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The Lam�e family of onnetions on theprojetive line �F. Loray, M. van der Put and F. UlmerJuly, 2005
IntrodutionA Lam�e onnetion is a rank two onnetion (M;r) on the projetive linewith simple poles at 0; 1; t;1 and loal exponents 1=4;�1=4 at eah singularpoint. The relation with the ellipti urve E, given by the aÆne equationw2 = z(z � 1)(z � t), is investigated both in an algebrai and a omplexanalyti ontext.For the latter an analyti moduli spae for Lam�e equations is produed,based on monodromy above P1 n f0; 1; t;1g and the fundamental group�1(E). N.J. Hithin [Hi2℄ showed that the solutions of an irreduible Lam�eonnetion an be written in terms of the Weierstrass zeta funtion. Thiswas also noted by F. Beukers (see [Be℄) who presented a di�erent proof.In the algebrai ontext a universal family, parametrized by a onneted,non singular variety P ! ft 2 C j t 6= 0; 1;1g of relative dimension 2, ofLam�e onnetions with free vetor bundle M is expliitly omputed.The Riemann-Hilbert orrespondene yields an analyti isomorphism be-tween the analyti moduli spae and the algebrai one. In partiular oneobserves that P is not the full algebrai moduli spae. The missing partis the speial family of Lam�e onnetions (M;r) where M is not free butisomorphi to O(1) � O(�1). This family is omputed. For every memberof the family the di�erential Galois group of the Lam�e onnetion is the in-�nite dihedral group DSL21 . Here DSL21 and DSL2n denote the preimages of the�MSC2000: 12H05, 14D20, 34A30, 68W30.1



in�nite dihedral group D1 � PSL2 and the �nite dihedral group Dn � PSL2under the map SL2 ! PSL2.The losed lous Preduible � P , representing the reduible Lam�e systems,is expliitly omputed. It turns out to be a non singular divisor. The di�er-ential Galois group of a Lam�e onnetion orresponding to p 2 P is reduiblefor p 2 Preduible and is an irreduible subgroup of the in�nite dihedral groupDSL21 for p 62 Preduible. Let PN denote the onstrutible subset of P onsistingof the points suh that the orresponding Lam�e onnetion has the dihedralgroup DSL2N as di�erential Galois group. An algorithm for the omputationof the lous PN , based on division polynomials for the ellipti urve E, thePainlev�e VI equation and a transformation of Okamoto, is given. The loiPN with N = 2; 3; 4 are expliitly omputed. We note that the lous of thepoints in P with di�erential Galois group equal to DSL21 is not onstrutible.The reason is that this linear algebrai group does not satisfy the onditionposed in [Sin℄, (see also [B-vdP℄).A weak point of our presentation of Lam�e onnetions is the separationinto two families, the one parametrized by P and the other the speial family.In the last setion it is shown that one an produe a universal family ontain-ing both ases if one onsiders onnetion (M;r) withM�= O(0)�O(�1).The lassial Lam�e equationLn;B(y) = y00+ f 02f y0�n(n + 1)z +Bf y = 0 with f = 4(z�e1)(z�e2)(z�e3);distint e1; e2; e3 and e1 + e2 + e3 = 0, has regular singularities at the pointse1; e2; e3 with loal exponents 0; 1=2. Further1 is a regular singularity withloal exponents �n=2; (n + 1)=2. For n 2 Z the di�erene of the loalexponents at 1 lies in 1=2 +Z. It is therefore possible to transform Ln intoa Lam�e onnetion if n 2 Z. A suitable transformation yields an isomorphismof L0;B (with B 6= 0) with the speial family. This explains in partiular thewell known result thatDSL2N with �niteN does not our as di�erential Galoisgroup for L0;B.By an algebrai transformation Ln;B (for n � 1) is mapped to a 2-dimensional subspae Sn of the universal spae P of Lam�e onnetions. Theintersetion of Sn \ PN is equal to the �nite set of points in the family Ln;Bhaving di�erential Galois group DSL2N . For n = 1 and N = 2; 3 our om-putations agree with the results of [Chi℄ and [Be-Wa℄. In onnetion withthis we observe the following. Any salar equation for the Lam�e onnetion,2



orresponding to a point p 2 P , has, in general, an apparent singularity, i.e.,a singular point di�erent from 0; 1; t;1. This explains that the dimension ofP is larger than the dimension of the moduli spaes for the Ln;B. Moreover,it is rather exeptional that a point p 2 PN indues a lassial Lam�e equationwith di�erential Galois group DSL2N .1 Imprimitive di�erential modules of rank 2K denotes a di�erential �eld. The �eld of onstants C of K is supposed tohave harateristi 0 and to be di�erent from K. Let M be a di�erentialmodule over K of dimension 2 and let B1; B2 be a basis of M over K. Anyelement m1 
m2 of the seond symmetri power sym2KM will be written asm1m2. In partiular B21 ; B1B2; B22 is a basis of sym2M . Let L � K be anextension of degree 2 and let N denote a 1-dimensional di�erential moduleover L. We write ResL=K(N) for N viewed as 2-dimensional di�erentialmodule over K.Lemma 1.1 Let F = �1B21 + �2B1B2 + �3B22 6= 0 generate a di�erentialsubmodule of sym2KM . One regards F as element of the polynomial ringK[B1; B2℄. Put � = �22 � 4�1�3. Then:(1) If F is a K�-multiple of a square (or equivalently � = 0), then we maysuppose that F = B21 . Now KB1 is a di�erential submodule of M .(2) If F is a produt of two distint linear fators (or equivalently � 6= 0 isa square in K), then we may suppose that F = B1B2. Now KB1 and KB2are di�erential submodules of M .(3) Suppose that F is irreduible. We may assume F = B22 � �B21 . PutL = K(Æ) with Æ2 = �. There exists a 1-dimensional module N = Le overL with M �= ResL=K(N) and suh that the kernel of the surjetive (obvious)morphism of di�erential modules sym2KM ! ResL=K(sym2LN) equals KF .The di�erential module N = Le with �e = ue, with the above properties, isunique up to onjugation, i.e., u 2 L is replaed by its onjugate u.Moreover sym2KM is the diret sum of K(B22 � �B21) and the di�erentialsubmodule K(B22 +�B21) +K(B1B2).(4) Suppose that C is algebraially losed and that M is irreduible and (foronveniene) that the determinant of M (i.e., the exterior produt �2M) istrivial. Then sym2KM ontains more than one 1-dimensional submodule, ifand only if the di�erential Galois group of M is DSL22 . Moreover, in this ase3



there are preisely three 1-dimensional submodules of sym2KM and eah onede�nes a di�erent quadrati extension of K.Proof. (1) and (2) follow by straightforward omputation. In ase (3) wegive M the struture of a vetor spae over L by presribing ÆB1 = B2and ÆB2 = �B1. Thus we obtain a vetor spae N = LB1 over L. Let� on M satisfy �B1 = aB1 + bB2 with a; b 2 K. Then � on N is de-�ned by �B1 = (a + bÆ)B1. From the assumption that �(B22 � �B21) is amultiple of (B22��B21), it follows that ResL=K is isomorphi toM . The obvi-ous morphism sym2KM ! ResL=K(N) is given by B21 ; B1B2; B22 have imagesB21 ; ÆB21 ; Æ2B21 . The map is surjetive and its kernel is generated by B22��B21 .The only freedom one has in givingM a struture of di�erential module overL is by presribing �B1 = (a� bÆ)B1. The rest of the statement (3) followsby easy omputation.The �rst statement of (4) is well known and follows in fat from the lassi-�ation of the algebrai subgroups of Sl2(C). Suppose that the di�erentialGalois group of M is DSl22 . Then the di�erential Galois group of sym2M isthe group D2 (of order 4) and sym2M is the diret sum L1 � L2 � L3 ofsubmodules. Eah Lj orresponds to a di�erent surjetive homomorphism�j : D2 ! f�1g. The quadrati extension of K orresponding to Lj is the�xed �eld of the Piard-Vessiot �eld under the kernel of �j. 2In ase (3) of Lemma 1.1, the di�erential module will be alled imprimitive.Remark.In ase (4) of Lemma 1.1, the ondition that C is algebraially losed annotbe omitted. We study this in detail.The assumptions are: M=K irreduible and dimension 2; �2M trivial,i.e., isomorphi to Ke with �e = 0; sym2M has more than one �-invariantline. We want to investigate whether the onlusion of part (4) of the lemmais still valid if C is not algebraially losed.If CK 
K M is irreduible, then the di�erential Galois group of thismodule over CK is DSL22 and there are preisely 3 �-invariant lines in CK 
sym2M . Two of them are already de�ned over K and thus the third one isalso de�ned over K.Suppose that CK
M is reduible. This module over CK is semi-simpleand is in partiular the sum of �-invariant lines.4



Case (i). Assume that CK 
M has more than two invariant lines. Thenthe di�erential Galois group G of this module ats on the solution spae V(of dimension 2 over C) and has more than two invariant lines. Thus G isa subgroup of the group C�. Sine also G � SL(V ), one �nds G � f�1g.Sine 0 = C 
 ker(�;M) = ker(�; CK 
M), one onludes that G = f�1g.Then G ats trivially on sym2V and sym2(CK 
M) is trivial. This impliesthat sym2M is trivial. The triviality of �2M implies that M �= M�. Thenone �nds that M 
 M� �= M 
 M �= sym2(M) � �2M is also a trivialdi�erential module. Amitsur gave a onstrution of suh modules M . Forthis onstrution one needs a base �eld K whih is more ompliated than a�eld of the type C(z) with 0 = ddz . For a modern desription, using quaternion�elds, and examples we refer to [H-P℄, setion 2.5.Case (ii) Assume that CK
M has preisely two invariant lines. These linesare onjugated under the Galois group of C=C. Thus there exists a quadratiextension C(w) � C, with w2 2 C suh that K(w)
M = K(w)e1+K(w)e2and the following properties hold:(a) Let � denote the non trivial element of the Galois group of C(w)=C.Then we may suppose that �e1 = e2 and �e2 = e1.(b) �e1 = ae1 with a 2 K(w) and �e2 = �(a)e2.() a+ �(a) = f 0f for some f 2 K�.(d) M is generated by f1 = e1 + e2 and f2 = w(e1 � e2).Further �f1 = a+�(a)2 f1 + a��(a)w f2 and �f2 = wa�w�(a)2 f1 + a+�(a)2 f2.We dedue some more properties.(e) For any  2 K(w)�, the line K(w)(e1 + �()e2) is not invariant under�. Indeed, this line omes from a line in M . This translates into: for every 2 CK with  6= 0 one has 0 + a 62 K.(f) sym2(K(w) 
 M) = (K(w)e21 + K(w)e22) � K(w)e1e2 has at least two�-invariant K(w)-lines whih ome from sym2M . The line K(w)e1e2 omesfrom sym2M . This module over K is trivial sine �e1e2 = f 0f e1e2. Henethere must be a  2 K(w)� suh that K(w)(e21 + �()e22) is invariant under�. This translates into 0 + 2a 2 K. Thus a = �12 0 + b with b 2 K.(g) From () it follows that 2b = f 0f + 12 (N())0N() , where N() = �() is thenorm of . Thus a = �12 0 + 12 f 0f + 14 N()0N() .(h) N() is not a square in K, otherwise the module sym2(K(w)
M) wouldbe trivial. We onlude the di�erential Galois group of CK
M is the yligroup of order 4. 5



Finally, in order to show that there exists an example for the above sit-uation, we onsider the ase K = C(z) with 0 = ddz , w as above and wetake for the  in (f) the element z � w. With the hoie f = 1 we �nda = �14 1z�w + 14 1z+w . One easily veri�es this is indeed an example of therequired type. 2Corollary 1.2 Let M be an irreduible di�erential module of dimension 2over K. Then M is imprimitive if and only if there exists a quadrati exten-sion L � K suh that L
K M has a 1-dimensional submodule.Proof. Suppose that M is imprimitive. Then M = ResL=K(N) for suitableL and N . The kernel of the anonial map L
K ResL=K(N)! L
LN = Nis a 1-dimensional submodule of L
K M .On the other hand, suppose that L
KM has a 1-dimensional submoduleT1. Using the onjugation of L=K one �nds another 1-dimensional submoduleT2. The 1-dimensional submodule T1 
L T2 of L 
K sym2KM is invariantunder the onjugation of L=K and thus provides a 1-dimensional submoduleof sym2M . 2Suppose thatM is an imprimitive di�erential module over K of dimension2. For every integer n � 2, the di�erential module symnKM has an expliit 2-dimensional fator (diret summand) ResL=K(symnLN). We use the notationof Lemma 1.1, i.e., L = K(Æ), Æ2 = �, N = LB1 and �B1 = (a+bÆ)B1. ThensymnLN has generator e = Bn1 and �e = n(a + bÆ)e. Then ResL=K(symnLN)has basis e; Æe and the matrix of � with respet to this basis reads� na nb�nb na + �02� � :The above method to �nd a fator of the nth symmetri power an alsobe given expliitly for salar equations. Consider a salar equation y00+a1y0+a0y = 0 over K with C algebraially losed, suh that its di�erential Galoisis an irreduible subgroup of DSL21 . The (abstrat) solution spae has a basisy1; y2 suh that the di�erential Galois group permutes the two lines Cy1; Cy2.Then S = y1y2 is a solution of the seond symmetri power and S2 2 K.This seond symmetri power readsy000 + 3a1y00 + (4a0 + 2a21 + a01)y0 + (2a00 + 4a0a1)y = 0 :6



The term S0S an be omputed expliitly. As a onsequene the expressionS00S = (S0S )0 + (S0S )2 is known as element of K. Further y01y1 and y02y2 satisfy thepolynomial equationU2 � S 0S U + (a0 + a1 S 02S + S 002S ) = 0 over K:From this one derives a di�erential equation Ln for yn1 and yn2 .Ln(y) = y00 + (a1 + (1� n)S 0S )y0 + (n2a0 + (n2 � n)a1 S 02S + (n2 � n)S 002S )y:2 Connetions with 4 speial singular pointsConsider an irreduible onnetion of rank 2 on P1C having 4 singular points0; 1; t;1 and loal exponents 1=4;�1=4 for eah singular point. The generi�bre of this onnetion is a di�erential module M of dimension 2 over C(z),the �eld of rational funtions of P1C .Proposition 2.1 The moduleM is imprimitive and there is a 1-dimensionalsubmodule of sym2M suh that the orresponding quadrati extension L �C(z) has the form C(z)(w) with w2 = z(z � 1)(z � t) and  2 C�.A diret proof by omputation will be given later on. First we onsiderthe ase where C is the �eld of omplex numbers C and we present an analytiproof. We start by investigating the monodromy of M . One hooses a basepoint in P1C n f0; 1; t;1g and generators �1; : : : ; �4 of the fundamental group�1 of this spae, onsisting of loops around the points 0; 1; t;1 suh that�1 � � ��4 = 1. The monodromy is a homomorphism �1 ! Sl2(C ), sendingeah �j to an element Bj of order 4. The monodromy is therefore desribedby elements B1; : : : ; B4 2 Sl2(C ) of order 4 with B1 � � �B4 = 1.Lemma 2.2 Let B1; : : : ; B4 2 Sl2(C ) satisfy B1 � � �B4 = 1 and B4j = 1 forevery j. Let G be the group generated by the Bj. There are two possibilities:(i) G is reduible and ontained in a Borel subgroup of Sl2(C ).(ii) G is irreduible and ontained in DSl21 .Proof. We replae eah Bj by its image bj in PGl2(C ). Eah bj has order 2and b1 � � � b4 = 1. We have to onsider several possibilities.7



(1) Suppose that b1b2 has preisely two �xed points p1; p2 2 P1C . Then eahbj interhanges the points p1; p2 and the group generated by b1; : : : ; b4 is anirreduible subgroup of D1.Proof. b2b1 is the inverse of b1b2 and has also �xed points p1; p2. Nowb1b2b1(p1) = b1(p1) and thus b1(p1) 2 fp1; p2g. If b1(p1) = p1, then b2(p1) =b2b1(p1) = p1. Also b1b2b1(p2) = b1(p2) and therefore b1(p2) = p2. It followsthat b2(p2) = p2. Sine b1 and b2 have order 2 one �nds the ontraditionthat b1 = b2. We onlude that b1 and b2 interhanges the points p1; p2.One has b1b2b3(p1) = b3b2b1(p1), sine b1b2b3 = (b1b2b3)�1 = b3b2b1. More-over b3b2b1(p1) = b3(p1). Hene b3(p1) 2 fp1; p2g. Similarly b3(p2) 2 fp1; p2g.Suppose that b3(p1) = p1 and b3(p2) = p2. Then b1b2b3 and b3 have bothorder two and both p1; p2 as �xed points. Then b1b2b3 = b3 and we �nd theontradition b1b2 = 1.(2) Suppose that b1b2 has preisely one �xed point p. Then p is a �xed pointof every bj and the group generated by the b1; : : : ; b4 is reduible.Proof. b2b1 = (b1b2)�1 has also �xed point p. Now b1b2b1(p) = b1(p) and thusb1(p) = p. Then also b2(p) = p. Further b1b2b3(p) = b3b2b1(p) = b3(p) andthus b3(p) = p. Take for onveniene p = 1. Then one sees that the groupgenerated by all bj lies in an upper triangle group of matries. Hene thisgroup is reduible.(3) Suppose that b1 = b2. Then the group generated by b1; : : : ; b4 is the sameas the group generated by b1; b3. If b1b3 has preisely two �xed points, then theorresponding group is an irreduible subgroup of D1. If b1b3 has preiselyone �xed point then the orresponding group is reduible. Finally b1 = b3 alsoprodues a reduible group.Proof. One an repeat the arguments in the proofs of (1) and (2) to provestatement (3). 2Seond proof. Let E denote the ellipti urve given by the aÆne equationw2 = z(z � 1)(z � t). Let p1; : : : ; p4 2 E denote the points of E with im-ages 0; 1; t;1. Then E� := E n fp1; : : : ; p4g ! P1� := P1 n f0; 1; t;1g is aovering of degree 2 and the homomorphism I : �1(E�) ! �1(P1�) is inje-tive and its image is a subgroup of index 2. Write, as before, �1(P1�) =<�1; : : : ; �4j�1 � � ��4 = 1 >. Then the image of I is the kernel of the homo-morphism �1(P1�) ! f�1g that sends eah �j to �1. One an give �1(E�)generators a; b; �1; : : : ; �4 suh that:(i) Eah �j is a loop around pj and I maps �j to a onjugate of �2j .8



(ii) There is only one relation, namely �1�2�3�4aba�1b�1 = 1.(iii) The images of a; b in �1(E) under the anonial map �1(E�) ! �1(E)are generators of �1(E).(iv) Conjugation with an (or any) element � 2 �1(P1�), not ontained in�1(E�), ats as �1 on the abelianized group (�1(E�))ab.We use the map I to identify �1(E�) with a subgroup of �1(P1�).Consider a homomorphism h : �1(P1�) ! SL2(C ) whih sends eah �j toBj. Then h(�j) = �1 for all j and h(a) ommutes with h(b). In partiular,h(�1(E�)) is an abelian subgroup of SL2(C ). Further, h indues a homomor-phism �1(E)! SL2(C ) whih will also be alled h. There are the followingpossibilities:(a) This abelian subgroup has preisely one invariant line C e in C2. ThenC e is also invariant under h(�1(P1�)) and the representation h is reduible.(b) This abelian subgroup has preisely two invariant lines C e1 ; Ce2. Thenh : �1(E) ! SL2(C ) has the form h()e1 = �()e1 and h()e2 = �()�1e2,for some harater � of �1(E) �= Z2 suh that �2 6= 1. For any � 2 �1(P1�),not ontained in �1(E�), h(�) interhanges the two lines C e1 and C e2 . Thisfollows from (iv). In partiular, the representation h is irreduible and itsimage is an irreduible subgroup of DSl21 .() This abelian subgroup has more than two invariant lines. Then h mapsevery element of �1(E�) to �1. Then h(�1(P1�)) is abelian (atually a yligroup of order 4) and the representation is reduible. 2Observations 2.3 We supplement the information of Lemma 2.2 with a wellknown desription of the monodromy. The monodromy tuple (B1; : : : ; B4),assoiated to a di�erential module as above, is only determined up to si-multaneous onjugation. The olletion T of all tuples (B1; : : : ; B4) 2 Sl42satisfying B4j = 1 for every j and B1 � � �B4 = 1 is a losed subset of Sl42.The group PSL2 ats on T by onjugation. There is a ategorial quotient,namelyQ = Spe[t1; t2; t3℄=(t21+t22+t23+t1t2t3�4). The morphism q : T ! Qis given by(B1; : : : ; B4) 7! (t1 = tr(B1B2); t2 = tr(B2B3); t3 = tr(B1B3)):S = f(�2; 2; 2); (2;�2; 2); (2; 2;�2); (�2;�2;�2)g is the set of the singularpoints of Q. The preimage of S is the lous in T desribing the reduiblegroups (this follows easily from the proof of Lemma 2.2). Let Tirred denotethe open subset orresponding to the irreduible groups. Then q : Tirred !9



Q n S is a geometri quotient for the ation of the group PSL2 (this followseasily from the seond proof of Lemma 2.2). In partiular, Tirred is redued,irreduible, smooth and has dimension 5.The seond proof of Lemma 2.2 leads to a onnetion between the mon-odromy of the ellipti urve E and the speial monodromy for P1�. Let ahomomorphism � : �1(E)! C � , with �2 6= 1 be given. De�ne h : �1(E�)!SL2(C ) by h(�j) = �1 for every j and h(x) is the diagonal matrix withentries �(x); �(x)�1, for x = a; b. This homomorphism an be extended toa homomorphism � : �1(P1�) ! SL2(C ) as follows: for any x 2 �1(E�) onede�nes  (x) = h(x) (of ourse) and  (x�4) = h(x) � � 0 1�1 0�. Using (iv), oneeasily veri�es that  is indeed a homomorphism.We note that two haraters �1; �2 : �1(E) ! C � with �21 6= 1 6= �22indue isomorphi irreduible representations �1; �2 : �1(P1�)! Sl2(C ) if andonly if �2 2 f�1; ��11 g. We see TE := Hom(�1(E); C �) as an algebrai toruswith group of haraters �1(E). Let TE[2℄ denote the subgroup of the pointsof order dividing 2. Consider (TE n TE[2℄)= �, where �1 � �2 if and only if�2 2 f�1; ��11 g. The above onstrution indues an isomorphism of algebraivarieties (TE n TE[2℄)= ��! Q n S:This isomorphism extends to an isomorphism TE= ��! Q:The isomorphism an be made expliit as follows. One onsiders an element(B1; : : : ; B4) 2 T . Suppose that this tuple generates an irreduible subgroup,then the tuple is an example for ase (b) in the seond proof of Lemma 2.2.In the onjugay lass of the tuple there is an element of the form�� 0 r�1=r 0 � ;� 0 s�1=s 0 � ;� 0 t�1=t 0 � ;� 0 1�1 0 �� ;with s = rt beause B1 � � �B4 = 1. Moreover, (r; t) 6= (�1;�1). Theabove element is unique up to onjugation with � 0 1�1 0 �. This opera-tion hanges (r; t) into (1=r; 1=t). Thus we �nd an isomorphism betweenf(C �)2 n f(�1;�1)gg= � and Q n S, whih is essentially the same as theabove isomorphism.Proof of Proposition 2.1. We �rst onsider the ase where C is the �eld ofomplex numbers C . Aording to Lemma 2.2, the monodromy group of M ,generated by B1; : : : ; B4, is an irreduible subgroup of DSl21 and the same10



holds for its Zariski losure whih is the di�erential Galois group. It followsthat sym2M ontains a 1-dimensional submodule.In ase the di�erential Galois group G is DSl21 or DSl2n with n > 2, there isonly one 1-dimensional submodule. The orresponding �eld extension L �C (z) orresponds to the unique surjetive homomorphism h : G ! f�1g.The elements Bj 2 G have order 4 and it follows that h(Bj) = �1 for everyj. This implies that L � C (z) is rami�ed above eah of the points 0; 1; t;1.The extension L is therefore given by L = C (z)(w) with w2 = z(z�1)(z� t).If the di�erential Galois group G is DSl22 , then there are preisely three1-dimensional submodules of sym2M and there are also preisely three sur-jetive homomorphisms h : G ! f�1g. As above, it suÆes to verify thatthere exists a homomorphism with h(Bj) = �1 for all j. The ommuta-tor subgroup of G is idential with the enter of G. Consider the imagesb1; : : : ; b4 2 PSl2 of B1; : : : ; B4. They generate a ommutative group withtwo generators, say A and B, eah with order two. One has bj 2 fA;B;ABgfor all j. Further the surjetive homomorphisms h : G! f�1g are given by(h(A); h(B)) = (�1;�1); (�1; 1); (1;�1). Up to a hoie for A and B thereare three possibilities:(i) (b1; b2; b3; b4) 7! (A;B;A;B). The possibilities for L � C (z) are given bythe sets of rami�ed points f0; 1; t;1g; f0; tg; f1;1g.(ii) (b1; b2; b3; b4) 7! (A;B;B;A). The possibilities for the sets of rami�edpoints are f0; 1; t;1g; f0;1g; f1; tg.(iii) (b1; b2; b3; b4) 7! (A;A;B;B). The possibilities for the sets of rami�edpoints are f0; 1; t;1g; f0; 1g; ft;1g.In partiular, in eah ase one of the orresponding �elds is C (z)(w) withw2 = z(z�1)(z� t). In the algorithmi part of this paper we will verify thateah of the ases (i){(iii) are present in our family.Now we onsider a general ase. We may suppose that the algebrailosure C of C is a sub�eld of C . Let M+ denote the di�erential moduleC(z) 
C(z) M . For this di�erential module the statement of the proposi-tion follows easily from the statement for the ase C . Further sym2M+ hasone or three 1-dimensional submodules. They produe one or three distintquadrati extensions of C(z). It follows that the Galois group of C=C pre-serves these 1-dimensional submodules. Therefore sym2M has one or three1-dimensional submodules. For one of them the �eld extension is over C(z)given by w2 = z(z � 1)(z � t). Thus over the �eld C(z) this equation readsw2 = z(z � 1)(z � t) for some  2 C�. 211



3 Regular onnetions on an ellipti urveIn this setion the base �eld will be C , the �eld of omplex numbers. Let Mdenote a di�erential module over C (z) with four singular points 0; 1; t;1 andloal exponents 1=4;�1=4 for eah of them. Aording to Proposition 2.1,M is the restrition to C (z) of a di�erential module of rank one over the �eldC (z; w) with w2 = z(z � 1)(z � t). After tensoring M with the di�erentialmodule (C (z)e; �), where �(e) = (1=4z + 1=4z�1 + 1=4z�t)e, the new di�erentialmodule has loal exponents 1=2; 0 at eah singular point. The orrespondingrank one di�erential module over C (z; w) = C (E) has no singularities. HereE denotes the ellipti urve given by the equation w2 = z(z � 1)(z � t). Westart by desribing the regular onnetions on E.A regular onnetion is a pair (L;r) of a line bundle on E and a on-netion r : L ! 
 
 L, where 
 denotes the sheaf of the holomorphidi�erentials. Its generi stalk is a vetor spae C (E)e together with a on-netion r given by re = ! 
 e where ! of a meromorphi di�erential onE. The ondition that the onnetion has no singularities translates into !has only simple poles and all its residues are in Z. Further ! is unique up tothe addition of a term dff , with f 2 C (E)� . For any meromorphi di�erentialform ! with at most simple poles, we de�ne Res(!) :=Pp2E resp(!)[p℄. Thisis a divisor of degree 0 on E if all the residues of ! are integers. Let ! de�nea regular onnetion and let the line bundle L orrespond to Res(!). Then! orresponds to a global regular onnetion r : L ! 

 L on E.If L is trivial (i.e., isomorphi to OE), then ! has the form  dz2w for some 2 C .If L is not trivial then this line bundle orresponds to a divisor [q℄� [1E℄,where 1E is the neutral element of E (as usual taken to be the point z =1) and q = (z0; w0) is some point (6= 1E) on the aÆne urve given byw2 = z(z � 1)(z � t). In this ase ! an be written in normalized form as(+ w+w0z�z0 ) dz2w with  2 C .Now we make a omplex analyti study of the regular onnetions on E.Consider the exat sequene of sheaves on E0! C � ! O�E ! 
! 0;where C � is the onstant sheaf, O�E is the sheaf of invertible holomorphifuntions and 
 is the sheaf of holomorphi di�erential forms. The morphism12



O�E ! 
 is given by f 7! dff . This indues an exat sequene for ohomologygroups 0! C dz2w ! H1(E; C �)! H1(E;O�E)! H1(E;
) � � � :H1(E;O�E) is the group of the equivalene lasses of line bundles Pi(E).Its subgroup Pi0(E) of equivalene lasses of line bundles of degree 0 isidenti�ed with E. Further H1(E; C �) is equal to Hom(�1(E); C �), where�1(E) denotes the fundamental group of E. One easily derives from theabove that the following sequene is exat0! C dz2w ! Hom(�1(E); C �)! E ! 0:Lemma 3.1 There is a natural isomorphism of groupsHom(�1(E); C �)! f(L;r)g= �;where the last group is the group of the equivalene lasses of the regularonnetions on E of rank 1.Proof. Let U : C u ! E denote the uniformization of E. Here u denotes theglobal parameter of C . The kernel � of U is identi�ed with �1(E). Supposethat a homomorphism � : � ! C � is given. Let C u � C v denote the trivial(geometri) line bundle on C u provided with the trivial onnetion. Here vdenotes the global parameter on the linear spae C . Let � at on C u � C vby �(u; v) = (u+ �; �(�)v). The quotient by the ation of � is a (geometri)line bundle (C u � C v )=�! C u=� = E with indued onnetion. The sheafof setions of this geometri line bundle is a line bundle L on E (of degree0) and is provided with a regular onnetion.Let, on the other hand, a regular onnetion (L;r) on E be given. ThenU�(L;r) is a trivial onnetion on C u . The group � ats on the 1-dimensionalsolution spae of this trivial onnetion and this produes a homomorphism� : �! C � . 2A slightly di�erent way to �nd the isomorphism of Lemma 3.1 is thefollowing. Consider the exat sequene of sheaves on E:0! C � !M� ! 
sp ! 0;13



where M� denotes the sheaf of the invertible meromorphi funtions on Eand 
sp denotes the sheaf of the speial meromorphi di�erentials having atmost simple poles and having residues in Z. The morphism M� ! 
sp isgiven by f 7! dff . The ohomology sequene reads0! C � ! C (E)� ! H0(E;
sp)! H1(E; C �)! 0:Indeed, H1(E;M�) = 0 is known. The okernel of C (E)� ! H0(E;
sp) hasalready been identi�ed with the isomorphism lasses of the regular onne-tions on E.Proposition 3.2 Let � : E ! P1 denote the morphism, indued by the map(z; w) 7! z. Let (L;r) denote a regular onnetion (of rank one) on E. Then��(L;r) is a rank 2 onnetion on P1 having 4 regular singular points, namely0; 1; t;1. At eah singular point the loal exponents are 0; 1=2. Further ��OEis isomorphi to the vetor bundle O(0)�O(�2) on P1 and ��L, with L 6= OE,is isomorphi to the vetor bundle O(�1)� O(�1) on P1.Proof. Let U : C u ! E denote again the universal overing. Let ~� denotethe group of the automorphisms of C u generated by the translations over theelements of � and the map u 7! �u. Then C u=~� is identi�ed with P1. Thetrivial onnetion on C u (provided with a homomorphism � : �! C �) yieldsa onnetion on P1 whih is learly regular outside the rami�ation points.For a point of rami�ation, say the image in P1 of the neutral element ofE, one easily veri�es that the loal exponents are 0; 1=2. Indeed, one knowsthat the loal exponents at a rami�ation point give, multiplied with therami�ation index (in this ase 2), the loal exponents above. The latter aref0; 1g.A line bundle L on E and its diret image ��L have ohomology groupsof the same dimension. This proves the seond statement. 2Remarks 3.3 From rank one onnetions on E to Lam�e onnetions.Now ��(L;r) is tensorized with the rank one onnetion T := (T;r) onP1 with singularities in 0; 1; t;1, given by T = O([1℄)e (i.e., the sheaf ofmeromorphi funtions having at most a simple pole at 1) andre = (�1=4z + �1=4z � 1 + �1=4z � t )dz 
 e = �dw2w 
 e:14



Then ��(L;r) 
 T has loal exponents 1=4;�1=4 at eah singular point.Moreover this rank 2 bundle is free if L 6= OE and has the form O(1)�O(�1)in ase L = OE. Aording to Proposition 2.1 we obtain in this way all theirreduible onnetions on P1C with 4 singular points 0; 1; t;1 and all loalexponents 1=4;�1=4 as push forward of a onnetion re = ! 
 e on E,where ! is given in standard form by (+ w+w0z�z0 ) dz2w � dw2w or  dz2w � dw2w , with a onstant and (z0; w0) 2 E (distint from 1E). We note that the term �dw2wtakes are of the required shift of the loal exponents. The seond standardform for ! an be seen as a limit ase for the �rst one where (z0; w0) tendsto 1E. This onstrution produes also four reduible onnetions on P1C ,namely for the ! suh that 2! = dFF for some rational funtion F on E. Thefour ases are! = wz dz2w � dw2w; wz � 1 dz2w � dw2w; wz � t dz2w � dw2w; �dw2w :Moreover every irreduible onnetion on P1C is obtained preisely twie sine! and �! produe the same onnetion. These statements easily follow fromObservations 2.3. Indeed, the above onstrution (L;r) 7! ��(L;r) 
 Ttranslates into the onstrution, explained in Observations 2.3, whih as-soiates to � 2 Hom(�1(E); C �) a tuple (B1; : : : ; B4) (with the propertiesstated above) modulo the ation by onjugation of the group PSL2(C ).4 The analyti universal familyThe Legendre family Legendre of ellipti urves w2 = z(z � 1)(z� t) over Can be written as algebrai varietyProj(C [t; 1t(t� 1)℄[z; w; s℄=(sw2 � z(z � s)(z � st)))! P1 n f0; 1;1g:If one allows the values 0; 1;1 for t, then one obtains an ellipti surfaeE ! P1 having singular �bres above 0; 1;1. The uniformization of theLegendre family is equal to H � C u , where H is the upper half plane and C umeans C where we use u as variable. The group ating upon this spae isZ2o�(2)�, where: �(2)� is the subgroup of Sl2(Z) onsisting of the matries�a b d� suh that a; d � 1 mod 4 and b;  � 0 mod 2. This group is free ontwo generators and �(2)�nH is isomorphi to P1 n f0; 1;1g.The ation (by onjugation) of �(2)� on Z2 is given by �nm��1 =t �1�nm�.15



The ation of  = �a b d� on H � C u is given by (�; u) = (a�+b�+d ; u�+d). Theation of Z2 is given by �nm�(�; u) = (�; u+ n� +m).Above the Legendre family we want to onstrut the universal line bundlewith a regular onnetion. Put T = Hom(Z2; C �); this is an algebrai torus.Consider the produt T � H � C u � C v , where the last term means C withparameter v. This is seen as a geometri line bundle with trivial onnetionabove T � H � C u . The group Z2 o �(2)� at as follows:For  = �a b d� 2 �(2)�, one de�nes (�; �; u; v) = ((�); a�+b�+d ; u�+d ; v), wherethe ation of �(2)� on T is indued by its ation on Z2. Further, for �nm� 2 Z2one de�nes �nm�(�; �; u; v) = (�; �; u+ n� +m; �(�nm�)v).The quotient L := Z2o �(2)�n(T � H � C u � C v ) is a geometri line bundlewith a regular onnetion above the family of ellipti urvesZ2 o �(2)�n(T � H � C u) parametrized by Par := �(2)�n(T � H ). LetL be the sheaf of setions of L. It has an indued onnetion and thuswe �nd a universal regular onnetion (L;r) above the family of elliptiurves. The parameter spae Par := �(2)�nT � H is a T-bundle above�(2)�nH = P1 n f0; 1;1g. The family of ellipti urves an be written asPar �P1nf0;1;1g LegendreFix t 2 P1 n f0; 1;1g and � 2 H with image t and a � 2 Hom(Z2; C �).The `evaluation' of (L;r) at the point (�; t) is a onnetion on the urveEt = Eu=(Z� +Z) (with equation w2 = z(z� 1)(z� t)) orresponding to thehomomorphism �1(Et) = Z� + Z! C � given by n� +m 7! �(�nm�).One onsiders the subset f(�; �)j9 2 C suh that �(�nm�) = e(n�+m)g ofT� H . This subset is given by the equation log �(10)�� log �(01)2�i 2 Z� +Z. (Notethat this equation does not depend on the hoie of the logarithms). Henethis subset is an analyti divisor on T � H . The map C � H ! T � H ,given by (; �) 7! (�; �) with ��nm� = e(n�+m), indues an isomorphism ofC � H with this divisor. The divisor is invariant under the ation of �(2)�and yields a divisor � in the parameter spae Par. The subset of the pointsin the parameter spae where the `evaluation' of L is trivial, i.e., isomorphito OEt, is preisely �. This ends the desription of the universal onnetionof rank one (L;r) above the spae Par �P1nf0;1;1g Legendre.The next step is to push this universal onnetion down to the projetiveline. One onsiders the obvious morphism Legendre! (P1�f0; 1;1g)�P1.This indues a morphism � : Par �P1nf0;1;1g Legendre ! Par � P1. Oneobtains a onnetion ��(L;r) of rank 2 on Par � P1. This onnetion is16



tensorized by the rank 1 onnetion (O([1℄)e;r) given by re = �dw2w 
 e.The result is a onnetion of rank two on the spae Par � P1 with regularsingular setions Par�f0g; : : : ; Par�f1g and loal exponents 1=4;�1=4 foreah singular setion. We delete from Par the losed subset �(2)�nT[2℄� H .On the result Par� there is a free ation of an automorphism of order 2,indued by the map T�H ! T�H given by (�; �) 7! (��1; �). The resultingspae will de denoted by Par��. This automorphism also ats upon theonnetion ��(L;r)
(O([1℄)e;r) restrited to Par��P1. As a onsequenewe �nd a onnetion (M;r) on Par�� � P1. This is �nally the universalfamily of rank two irreduible onnetions on P1 with regular singularitiesat 0; 1; t;1 and loal exponents 1=4;�1=4 at eah singular point, that wewanted to onstrut.The image ��� of � in Par�� is the lous where the vetor bundle M isnot free (and atually is isomorphi to O(1)� O(�1)). On the omplementof the divisor ��� in Par��, the vetor bundle M is free.The analyti T-bundle Par! P1 n f0; 1;1g is probably not trivial. Thesame holds for the bundle Par�� ! P1 n f0; 1;1g. Eah �bre is equal toT n T [2℄= �. This spae has been identi�ed with Q n S.The morphism �(2)�n(C � H ) ! P1 n f0; 1;1g is an analyti line bundleand therefore free. It follows that the divisor ��� on Par�� is, as a variety,isomorphi to the spae C ��(P1nf0; 1;1g). The restrition of the onnetion(M;r) to ��� will be alled the speial family. In Setion 6 we will makethis speial family expliit. The restrition of (M��;r) to Par�� n ��� hasthe property that the `evaluation' ofM�� at every point of this spae is free.The onnetion (M��;r) will be studied from an algebrai point of view inSetion 5.5 Algebrai onstrution of a moduli familyThe aim is to onstrut a `universal' family of irreduible onnetions (M;r)on the projetive line withM free, regular singularities at 0; 1; t;1 and loalexponents 1=4;�1=4 at eah singular point.The parameter t is seen as a point in P1 n f0; 1;1g. Thus we will workwith the projetive line over Q [t; 1t(t�1) ℄. After �xing a basis ofH0(M) and re-plaingr by r ddz we obtain a di�erential operator of the form ddz+P3j=1 Ajz�sj17



with s1 = 0; s2 = 1; s3 = t and where the matries Aj = � aj bjj �aj � forj = 1; 2; 3 satisfy the onditions:a2j + bjj = 1=16 for j = 1; 2; 3 and ( 3Xj=1 aj)2 + ( 3Xj=1 bj)( 3Xj=1 j) = 1=16:We still have to �nd the onditions whih express that the equation isirreduible and moreover we want to divide by the ation (by onjugation)of the group PGl2.The struture of the parameter spae.One onsiders tuples (A1; : : : ; A4) of 2 � 2-matries suh that PAj = 0and eah Aj has eigenvalues 1=4;�1=4. The tuples form an aÆne algebraivariety V ar of dimension 5, having an ation of PGl2, by onjugation. Thestabilizer of a tuple (A1; : : : ; A4) is not trivial if and only if there are twodistint lines invariant under all Aj. This ondition is equivalent to \all Ajommute". In this ase the stabilizer is the multipliative group G m . Thesubset V ar1 of V ar, onsisting of these tuples, is losed; it has dimension 2and onsists of three PGl2-orbits.The subset V ar2 of V ar, onsisting of the tuples suh that the A1; : : : ; A4have a ommon eigenvetor, is also losed. Let e be the ommon eigenvetorfor all Aj. Then Aje = �1=4e for all j and the sum of the eigenvalues is0. This implies that V ar2 has six irreduible omponents, say V ar2(i) withi = 1; : : : ; 6, eah of dimension 4. Eah V ar2(i) is invariant under the ationof PGl2. Further the quotient of V ar2(i) n (V ar2(i) \ V ar1) by the ation ofPGl2 is seen to be a projetive line.We are interested in the struture of the quotient PGl2nV ar. There isno geometri quotient. However we will ompute the ring Rinv of PGl2-invariant regular funtions of V ar. First of all, A4 is normalized to ��1=4 00 1=4�.This de�nes a losed subspae V ar0 of V ar. The stabilizer of A4, underthe ation of PGL2 is its maximal torus, isomorphi to the multipliativegroup G m . Thus Rinv an be identi�ed with the ring of the regular fun-tions on V ar0, invariant under G m . The ring of regular funtions on V ar0 isQ [a1 ; a2; b1; b2; 1; 2℄ with generating relations: bjj = 1=16� a2j for j = 1; 2and b12 + b21 = �2(a1 � 1=4)(a2 � 1=4). Using these relations one �nds afree basis of the above ring over Q [a1 ; a2℄ onsisting of the monomials:b>01 b�02 ; b>02 �01 ; �01 �02 :18



From this it follows easily that the ring Rinv has the form Q [a1 ; a2; H℄ withH = b21. There is only one equation, namelyH2 + 2H(a1 � 1=4)(a2 � 1=4) + (a21 � 1=16)(a22 � 1=16) = 0 :We note that also b12 satis�es this equation. We ould have hosen b12 forH, however we prefer H = b21 in view of later omputations. The singularlous of Rinv is equal to(a1; a2; H) = (1=4; 1=4; 0); (1=4;�1=4; 0); (�1=4; 1=4; 0) :This singular lous is preisely the olletion of points where the 4 matriesA1; : : : ; A4 have a ommon eigenvetor. Hene the regular lous of Spe(Rinv)oinides with the variety PGl2n(V ar � V ar2). This spae is not aÆne andfor further alulations we onsider the open aÆne subset given by (a21 �1=16)(a22 � 1=16)(a23 � 1=16) 6= 0 (note that a3 = 1=4 � a1 � a2). For themissing points, given by aj = �1=4 with j = 1; 2; 3, we make separatealulations. 2The open aÆne part U of the parameter spae P .The omplete parameter spae P is given byP := Spe(Q [t; 1t(1� t) ℄)� (PGL2n(V ar � V ar2)):As before we normalize A4 and identify the right hand side with the regularlous of Spe(Rinv). Further we onsider the open aÆne subset U given bys 6= 0 where s = (a21 � 1=16)(a22 � 1=16)(a23 � 1=16). Then H 6= 0 and thusb21 6= 0. We normalize further by 1 = 1. The orresponding ring is nowRU := Q [t; 1t(1�t) ℄[a1; a2; 1s ; b2℄=(Rel) with Rel = b22+2b2(a1�1=4)(a2�1=4)+(a21� 1=16)(a22� 1=16). The other variables are expressed in a1; a2; b2; 1=s bythe formulasb1 = 1=16� a21; 2 = b�12 (1=16� a22); a3 = 1=4� a1 � a2b�12 = �b2a23 � 1=16s � 2(a1 � 1=4)(a2 � 1=4)(a23 � 1=16)sb3 = �b2 � 1=16 + a21; 3 = �1� b�12 (1=16� a22)The lous of the reduible equations.We searh the lous Preduible � P , onsisting of the points in P (Q ), where19



the orresponding di�erential operator D := ddz +P3j=1 Ajz�sj is reduible. Apoint orresponds to presribed values in Q for a1; a2; a3; : : : ; t. Reduibilityis equivalent to the existene of a non zero vetor v 2 Q [z℄ 
 Q 2 suh thatD(v) = fv for some f 2 Q (z). The vetor v an be normalized suh thatthe g..d. in the ring Q [z℄ of all its oeÆients is 1. Thus one onsidersv := v0+v1z+ � � �+vdzd, with all vi 2 Q 2, vd 6= 0 and v0+v1s+ � � �+vdsd 6= 0for all s 2 Q , and satisfying the equation D(v) = fv for some f 2 Q (z).One easily veri�es that f = (P3j=1 �jz�sj ) where the �j are eigenvalues of Aj.Expanding the equation D(v) = fv at z =1 yields that d =P4j=1 �j, where�4 is some eigenvalue of A4 = �P3j=1Aj. In this speial ase there are onlytwo possibilities, namely d = 0 and d = 1. In �rst ase all Aj have a ommoneigenvetor. This ase is exluded by the de�nition of the parameter spaeP . The ase d = 1 is equivalent to the equation( ddz + 3Xj=1 Aj � 1=4z � sj )(v0 + v1z) = 0 :The normalization of A4 implies v1 = e2 = �01�, where e1; e2 is the stan-dard basis of Q 2 . The above equation is equivalent to the system of matrixequations(A1 � 1=4)v0 = 0; (A2 � 1=4)(v0 + e2) = 0; (A3 � 1=4)(v0 + te2) = 0:The existene of a solution v0 leads to ertain relations between the oeÆ-ients of the matries A1; A2; A3, desribing in fat Preduible.The diret approah. Let T denote the aÆne ring of V ar0. Reall thatT := Q [a1 ; a2; b1; b2; 1; 2℄ with generating relations bjj = 1=16 � a2j forj = 1; 2 and b12 + b21 = �2(a1 � 1=4)(a2 � 1=4). Consider T [x1; x2℄,where v0 = �x1x2�. The system of matrix equations de�nes an ideal I �T [x1; x2℄. Using Gr�obner basis one alulates J = I \ T . This ideal isinvariant under the ation by onjugation of G m . Therefore J is indued byan ideal J0 of T Gm = Rinv = Q [t; 1t(t�1) ℄[a1; a2; H℄ (with generating relationRel = H2+2H(a1�1=4)(a2�1=4)+(a21�1=16)(a22�1=16) = 0) in the sensethat J = J0T . The ideal J0 turns out to be generated by the two elementsf(t) = (a1 + a2 � 1=2)2t(t� 1) + (a1 + 1=4)2t+ (a2 + 1=4)2(1� t) and2H + (a1 + a2 � 1=2)2t + (a2 + 1=4)(a1 � a2) :20



One omputes that the ideal I also ontains the elements x1+2b1t+2b2t�2b2and x2+1=2t�a1t�a2t+a2+1=4. Thus T [x1; x2℄=I = T=J and (T=J)Gm =Rinv=J0. The last algebra equals Q [t; 1t(t�1) ℄[a1; a2℄=(f(t)). One easily veri�esthat f(t) is irreduible. Therefore Q [t; 1t(t�1) ℄[a1; a2℄=(f(t)) is a domain ofdimension 2. Thus J0 � Rinv is a prime ideal of height 1 and de�nes alosed irreduible subset of Spe(Rinv) of odimension 1. The intersetion ofthis losed subset with P is Pirreduible and the latter is therefore losed andirreduible of dimension 2. Moreover Pirreduible has the following rationalparametrization by t; �a1 = t� 2�24t ; a2 = t + 1 + 2�2 + 4�4(t� 1) ; H = (�+ 1)�(�2 � t)4t(t� 1) ;with � = ta1 + ta2 � t=2� a2 � 1=4.6 The speial familyThe `speial family' that we ompute here is the family of irreduible on-netions (M;r) on P1 with (as before) 4 regular singular points at 0; 1; t;1,loal exponents 1=4;�1=4 at eah singular point and suh that M is notfree. We note that for a suitable shift of the loal exponents over integersthe onnetion an be presented with a free vetor bundle.The seond exterior power �2(M;r) is a rank one onnetion withoutsingularities on P1. Hene �2M is the trivial line bundle and the onnetionon it is also trivial. The irreduibility of (M;r) implies thatM is isomorphito the sheaf O(1) � O(�1). Using this information one an alulate the amatrix form for the onnetion. Instead of produing the results of thisalulation, we will desribe an easier method to obtain the speial family.Proposition 3.2 provides another way to obtain this family. On the elliptiurve E, given by w2 = z(z � 1)(z � t), one onsiders the onnetion r :OEf0 ! 

OEf0 given by r(f0) =  dz2w 
 f0 with  6= 0. The diret image,under the morphism E ! P1 has w.r.t. the basis f0; f1 = wf0 the matrixform ddz + � 0 =22w2 w0w � :One has to shift over � w02w in order to obtain the loal exponents 1=4;�1=4.After a onjugation with the onstant matrix � 2�1 00 1 � one obtains the21



required form (with d = 2=4)ddz + � � w02w d1w2 w02w � :The above is in fat a family over the base ring Q [t; 1t(t�1) ; d; d�1℄.The lassial Lam�e equation is Ln := y00 + f 02f y0 � n(n+1)z+Bf y, with f =4(z3 + az + b). The transformation z 7! z � 1+t3 , with suitable t, transformsf into 4z(z � 1)(z � t) and the equation intoy00 + g02gy0 � n(n+ 1)(z � (1 + t)=3) +B4g y with g = z(z � 1)(z � t):The loal exponents are 0; 1=2 for 0; 1; t and �n=2; (n+ 1)=2 at 1.For n = 0 one writes w2 = g. The ompanion matrix equation for the seondsalar equation is ddz + � 0 �1�B4w2 w0w �. The shift yields ddz + � � w02w �1�B4w2 w02w �.If B 6= 0, then onjugation with a onstant matrix yields the equationddz + � � w02w 4B1w2 w02w �. This is the speial family.7 Expliit formulas and Painlev�e VI7.1 An inverse approahThe family f(M;r)g an be omputed diretly from the normalized di�er-ential form ! = ( + w+w0z�z0 ) dz2w of setion 3. The di�erential module abovethe ellipti urve reads �f0 = ( + w+w0z�z0 ) 12wf0. With respet to the basisf0; f1 = wf0 over the �eld of rational funtions on P1 one �nds the operatorddz + " 12(z�z0) (+ w0(z�z0))=212w2 (+ w0(z�z0)) w0w + 12(z�z0) # : The shift over � w02w yieldsL0 := ddz + " 12(z�z0) � w02w ( + w0(z�z0))=212w2 (+ w0(z�z0)) w02w + 12(z�z0) # : This is replaed byL1 := � 1 �z0 1 �L0� 1 z0 1 � in order to remove the apparent pole oforder 2 at 1. 22



The formulas for w0 6= 0 (equivalently z0 6= 0; 1; t).z0 is an apparent singularity of L1 whih an be removed as follows. Firstalulate the onjugateL2 := � 12w0 �1=212w0 1=2 �L1� w0 w0�1 1 � : Then again a onjugateL3 := � 1 00 z � z0 �L2� 1 00 (z � z0)�1 � :Then L3 is onjugated by �0 11 0� in order to normalize the matrix at in�nity to� �1=4 00 1=4 �. Finally, a onjugation with a onstant matrix of the form�1 00 s� is needed to obtain 1 = 1. The �nal operator ddz + U belongs to ourfamily, normalized with 1 = 1.U = 1� � N (z � z0 + w0)F=t�4zt(�3 z0 + 2w0 + + t+ 3)=F + 4t �N �where � = 4z(z � 1)(z � t);N = z2 + (2 2 � 2 z0)z + 2 z0t� t� 2 2z0 � 2 z02 + 2 z0F = 3 z02 � 3 z0t� 3 z0 � w0z0 + 3z0 + 2 t� 3 2w0 + w0t+ w0Remarks 7.1(1) This formula for U is derived under the assumption that w0 6= 0. Thenormalization 1 = 1 introdues the denominator F in the (2; 1) entry ofU . Thus the formula for U is valid under the assumptions that w0 6= 0 andF 6= 0. The involution of the ellipti urve maps (; w0) to (�;�w0). Oneobserves that the formula for U is, as it should be, invariant under this map.(2) Suppose again that w0 6= 0 and F 6= 0. Conjugation of U with theonstant matrix � t 00 F� yieldsU� = 1� � N z � z0 + w0�4z(�3 z0 + 2w0 + + t+ 3) + 4F �N �Thus ddz + U is equivalent to ddz + U�. The latter expression is also valid forF = 0. We will show that the formula ddz + U� remains valid for w0 = 0.Another advantage of U� is that its (1; 2) entry has a zero if  6= 0. We notethat U� is not invariant under the involution of the ellipti urve.23



The formulas for w0 = 0 (equivalently z0 2 f0; 1; tg).As before L0 := ddz + " 12(z�z0) � w02w =22w2 w02w + 12(z�z0) # and L1 is obtained byonjugating L0 with � 1 (z � z0)0 1 �. Further L2 is obtained from L1 byonjugation with  1 00 (z � z0)�1 !. Finally L3 is obtained from L2 byonjugation with �0 11 0�. We will not further normalize L3. One �nds thefollowing formulas.(1) For z0 = 0, L3 = ddz + U0 withU0 = 1� " z2 � t+ 2 2z z4  ((�1� t� 2) z + 2 t) �z2 + t� 2 2z #(2) For z0 = 1, L3 = ddz + U1 withU1 = 1� " z2 + 2(2 � 1)z � 2 2 + t (z � 1)�4z(t� 2+ 3) + 43 � 4t �z2 � 2(2 � 1)z + 2 2 � t #(3) For z0 = t, L3 = ddz + Ut where Ut equals1� " z2 + (�2 t+ 2 2) z � t (�1 + 2 2) (z � t)�4z(�2t + + 3) + 43t� 4t �z2 + (2t� 22)z + t(�1 + 22) #These formulas are speializations of U� for w0 = 0 and z0 = 0; 1; t.7.2 A diret approahOn the spae P n Preduible, the matrix U (or U�) expresses a1; a2; b2; t interms of z0; w0; . The aim is to express the rational funtions z0; w0 ; 2 onthis spae in terms of a1; a2; b2. One an view the data of U and U� as polyno-mials a1; a2; b2; z0; w0; ; t, generating an ideal in Q [a1 ; a2; b2; t; 1t(t�1) ; z0; w0; ℄(b2 stands for H and there are known relations for a1; a2; b2 and z0; w0; ).Elimination for a suitable order produes two elements in this ideal, namely(16t2a21 � 32a22t+ 32a1a2t2 � 32a1a2t� 16t2a1 + 24a1t+ 16a22 + 16a22t2 + 8a2 � 16a2t2 + 8a2t+ 1 + 4t2 � 4t)z0�t ��3 + 48 a1a2t+ 20 a1 � 20 a2t+ 20 a2 � 12 a1t� 48 a2a1 + 4 t+ 16 ta12 + 32 tb2 � 32 b2�24



and((�32 + 32 t) b2 � (1 + 4 a1) (4 a1t� 4 a2t+ 1 + 4 a2)) z0 + t (1 + 4 a1)2 :We reall that the lous Preduible was given by an ideal (Eq1; Eq2), given byEq1 = (a1 + a2 � 1=2)2 t (t� 1) + (a1 + 1=4)2 t + (a2 + 1=4)2 (�t + 1)Eq2 = 2 b2 + (a1 + a2 � 1=2)2 t + (a2 + 1=4) (a1 � a2)The oeÆients P1; P2 of z0 in the above equations satisfy P1 = 16 � Eq1and P2 = 16(t� 1) � Eq2 � 16 � Eq1. Thus (P1; P2) = (Eq1; Eq2). The lousP n Preduible is the union of the two open subsets of P given by P1 6= 0 andP2 6= 0. On eah one of them, z0 is a regular expression in a1; a2; b2; t. ForP2 6= 0 this expression isz0 = � t (1 + 4 a1)232 (t� 1) b2 � (1 + 4 a1) (4 a1t� 4 a2(t� 1) + 1) :One z0 is known, we may hoose a solution w0 of w20 = z0(z0 � 1)(z0 � t).For the zero q of the (1; 2) oeÆient of U we have two expression, namelyq = z0 � w0 and q = � t(16 a12�1)16 (t�1)b2�t(16 a12�1) . This yields a formula for . Wereall that the pair (w0; ) is unique up to a sign.7.3 Intermezzo on Painlev�e VIWe onsider a family of onnetions, more general than the Lam�e onnetion,ddz + A = ddz + A1z + A2z � 1 + A3z � t with Aj = � aj bjj �aj � for j = 1; 2; 3:Put A1 = �A1 � A2 � A3. The assumptions are:Aj has eigenvalues ��j=2 (equivalently a2j + bjj = �2j=4 for j = 1; 2; 3),A1 = � ��1=2 00 �1=2 � (equivalently P aj = �1=2, P bj = 0; P j = 0).The (1; 2) entry of A has a single zero, namely q := b1tb1t+b2(t�1) (if b1t+ b2(t�1) = 0 then we write q = 1). One onsiders in this spae of onnetions afamily ddz+A(t) (i.e., all aj; bj; q; : : : are analyti funtions of t). Shlesinger'stheorem an be formulated as follows (ompare [J-M℄).25



Theorem 7.2 (Shlesinger) Suppose that �j 62 Z for j = 1; 2; 3;1. Con-sider family ddz +A(t), holomorphi in t and de�ned in a neighbourhood of t0.Suppose that not all Aj(t0) ommute and that q(t0) 6=1. Then the family isisomonodromi if and only if q = q(t) satis�es the two equationsq0 = 2a1 q � 1t� 1 + 2a2 qt + (1� �1)q(q � 1)t(t� 1) andq00 = 1=2(1q + 1q � 1 + 1q � t)(q0)2 � (1t + 1t� 1 + 1q � t)q0+q(q � 1)(q � t)t2(t� 1)2 �(�1 � 1)22 � �212 tq2 + �222 t� 1(q � 1)2 � �23 � 12 t(t� 1)(q � t)2� :The last equation is the Painlev�e VI equation with parameters (�1; �2; �3; �1).We note that the �rst equation for q0 is hard to �nd in the literature. More-over the Painlev�e VI equation is sometimes parametrized in a di�erent way.If q is known, then one reovers all aj; bj; j (up to the ation of G m on the bjand j) from the equality q := b1tb1t+b2(t�1) and the equation for q0. The hoie�j = 1=2 for j = 1; 2; 3;1 de�nes the Lam�e onnetion.A point of order m on the ellipti urve w2 = z(z � 1)(z � t) an beseen as a pair (z0(t); w0(t)) of algebrai funtions in t. It has been shownby �E. Piard, [Pi℄, that the oordinate z0(t) is a solution of PVI (0; 0; 0; 1)(ompare [Maz℄).We will use the transformation w1w2w1 of Okamoto to obtain solutionsfor PVI (1=2; 1=2; 1=2; 1=2). This transformation is desribed as follows (see[Ok, p. 356℄).Suppose that q is a solution of PVI for the parameters (�1; �2; �3; �1). Thenq + 12p with p = t(t� 1)q02q(q � 1)(q � t) + �12q + �22(q � 1) + �3 � 12(q � t)is a solution of PVI for the parameters��1 = 1=2(�1 � �2 + �3 + �1)� 1; ��2 = 1=2(��1 + �2 + �3 + �1)� 1;��3 = 1=2(�1 + �2 + �3 � �1) + 1; ��1 = 1=2(�1 + �2 � �3 + �1) + 1:26



In partiular, a solution q of PVI (0; 0; 0; 1) yields a solution q+ 12p , with p =t(t�1)q02q(q�1)(q�t) � 12(q�t) with q0 = dqdt is a solution of PVI (�1=2;�1=2; 1=2; 3=2).Aidently this equation is idential with PVI (1=2; 1=2; 1=2; 1=2).In partiular, a point (z0(t); w0(t)) of order m on the ellipti urve yieldsthe algebrai solution z0 � z0(z0�1)(z0�t)z0(z0�1)�t(t�1)z00 (with z0 = z0(t) and z00 = dz0dt ) forPVI (1=2; 1=2; 1=2; 1=2).7.4 Points of �nite order on the ellipti urveEah member r� of the Lam�e family is indued by a regular equation of rankone on the ellipti urve E, given by w2 = z(z � 1)(z � t). Taking the shiftinto aount, r� is the push forward of re = f(+ w+w0z�z0 ) dz2w � dw2wg 
 e or ofre = f dz2w � dw2wg 
 e, where  a onstant and (z0; w0) 2 E.For the moment we �x a omplex value for t (di�erent from 0; 1;1) andtake (z0; w0) 2 E(C ). The di�erential Galois group of r� is equal to DSL2n ifand only if the orresponding rank one equation on E has a yli di�erentialGalois group of order 2n. The latter is equivalent to the statement that theequation re = ( + w+w0z�z0 ) dz2w 
 e or re =  dz2w 
 e, has a yli di�erentialGalois of order m suh that l::m:(m; 2) = 2n. Thus m = n or m = 2n ifn is odd and m = 2n if n is even. We note that re =  dz2w 
 e has in�nitedi�erential Galois group if  6= 0. Thus we may omit this ase.If re = ( + w+w0z�z0 ) dz2w 
 e has a yli di�erential Galois group of orderm, then (z0; w0) is a point of exat order m. Moreover, for a point (z0; w0)of exat order m, there is preisely one value of  suh that the di�erentialGalois group is yli of order m.We ontinue the disussion in setion 3 and analyze the exat sequene0! C ! Hom(�1(E); C �)! E ! 0 :As before, E = C =(Z + C �) and we hoose as generators a; b of �1(E) theirles R=Z and R=Z� . This identi�es Hom(�1(E); C �) with C � � C � , byh 7! (h(a); h(b)). The �rst map of the exat sequene is d 7! (ed; ed� ). PutS1 = fz 2 C � j jzj = 1g. Every element of C � � C � an be written uniquelyas (ed; ed� ) � (s1; s2) with d 2 C and s1; s2 2 S1. In partiular, the restritionof the seond map of the exat sequene to S1 � S1 is a bijetion. Thus fora given point (z0; w0) 2 E of exat order m, there is preisely one value of suh that re = ( + w+w0z�z0 ) dz2w 
 e has a yli di�erential Galois group of27



order m. We note that it is, a priori, diÆult to produe a formula for this. However, F. Beukers has proposed a formula (see [Be℄).Now we onsider t as a variable and investigate a family of Lam�e onne-tions r(t) with �xed di�erential Galois group DSL2n . The orresponding rankone onnetion re = ((t)+ w+w0(t)z�z0(t) ) dz2w has the property that (z0(t); w0(t)) isa point of order m. This point is de�ned over a suitable algebrai extensionof C (t). The monodromy of this family depends in a ontinuous way on tand lies in Hom(�1(E); f� 2 C � j �m = 1g). Sine this group is �nite, thefamily has onstant monodromy.The orresponding algebrai solution for PVI (1=2; 1=2; 1=2; 1=2) is z0�w0aording to Theorem 7.1 and the formula for the (1; 2) entry of U . A ombi-nation of Piard's result and Okamoto's transformation yield the expressionz0 � z0(z0�1)(z0�t)z0(z0�1)�t(t�1)z00 for this solution. For the uniquely determined (t) we�nd therefore the following formulaw0(t) (t) = z0(t)(z0(t)� 1)� t(t� 1)z0(t)0 :8 The lous PN for DSL2N with N = 2; 3; 48.1 Division polynomialsIn this subsetion we reall some fats on torsion points on ellipti urvesdiretly related to the lous for DSL2n . First we follow [Was℄ (or [Sil℄, p. 105)in the desription of the division polynomials  m with m � 1. Suppose thatthe ellipti urve E is given in the Weierstrass form w2 = z3 + Az +B.The points 6= 1E of order dividing m lie on this aÆne part of the urveE. Their number is m2 � 1 (over an algebraially losed �eld of hara-teristi 0). The z-oordinates of these points are the zeros of a polynomial m 2 Z[A;B℄[z; w℄ (with de�ning relation w2 = z3 + Az + B). For odd m, m 2 Z[A;B℄[z℄ and for m even,  m 2 wZ[A;B℄[z℄. In the latter ase onemay replae  m by  2m in order to have a polynomial in Z[A;B℄[z℄. Thesepolynomials are given by the following reurrene relations 0 = 0;  1 = 1;  2 = 2w;  3 = 3z4 + 6Az2 + 12Bz � A2 ; 4 = 4w (z6 + 5Az4 + 20Bz3 � 5A2z2 � 4ABz � 8B2 � A3); 2m+1 =  m+2 3m �  m�1 3m+1 for m � 2 ;28



 2m = (2w)�1 �  m � ( m+2 2m�1 �  m�2 2m+1) :The zero set of  2m (or its square free part  �m) is preisely the set of thez-oordinates of the of points with order 6= 1 and dividing m.We speialize this by replaing Z[A;B℄ by the funtion �eld F := C (j) ofthe j-line. Then E is the `universal urve' above the j-line. The splitting �eldof F de�ned by  �m is the funtion �eld of the modular urve X(m). The ram-i�ed Galois overing j : X(m) ! P1 is known to have group PSL2(Z=mZ).It follows that the Galois group GalF of F=F ats transitively on the pointsof preise order m. Thus the minimal polynomial for the z-oordinate of apoint of preise order m is given by Qdjm( �d)�(m=d).Here we are interested in the division polynomials over the �eld C (t) whihis a Galois extension of C (j) with Galois group S3. The substitution z !z+ t+13 brings z(z�1)(z� t) into the Weierstrass form z3+A(t)z+B(t). Put�m =  m(A(t); B(t); z� t+13 ). This is the division polynomial for the Legendrefamily. Let ��m denote the square free part of �m. The z-oordinates of thepoints of preise order m are the zeros of the polynomial Qdjm(��d)�(m=d).For odd m this polynomial is irreduible. For even m this polynomialhas three irreduible fators, whih are permuted by the Galois group S3of C (t)=C (j). These statements an be dedued from the Galois ation ofGalC (t) on the group (Z=mZ)2 of all points of order dividing m.We note that � 2 S3 permutes in fat the three points of rami�ation andpermutes the three �nite singular points of the Lam�e onnetions.8.2 Points of order 2The points of preise order two on the ellipti urve yield reduible Lam�eonnetions with yli di�erential Galois groups of order 4. The formulasfor these onnetions are obtained from the formula ddz + U� of subsetion7.1, speialized with w0 = 0;  = 0 and z0 = 0; 1; t. Put � = 4z(z�1)(z� t).One �nds(1) For z0 = 0, ddz + 1� " z2 � t 00 �z2 + t #.(2) For z0 = 1, ddz + 1� " z2 � 2z + t 00 �z2 + 2z � t #.(3) For z0 = t, ddz + 1� " z2 � 2tz + t 00 �z2 + 2tz � t #.29



These equations do not orrespond to points of the parameter spae P .They orrespond in fat to the three singular points of Spe(Rinv).8.3 The lous P2 for DSL22 and points of order 4The equation for the z-oordinates of the points of preise order 4 is�4(z)�2(z) = (z2 � t)(z2 � 2 z + t)(z2 � 2 t z + t) 2 C(t)[z℄ :The three irreduible fators produe the omponents of P2. Let z0 de-note a zero of the polynomial. The formulas w20 = z0(z0 � 1)(z0 � t) andw0  = z0(z0�1)� t(t�1)dz0dt and the universal family of subsetion 7.1 yieldexpliit formulas for the onnetion above the three omponents of P2. Eahomponent is an open subset of the projetive line, parametrized by � := z0.This open subset is determined by the ondition t 6= 0; 1;1.1. The �rst fator is parametrized by z0 = �; t = �2. One has further2w0  = 2 t � z0 � z0t. Put � = 8 (z � �2) (z � 1) z. After onjugation ofthe system by  1 00 8� !, one obtains1� " 2 z2 � (�+ 1)2 z + � (�2 + 1) (�� 1)2 (�+ 1)2 (��� z)�� 3 z �2 z2 + (�+ 1)2 z � � (�2 + 1) #2. The seond fator is parametrized by z0 = �; t = ��2 + 2�. One has2w0 = �t�z0t+2 z0. Put � = 8 (z + �2 � 2�) (z � 1) z. After onjugationof the system by  �+ 2 00 8 !, one obtains1� " 2 z2 + � (�4 + �) z � �2 (�� 2) � (�� 2) (�� 2 + z)(�� 2) (��� 2 + 3 z)� �2 z2 � �(�4 + �)z + �2(�� 2) # :3. The third fator is parametrized by z0 = �; t = �22��1 . One has 2w0 =2 tz0 � t� z0. Put � = 8 (2�� 1) z (z � 1)�z � �22��1�. One �nds1� " (2�� 1) (2 z2 + (�2�� 1) z + �) 1=8 (4��1)((�2�+1)z+�)�8 � ((�6�+3)z+� (4��1))4��1 (2�� 1)(�2z2 + (2�+ 1)z � �) # :30



After onjugation with  4�� 1 00 8� ! one obtains the system1� " (2�� 1) (2 z2 + (�2�� 1) z + �) (�2�+ 1) z + �(�6�+ 3) z + � (4�� 1) (2�� 1)(�2z2 + (2�+ 1)z � �) #8.4 The lous P3 for DSL23 and points of order 3 and 6The lous P3 is derived from the points of order 3 and 6. The z-oordinatesof the points of preise order 3 are given by the irreduible polynomial�3(z) = �3 z4 + 4 z3t+ 4 z3 � 6 z2t + t2For the points of preise order 6 this is the polynomial F6 := �6(z)�3(z)�2(z) . Thelatter has three irreduible fatorsF6;a = �z4 + 4 z3 � 6 z2t + 4 zt2 � t2 ;F6;b = z4 � 4 z3t + 6 z2t� 4 zt + t2 ;F6; = z4 � 6 z2t+ 4 zt2 + 4 zt� 3 t2 :These de�ne the four onneted omponents of P3. Eah one has a rationalparametrization. For a zero z0 of �6 one has w20 = z0(z0 � 1)(z0 � t) andw0 = z0(z0�1)�t(t�1)dz0dt . We note that the solutions q of PVI attahed tothis examples happen to have poles that do not orrespond to t 2 f0; 1;1g.Using setion 7.1, one derives a formula for the onnetion above eah ofthese omponents.1. �3(z0; t) = 0 is parametrized by z0 = �22��1 ; t = � (��2)�32��1 . Moreover6w0 = t� 2 z0t� 2 z0 + 3 z02. After onjugation by  1 00 24� ! the systemis26664 G1(2�� 1)� 25 (�� 2) (�+ 1)2 ���2 � �+ 1� z + �2 (�� 2)��9(�� 2) �(2�� 1) z � �2�(2�� 1)� �G1(2�� 1)� 37775where � = 63 z (z � 1)�z + (�� 2) �32�� 1 �31



G1 = (�54 + 108�) z2 + 12 ��2 � 4�+ 1� (�+ 1)2 z � 6�2 (�� 2) �4�2 � �+ 4�2. The parametrization of F6;a(z0; t) = 0 given by z0 = �2; t = � (��2)�32��1 .Conjugation with  �3 + 6�� 2 00 18� ! yields the system " H1� Q�H2� �H1� #,where � = 36 (2�� 1) z (z � 1)�z + (�� 2)�32�� 1 � ;Q = (2�� 4) (�+ 1)2 �(2�� 1) z + �2 (�� 2)� ;H1 = (18�� 9)z2 + 2(2�� 1)(2�3 � 6�2 � 1)z � �2(�� 2)(2�3 + 3�� 4);H2 = (2�� 4)((2�� 1) �5�2 � 2�+ 2� z � �2 ��3 + 6�� 2�) :3. The parametrization of F6;b(z0; t) = 0 is z0 = �� (��2)2��1 ; t = � (��2)�32��1 .After onjugation by  2�3 � 6�2 � 1 00 �2 ! one obtains the system2664 H1� 1=9 (2�� 1) (�� 2) (�+ 1)2 (�� z)�H2� �H1� 3775where � = 36 (2�� 1) z (z � 1)�z + (�� 2)�32�� 1 � ;H1 = (18�� 9) z2+2 (�� 2) ��3 + 6�� 2� z+� (�� 2) �4�3 � 3�2 � 2� ;H2 = (36�� 72)(� (2�� 1) �2�2 � 2�+ 5� z � � �2�3 � 6�2 � 1�) :4. The parametrization of F6;(z0; t) = 0 is z0 = �� (�� 2) ; t = � (��2)�32��1 .After onjugation by  (�2 � 4�+ 1) (�2 � �+ 1) 00 18�2 ! one obtains thesystem 264 H1� 2 (�+ 1)2 (�� 2) ((�2�+ 1) z + � (�2 � �+ 1))�H2� �H1� 37532



where � = 36 (2�� 1) (z � 1)�z + (�� 2)�32�� 1 � z ;Q = (2�� 4) (�+ 1)2 �(�2�+ 1) z + � ��2 � �+ 1�� ;H1 = (�9 + 18�) z2 + 4 (2�� 1) (�� 2) (�+ 1)2 z+� (�� 2) �2�4 � 4�3 � 3�2 � 4�+ 2� ;H2 = �(2�� 4)((2�� 1)(5�2 � 8�+ 5)z + �(�2 � 4�+ 1)(�2 � �+ 1)):8.5 The lous P4 and points of order 8The polynomial �8(z)�4(z) has three irreduible fators. One of them is F8(z) =z8� 20tz6+32(t+ t2)z5� (16t+58t2+16t3)z4+(2t2+32t3)z3� 20t3z2+ t4:This fator desribes one of the three onneted omponents of P4. A rationalparametrization of F8(z0; t) = 0 is given byz0 = �4 (�� 1)3 �(2�� 1)3 ; t = 16 �4 (�� 1)4(2�� 1)4After onjugation with� (36�4 � 32�3 + 4�2 + 1) (6�2 � 4�+ 1) 00 32 (�� 1)�3 (2�� 1)3 �one obtains the system " H1� Q�H2� �H1� #where � = 32 (2�� 1)7 z (z � 1) z � 16 �4 (�� 1)4(2�� 1)4 !Q = 1=4 �2�2 � 1�2 �2�2 � 4�+ 1�2��4� �6�2 � 4�+ 1� (�� 1)3 + �2�2 � 4�+ 3� (2�� 1)3 z�33



H1 =�4�(144�8 � 448�7 + 608�6 � 416�5 + 152�4 � 48�3 + 24�2 � 8�+ 1)(�� 1)3�(9� 16�+ 4�2 + 4�4)(2�2 � 4�+ 1)2(2�� 1)3z + 8(2�� 1)7z2H2 = 16� �36�4 � 32�3 + 4�2 + 1� �6�2 � 4�+ 1� (�� 1)3+12 �40�6 � 80�5 + 100�4 � 112�3 + 86�2 � 36�+ 7� (2�� 1)3 zRemarks 8.1 We note that the formula for Ln(y), given at the end of setion1, provides an eÆient method to verify that the di�erential Galois group ofa given equation is ontained in DSL2n . It suÆes to test if Ln(y) = 0 (for neven) or L2n(y) = 0 (for n odd) has a rational solution. In the formula forLn(y) the exponential solution S of the seond symmetri power of L(y) isneeded. If L(y) is obtained from the system ddz + U using the yli vetor(1; 0), then S = z � z0pz(z � 1)(z � t) :8.6 DeidableLet a di�erential operator ddz +P3j=1 Aiz�sj be given where the Aj satisfy theonditions of setion 5. We suppose that the equation is irreduible and thatthe �eld K, generated by all entries (inluding t), is a �nite extension of Q(t).We laim that there is an algorithm deiding whether the di�erential Galoisgroup is DSl2n for some integer n � 2 or equals DSl21 . This laim is equivalentto the assertion that there is an algorithm deiding whether a point on theellipti urve w2 = z(z� 1)(z� t) has �nite order or not. This problem hasbeen studied by B. Work, F. Baldassarri and B.M. Trager et al.(see [Tra℄).If K is a number �eld, then aording to a theorem of L. Merel [Mer℄,there is an e�etive funtion N of [K : Q ℄ suh that any ellipti urve, de�nedover K, has, over K, no point of order > N . Hene there is an algorithm inthis situation.Suppose that t is transendent. Then there is also an e�etive bound onthe order n of points on E with values in K. This bound omes from the fatthat the genera of the modular urves X1(n) tend to in�nity. If the genusof X1(n) is larger than the genus of K (viewed as a urve) then the elliptiurve has no points of order n with values in K. Again there is an algorithmin this ase. 34



9 Variations on the Lam�e onnetionThe aim is to desribe the family of onnetions (M;r) on P 1 with ve-tor bundle M �= O(0) � O(�1), onnetion r with regular singular points0; 1; t;1 and loal exponents 0; 1=2 for the �rst three and 0;�1=2 for 1.We present M as the sub-bundle Oe1 � O(�[1℄)e2 of the free bundleOe1 � Oe2. The alulations will be given in terms of this basis e1; e2. Thegroup of the automorphisms Aut of M equals� a + dz0 b � ; with a; b 2 C� and ; d 2 C :r :M ! 
([0℄ + [1℄ + [t℄ + [1℄)
M , and thusre1 = ( Xj=1;2;3 ajz � sj )dz 
 e1 + ( Xj=1;2;3 bjz � sj )dz 
 e2 with X bj = 0 ;re2 = (0 + Xj=1;2;3 jz � sj )dz 
 e1 + ( Xj=1;2;3 djz � sj )dz 
 e2 ;where s1; s2; s3 = 0; 1; t. One �nds that L = r ddz equalsL = ddz + Xj=1;2;3 1z � sj � aj jbj dj � + � 0 00 0 � ;with relations aj+dj = 1=2, ajdj = bjj for j = 1; 2; 3 andP bj = 0. Now weompute the matrix of r, loally at z = 1. We use the notations s = 1=zand f1 = e1; f2 = se2.rf1 = �(X aj1� sjs)dss 
 f1 � (s�1X bj1� sjs)dss 
 f2 ;rf2 = �(0 +X j1� sjs)dss 
 f1 + (1�X dj1� sjs)dss 
 f2 :Thus the \residue matrix" of r at 1 is equal to� �P aj �0 �P j�P bjsj 1�P dj � :35



This matrix has eigenvalues 0;�1=2 and this gives the relations�X aj + 1�X dj = �1=2 and(�X aj)(1�X dj) = (0 +X j) �X bjsj :The �rst relation is superuous. In total we have 13 variables and 8(nie) relations; this yields a spae S of dimension 5. After division by theautomorphism group of the bundle M we �nd a spae of dimension 2 (as itshould be). We make this preise by omputing, step by step, S=Aut. Theexpression ~L := � 1 �z0 1 � � L � � 1 ��z0 1 � ; for a onstant �;is again a onnetion of the required type. Let its oeÆients be denoted by~a1; : : : ; ~0. One alulates that~0 = 0 + �(�1�X aj +X dj)� �2X sjbj ;and ~bj = bj for all j.Suppose that the oeÆient P bjsj of �2 is zero.(This is a rather speial). Then (�P aj)(1�P dj) = 0 and the oeÆientof � is not zero. In this ase there is a unique � suh that ~0 = 0.After performing this transformation, we may suppose that 0 = 0. Now weonsider the transformation~L := � 1 �0 1 � � L � � 1 ��0 1 � ; for a onstant � :The (1; 2) oeÆient of the new matrix is��X ajz � sj � �2X bjz � sj + �X djz � sj +X jz � sj :One develops this oeÆient at z =1 as series in s, this yieldssf�(X dj �X aj) +X jg+ s2� ;36



and there is a unique � suh that the oeÆient of s is 0. After performingthis transformation, one has that P j = 0 and the `residue matrix' of r atz =1 is � �P aj 00 1�P dj � :There are two possibilities for this matrix, namelyP aj = 0; 1�P dj = �1=2orP aj = �1=2; 1�P dj = 0. We ontinue with the �rst ase. One performsthe transformation~L := �  00 1 � � L � � �1 00 1 � ; for a non zero onstant  :If P bjz�sj = 0 or P jz�sj = 0, then r is `very reduible' in the sense thatOe1 or O(�[1℄)e2 is invariant. We remove this very reduible ase from theparameter spae.Suppose thatP bjz�sj 6= 0, then is follows that (b1; b2; b3) � (t�1;�t; 1). Onemay normalize, using , suh that (b1; b2; b3) = (t� 1;�t; 1).For the seond possibility, P aj = �1=2 and 1 �P dj = 0, one anperform the same steps. We note that this ase is not equivalent under theation of Aut to the ase P aj = 0.Suppose that the oeÆient P bjsj of �2 is not zero.(This is the general situation). There are two values for � whih transform0 into 0. At least one of them allows a value of � whih transforms, in thenext step,P j into 0. Thus we may already suppose that 0 = 0; P j = 0.Now we onsider again the transformation~L := � 1 � + �z0 1 � � L � � 1 �� � �z0 1 � ; for onstants �; �;and suppose that the property 0 = 0; P j = 0 is preserved. We observethat (�P aj)(1 �P dj) = 0. Suppose that P aj = 0. Then one omputesthe existene of a unique non zero element � + �z, that preserves 0 =0; P j = 0. This element transforms P aj = 0 into P aj = 1=2. If onestarts with P dj = 1 (or equivalently P aj = 1=2), there is again a uniquenon zero element � + �z, that preserves 0 = 0; P j = 0. This elementtransforms P aj = 1=2 into P aj = 0. Thus we an eliminate the ationof the group of transformation f� 1 � + �z0 1 � j �; � 2 Cg by requiring37



0 = 0; P j = 0; P aj = 0. Then we are left with the ation of the groupf�  00 1 � j  2 C�g. This ation an be eliminated by requiring that, say,P bjsj = 1.A spae of onnetionsWe restrit ourselves to onnetions with 0 = 0;P j = 0. Of the twopossibilities for P aj we hoose P aj = 0. Here we have omitted the rathermysterious speial situation P sjbj = 0 and P aj = 1=2. As before, theonnetion is alled `very reduible' if either Oe1 or O(�[1℄)e2 is invariantunder the onnetion. Consider the spae X of onnetions given by:0 = 0;X aj = 0;X bj = 0;X j = 0; aj(1=2� aj) = bjj (j = 1; 2; 3);(b1; b2; b3) 6= (0; 0; 0) and (1; 2; 3) 6= (0; 0; 0). Thus we have exluded the`very reduible' onnetions. We still have to divide X by the ation of G m .Any g 2 G m = C� multiplies the bj with g, the j with g�1 and leaves the ajinvariant.Consider the G m -invariant morphism X ! A 2 � P1, whih maps a pointof X to ((a1; a2; a3); [b1; b2; b3℄). For onveniene we have identi�ed A 2 withf(a1; a2; a3) 2 A3j P aj = 0g and similarly we write P1 for f[b1; b2; b3℄ 2P2j P bj = 0g. The image lies in the subset Y of (A 2 nf(0; 0; 0)g)�P1 de�nedby the equation b2b3a1(1=2� a1) + b1b3a2(1=2� a2) + b1b2a3(1=2� a3) = 0.A small alulation shows that Y is in fat the geometri quotient of X forthe ation of G m . One an verify that Y is non singular. In fat, the �bresof Y ! P1 are non singular onis in A 2 . The �bres are onneted exept forthe points [1;�1; 0℄; [1; 0;�1℄; [0; 1;�1℄. For eah of these points the �breonsists of two parallel lines.We note that A 2 ;P1 should be seen as aÆne and projetive variety over theaÆne sheme Spe(C[t; 1t(t�1) ℄). The same holds for X and Y .The speial familyOn the ellipti urve one onsiders the family of onnetions re = dzw 
 e(with  6= 0) on the trivial line bundle OEe. This is pushed down to theprojetive line as the family ddz + � 0 w2 w0w � ;this is already a onnetion on M with the presribed loal exponents. Fur-ther [b1; b2; b3℄ = [t � 1;�t; 1℄ 2 P1 and P bjsj = 0. Conjugation with the38
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