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The Lamé family of connections on the
projective line *

F. Loray, M. van der Put and F. Ulmer
July, 2005

Introduction

A Lamé connection is a rank two connection (M, V) on the projective line
with simple poles at 0, 1, ¢, oc and local exponents 1/4, —1/4 at each singular
point. The relation with the elliptic curve E, given by the affine equation
w? = z(z — 1)(z — t), is investigated both in an algebraic and a complex
analytic context.

For the latter an analytic moduli space for Lamé equations is produced,
based on monodromy above P'\ {0,1,¢,00} and the fundamental group
m1(F). N.J. Hitchin [Hi2] showed that the solutions of an irreducible Lamé
connection can be written in terms of the Weierstrass zeta function. This
was also noted by F. Beukers (see [Be|) who presented a different proof.

In the algebraic context a universal family, parametrized by a connected,
non singular variety P — {t € C|t # 0,1,00} of relative dimension 2, of
Lamé connections with free vector bundle M is explicitly computed.

The Riemann-Hilbert correspondence yields an analytic isomorphism be-
tween the analytic moduli space and the algebraic one. In particular one
observes that P is not the full algebraic moduli space. The missing part
is the special family of Lamé connections (M, V) where M is not free but
isomorphic to O(1) & O(—1). This family is computed. For every member
of the family the differential Galois group of the Lamé connection is the in-
finite dihedral group D52, Here D52 and DS denote the preimages of the
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infinite dihedral group D, C PSL, and the finite dihedral group D,, C PSL,
under the map SL,; — PSL,.

The closed locus P,egueinie C P, representing the reducible Lamé systems,
is explicitly computed. It turns out to be a non singular divisor. The differ-
ential Galois group of a Lamé connection corresponding to p € P is reducible
for p € P,equcinie and is an irreducible subgroup of the infinite dihedral group
D§0L2 for p € P,equeinie- Let Py denote the constructible subset of P consisting
of the points such that the corresponding Lamé connection has the dihedral
group D]S\,L2 as differential Galois group. An algorithm for the computation
of the locus Py, based on division polynomials for the elliptic curve FE, the
Painlevé VI equation and a transformation of Okamoto, is given. The loci
Py with N = 2,3, 4 are explicitly computed. We note that the locus of the
points in P with differential Galois group equal to D5 is not constructible.
The reason is that this linear algebraic group does not satisfy the condition
posed in [Sin], (see also [B-vdP]).

A weak point of our presentation of Lamé connections is the separation
into two families, the one parametrized by P and the other the special family.
In the last section it is shown that one can produce a universal family contain-
ing both cases if one considers connection (M, V) with M =2 O(0) ® O(—1).

The classical Lamé equation

n fl ! n(n + ]')Z + B
Lnpy) =y o7 ;
distinct ey, e, e3 and ey + e; + e3 = 0, has regular singularities at the points
e1, e, e3 with local exponents 0,1/2. Further oc is a regular singularity with
local exponents —n/2, (n + 1)/2. For n € Z the difference of the local
exponents at oo lies in 1/2 + Z. It is therefore possible to transform £, into
a Lamé connection if n € Z. A suitable transformation yields an isomorphism
of Lo p (with B # 0) with the special family. This explains in particular the
well known result that D]S\,L2 with finite NV does not occur as differential Galois
group for Ly p.

By an algebraic transformation £, g (for n > 1) is mapped to a 2-
dimensional subspace S,, of the universal space P of Lamé connections. The
intersection of S,, N Py is equal to the finite set of points in the family £, g
having differential Galois group D]S\,L2. For n = 1 and N = 2,3 our com-
putations agree with the results of [Chi] and [Be-Wa]. In connection with
this we observe the following. Any scalar equation for the Lamé connection,

y=0 with f =4(z—e1)(z—e2)(2—e3),



corresponding to a point p € P, has, in general, an apparent singularity, i.e.,
a singular point different from 0, 1, ¢, oo. This explains that the dimension of
P is larger than the dimension of the moduli spaces for the £, 5. Moreover,
it is rather exceptional that a point p € Py induces a classical Lamé equation
with differential Galois group D3.

1 Imprimitive differential modules of rank 2

K denotes a differential field. The field of constants C' of K is supposed to
have characteristic 0 and to be different from K. Let M be a differential
module over K of dimension 2 and let By, By be a basis of M over K. Any
element m; ® my of the second symmetric power sym? M will be written as
mymsy. In particular B, B; By, B2 is a basis of sym?M. Let L D K be an
extension of degree 2 and let N denote a 1-dimensional differential module
over L. We write Resy/x(N) for N viewed as 2-dimensional differential
module over K.

Lemma 1.1 Let F = oy B} + ayB1 By + a3B3 # 0 generate a differential
submodule of sym2 M. One regards F as element of the polynomial ring
K|[Bi, Bs]. Put A = a2 — 4aya3. Then:

(1) If F is a K*-multiple of a square (or equivalently A = 0), then we may
suppose that F = B?. Now K By is a differential submodule of M.

(2) If F is a product of two distinct linear factors (or equivalently A # 0 is
a square in K ), then we may suppose that F = ByBy. Now KBy and K By
are differential submodules of M.

(3) Suppose that F is irreducible. We may assume F = B2 — AB?. Put
L = K(§) with 6> = A. There exists a 1-dimensional module N = Le over
L with M = Resy, x(N) and such that the kernel of the surjective (obvious)
morphism of differential modules sym?2 M — ResL/K(sym%N) equals KF'.
The differential module N = Le with Oe = ue, with the above properties, is
unique up to conjugation, i.e., u € L is replaced by its conjugate wu.
Moreover sym3-M is the direct sum of K(B3 — AB?) and the differential
submodule K (B3 + AB?) + K(B,By).

(4) Suppose that C' is algebraically closed and that M is irreducible and (for
convenience) that the determinant of M (i.e., the exterior product A>M ) is
trivial. Then sym3 M contains more than one 1-dimensional submodule, if
and only if the differential Galois group of M is D§L2. Moreover, in this case



there are precisely three 1-dimensional submodules of sym3 M and each one
defines a different quadratic extension of K.

Proof. (1) and (2) follow by straightforward computation. In case (3) we
give M the structure of a vector space over L by prescribing 6By = Bs
and B, = AB;. Thus we obtain a vector space N = LB; over L. Let
0 on M satisfy 0B; = aB; + bBy with a,b € K. Then 9 on N is de-
fined by 9B, = (a + b§)B;. From the assumption that (B3 — AB?) is a
multiple of (B —ABY), it follows that Res; x is isomorphic to M. The obvi-
ous morphism symj M — Resy x(N) is given by B}, By B, B3 have images
B?,6B?,5?B?. The map is surjective and its kernel is generated by B?—AB?.
The only freedom one has in giving M a structure of differential module over
L is by prescribing 0B; = (a — bd)By. The rest of the statement (3) follows
by easy computation.
The first statement of (4) is well known and follows in fact from the classi-
fication of the algebraic subgroups of Sly(C). Suppose that the differential
Galois group of M is D52, Then the differential Galois group of sym?M is
the group D, (of order 4) and sym?M is the direct sum L; & Ly & L3 of
submodules. Each L; corresponds to a different surjective homomorphism
Xj : D2 — {£1}. The quadratic extension of K corresponding to L, is the
fixed field of the Picard-Vessiot field under the kernel of x;.

O

In case (3) of Lemma 1.1, the differential module will be called imprimitive.

Remark.
In case (4) of Lemma 1.1, the condition that C is algebraically closed cannot
be omitted. We study this in detail.

The assumptions are: M/K irreducible and dimension 2; A2M trivial,
i.e., isomorphic to Ke with de = 0; sym®M has more than one d-invariant
line. We want to investigate whether the conclusion of part (4) of the lemma
is still valid if C' is not algebraically closed.

If CK @k M is irreducible, then the differential Galois group of this
module over CK is D§L2 and there are precisely 3 d-invariant lines in CK ®
sym?>M. Two of them are already defined over K and thus the third one is
also defined over K.

Suppose that CK ® M is reducible. This module over CK is semi-simple
and is in particular the sum of 0-invariant lines.



Case (i). Assume that CK ® M has more than two invariant lines. Then
the differential Galois group G of this module acts on the solution space V
(of dimension 2 over C') and has more than two invariant lines. Thus G is
a subgroup of the group C". Since also G C SL(V), one finds G C {£1}.
Since 0 = C ® ker(d, M) = ker(0,CK ® M), one concludes that G = {&1}.
Then G acts trivially on sym?V and sym?(CK ® M) is trivial. This implies
that sym?M is trivial. The triviality of A2M implies that M = M*. Then
one finds that M @ M* =2 M @ M = sym?*(M) & A*M is also a trivial
differential module. Amitsur gave a construction of such modules M. For
this construction one needs a base field K which is more complicated than a
field of the type C'(z) with ' = d%. For a modern description, using quaternion
fields, and examples we refer to [H-P], section 2.5.

Case (ii) Assume that C K ® M has precisely two invariant lines. These lines
are conjugated under the Galois group of C'//C. Thus there exists a quadratic
extension C(w) D C, with w? € C such that K(w)® M = K(w)e; + K(w)e,
and the following properties hold:
(a) Let o denote the non trivial element of the Galois group of C(w)/C.
Then we may suppose that ge; = ey and gey = €.
(b) de; = aey with a € K(w) and dey = o(a)es.
(c)a+o(a) = fo for some f € K*.
(d) M is generated by fi= 61 + ey and fo = w(el — 62)
Further §f; = 2@ f, 4 70 £, and §f, = wewol g 4 otol) g

We deduce some more propertles.
(e) For any v € K(w)*, the line K(w)(ye; + o(7y)es) is not invariant under
0. Indeed, this line comes from a line in M. This translates into: for every
WEUKWithv#Oonehas%+a€K.
(f) sym*(K(w) @ M) = (K(w)e? + K(w)e3) & K(w)ejey has at least two
O-invariant K (w)-lines which come from sym?M. The line K (w)eje; comes
from sym2M. This module over K is trivial since dejes = fTeleQ Hence
there must be a y € K( v)* such that K (w )(ve? + 0(7) 2) is invariant under

0. This translates into = S+ 2a€ K Thus a = —5L >+ b with b € K.
(g) From (c) it follows that 2 = L + ;(7\,(( )))l, Where N(vy) = vo(y) is the
norm of . Thusa————+1f/ 4N(( ))

(h) N(v) is not a square in K, 0therw1se the module sym*(K (w) ® M) would
be trivial. We conclude the differential Galois group of C K ® M is the cyclic
group of order 4.



Finally, in order to show that there exists an example for the above sit-
uation, we consider the case K = C(z) with ' = %, w as above and we
take for the « in (f) the element z — w. With the choice f = 1 we find
a = —isz + iziw. One easily verifies this is indeed an example of the

required type. O

Corollary 1.2 Let M be an irreducible differential module of dimension 2
over K. Then M is imprimitive if and only if there exists a quadratic exten-
ston L D K such that L @x M has a 1-dimensional submodule.

Proof. Suppose that M is imprimitive. Then M = Resy,x(N) for suitable
L and N. The kernel of the canonical map L ® Resp/x(N) = L@, N =N
is a 1-dimensional submodule of L @ M.

On the other hand, suppose that L ® ¢ M has a 1-dimensional submodule
T;. Using the conjugation of L/ K one finds another 1-dimensional submodule
T,. The 1-dimensional submodule T} ®; Ty of L ®x sym3 M is invariant
under the conjugation of L/K and thus provides a 1-dimensional submodule
of sym?M. O

Suppose that M is an imprimitive differential module over K of dimension
2. For every integer n > 2, the differential module sym’; M has an explicit 2-
dimensional factor (direct summand) Resy,/x (sym}N). We use the notation
of Lemma 1.1,i.e., L = K(8), 6> = A, N = LB, and 0B, = (a+bd)B;. Then
sym} N has generator e = B} and de = n(a + bd)e. Then Resy,x(sym}N)
has basis e, de and the matrix of J with respect to this basis reads

na nbA
nb na+% '

The above method to find a factor of the nth symmetric power can also
be given explicitly for scalar equations. Consider a scalar equation 3" +a,y’+
apy = 0 over K with C algebraically closed, such that its differential Galois
is an irreducible subgroup of D32, The (abstract) solution space has a basis
Y1, Yo such that the differential Galois group permutes the two lines C'yy, C'ys.
Then S = y,y; is a solution of the second symmetric power and S? € K.
This second symmetric power reads

y" + 3a1y” + (4ag + 247 + @)y’ + (2af + 4agar)y = 0 .



The term % can be computed explicitly. As a consequence the expression

5= (£) + (£)? is known as element of K. Further z—’i and z—lj satisfy the

polynomial equation

/ / "

S
UQ——U+(CL0+G1§+%)

5 = (0 over K.

From this one derives a differential equation L,, for y} and 5.

S/ SH
)y + (nag + (n® — n)ar == + (n* — n)==)y.

n S

5
2 Connections with 4 special singular points

Consider an irreducible connection of rank 2 on P}, having 4 singular points
0,1,¢, 00 and local exponents 1/4, —1/4 for each singular point. The generic
fibre of this connection is a differential module M of dimension 2 over C(2),
the field of rational functions of P},.

Proposition 2.1 The module M is imprimitive and there is a 1-dimensional
submodule of sym?M such that the corresponding quadratic extension L D

C(2) has the form C(z)(w) with w? = cz2(z — 1)(z — t) and c € C*.

A direct proof by computation will be given later on. First we consider
the case where C'is the field of complex numbers C and we present an analytic
proof. We start by investigating the monodromy of M. One chooses a base
point in P{ \ {0,1,¢,0c} and generators Ay, ..., A of the fundamental group
7 of this space, consisting of loops around the points 0,1, ¢, 00 such that
Ap--+-Ay = 1. The monodromy is a homomorphism m; — Sly(C), sending
each A; to an element B; of order 4. The monodromy is therefore described
by elements By, ..., By € Sly(C) of order 4 with By --- By = 1.

Lemma 2.2 Let By,...,By € SIy(C) satisfy By---By = 1 and B} =1 for
every j. Let G be the group generated by the B;. There are two possibilities:
(i) G is reducible and contained in a Borel subgroup of Sly(C).

(ii) G is irreducible and contained in D52,

Proof. We replace each B; by its image b; in PGly(C). Each b; has order 2
and by ---by = 1. We have to consider several possibilities.



(1) Suppose that biby has precisely two fized points p1,py € P&. Then each
b; interchanges the points pi,ps and the group generated by by, ..., by is an
wrreducible subgroup of Dy.

Proof. byb; is the inverse of b1b, and has also fixed points pi,ps. Now
bibaby (p1) = bi(p1) and thus by (p1) € {p1,p2}. If bi(p1) = p1, then by(py) =
bel (pl) = P1. Also blbgbl (pg) = b1 (pg) and therefore b1 (pg) = Pa2. It follows
that by(p) = pe. Since by and by have order 2 one finds the contradiction
that b; = by. We conclude that by and b, interchanges the points py, ps.

One has b1byb3(py) = b3babi(p1), since byibobs = (bybabs) ™" = b3byb. More-
over bsbyby (p1) = b3(p1). Hence b3(p1) € {p1,pa}. Similarly b3(p2) € {p1,p2}.
Suppose that b3(p1) = p; and b3(p2) = pe. Then bbby and by have both
order two and both pq, ps as fixed points. Then b;bob3 = b3 and we find the
contradiction byby = 1.

(2) Suppose that biby has precisely one fixed point p. Then p is a fized point
of every b; and the group generated by the by, ..., by is reducible.

Proof. boby = (b1by)~" has also fixed point p. Now bybob; (p) = by (p) and thus
bi(p) = p. Then also by(p) = p. Further bibybs(p) = b3babi(p) = b3(p) and
thus b3(p) = p. Take for convenience p = co. Then one sees that the group
generated by all b; lies in an upper triangle group of matrices. Hence this
group is reducible.

(3) Suppose that by = by. Then the group generated by by, ..., by is the same
as the group generated by by, bs. If bibs has precisely two fixed points, then the
corresponding group is an irreducible subgroup of Ds. If bibs has precisely
one fized point then the corresponding group is reducible. Finally by = bz also
produces a reducible group.

Proof. One can repeat the arguments in the proofs of (1) and (2) to prove
statement (3). O

Second proof. Let E denote the elliptic curve given by the affine equation
w? = z(z — 1)(z — t). Let py,...,ps € E denote the points of E with im-
ages 0,1,¢,00. Then E_ := E\ {p1,...,pa} — P := P\ {0,1,¢, 00} is a
covering of degree 2 and the homomorphism I : m(E_) — m(PL) is injec-
tive and its image is a subgroup of index 2. Write, as before, 7 (P') =<
Ay M|A1--+ Ay = 1 >. Then the image of I is the kernel of the homo-
morphism 7 (PL) — {£1} that sends each A\; to —1. One can give 7(E_)
generators a, b, i1, ..., p4 such that:

(i) Each p; is a loop around p; and I maps p; to a conjugate of )\g.
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(ii) There is only one relation, namely ju;popzpgaba™"b"" = 1.

(iii) The images of a,b in 7 (F) under the canonical map m(E_) — m(E)
are generators of 7 (FE).

(iv) Conjugation with an (or any) element o € m;(PL), not contained in
m(E_), acts as —1 on the abelianized group (m;(E_))g.

We use the map I to identify 7;(E_) with a subgroup of 7 (PL).

Consider a homomorphism & : 71(PL) — SLy(C) which sends each \; to
B;. Then h(u;) = —1 for all j and h(a) commutes with A(b). In particular,
h(mi(E_)) is an abelian subgroup of SLy(C). Further, h induces a homomor-
phism 71 (F) — SLy(C) which will also be called h. There are the following
possibilities:

(a) This abelian subgroup has precisely one invariant line Ce in C*. Then
Ce is also invariant under h(m (PL)) and the representation h is reducible.
(b) This abelian subgroup has precisely two invariant lines Ce;, Cey. Then
h : 7 (F) — SLy(C) has the form h(c)e; = x(c)e; and h(c)es = x(c) ey,
for some character x of m;(F) = Z? such that x*> # 1. For any a € m(P'),
not contained in 7 (E_), h(a) interchanges the two lines Ce; and Cey. This
follows from (iv). In particular, the representation h is irreducible and its
image is an irreducible subgroup of D32.

(c) This abelian subgroup has more than two invariant lines. Then h maps
every element of 71 (F_) to +1. Then h(m (P')) is abelian (actually a cyclic
group of order 4) and the representation is reducible. O

Observations 2.3 We supplement the information of Lemma 2.2 with a well
known description of the monodromy. The monodromy tuple (By, ..., By),
associated to a differential module as above, is only determined up to si-
multaneous conjugation. The collection 7 of all tuples (By, ..., By) € Sl;
satisfying B;l = 1 for every j and By---B, = 1 is a closed subset of SI.
The group PSLy acts on 7 by conjugation. There is a categorical quotient,
namely Q = Spec|ty, o, t3]/(t3+13+13+t1tat3 —4). The morphism g : T — O
is given by

(Bl, ey B4) —> (tl = tT(BlBQ), t2 = tT(BQBg,), t3 = tT(BlBg))

S =1(-2,2,2),(2,-2,2),(2,2,—-2),(—2,—2,—2)} is the set of the singular
points of Q. The preimage of S is the locus in 7 describing the reducible
groups (this follows easily from the proof of Lemma 2.2). Let T;peq denote
the open subset corresponding to the irreducible groups. Then ¢ : Tipreq —



Q\ S is a geometric quotient for the action of the group PSLy (this follows
easily from the second proof of Lemma 2.2). In particular, 7;.,.q is reduced,
irreducible, smooth and has dimension 5.

The second proof of Lemma 2.2 leads to a connection between the mon-
odromy of the elliptic curve E and the special monodromy for P!. Let a
homomorphism y : 7 (F) — C*, with x* # 1 be given. Define h : m(E_) —
SLy(C) by h(p;) = —1 for every j and h(zx) is the diagonal matrix with
entries x(z), x(x)~', for x = a,b. This homomorphism can be extended to
a homomorphism ¢ : m;(P') — SLy(C) as follows: for any x € m,(F_) one
defines ¢(z) = h(z) (of course) and ¥(zAy) = h(z)- (° 1). Using (iv), one
easily verifies that ¢ is indeed a homomorphism.

We note that two characters xi,x2 : m(E) — C* with x7 # 1 # x3
induce isomorphic irreducible representations py, py : m (PL) — Sly(C) if and
only if x2 € {x1,x;'}. We see T := Hom(m(E),C*) as an algebraic torus
with group of characters 71 (E). Let Tr[2] denote the subgroup of the points
of order dividing 2. Consider (Tg \ Tg[2])/ ~, where x; ~ x» if and only if
X2 € {x1, X;1}_ The above construction induces an isomorphism of algebraic
varieties

(Te \ Tg[2])/ ~— Q\ S.

This isomorphism extends to an isomorphism Tp/ ~— Q.

The isomorphism can be made explicit as follows. One considers an element
(B1,...,By) € T. Suppose that this tuple generates an irreducible subgroup,
then the tuple is an example for case (b) in the second proof of Lemma 2.2.
In the conjugacy class of the tuple there is an element of the form

(i 0)- (i 6) (e a)-(400)

with s = rt because By---By = 1. Moreover, (r,t) # (+1,%1). The
0 1
-1 0
tion changes (r,¢) into (1/r,1/t). Thus we find an isomorphism between
{(C)?\ {(£1,+£1)}}/ ~ and Q\ S, which is essentially the same as the
above isomorphism.

above element is unique up to conjugation with This opera-

Proof of Proposition 2.1. We first consider the case where C' is the field of
complex numbers C. According to Lemma 2.2, the monodromy group of M,
generated by Bi,..., By, is an irreducible subgroup of D32 and the same

10



holds for its Zariski closure which is the differential Galois group. It follows
that sym?M contains a 1-dimensional submodule.

In case the differential Galois group G is D32 or D32 with n > 2, there is
only one 1-dimensional submodule. The corresponding field extension L D
C(z) corresponds to the unique surjective homomorphism h : G — {£1}.
The elements B; € G have order 4 and it follows that h(B;) = —1 for every
J. This implies that L D C(z) is ramified above each of the points 0, 1, ¢, 0o.
The extension L is therefore given by L = C(2)(w) with w? = z(z —1)(z —1).

If the differential Galois group G is ng, then there are precisely three
1-dimensional submodules of sym2M and there are also precisely three sur-
jective homomorphisms h : G — {£1}. As above, it suffices to verify that
there exists a homomorphism with h(B;) = —1 for all j. The commuta-
tor subgroup of G is identical with the center of G. Consider the images
bi,...,by € PSly of By,...,Bs. They generate a commutative group with
two generators, say A and B, each with order two. One has b; € {A, B, AB}
for all j. Further the surjective homomorphisms h : G — {+1} are given by
(h(A),h(B)) = (—1,-1),(—1,1),(1,—1). Up to a choice for A and B there
are three possibilities:

(i) (b1, ba, b3, by) — (A, B, A, B). The possibilities for L D C(z) are given by
the sets of ramified points {0, 1,¢,0c}, {0, ¢}, {1, 0c}.

(ii) (by, be, b3, bs) — (A, B, B, A). The possibilities for the sets of ramified
points are {0, 1,t,00}, {0,000}, {1, ¢}.

(iii) (b1, b9, b3,b4) — (A, A, B, B). The possibilities for the sets of ramified
points are {0, 1,¢,0c},{0,1}, {t, 00}.

In particular, in each case one of the corresponding fields is C(z)(w) with
w? = 2(z—1)(z —t). In the algorithmic part of this paper we will verify that
each of the cases (i)-(iii) are present in our family.

Now we consider a general case. We may suppose that the algebraic
closure C' of C is a subfield of C. Let M denote the differential module

C(z) ®c(:) M. For this differential module the statement of the proposi-
tion follows easily from the statement for the case C. Further sym?M™ has
one or three 1-dimensional submodules. They produce one or three distinct
quadratic extensions of C(z). It follows that the Galois group of C'/C' pre-
serves these 1-dimensional submodules. Therefore sym?M has one or three
1-dimensional submodules. For one of them the field extension is over C(z)
given by w? = z(z — 1)(z — ). Thus over the field C(z) this equation reads

w? = cz(z — 1)(z — t) for some ¢ € C*. O

11



3 Regular connections on an elliptic curve

In this section the base field will be C, the field of complex numbers. Let M
denote a differential module over C(z) with four singular points 0, 1, ¢, oo and
local exponents 1/4, —1/4 for each of them. According to Proposition 2.1,
M is the restriction to C(z) of a differential module of rank one over the field
C(z,w) with w? = z(z — 1)(2 — t). After tensoring M with the differential
module (C(z)e, d), where d(e) = (% + % + %)e, the new differential
module has local exponents 1/2,0 at each singular point. The corresponding
rank one differential module over C(z, w) = C(E) has no singularities. Here
E denotes the elliptic curve given by the equation w? = z(z — 1)(z — t). We

start by describing the regular connections on FE.

A regular connection is a pair (£, V) of a line bundle on E and a con-
nection V : L — Q ® L, where {2 denotes the sheaf of the holomorphic
differentials. Its generic stalk is a vector space C(F)e together with a con-
nection V given by Ve = w ® e where w of a meromorphic differential on
E. The condition that the connection has no singularities translates into w
has only simple poles and all its residues are in Z. Further w is unique up to
the addition of a term %, with f € C(E)*. For any meromorphic differential
form w with at most simple poles, we define Res(w) := > _p res,(w)[p]. This
is a divisor of degree 0 on F if all the residues of w are integers. Let w define
a regular connection and let the line bundle £ correspond to Res(w). Then
w corresponds to a global regular connection V: £L - Q® L on E.

If £ is trivial (i.e., isomorphic to Og), then w has the form 62’1—5) for some
ceC

If £ is not trivial then this line bundle corresponds to a divisor [g] — [1x],
where 15 is the neutral element of E (as usual taken to be the point z =
o0) and ¢ = (zo,wp) is some point (# 1g) on the affine curve given by
w? = z(z — 1)(z — t). In this case w can be written in normalized form as
(c+ 2oy & with ¢ € C,

z—2z9 /2w

Now we make a complex analytic study of the regular connections on F.
Consider the exact sequence of sheaves on F

0—->C -0, —Q—0,

where C* is the constant sheaf, O} is the sheaf of invertible holomorphic
functions and €2 is the sheaf of holomorphic differential forms. The morphism
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O3 — Qs given by f — %. This induces an exact sequence for cohomology
groups

0— <c2d—z — H'(E,C") - H'(E,0}) = H'(E,Q)--- .
w

H'(E, O3%) is the group of the equivalence classes of line bundles Pic(FE).
Its subgroup Pic®(E) of equivalence classes of line bundles of degree 0 is
identified with E. Further H'(E,C*) is equal to Hom(7(E),C*), where
m1(F) denotes the fundamental group of E. One easily derives from the
above that the following sequence is exact

0— (Czd—z — Hom(m (E),C") - E — 0.
w

Lemma 3.1 There is a natural isomorphism of groups
Hom(m (E),C") — {(£, V)}/ ~,

where the last group is the group of the equivalence classes of the reqular
connections on E of rank 1.

Proof. Let U : C, — E denote the uniformization of E. Here u denotes the
global parameter of C. The kernel A of U is identified with 7 (E). Suppose
that a homomorphism p : A — C* is given. Let C, x C, denote the trivial
(geometric) line bundle on C, provided with the trivial connection. Here v
denotes the global parameter on the linear space C. Let A act on C, x C,
by Mu,v) = (u+ A, p(A)v). The quotient by the action of A is a (geometric)
line bundle (C, x C,)/A — C, /A = E with induced connection. The sheaf
of sections of this geometric line bundle is a line bundle £ on E (of degree
0) and is provided with a regular connection.

Let, on the other hand, a regular connection (£, V) on E be given. Then
U*(L, V) is a trivial connection on C,. The group A acts on the 1-dimensional
solution space of this trivial connection and this produces a homomorphism
p:N—C. O

A slightly different way to find the isomorphism of Lemma 3.1 is the
following. Consider the exact sequence of sheaves on E:

0—=-C - M = Q, —0,

13



where M* denotes the sheaf of the invertible meromorphic functions on F
and (), denotes the sheaf of the special meromorphic differentials having at
most simple poles and having residues in Z. The morphism M* — €, is
given by f — % The cohomology sequence reads

0—C" - CE) - H'(E,Q,) — HY(E,C") — 0.

Indeed, H'(E, M*) = 0 is known. The cokernel of C(E)* — H°(E, ,,) has
already been identified with the isomorphism classes of the regular connec-
tions on E.

Proposition 3.2 Let 7 : E — P! denote the morphism, induced by the map
(z,w) — z. Let (L, V) denote a regular connection (of rank one) on E. Then
7.(L, V) is a rank 2 connection on P' having 4 regular singular points, namely
0,1,t,00. At each singular point the local exponents are 0,1/2. Further 7,0
is isomorphic to the vector bundle O(0)®O(—2) on P and m, L, with L # Og,
is isomorphic to the vector bundle O(—1) & O(—1) on P

Proof. Let U : C, — E denote again the universal covering. Let A denote
the group of the automorphisms of C, generated by the translations over the
elements of A and the map u +— —u. Then C,/A is identified with P'. The
trivial connection on C, (provided with a homomorphism p : A — C*) yields
a connection on P! which is clearly regular outside the ramification points.
For a point of ramification, say the image in P! of the neutral element of
E, one easily verifies that the local exponents are 0,1/2. Indeed, one knows
that the local exponents at a ramification point give, multiplied with the
ramification index (in this case 2), the local exponents above. The latter are
{0,1}.

A line bundle £ on E and its direct image 7,L have cohomology groups
of the same dimension. This proves the second statement. O

Remarks 3.3 From rank one connections on E to Lamé connections.

Now 7,(L, V) is tensorized with the rank one connection T := (7,V) on
P! with singularities in 0, 1,¢, 00, given by T = O([oc])e (i.e., the sheaf of
meromorphic functions having at most a simple pole at oc) and

-1/4  —-1/4 —-1/4 —d
Ve = ( / + / + /)dz®e:2—uju®e.

z z—1 z—1
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Then m,(L,V) ® T has local exponents 1/4,—1/4 at each singular point.
Moreover this rank 2 bundle is free if £ # Og and has the form O(1)®O(—1)
in case L = Og. According to Proposition 2.1 we obtain in this way all the
irreducible connections on P} with 4 singular points 0,1,¢, 0o and all local
exponents 1/4,—1/4 as push forward of a connection Ve = w ® e on E,

where w is given in standard form by (¢ + ¥t@)dz _ dw ) pdz  dw wiph o
z2—2z0 /2w 2w 2w 2w’
a constant and (zg, wp) € E (distinct from 15). We note that the term —22

takes care of the required shift of the local exponents. The second standard
form for w can be seen as a limit case for the first one where (2, wg) tends
to 1g. This construction produces also four reducible connections on P,
namely for the w such that 2w = % for some rational function F' on E. The
four cases are

wdz dw w dz dw w dz dw d_w

22w 2w z—12w 2w z—t2w 2w 2w

Moreover every irreducible connection on P is obtained precisely twice since
w and —w produce the same connection. These statements easily follow from
Observations 2.3. Indeed, the above construction (£,V) — 7. (L, V)® T
translates into the construction, explained in Observations 2.3, which as-
sociates to x € Hom(m(E),C*) a tuple (By,...,B,) (with the properties
stated above) modulo the action by conjugation of the group PSLy(C).

4 The analytic universal family

The Legendre family Legendre of elliptic curves w? = z(z — 1)(z — t) over C
can be written as algebraic variety

Proj(C[t, ; [z, w, 5]/ (sw® — 2(z — s)(z — st))) = P'\ {0,1, 00}.

1

(t—1)
If one allows the values 0,1,0c for ¢, then one obtains an elliptic surface
& — P! having singular fibres above 0,1,00. The uniformization of the
Legendre family is equal to H x C,, where H is the upper half plane and C,
means C where we use u as variable. The group acting upon this space is
Z? x T'(2)*, where: T'(2)* is the subgroup of Sly(Z) consisting of the matrices
(‘cl db) such that a,d =1 mod 4 and b,¢c = 0 mod 2. This group is free on
two generators and I'(2)*\H is isomorphic to P!\ {0, 1, c0}.

The action (by conjugation) of I'(2)* on Z? is given by (" )y~' = y~!(").
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The action of vy = (g;) on H x C, is given by v(r,u) = (g::g, o7a)- The

action of Z? is given by ()(7,u) = (1,u + n7 + m).

n
m

Above the Legendre family we want to construct the universal line bundle
with a regular connection. Put T = Hom(Z?, C*); this is an algebraic torus.
Consider the product T x H x C, x C,, where the last term means C with
parameter v. This is seen as a geometric line bundle with trivial connection
above T x H x C,. The group Z? x I'(2)* act as follows:

For v = (Z;) € I'(2)*, one defines v(p, 7, u,v) = (v(p), 2::3’ 2, v), where
the action of T'(2)* on T is induced by its action on Z2. Further, for () € Z?
one defines () (p,,u,v) = (p,7,u+n7 +m, p(("))v).

The quotient L := Z? x T'(2)*\(T x H x C, x C,) is a geometric line bundle
with a regular connection above the family of elliptic curves

Z? x T(2)*\(T x H x C,) parametrized by Par := T'(2)*\(T x H). Let
L be the sheaf of sections of . It has an induced connection and thus
we find a universal regular connection (£,V) above the family of elliptic
curves. The parameter space Par := I'(2)*\T x H is a T-bundle above
[(2)*\H = P!\ {0,1,00}. The family of elliptic curves can be written as
Par Xpu (01,00} Legendre

Fix t € P'\ {0,1,00} and 7 € H with image ¢ and a p € Hom(Z?, C*).
The ‘evaluation’ of (£, V) at the point (p, ) is a connection on the curve
E, = E,/(Z1 +Z) (with equation w? = z(z — 1)(z — t)) corresponding to the

homomorphism m(E;) = Z7 + Z — C* given by nt +m > p((")).
One considers the subset {(p,7)|3c € C such that p((")) = e“™+™} of

T x H. This subset is given by the equation 5 € Zt+ 7. (Note
that this equation does not depend on the choice of the logarithms). Hence
this subset is an analytic divisor on T x H. The map C x H — T x Hi
given by (c,7) — (p,7) with p() = e“"™*™) induces an isomorphism of
C x H with this divisor. The divisor is invariant under the action of I'(2)*
and yields a divisor © in the parameter space Par. The subset of the points
in the parameter space where the ‘evaluation’ of L is trivial, i.e., isomorphic
to Op,, is precisely ©. This ends the description of the universal connection

of rank one (£, V) above the space Par Xp1\ (91,00} Legendre.

The next step is to push this universal connection down to the projective
line. One considers the obvious morphism Legendre — (P'—{0, 1, 00}) x P'.
This induces a morphism 7 : Par Xpn o100} Legendre — Par x P'. One
obtains a connection ,(L, V) of rank 2 on Par x P'. This connection is
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tensorized by the rank 1 connection (O([o0])e, V) given by Ve = =22 @ e.
The result is a connection of rank two on the space Par x P! with regular
singular sections Par x {0}, ..., Par x {oc} and local exponents 1/4, —1/4 for
each singular section. We delete from Par the closed subset I'(2)*\T[2] x H.
On the result Par* there is a free action of an automorphism of order 2,
induced by the map T x H — T x H given by (p,7) > (p~', 7). The resulting
space will de denoted by Par**. This automorphism also acts upon the
connection , (£, V)®(O([oc])e, V) restricted to Par*xP'. As a consequence
we find a connection (M, V) on Par** x P'. This is finally the universal
family of rank two irreducible connections on P' with regular singularities
at 0,1,¢,00 and local exponents 1/4, —1/4 at each singular point, that we
wanted to construct.

The image ©** of © in Par** is the locus where the vector bundle M is
not free (and actually is isomorphic to O(1) & O(—1)). On the complement
of the divisor ©** in Par**, the vector bundle M is free.

The analytic T-bundle Par — P!\ {0, 1, 0o} is probably not trivial. The
same holds for the bundle Par** — P'\ {0,1,00}. Each fibre is equal to
T\ T[2]/ ~. This space has been identified with Q \ S.

The morphism T'(2)*\(C x H) — P\ {0, 1, 0o} is an analytic line bundle
and therefore free. It follows that the divisor ©** on Par** is, as a variety,
isomorphic to the space C* x (P'\{0, 1, 00}). The restriction of the connection
(M, V) to ©* will be called the special family. In Section 6 we will make
this special family explicit. The restriction of (M**, V) to Par** \ ©** has
the property that the ‘evaluation’ of M** at every point of this space is free.
The connection (M**, V) will be studied from an algebraic point of view in
Section 5.

5 Algebraic construction of a moduli family

The aim is to construct a ‘universal’ family of irreducible connections (M, V)
on the projective line with M free, regular singularities at 0, 1, ¢, oo and local
exponents 1/4, —1/4 at each singular point.

The parameter ¢ is seen as a point in P!\ {0,1,0c}. Thus we will work
with the projective line over Q[t, 7 L T — 1. After fixing a basis of H°(M) and re-

placing V by V 4 we obtain a differential operator of the form <% +Z

]125]
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) ‘ b
with s = 0,50 = 1,53 = t and where the matrices A; = < Z] ZL ) for
g Y

j = 1,2, 3 satisfy the conditions:

3 3 3

a? +bje; =1/16 for j=1,2,3 and () _a;)* + (O _b;)()_¢;) = 1/16.

J=1 J=1 J=1

We still have to find the conditions which express that the equation is
irreducible and moreover we want to divide by the action (by conjugation)
of the group PGl,.

The structure of the parameter space.

One considers tuples (Ay,..., As) of 2 x 2-matrices such that > A; = 0
and each A; has eigenvalues 1/4, —1/4. The tuples form an affine algebraic
variety Var of dimension 5, having an action of PGly, by conjugation. The
stabilizer of a tuple (Ay,..., Ay) is not trivial if and only if there are two
distinct lines invariant under all A;. This condition is equivalent to “all A;
commute”. In this case the stabilizer is the multiplicative group G,,. The
subset Vary of Var, consisting of these tuples, is closed; it has dimension 2
and consists of three PGls-orbits.

The subset Vars of Var, consisting of the tuples such that the Ay, ..., Ay
have a common eigenvector, is also closed. Let e be the common eigenvector
for all A;. Then Aje = +1/4e for all j and the sum of the eigenvalues is
0. This implies that Vary has six irreducible components, say Vary(i) with
i=1,...,6, each of dimension 4. Each Vary(i) is invariant under the action
of PGly. Further the quotient of Viary(i) \ (Vary(i) N Vary) by the action of
PGl; is seen to be a projective line.

We are interested in the structure of the quotient PGly\Var. There is
no geometric quotient. However we will compute the ring R;,, of PGl,-
invariant regular functions of Var. First of all, A, is normalized to (81/14/2).
This defines a closed subspace Var’ of Var. The stabilizer of A, under
the action of PGL, is its maximal torus, isomorphic to the multiplicative
group G,,. Thus R;,, can be identified with the ring of the regular func-
tions on Var', invariant under G,,. The ring of regular functions on Var’ is
Qla1, as, by, by, 1, ca] with generating relations: bjc; = 1/16 — a? for j =1,2
and bycg + bacy = —2(ay — 1/4)(ag — 1/4). Using these relations one finds a
free basis of the above ring over Q[ay, as| consisting of the monomials:

>07>0 130 >0 >0 >0
bi"by", by er, e ey .
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From this it follows easily that the ring R;,, has the form Qa;, as, H] with
H = bycq. There is only one equation, namely

H? +2H(a; — 1/4)(ay — 1/4) + (a} — 1/16) (a5 — 1/16) = 0 .

We note that also bjcy satisfies this equation. We could have chosen bycy for
H, however we prefer H = bycy in view of later computations. The singular
locus of R;,, is equal to

(ar, a9, H) = (1/4,1/4,0), (1/4,-1/4,0), (—=1/4,1/4,0) .

This singular locus is precisely the collection of points where the 4 matrices
Ay, ..., Ay have a common eigenvector. Hence the regular locus of Spec(R;;,)
coincides with the variety PGly\(Var — Vars). This space is not affine and
for further calculations we consider the open affine subset given by (a? —
1/16)(a2 — 1/16)(a3 — 1/16) # 0 (note that a3 = 1/4 — a; — ay). For the
missing points, given by a; = +1/4 with j = 1,2,3, we make separate
calculations. a

The open affine part U of the parameter space P.
The complete parameter space P is given by

P := Spec(Q]t, ) x (PGLy\(Var — Vary)).

1
t(1—1t)
As before we normalize A4 and identify the right hand side with the regular
locus of Spec(R;y,,). Further we consider the open affine subset U given by
s # 0 where s = (a} — 1/16)(a3 — 1/16)(a3 — 1/16). Then H # 0 and thus
bacy # 0. We normalize further by ¢; = 1. The corresponding ring is now
RU = Q[t, ;][(Ll, as, %, bg]/(Rel) with Rel = b% +2b2(a1 - 1/4)(@2 - ]-/4) +

0D
(a? —1/16)(a3 —1/16). The other variables are expressed in ay,ay, by, 1/s by
the formulas

by =1/16 —af; ¢y = b;'(1/16 — a3); az = 1/4 —a; — ay

a3 —1/16 o (a1 = 1/4)(a2 — 1/4) (a2 — 1/16)
S S
by = —by — 1/16 + af; ez = —1 —b;'(1/16 — a3)

b2_1 - —bg

The locus of the reducible equations. B
We search the locus P,equeine C P, consisting of the points in P(Q), where
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the corresponding differential operator D := d% + 22:1 A s reducible. A

Z2—S8;
point corresponds to prescribed values in Q for ay, as, as, . .., t. Reducibility
is equivalent to the existence of a non zero vector v € Q[z] ® Q* such that
D(v) = fv for some f € Q(z). The vector v can be normalized such that
the g.c.d. in the ring Q[z] of all its coefficients is 1. Thus one considers
V= vg+ 124 Fvg2¢, with all v; € @2, vg # 0and vg+v15+---Fvg5 #0
for all s € Q, and satisfying the equation D(v) = fov for some f € Q(z).

One easily verifies that f = (Z?Zl Zijs) where the \; are eigenvalues of A;.
J

Expanding the equation D(v) = fv at z = oo yields that d = 2;21 A;, where
A4 is some eigenvalue of A, = — 22:1 A;. In this special case there are only
two possibilities, namely d = 0 and d = 1. In first case all A; have a common
eigenvector. This case is excluded by the definition of the parameter space
P. The case d = 1 is equivalent to the equation

3

d A;—1/4
- i B =0.
(dz+jZ p— )(vo + v12)
The normalization of A, implies v; = ey = ([1]), where eq, ey is the stan-

dard basis of Q?. The above equation is equivalent to the system of matrix
equations

(Al - 1/4)1)0 = 0, (AQ - 1/4)(1)0 +€2) = 0, (A3 - 1/4)(1)0 +t62) = 0.

The existence of a solution vy leads to certain relations between the coeffi-
cients of the matrices A, Ay, A3, describing in fact P,equcipie-

The direct approach. Let T denote the affine ring of Var’. Recall that

T = Qla1, as, by, by, c1, o] with generating relations bjc; = 1/16 — a? for
J = 1,2 and byes + becy = —2(ay; — 1/4)(ay — 1/4). Consider T'[xy, zs),
where vy = (i;) The system of matrix equations defines an ideal I C

T[xy,x5]. Using Grobner basis one calculates J = I N'T. This ideal is
invariant under the action by conjugation of G,,. Therefore .J is induced by
an ideal Jy of T®" = R;,, = Q[t, ﬁ][al, az, H] (with generating relation
Rel = H?*+2H (a; —1/4)(ag —1/4) + (a? —1/16) (a2 —1/16) = 0) in the sense

that J = JyT. The ideal J; turns out to be generated by the two elements
f(t) = (ay +ay — 1/2)%t(t — 1) + (ay + 1/4)*t + (ag + 1/4)*(1 — t) and

2H + (a1 + ag — 1/2)* + (ag + 1/4)(a; — ay) .
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One computes that the ideal I also contains the elements x1 4 2b,t+2byt —2b,
and xy +1/2t — ayt — agt +ay +1/4. Thus T[xy, 25]/I = T/J and (T/J)%m =
Riny/Jo. The last algebra equals Q[t, ﬁ][al, as)/(f(t)). One easily verifies
that f(t) is irreducible. Therefore Q[¢, ﬁ][al,aﬂ/(f(t)) is a domain of
dimension 2. Thus Jy, C R;,, is a prime ideal of height 1 and defines a
closed irreducible subset of Spec(R;y,) of codimension 1. The intersection of
this closed subset with P 1S Pipeduciie and the latter is therefore closed and
irreducible of dimension 2. Moreover P cqucinie has the following rational

parametrization by £, A
t—2)\2 t+ 142X\ 44\ A+ 1A —1)
) = ——, Qa = ) H= )
I A(t—1) 4t - 1)
with A = ta1 +tag — t/2 — a9 — 1/4

6 The special family

The ‘special family’ that we compute here is the family of irreducible con-
nections (M, V) on P! with (as before) 4 regular singular points at 0, 1, ¢, oo,
local exponents 1/4, —1/4 at each singular point and such that M is not
free. We note that for a suitable shift of the local exponents over integers
the connection can be presented with a free vector bundle.

The second exterior power A?(M, V) is a rank one connection without
singularities on P'. Hence A2 M is the trivial line bundle and the connection
on it is also trivial. The irreducibility of (M, V) implies that M is isomorphic
to the sheaf O(1) @ O(—1). Using this information one can calculate the a
matrix form for the connection. Instead of producing the results of this
calculation, we will describe an easier method to obtain the special family.

Proposition 3.2 provides another way to obtain this family. On the elliptic
curve E, given by w? = z(z — 1)(z — t), one considers the connection V :
Orfo = Q® Opfy given by V(fo) = ¢22 ® fo with ¢ # 0. The direct image,

under the morphism E — P! has w.r.t. the basis fo, fi = wf; the matrix

form
d ( 0 ¢/2 )
— 4+ . ' .
dZ w2 w

in order to obtain the local exponents 1/4, —1/4.
-1

One has to shift over —%

. : : . 2 0 :
After a conjugation with the constant matrix < y ) one obtains the

0 1
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required form (with d = ¢?/4)

4 (-2
dz %%

The above is in fact a family over the base ring QJ[t, t(tl—l) ,d,d 1.

The classical Lamé equation is L, = y" + %y' - My, with [ =

4(z* + az + b). The transformation z — z — 4, with suitable ¢, transforms

f into 4z(z — 1)(z — t) and the equation into

! +1(z—=(1+t/3)+ B
y,,+g_y,_n(n )(z = (1+1)/3)
29 4g

The local exponents are 0,1/2 for 0,1,¢ and —n/2, (n+1)/2 at oc.
For n = 0 one writes w? = g. The companion matrix equation for the second

!

y with g = z(z — 1)(2 — 1).

. 0 -1 o _w
scalar equation is d% + [ B W ] The shift yields % + [ I
If B # 0, then conjugation with a constant matrix yields the equation
_w 4
44 [ b ] . This is the special family.
w? 2w

7 Explicit formulas and Painlevé VI

7.1 An inverse approach

The family {(M, V)} can be computed directly from the normalized differ-

ential form w = (¢ + “;_’—Z)O)Qd—; of section 3. The differential module above

the elliptic curve reads dfy = (¢ + M)ﬁfo. With respect to the basis

z—20

fo, fi = wfo over the field of rational functions on P' one finds the operator
d 1 c+ wo 2 /
- 4 ) Q(Z_zo)wo (w/ (z_zol))/ . The shift over — — yields
dZ Qw_?(c + (z—zo)) E + 2(Z720) 2w
d L c+ =) /2
Ly:=— + 12(2*20) wQOw (w, (Z’Zol))/ . This is replaced by
dz W(C + (zfzo)) 2w + 2(z—20)
1 —ecz 1 ez \ .
L, = 0 1 Ly 0 1 in order to remove the apparent pole of

order 2 at oc.
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The formulas for wy # 0 (equivalently 2y # 0, 1,1).
2o is an apparent singularity of L; which can be removed as follows. First
calculate the conjugate

L —1/2 wa W
- 2wo 0 0 . .
Ly: ( ﬁ 1/2 ) Ly ( 11 ) . Then again a conjugate

L3::<é z—OZO>L2<(1) (Z_OZO)I>.

Then L is conjugated by (? (1]) in order to normalize the matrix at infinity to
-1/4 0

( 0 1/4

(1 0) is needed to obtain ¢; = 1. The final operator diz + U belongs to our

0 s
family, normalized with ¢; = 1.

). Finally, a conjugation with a constant matrix of the form

- 1 N (cz — ¢z + wo) F/t
TOA | —4zt(=3czo+2we +c+ct + ) /F + 4t -N
where
A=4z(z-1)(z—t),
N:22—|—(262—220)2+220t—t—20220—2202+220
F =3¢z — 3czpt — 3czg — wozg + 29 + 2 et — 3 Pwy + wot + wy
Remarks 7.1

(1) This formula for U is derived under the assumption that wy # 0. The
normalization ¢; = 1 introduces the denominator F' in the (2,1) entry of
U. Thus the formula for U is valid under the assumptions that wg # 0 and
F # 0. The involution of the elliptic curve maps (¢, wg) to (—¢, —wg). One
observes that the formula for U is, as it should be, invariant under this map.
(2) Suppose again that wy # 0 and F # 0. Conjugation of U with the
constant matrix (g %) yields

1 N cz — €2y + wy

v A —4z(=3czy + 2wy +c+ct+ )+ 4F —N

Thus diz + U is equivalent to % + U*. The latter expression is also valid for
F = 0. We will show that the formula % + U* remains valid for wy = 0.
Another advantage of U* is that its (1, 2) entry has a zero if ¢ # 0. We note
that U* is not invariant under the involution of the elliptic curve.

23



The formulas for wy = 0 (equivalently 2z, € {0,1,¢}).

2(z—z0) % C/2 . .
As before Ly := E + A w , and L; is obtained by
202 2(z—z0) zo)
conjugating Ly with < (1) C(Z ~ %) . Further L, is obtained from L; by

1

conjugation with ( ) Finally L3 is obtained from L, by
Z — ZO

0

conjugation With We will not further normalize L3. One finds the

following formulas
(1) For 20 =0, L3 = d% + U, with

,_.

1
Us = %

22 —t+2c%2 cz
de((-1—t—c*)z+2t) —22+t—2

(2) For 20 =1, Ly = L + U with

1

Ul:Z

2 +2(ct—1)z—2%+1t c(z—1)
—4z(ct —2c+ ) +4cd —det =22 —2(* — 1)z +2c2 — 1

(3) For zg =t, Ly = % + U; where U; equals

1

A

2+ (=2t+2c)z—t(-1+2c%) c(z —t)
—4z(=2ct + c+ A) + 43t —det =27+ (2t — 2¢*) 2z + t(—1 + 2¢?)

These formulas are specializations of U* for wy = 0 and 25 = 0, 1, ¢.

7.2 A direct approach

On the space P\ Preguciie; the matrix U (or U*) expresses al,ag,bg,t in
terms of 29, wp,c. The aim is to express the rational functions zq, “2 0 ¢? on
this space in terms of a1, as, bs. One can view the data of U and U* as polyno—
mials aq, as, by, 2o, wo, ¢, t, generating an ideal in Q[ay, as, bo, t, ﬁ, 20, Wo, €]
(by stands for H and there are known relations for ay, as, by and 2y, wy, c).
Elimination for a suitable order produces two elements in this ideal, namely

(16t2a? — 3243t + 32a1a2t> — 32ajagt — 16t%a; + 2dait + 16a3 + 16a5t> + 8ag — 16at> + 8agt + 1 + 4t2 — 4t)zq

—t (—3+48a1a2t+ 20a1 — 20 ast + 20as — 12a1t — 48agay + 4t + 16 tay> + 32 thy — 32172)
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and
((—32432t)by — (1 +4a;) (dart —dast +14+4a5)) 2+t (1+4a,)” .
We recall that the locus Pegycine Was given by an ideal (Eqq, Fqs), given by
Eq = (a1 +as—1/2)%t(t = 1) + (a1 + 1/4)° t + (ap + 1/4)* (=t + 1)

Eqy = 2by+ (ay + a3 — 1/2)° t + (a3 + 1/4) (a1 — ay)
The coefficients P;, P, of z5 in the above equations satisfy P, = 16 - Eq
and PQ = ]_6(t - 1) : EQQ — 16 - qu Thus (Pl,PQ) = (qu,EQQ) The locus
P\ Pyequcile 1S the union of the two open subsets of P given by P; # 0 and
P, # 0. On each one of them, z; is a regular expression in ay, as, by, t. For
P, # 0 this expression is

t(1+4a;)
32(t—1)by—(1+4ay) (dait —4ag(t—1)+1)

20 = —

Once 2, is known, we may choose a solution wy of wg = 29(20 — 1)(20 — ).
For the zero ¢ of the (1,2) coefficient of U we have two expression, namely

g =2 — % and ¢ = _16(t_t1()1bia_;(1_61212_1). This yields a formula for c. We

c
recall that the pair (wyg, ¢) is unique up to a sign.

7.3 Intermezzo on Painlevé VI

We consider a family of connections, more general than the Lamé connection,

d d Ay A, As
oA o 2
dz+ dz+z z—1+z—t

WithAj:<aj b, )forj:1,2,3.

Cj —aj

Put Ao, = —A; — Ay — A3. The assumptions are:

A; has eigenvalues £6;/2 (equivalently a3 + bjc; = 65 /4 for j = 1,2,3),

Ay = < _960/2 0 0/2 ) (equivalently > a; = 0/2, > b; =0, > ¢; =0).
The (1,2) entry of A has a single zero, namely ¢ := MJFZ% (if byt + bo(t —
1) = 0 then we write ¢ = 00). One considers in this space of connections a
family %+A(t) (i.e., all a;, bj, q, ... are analytic functions of #). Schlesinger’s
theorem can be formulated as follows (compare [J-M]).
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Theorem 7.2 (Schlesinger) Suppose that 0; ¢ Z for j=1,2,3,00. Con-
sider family diz + A(t), holomorphic in t and defined in a neighbourhood of t.
Suppose that not all A;(ty) commute and that q(tg) # co. Then the family is
isomonodromic if and only if ¢ = q(t) satisfies the two equations

q(g—1)

d
-1 "

q—1 q
'—9 209~ 1—04
¢ =2m—+ aQt—i—( )

1 1 o 1 1 1
q—1+q—t)(q) (t+t—1+q—t
alg—1)(g 1) ((900—1)2 031 0 -1 9%—1t<t—1>>

2(t —1)? 2 2¢2 2(q-12 2 (¢—1)

1
qII:1/2(§+ )ql+

The last equation is the Painlevé VI equation with parameters (6, 02, 03, 0).
We note that the first equation for ¢ is hard to find in the literature. More-
over the Painlevé VI equation is sometimes parametrized in a different way.
If ¢ is known, then one recovers all a;, b;, ¢; (up to the action of G,, on the b;
and ¢;) from the equality ¢ := wﬁ% and the equation for ¢’. The choice
6; =1/2 for j =1,2,3,00 defines the Lamé connection.

A point of order m on the elliptic curve w? = z(z — 1)(z — t) can be
seen as a pair (zo(t),wo(t)) of algebraic functions in ¢. It has been shown
by E. Picard, [Pic], that the coordinate zy(t) is a solution of PVI (0,0,0,1)
(compare [Maz|).

We will use the transformation wywow; of Okamoto to obtain solutions
for PVI (1/2,1/2,1/2,1/2). This transformation is described as follows (see
[Ok, p. 356]).

Suppose that ¢ is a solution of PVI for the parameters (61,605, 63,605). Then
q + 55 with

. t(t - ].)q’ 9_1 I 02 X 03 -1
C29(g-1)(g—1t) 29 2(-1) 2(qg—1)

is a solution of PVI for the parameters

p

07 =1/2(60 — 02+ 03+ 0s) — 1, 05 =1/2(—01 + 0 + 05 + 0) — 1,

03 =1/2(01 + 62+ 0; —0) + 1, 05, =1/2(61 + 63 — 03+ 0) + 1.
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In particular, a solution ¢ of PVI (0,0, 0, 1) yields a solution ¢+ %, with p =
sl — sy with ¢ = 9 is a solution of PVI (=1/2,-1/2,1/2,3/2).
Accidently this equation is identical with PVI (1/2,1/2,1/2,1/2).

In particular, a point (2q(t), wo()) of order m on the elliptic curve yields
Zo(ZO—l)(Zo—t) dZO)
20(20—1)—t(t—1)z]

the algebraic solution z; — for

PVI (1/2,1/2,1/2,1/2).

(with z9 = 20(t) and 2z =

7.4 Points of finite order on the elliptic curve

Each member V, of the Lamé family is induced by a regular equation of rank
one on the elliptic curve E, given by w? = z(z — 1)(z — t). Taking the shift
into account, V, is the push forward of Ve = {(c + o) & _ du} @ ¢ or of

z—2z9 /2w
Ve = {c£ — 24} @ ¢, where ¢ a constant and (29, wo) € E.

For the moment we fix a complex value for ¢ (different from 0,1, oo) and
take (29, wp) € E(C). The differential Galois group of V, is equal to D52 if
and only if the corresponding rank one equation on E has a cyclic differential
Galois group of order 2n. The latter is equivalent to the statement that the
equation Ve = (¢ + %170) 52 2 @eor Ve =ciZ @e, has a cychc differential
Galois of order m such that L.c.m. (m,2) = 2n Thus m = n or m = 2n if
n is odd and m = 2n if n is even. We note that Ve = c = ® e has infinite
differential Galois group if ¢ # 0. Thus we may omit this case

If Ve = (¢ + ’Zf—;‘g))g—j) ® e has a cyclic differential Galois group of order
m, then (zp, wp) is a point of exact order m. Moreover, for a point (zg, w)
of exact order m, there is precisely one value of ¢ such that the differential
Galois group is cyclic of order m.

We continue the discussion in section 3 and analyze the exact sequence
0 — C — Hom(m (F),C") - E—0.

As before, E = C/(Z + Cr) and we choose as generators a,b of m1(E) the
circles R/Z and R/Z7. This identifies Hom(m(E), C*) with C* >< C*, by
h — (h(a), h(b)). The first map of the exact sequence is d — (e?,e). Put
S' = {z € C*| |2| = 1}. Every element of C* x C* can be written uniquely
as (e, e?™) - (s1,s9) with d € C and sy, s, € S'. In particular, the restriction
of the second map of the exact sequence to S' x S' is a bijection. Thus for
a given point (zg,wy) € E of exact order m, there is precisely one value of

¢ such that Ve = (c + 2E20) 42 @ ¢ has a cyclic differential Galois group of

z—20

27



order m. We note that it is, a priori, difficult to produce a formula for this
c. However, F. Beukers has proposed a formula (see [Be]).

Now we consider ¢ as a variable and investigate a family of Lamé connec-
tions V(¢) with fixed differential Galois group D32, The corresponding rank
one connection Ve = (c(t) + wzfzo(%))g—; has the property that (zo (%), wo(t)) is
a point of order m. This point is defined over a suitable algebraic extension
of C(¢). The monodromy of this family depends in a continuous way on ¢
and lies in Hom(m(F),{¢ € C*| ("™ = 1}). Since this group is finite, the
family has constant monodromy.

The corresponding algebraic solution for PVI (1/2,1/2,1/2,1/2)is zp— "2
according to Theorem 7.1 and the formula for the (1,2) entry of U. A combi-
nation of Picard’s result and Okamoto’s transformation yield the expression
20 — % for this solution. For the uniquely determined ¢(t) we
find therefore the following formula

wo(t) e(t) = 20(t) (20(t) — 1) — t(t — 1)z(2)" .

8 The locus Py for D]S\,L2 with N =2,3,4

8.1 Division polynomials

In this subsection we recall some facts on torsion points on elliptic curves
directly related to the locus for D52, First we follow [Was] (or [Sil], p. 105)
in the description of the division polynomials 1, with m > 1. Suppose that
the elliptic curve E is given in the Weierstrass form w? = 23 + Az + B.

The points # 15 of order dividing m lie on this affine part of the curve
E. Their number is m? — 1 (over an algebraically closed field of charac-
teristic 0). The z-coordinates of these points are the zeros of a polynomial
Um € Z[A, B][z, w] (with defining relation w? = 23 + A2 + B). For odd m,
Yy € Z[A, B][z] and for m even, 1, € wZ[A, Bl[z]. In the latter case one
may replace 1,,, by 12 in order to have a polynomial in Z[A, B][z]. These
polynomials are given by the following recurrence relations

Yo =0, ¥ =1, thy = 2w, 1h3 = 32" + 642> + 12Bz — A? ,
Yy = 4w (2% + 542" +20B2> — 5A%2* — 4ABz — 8B — A?),

¢2m+1 = ¢m+2¢21 - wm—lng_l form > 2 )
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me = (2“))71 'wm ’ (wm+2w3171 - wm*2w72n+1) :

The zero set of 12, (or its square free part ¢,) is precisely the set of the
z-coordinates of the of points with order # 1 and dividing m.

We specialize this by replacing Z[A, B] by the function field F':= C(j) of
the j-line. Then E is the ‘universal curve’ above the j-line. The splitting field
of F' defined by 17, is the function field of the modular curve X (m). The ram-
ified Galois covering j : X(m) — P' is known to have group PSLy(Z/mZ).
It follows that the Galois group Galy of F//F acts transitively on the points
of precise order m. Thus the minimal polynomial for the z-coordinate of a
point of precise order m is given by Hd‘m(d;;)“(m/d).

Here we are interested in the division polynomials over the field C(¢) which
is a Galois extension of C(j) with Galois group S;. The substitution z —
z+ 51 brings z(z—1)(z —¢) into the Weierstrass form 2%+ A(t)z+ B(t). Put
Om = Um(A(t), B(t), z2—11). This is the division polynomial for the Legendre
family. Let ¢; denote the square free part of ¢,,. The z-coordinates of the
points of precise order m are the zeros of the polynomial Hd‘m(qﬁz)“(m/d).

For odd m this polynomial is irreducible. For even m this polynomial
has three irreducible factors, which are permuted by the Galois group Sj3
of C(t)/C(j). These statements can be deduced from the Galois action of
Galg(y) on the group (Z/mZ)?* of all points of order dividing m.

We note that o € S3 permutes in fact the three points of ramification and
permutes the three finite singular points of the Lamé connections.

8.2 Points of order 2

The points of precise order two on the elliptic curve yield reducible Lamé
connections with cyclic differential Galois groups of order 4. The formulas
for these connections are obtained from the formula % + U* of subsection
7.1, specialized with wy =0, c=0and zg = 0,1,¢. Put A = 42(2—1)(2—1).
One finds

22—t 0
(1) For 20 =0, £ + & 0 gl
(2) For zp =1, &£ + & S ! ]
I 0 —2?2+ 22—t
(3) For zg =t, £ + L S ’ ]
LA 0 —22 4+ 2tz — t
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These equations do not correspond to points of the parameter space P.
They correspond in fact to the three singular points of Spec(R;p,).

8.3 The locus P, for D§L2 and points of order 4
The equation for the z-coordinates of the points of precise order 4 is

$4(2)
Pa(2)

The three irreducible factors produce the components of P,. Let zy de-
note a zero of the polynomial. The formulas w3 = 2¢(z9 — 1)(20 — t) and
woc = z(z0—1) —t(t—1)“2 and the universal family of subsection 7.1 yield
explicit formulas for the connectlon above the three components of P,. Each
component is an open subset of the projective line, parametrized by A := 2.
This open subset is determined by the condition ¢ # 0, 1, occ.

= (2 —t)(2* =22+ 1)(2* =2tz +1t) € O(t)[7] .

1. The first factor is parametrized by zo = A, t = A2. One has further
2wgc = 2t — zg — zpt. Put A =8 (2 — A?) (2 — 1) 2. After conjugation of

1
the system by (

0
, one obtains
0 8\

22— A+1224+X (X241 A=12A+1)>(=)—2)
A—3z 2224+ (A+1)°2— X (N2 +1)

1

A

2. The second factor is parametrized by zp = A, t = —A? + 2. One has
Qwoe = —t—zpt+2 2. Put A = 8 (2 4+ A? — 2)) (z — 1) z. After conjugation

A+2 0
of the system by 0 g | one obtains
1| 22242 (—4+XN)z2=X(N=2) AA=2)(A=2+2)
A A=2)(=A—2+32) A —222 = AM=4+ XNz +X2(A—2)
3. The third factor is parametrized by 2z = A\, t = 2,\A—i1 One has 2wgc =

2tz —t —2p. Put A =8 (2A—1)z(2 — 1) (z—Q:\\—:) One finds

AXA=1)((=2 A+1)24A
L[ @A-DE2H(2A- Do+ 1/l
A g ALLOAEA AU D) (2A = 1)(=222 + A+ 1)z — )
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AIA-1 0
After conjugation with ( 0 %) ) one obtains the system
1| @A=1) 222+ (=2A=1)2+)) (=2X+1)z+ A
A (=6A+3)z+X (4N—-1) (2A = 1)(=222+ (22 + 1)z — A)

8.4 The locus P; for D§L2 and points of order 3 and 6

The locus Pj is derived from the points of order 3 and 6. The z-coordinates
of the points of precise order 3 are given by the irreducible polynomial

h3(2) = =321 + 423+ 42° — 62 +
The

For the points of precise order 6 this is the polynomial Fg := ¢3(‘iﬁ)$j(z).

latter has three irreducible factors

Fs o = R R N

Fop=2"—42%+ 622 — 4ot + %,

Fs. = 2P — 622t + 4zt + 4zt — 3t
These define the four connected components of P;. Each one has a rational
parametrization. For a zero z, of ¢ one has wi = z9(z9 — 1)(20 — t) and
woe = zo(z—1) —t(t—1)“2. We note that the solutions g of PVI attached to
this examples happen to have poles that do not correspond to ¢t € {0, 1, oc}.

Using section 7.1, one derives a formula for the connection above each of
these components.

1. ¢3(20,t) = 0 is parametrized by zy = 55— = — 2_/\ )1 . Moreover
6woe =t — 2 2ot — 2 29 + 3 29%. After conjugation by ( ) the system
is
e PA=2)A+1)2 (N2 =A+1)2+22(1—-2)
2x—1)A A
IA=2) (A —1)z— A?) e
(22X - 1)A (22X - 1)A
where ) 3
-2
— @3 _
A =6"2(z 1)<z—|— 2)\_1>
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Gi = (=54 +108)) 22 +12 (N2 —4X+1) A+ 1)*2 =622 (A —2) (42> = A+ 4)

2. The parametrization of Fg,(20,%) = 0 given by zp = A\?, ¢ = —(’\2_/\{)1\3.
NM+6A—2 0 % %
Conjugation with yields the system ,
0 18X oy =H
A A
A—2))\3
WhereA:36(2)\—1)2(2—1)<z+(2)\7)1> ,

Q=02 -4+ (A=) 2+2(1-2),
Hy = (18X —9)22 +2(2X — 1)(20* — 607 — 1)z — A*(A — 2)(2\* + 3\ — 4),
Hy = 2A=4)(2A=1) (BN =2A+2) 2= N (N’ +6A-2)) .

3. The parametrization of Fgp(20,t) = 01is 29 = —%, t = —(A{/\ijg.

2X —6X2—1 0
0 , | one obtains the system

After conjugation by <

1/92A=1D(A=2)(A+1)>(A\—2)

Hy

A A

o, o
K A

where

A=3602A—1)z(z—1) <z+w> :

20 —1
Hy = (18XA=9)2"+2 (A =2) (N +6A—2) 24X (A—2) (41> =3)X* - 2) |
Hy = (36X —72)(—(2A—=1) (2N =2X+45) 2 =X 2N —6X*—1)) .

4. The parametrization of Fg.(z0,t) =01is 20 = —A (A —2), t = —(’\2;2_)1\3.
(A2 —4X+1) (M =X+1) 0
After conjugation by one obtains the
0 18)2
system
g 204D A=2) (=22 + 1) z+ X (A2 =1 +1))
A A
Hy —H
A A
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where
(A—2))\°
ox—1 )7

Q=02X-4H AN+ ((=22A+Dz+ A (N2=21+1)) ,

A=3602A-1)(z—1) <z+

H = (m9+18M)22+42XA-1)(A=2)(A\+1)*2
A A=2) (22X —4N* —3N —4A+2)

Hy=—2A=4)(2A =1 (BN =8A+5)z + AN —4A +1)(\ = A+ 1)).

8.5 The locus P, and points of order 8

The polynomial iigzg has three irreducible factors. One of them is Fg(z) =
28 —20t2% +32(¢ +17)2° — (16t + 58> + 16t%) 2" + (2¢? + 32t7) 2% — 20t + ¢4,

This factor describes one of the three connected components of P;. A rational
parametrization of Fg(zp,t) = 0 is given by

A=1)%A M(A=1)*
20 — — PPN Y = 1674
(2X-1) (2A-1)
After conjugation with
(36 AT —32X3+4X2+1)(6X2 —4X+1) 0
0 320-1)A@2r-1)°
one obtains the system
o Q
A A
[ ﬂ X ]
A A

where

Q = 1/4 23 -1)° 2 X —4xr+1)°
(—4>\ (6X2—4X+1)(A—1)°+ (2A2 =4 X +3) (2)\—1)3z>
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H, =
—4N(1440% — 44807 + 608A% — 416X5 + 15201 — 4803 4240 —8X +1)(A —1)3
—(9 = 16X + 422 + AN (2N — 4N+ 122X - 122+ 82X —1)722

Hy = 16X (36 X* —32X3 4422 41) (6A2 —4A+1) (A - 1)
+12 (4028 =80 A% + 100 X" — 112X% + 8672 =36 A +7) (21 - 1)%2

Remarks 8.1 We note that the formula for L, (y), given at the end of section
1, provides an efficient method to verify that the differential Galois group of
a given equation is contained in D312, It suffices to test if L,(y) = 0 (for n
even) or Lo, (y) = 0 (for n odd) has a rational solution. In the formula for
L, (y) the exponential solution S of the second symmetric power of L(y) is
needed. If L(y) is obtained from the system £ + U using the cyclic vector
(1,0), then
zZ — 2

Ve —1)(z—t)

8.6 Decidable
A;

Let a differential operator d% + 22:1 P
conditions of section 5. We suppose that the equation is irreducible and that
the field K, generated by all entries (including ¢), is a finite extension of Q(¢).
We claim that there is an algorithm deciding whether the differential Galois
group is D32 for some integer n > 2 or equals D52, This claim is equivalent
to the assertion that there is an algorithm deciding whether a point on the
elliptic curve w? = ¢z(z — 1)(z — t) has finite order or not. This problem has
been studied by B. Work, F. Baldassarri and B.M. Trager et al.(see [Tra]).

If K is a number field, then according to a theorem of L. Merel [Mer],
there is an effective function N of [K : Q] such that any elliptic curve, defined
over K, has, over K, no point of order > N. Hence there is an algorithm in
this situation.

Suppose that ¢ is transcendent. Then there is also an effective bound on
the order n of points on £ with values in K. This bound comes from the fact
that the genera of the modular curves X;(n) tend to infinity. If the genus
of Xi(n) is larger than the genus of K (viewed as a curve) then the elliptic
curve has no points of order n with values in K. Again there is an algorithm
in this case.

be given where the A; satisfy the
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9 Variations on the Lamé connection

The aim is to describe the family of connections (M,V) on P! with vec-
tor bundle M =~ O(0) @ O(—1), connection V with regular singular points
0,1,¢,00 and local exponents 0,1/2 for the first three and 0, —1/2 for oc.

We present M as the sub-bundle Oe; @& O(—[oc])es of the free bundle
Oe; @ Oey. The calculations will be given in terms of this basis ey, e5. The
group of the automorphisms Aut of M equals

<a c+dz

0 b ),Witha,beC*andc,dEC.

VM — Q0]+ [1] + [t] + [oc]) ® M, and thus

: b
Velz(z % v)dz®el+(z ! )dz ® ey with ijzo,

4 d.
Vey = (co + Z G )dz®61+(z I Vdz® ey,

. Z — Sj
7j=1,2,3
where s1, 89, 53 = 0,1,¢. One finds that L = VC% equals

d 1 a; c; 0 co
=% i G
dZ+ZZ—S]‘<bj dj>+<0 0)’

§=1,2,3
with relations a;+d; = 1/2, a;jd; = bjc; for j =1,2,3 and ) b; = 0. Now we
compute the matrix of V, locally at z = co. We use the notations s = 1/z
and f1 = €1, f2 = Sé9.

VA ) R P B L

1—s;8" s

%®f1+(1—2 Y ey,

1—s;8" s

C.
Vs =—(co+ g ]
f2 (¢o 1— sjs)
Thus the “residue matrix” of V at oo is equal to

(i 5 )

35



This matrix has eigenvalues 0, —1/2 and this gives the relations

_Za]‘+1_2dj = —1/2 and
(=) a1 =D "dj)=(co+ > ;)= > bjs; .

The first relation is superfluous. In total we have 13 variables and 8
(nice) relations; this yields a space S of dimension 5. After division by the
automorphism group of the bundle M we find a space of dimension 2 (as it
should be). We make this precise by computing, step by step, S/Aut. The
expression

~ 1 az 1 —az
L'_<0 1>-L-<0 1 ),foraconstanta,

is again a connection of the required type. Let its coefficients be denoted by
ai, ..., Co. One calculates that

5(]:Cg+a(—1—zaj+zdj)_a225jbj )

and b; = b; for all j.

Suppose that the coefficient Y b;s; of & is zero.
(This is a rather special). Then (=) a;)(1 — > d;) = 0 and the coefficient
of o is not zero. In this case there is a unique a such that ¢q = 0.
After performing this transformation, we may suppose that ¢g = 0. Now we
consider the transformation

= (17 1 =p
L.—<0 1>-L-<0 1 >,forac0nstantﬁ.

The (1,2) coefficient of the new matrix is

a; 2 b; d; ¢
—~ — + + :
BZZ—S]‘ BZZ—SJ‘ ﬁZZ—Sj ZZ—S]'
One develops this coefficient at 2 = oo as series in s, this yields

s{BO Jdj = aj)+ ) e} + 57,
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and there is a unique 3 such that the coefficient of s is 0. After performing
this transformation, one has that ) ¢; = 0 and the ‘residue matrix’ of V at

D!

There are two possibilities for this matrix, namely > Ja; =0, 1-> d; = —1/2
ory . a;=—1/2, 1->"d; = 0. We continue with the first case. One performs
the transformation

= (v 0 . (O
L.—<0 1) L < 0 1),foranonzeroconstantv.

If S, 2 = 0or =% =0, then V is ‘very reducible’ in the sense that

z—sj z—Sj
Oeq or O(—[oc])es is invariant. We remove this very reducible case from the
parameter space.
Suppose that > b # 0, then is follows that (b1, by, b3) ~ (t—1,—t,1). One

Z2—S8j

may normalize, using 7, such that (b, by, b3) = (t — 1, —¢,1).

For the second possibility, Y a; = —1/2 and 1 — > d; = 0, one can
perform the same steps. We note that this case is not equivalent under the
action of Aut to the case ) a; = 0.

Suppose that the coefficient Y b;s; of a2 is not zero.
(This is the general situation). There are two values for o which transform
co into 0. At least one of them allows a value of § which transforms, in the
next step, Y ¢; into 0. Thus we may already suppose that ¢ =0, > ¢; = 0.
Now we consider again the transformation

T . 1 5"'042 1 —5—@2
L'_<U 1 > L <0 1 >, for constants «, 3,

and suppose that the property ¢p = 0, > ¢; = 0 is preserved. We observe
that (— > a;)(1 — > d;) = 0. Suppose that > a; = 0. Then one computes
the existence of a unique non zero element 3 4+ «az, that preserves ¢y =
0, > ¢; = 0. This element transforms > a; = 0 into > a; = 1/2. If one
starts with > d; = 1 (or equivalently Y a; = 1/2), there is again a unique
non zero element  + az, that preserves ¢o = 0, > ¢; = 0. This element
transforms ) a; = 1/2 into ) a; = 0. Thus we can eliminate the action

of the group of transformation {< (1) p —i—laz ) | @, € C} by requiring
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co=0, Y ¢;=0, > a; =0. Then we are left with the action of the group

7 0 v € C*}. This action can be eliminated by requiring that, say,
01

Z bij = 1.

A space of connections
We restrict ourselves to connections with ¢ = 0, ¢; = 0. Of the two
possibilities for ) a; we choose ) a; = 0. Here we have omitted the rather
mysterious special situation ) s;b; = 0 and Y a; = 1/2. As before, the
connection is called ‘very reducible’ if either Oe; or O(—[oc])eq is invariant
under the connection. Consider the space X of connections given by:

=0 a; =0 b=0) ¢=00a;(1/2—a;) =bjc; (j =1,2,3),

(by,b9,b3) # (0,0,0) and (e, c9,¢3) # (0,0,0). Thus we have excluded the
‘very reducible’ connections. We still have to divide X by the action of Gy,.
Any g € G,,, = C* multiplies the b; with g, the ¢; with ¢~' and leaves the q;
invariant.

Consider the G,,-invariant morphism X — A? x P', which maps a point
of X to ((ay,as,as), b, be,b3]). For convenience we have identified A? with
{(a1,a9,a3) € A*| Y- a; = 0} and similarly we write P* for {[by, by, b3] €
P?] >~ b; = 0}. The image lies in the subset Y of (A%\ {(0,0,0)}) x P defined
by the equation bybsai(1/2 — ay) + bibgas(1/2 — ag) + bibeaz(1/2 — az) = 0.
A small calculation shows that Y is in fact the geometric quotient of X for
the action of G,,. One can verify that Y is non singular. In fact, the fibres
of Y — P! are non singular conics in A?2. The fibres are connected except for
the points [1,—1,0], [1,0,—1], [0,1, —1]. For each of these points the fibre
consists of two parallel lines.

We note that A%, P! should be seen as affine and projective variety over the

affine scheme Spec(C't, t(tll)]). The same holds for X and Y.

The special family
On the elliptic curve one considers the family of connections Ve = c% e
(with ¢ # 0) on the trivial line bundle Oge. This is pushed down to the
projective line as the family

i_i_Oc_
d: "\ %)

this is already a connection on M with the prescribed local exponents. Fur-
ther [by, b, b3) = [t — 1,—t,1] € P' and Y b;s; = 0. Conjugation with the
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. 1 f+az
matrix < 0 1

these connections into the points of Y with

), with 3 = 2(1+1)/3+8¢*/3 and a = —2¢ transforms

2¢2(14+1)/3 +8¢*/3 2¢2(14+1)/3 + 8¢*/3 — 2¢2
01:C(+)2{+C/,02:C(+)/1+t6/ G
2¢2(1 +1)/3 +8¢*/3 — 2¢%t
as = C( + )/ + C/ ¢ 7[b1762;b3]:[t_1:_t:1]'

2 —t
As before, the locus of the reducible equations can be computed. The

same holds for the universal family of connections, expressed in terms of the

. . d
differential (c + %230)52.
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