ishihara in [9] :

(∂xi)
H,∇ =

(
δ

j
i

Γ̃i,j

)
and (dxi)

V =

(
0

δ
j
i

)
.

The basis {(∂x1)
H,∇(ξ), · · · , (∂xn)H,∇(ξ), (dx1)

V (ξ), · · · , (dxn)V (ξ)} of Tξ(T
∗M) is called the

adapted frame of ∇. With respect to this basis we decompose :

TξT
∗M =< (∂x1)

H,∇(ξ), · · · , (∂xn)H,∇(ξ) > ⊕ < (dx1)
V (ξ), · · · , (dxn)V (ξ) > .
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By identification, we have the equality < (dx1)
V (ξ), · · · , (dxn)V (ξ) >= T ∗

xM . K.Yano and
S.Ishihara proved that in this basis, JH,∇ can be written :

JH,∇ =

(
J i

j 0

0 J
j
i

)
.

Moreover, to the horizontal lift, we associate the distribution of horizontal lifted vectors
fields D = {XH,∇, X ∈ Γ(TM)} of T (T ∗M) with Dξ =< (∂x1)

H,∇(ξ), · · · , (∂xn)H,∇(ξ) > .

The elements of the distribution D are characterized as follows : if Y =

(
X

P

)
is a vector

of TξT
∗M then Y ∈ Dξ if and only if Pi = Γ̃i,kX

k.

Thus Lemma 3.1 implies Dξ = H∇̃
ξ , that is D is the horizontal distribution of ∇̃. Finally

JH,∇ = J⊕tJ = JG,∇̃ with respect to the decomposition Tξ(T
∗M) = Dξ⊕T ∗

x M = H∇̃
ξ ⊕T ∗

x M.

4. Proofs of Theorems 1.2 and 1.3

4.1. Properties of the generalized horizontal lift. Theorem 1.2 explains with geometric
properties why the generalized horizontal lift of an almost complex structure is called a lift.

Proof of Theorem 1.2. The local expression of the generalized horizontal structure implies
the first two points.

Let us prove property (3). Assume f : (M1, J1,∇1) −→ (M2, J2,∇2) is a (J1, J2)-

holomorphic diffeomorphism satisfying f̃∗S1 = S2 and let f̃ be its lift to the cotangent
bundle. We recall that JG,∇i = Jc + γ(Si) for i = 1, 2 (Proposition 3.2). We denote by θi

and ωi,st the Liouville form and the canonical symplectic form of T ∗Mi. The invariance by

lifted diffeomorphisms of these forms insure us that f̃∗θ1 = θ2 and f̃∗ω1,st = ω2,st. We also
recall that t(θi(Si)) = −ωi,st(., γ(Si).).

We want to establish the following equality f̃∗(J
G,∇1

1 ) = J
G,∇2

2 . The first step consists in

proving that the direct image of Jc
1 by f̃ is Jc

2. By the nondegeneracy of ω2,st, it is equivalent

to obtain the equality ω2,st(f̃∗J
c
1 ., .) = ω2,st(J

c
2., .) :

ω2,st(f̃∗J
c
1 ., .) = ω2,st(df̃ ◦ Jc

1 ◦ (df̃)−1., .)

= ω1,st(J
c
1 ◦ (df̃)−1., (df̃)−1)

= f̃∗(ω1,st(J
c
1 ., .))

= f̃∗d(θ1(J1)) and,
ω2,st(J

c
2 ., .) = d(θ2(J2)).

So let us prove that the pull-back of θ2(J2) by f̃ is θ1(J1). According to Remark 3.1 and

to the local expression of df̃ we have f̃ ∗(θ2(J2)) = θ2(J2 ◦ df) and then :

f̃ ∗(θ2(J2)) = θ2(df ◦ J1) = (f̃ ∗θ2)(J1) = θ1(J1).

Thus we obtain f̃∗d(θ1(J1)) = d(θ2(J2)), that is f̃∗J
c
1 = Jc

2.

To establish the result, it is enough to prove that the direct image of γ(S1) by f̃ is γ(S2).

We prove more generally that f∗(S1) = S2 if and only if f̃∗(γ(S1)) = γ(S2). It is equivalent

to prove that f∗(S1) = S2 if and only if ω2,st(., f̃∗(γ(S1)).) = ω2,st(., γ(S2).). We compute :



ALMOST COMPLEX STRUCTURES ON THE COTANGENT BUNDLE 11

ω2,st(., f̃∗γ(S1).) = ω2,st(., df̃ ◦ γ(S1) ◦ (df̃)−1.)

= ω1,st((df̃)−1., γ(S1) ◦ (df̃)−1., )

= f̃∗(ω1,st(., γ(S1).))

= −f̃∗(
tθ1(S1)).

Let us check that f∗(S1) = S2 if and only if f̃∗
t(θ1(S1)) = t(θ2(S2)). We have :

f̃ ∗(θ2(S2)) = θ2(S2(df, df)) and θ1(S1) = (f̃ ∗θ2)(S1) = θ2(df ◦ S1).

According to this fact and the definition of θ(R), where R ∈ T 1
2 M given in the section 2.2,

it follows that f∗S1 = S2 if and only if θ2(S2(df, df)) = θ2(df ◦ S1). So f∗(S1) = S2 if and

only if f̃∗(γ(S1)) = γ(S2). Finally we have proved that if f : (M1, J1,∇1) −→ (M2, J2,∇2)

is a (J1, J2)-holomorphic diffeomorphism satisfying f∗S1 = S2 then f̃ is (JG,∇1

1 , J
G,∇2

2 )-
holomorphic.

Reciprocally if f̃ is (JG,∇1

1 , J
G,∇2

2 )-holomorphic then f is (J1, J2)-holomorphic. Indeed

the zero section s1 : M1 −→ T ∗M1 is (J1, J
G,∇1

1 )-holomorphic by (2), the projection π2 :

T ∗M2 −→ M2 is (JG,∇2

2 , J2)-holomorphic by (1) and we have the equality f = π2◦f̃◦s1. Since

f is (J1, J2)-holomorphic we have f̃∗J
c
1 = Jc

2 . Morevever the (JG,∇1

1 , J
G,∇2

2 )-holomorphicity

of f̃ implies the equality f̃∗(γ(S1)) = γ(S2), that is f∗S1 = S2.

�

Properties of Theorem 1.2 can also be established for the complete and the horizontal lifts
by considering special connections. This is stated by the following Corollary.

Corollary 4.1.

(1) The projection π : T ∗M −→ M is (J ′, J)-holomorphic for J ′ = J̃ , JH,∇.

(2) The zero section s : M −→ T ∗M is (J, J ′)-holomorphic J ′ = J̃ , JH,∇.
(3) The lift of a diffeomorphism f : (M1, J1) −→ (M2, J2) to the cotangent bundle is

(J̃1, J̃2)-holomorphic if and only if f is (J1, J2)-holomorphic.
(4) The lift of a diffeomorphism f : (M1, J1,∇1) −→ (M2, J2,∇2) to the cotangent bundle

is (JH,∇1

1 , J
H,∇2

2 )-holomorphic if and only if f is a (J1, J2)-holomorphic map satisfying
f∗[∇1J1] = [∇2J2].

Theorem 1.2 and Corollary 4.1 characterize the complete lift via the lift of diffeomor-
phisms. Indeed the generalized horizontal lift and the horizontal lift need a connection to be
constructed whereas this is not essential in the construction of the complete lift. Hence it
is natural to require more conditions if we want to lift some diffeomorphisms in case of gen-
eralized horizontal and horizontal structures. And generically there is no way for an almost
complex diffeomorphism to send the tensors S1 (resp. [∇1J1]) on S2 (resp. [∇2J2]).

Proof of Corollary 4.1. By local expressions of the complete lift and of the horizontal lift we
have the first two properties.

To prove property (3) we consider almost complex and minimal connections ∇1 and ∇2

on M1 and M2. Hence J̃1 = JG,∇1 = Jc
1 + γ(S1) and J̃2 = JG,∇2 = Jc + γ(S2). We have

S1 = −1
2
J1NJ1

and S2 = −1
2
J2NJ2

. We notice that if f : (M1, J1) −→ (M2, J2) is a (J1, J2)-
holomorphic diffeomorphism then f∗NJ1

= NJ2
and then f∗J1NJ1

= J2NJ2
. According to
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Theorem 1.2 the lift of a diffeomorphism f to the cotangent bundle is (J̃1, J̃2)-holomorphic
if and only if f is (J1, J2)-holomorphic.

The property (4) follows from the equality JG,∇̃ = JH,∇ obtained in Corollary 3.2 and
from Theorem 1.2.

�

4.2. Fiberwise multiplication. We consider the multiplication map Z : T ∗M −→ T ∗M

by a complex number a + ib with b 6= 0 on the cotangent bundle. This is locally defined by

Z(x, p) = (x, (a+ btJ(x))p). For (x, p) ∈ T ∗M we have d(x,p)Z =

(
Id 0
C aId + btJ

)
, where

Ci
j = bpk∂xjJ

k
i .

Proof of Theorem 1.3. Let us evaluate d(x,p)Z ◦JG,∇(x, p)−JG,∇(x, ap+ btJp) ◦d(x,p)Z. This
is equal to : (

0 0
CJ + (aId + btJ)B(x, p) − B(x, ap + tJp) − tJC 0

)
,

where Bi
j(x, p) = pk(Γ

k
l,iJ

l
j − Γk

j,lJ
l
i).

We first notice that aBi
j(x, p) − Bi

j(x, ap + btJp) = −bpkJ
k
s (Γs

l,iJ
l
j − Γs

j,lJ
l
i).

Let us compute D = CJ + (aId + btJ)B(x, p) − B(x, ap + tJp) − tJC :

Di
j = bpk[J

l
j∂xlJ

k
i︸ ︷︷ ︸

(1)

+ J l
iΓ

k
s,lJ

s
j︸ ︷︷ ︸

(2)

− J l
iΓ

k
j,sJ

s
l︸ ︷︷ ︸

(2)′

− Jk
s Γs

l,iJ
l
j︸ ︷︷ ︸

(3)

+ Jk
s Γs

j,lJ
l
i︸ ︷︷ ︸

(3)′

− J l
i∂xjJ

k
l︸ ︷︷ ︸

(1)′

].

We obtain (1) + (2) + (3) = J l
j(∂xlJ

k
i + Js

i Γ
k
l,s − Jk

s Γs
l,i) and (1)′ + (2)′ + (3)′ = J l

i(∂xjJ
k
l +

Js
l Γ

k
j,s − Jk

s Γs
j,l). We recognize the coordinates of the tensor A (section 2.3):

∂xlJ
k
i − Jk

s Γs
l,i + Js

i Γ
k
l,s = Ak

l,i and ∂xjJ
k
l − Jk

s Γs
j,l + Js

l Γ
k
j,s = Ak

j,l.

Finally Di
j = bpk[J

l
jA

k
l,i−J l

iA
k
j,l]. Then Z is JH,∇-holomorphic if and only if J l

jA
k
l,i = Ak

j,lJ
l
i .

Since Ak
j,lJ

l
i∂xk = A(∂xj , J∂xi) and J l

jA
k
l,i∂xk = A(J∂xj , ∂xi) this concludes the proof of

Theorem 1.3.
�

The almost complex lift J̃ may be characterized generically by the holomorphicity of Z;
more precisely we have :

Corollary 4.2.

(1) The multiplication map Z is J̃-holomorphic and,

(2) Z is JH,∇-holomorphic if and only if Ã(J., .) = Ã(., J.).

Proof. Let us prove part (1). Assume ∇ is an almost complex minimal connection on M .

We have J̃ = JG,∇ and by almost complexity of ∇, A is identically equal to zero. Theorem

1.3 implies the J̃-holomorphicity of Z.

The part (2) follows from Theorem 1.3 and the equality JH,∇ = JG,∇̃ stated in Corollary
3.2.

�
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Remark 4.1. In case of the tangent bundle TM , the fiberwise multiplication is holomor-
phic for the complete lift of J if and only if J is integrable. More precisely, “the lack of
holomorphicity” of this map is measureb by the Nijenhuis tensor (see [3]).

5. Compatible lifted structures and symplectic forms

Assume (M, J) is an almost complex manifold. We recall that ωst is the canonical symplec-
tic form on the cotangent bundle on M . From a symplectic point of view, it seems natural
to see if the generalized horizontal lifted structure is compatible with ωst. More generally one
can search for a lifted structure compatible with ωst.

Proposition 5.1. There is no almost complex structure J ′ on the cotangent bundle T ∗M ,
compatible with ωst, such that π : T ∗M −→ M is (J ′, J)-holomorphic.

In particular, the generalized horizontal lift, and so the complete and the horizontal lifts,
are not compatible with the canonical symplectic form on T ∗M .

Proof. Such a lifted structure can be locally written

(
A 0
C D

)
, where A, B and C are

(n × n) blocks. Indeed dπ is locally given by dπ =
(

Id 0
)

where Id and 0 are (n × n)
blocks and since π is (J ′, J)-holomorphic we necessarly have this local expression for J ′.
So if we consider a vector Y = Pi∂pi 6= 0 ∈ T (T ∗M) we have J ′Y = (DP )i∂pi and then
ωst(Y, J ′Y ) = 0. Hence J ′ cannot be compatible with ωst.

�

Let Γ ⊆ M be a strictly pseudoconvex hypersurface in M . For x ∈ Γ, we denote by
N∗

x(Γ) = {px ∈ T ∗
xM, (px)|TxΓ = 0}. The conormal bundle over Γ, defined by the disjoint

union N∗(Γ) =
⋃

x∈Γ N∗
x(Γ), is a totally real submanifold of T ∗M endowed with the complete

lift (see [7] and [2]). Moreover N∗(Γ) is Lagrangian for the canonical symplectic form on
T ∗M . To get a symplectic proof of the total reality of the conormal bundle, it is enough to
search for a symplectic form compatible with the complete lift for which N∗(Γ) is Lagrangian.
More generally we are interested in the compatibility with the generalized horizontal lift.
Proposition 1.1 shows that we cannot find such a form.

Let us recall the definitions of Lagrangian and totally real submanifolds :

Definition 5.1.

(1) A submanifold N of a symplectic manifold (M ′, ω′) is called Lagrangian for ω′ if
ω′(X, Y ) = 0 for every X, Y ∈ Γ(TN).

(2) A submanifold N of an almost complex manifold (M ′, J ′) is totally real if TN ∩
J(TN) = {0}.

Proof of Proposition 1.1. Let Γ be a strictly pseudoconvex hypersurface of M and x ∈ Γ.

Since the problem is purely local we can suppose that M = R
2m, J = Jst + O|(x1, · · · , x2m)|

and x = 0. Since Γ is strictly pseudoconvex we can also suppose that T0Γ = {X ∈ R
2m, X1 =

0}. The two-form ω′ is given by ω′ = αi,jdxi ∧ dxj + βi,jdpi ∧ dpj + γi,jdxi ∧ dpj.
Assume that ω′(X, Y ) = 0 for every X, Y ∈ TN∗(Γ). We have N∗

0 (Γ) = {p0 ∈
T ∗

0 R
2m, (p0)|T0Γ = 0} = {(P1, 0, · · · , 0), P1 ∈ R}. Then a vector Y ∈ T(0;0)N

∗(Γ) can be
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written Y = X2∂x2 + · · ·+ X2m∂x2m + P1∂p1. So we have for 2 ≤ i < j ≤ 2m :

ω′
(0;0)(∂xi, ∂xj) = αi,j = 0.

Then w′
(0;0) is given by ω′

(0;0) = α1,jdx1 ∧ dxj + βi,jdpi ∧ dpj + γi,jdxi ∧ dpj.

Since J
G,∇
(0;0) =

(
Jst 0
0 Jst

)
we have J

G,∇
(0;0)Y

′ = ∂x2m for Y ′ = ∂x2m−1 6= 0 ∈ T(0;0)(T
∗Γ).

Thus ω′
(0;0)(Y

′, J
G,∇
(0;0)Y

′) = 0 and so ω′ is not compatible with JG,∇.

�

Proposition 1.1 is also established for complete and horizontal lifts because J
G,∇
(0;0) = J̃(0;0) =

J
H,∇
(0;0).

Remark 5.1. Since the conormal bundle of a (strictly pseudoconvex) hypersurface is La-
grangian for the symplectic form ωst on T ∗M , Proposition 1.1 shows directly that ωst and
JG,∇ are not compatible.
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[4] L.Lempert, R.Szöke, The tangent bundle of an almost complex manifold, Canad. Math. Bull. 44 (2001),
no. 1, 70-79.
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