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The Lam�e family of 
onne
tions on theproje
tive line �F. Loray, M. van der Put and F. UlmerJuly, 2005
Introdu
tionA Lam�e 
onne
tion is a rank two 
onne
tion (M;r) on the proje
tive linewith simple poles at 0; 1; t;1 and lo
al exponents 1=4;�1=4 at ea
h singularpoint. The relation with the ellipti
 
urve E, given by the aÆne equationw2 = z(z � 1)(z � t), is investigated both in an algebrai
 and a 
omplexanalyti
 
ontext.For the latter an analyti
 moduli spa
e for Lam�e equations is produ
ed,based on monodromy above P1 n f0; 1; t;1g and the fundamental group�1(E). N.J. Hit
hin [Hi2℄ showed that the solutions of an irredu
ible Lam�e
onne
tion 
an be written in terms of the Weierstrass zeta fun
tion. Thiswas also noted by F. Beukers (see [Be℄) who presented a di�erent proof.In the algebrai
 
ontext a universal family, parametrized by a 
onne
ted,non singular variety P ! ft 2 C j t 6= 0; 1;1g of relative dimension 2, ofLam�e 
onne
tions with free ve
tor bundle M is expli
itly 
omputed.The Riemann-Hilbert 
orresponden
e yields an analyti
 isomorphism be-tween the analyti
 moduli spa
e and the algebrai
 one. In parti
ular oneobserves that P is not the full algebrai
 moduli spa
e. The missing partis the spe
ial family of Lam�e 
onne
tions (M;r) where M is not free butisomorphi
 to O(1) � O(�1). This family is 
omputed. For every memberof the family the di�erential Galois group of the Lam�e 
onne
tion is the in-�nite dihedral group DSL21 . Here DSL21 and DSL2n denote the preimages of the�MSC2000: 12H05, 14D20, 34A30, 68W30.1



in�nite dihedral group D1 � PSL2 and the �nite dihedral group Dn � PSL2under the map SL2 ! PSL2.The 
losed lo
us Predu
ible � P , representing the redu
ible Lam�e systems,is expli
itly 
omputed. It turns out to be a non singular divisor. The di�er-ential Galois group of a Lam�e 
onne
tion 
orresponding to p 2 P is redu
iblefor p 2 Predu
ible and is an irredu
ible subgroup of the in�nite dihedral groupDSL21 for p 62 Predu
ible. Let PN denote the 
onstru
tible subset of P 
onsistingof the points su
h that the 
orresponding Lam�e 
onne
tion has the dihedralgroup DSL2N as di�erential Galois group. An algorithm for the 
omputationof the lo
us PN , based on division polynomials for the ellipti
 
urve E, thePainlev�e VI equation and a transformation of Okamoto, is given. The lo
iPN with N = 2; 3; 4 are expli
itly 
omputed. We note that the lo
us of thepoints in P with di�erential Galois group equal to DSL21 is not 
onstru
tible.The reason is that this linear algebrai
 group does not satisfy the 
onditionposed in [Sin℄, (see also [B-vdP℄).A weak point of our presentation of Lam�e 
onne
tions is the separationinto two families, the one parametrized by P and the other the spe
ial family.In the last se
tion it is shown that one 
an produ
e a universal family 
ontain-ing both 
ases if one 
onsiders 
onne
tion (M;r) withM�= O(0)�O(�1).The 
lassi
al Lam�e equationLn;B(y) = y00+ f 02f y0�n(n + 1)z +Bf y = 0 with f = 4(z�e1)(z�e2)(z�e3);distin
t e1; e2; e3 and e1 + e2 + e3 = 0, has regular singularities at the pointse1; e2; e3 with lo
al exponents 0; 1=2. Further1 is a regular singularity withlo
al exponents �n=2; (n + 1)=2. For n 2 Z the di�eren
e of the lo
alexponents at 1 lies in 1=2 +Z. It is therefore possible to transform Ln intoa Lam�e 
onne
tion if n 2 Z. A suitable transformation yields an isomorphismof L0;B (with B 6= 0) with the spe
ial family. This explains in parti
ular thewell known result thatDSL2N with �niteN does not o

ur as di�erential Galoisgroup for L0;B.By an algebrai
 transformation Ln;B (for n � 1) is mapped to a 2-dimensional subspa
e Sn of the universal spa
e P of Lam�e 
onne
tions. Theinterse
tion of Sn \ PN is equal to the �nite set of points in the family Ln;Bhaving di�erential Galois group DSL2N . For n = 1 and N = 2; 3 our 
om-putations agree with the results of [Chi℄ and [Be-Wa℄. In 
onne
tion withthis we observe the following. Any s
alar equation for the Lam�e 
onne
tion,2




orresponding to a point p 2 P , has, in general, an apparent singularity, i.e.,a singular point di�erent from 0; 1; t;1. This explains that the dimension ofP is larger than the dimension of the moduli spa
es for the Ln;B. Moreover,it is rather ex
eptional that a point p 2 PN indu
es a 
lassi
al Lam�e equationwith di�erential Galois group DSL2N .1 Imprimitive di�erential modules of rank 2K denotes a di�erential �eld. The �eld of 
onstants C of K is supposed tohave 
hara
teristi
 0 and to be di�erent from K. Let M be a di�erentialmodule over K of dimension 2 and let B1; B2 be a basis of M over K. Anyelement m1 
m2 of the se
ond symmetri
 power sym2KM will be written asm1m2. In parti
ular B21 ; B1B2; B22 is a basis of sym2M . Let L � K be anextension of degree 2 and let N denote a 1-dimensional di�erential moduleover L. We write ResL=K(N) for N viewed as 2-dimensional di�erentialmodule over K.Lemma 1.1 Let F = �1B21 + �2B1B2 + �3B22 6= 0 generate a di�erentialsubmodule of sym2KM . One regards F as element of the polynomial ringK[B1; B2℄. Put � = �22 � 4�1�3. Then:(1) If F is a K�-multiple of a square (or equivalently � = 0), then we maysuppose that F = B21 . Now KB1 is a di�erential submodule of M .(2) If F is a produ
t of two distin
t linear fa
tors (or equivalently � 6= 0 isa square in K), then we may suppose that F = B1B2. Now KB1 and KB2are di�erential submodules of M .(3) Suppose that F is irredu
ible. We may assume F = B22 � �B21 . PutL = K(Æ) with Æ2 = �. There exists a 1-dimensional module N = Le overL with M �= ResL=K(N) and su
h that the kernel of the surje
tive (obvious)morphism of di�erential modules sym2KM ! ResL=K(sym2LN) equals KF .The di�erential module N = Le with �e = ue, with the above properties, isunique up to 
onjugation, i.e., u 2 L is repla
ed by its 
onjugate u.Moreover sym2KM is the dire
t sum of K(B22 � �B21) and the di�erentialsubmodule K(B22 +�B21) +K(B1B2).(4) Suppose that C is algebrai
ally 
losed and that M is irredu
ible and (for
onvenien
e) that the determinant of M (i.e., the exterior produ
t �2M) istrivial. Then sym2KM 
ontains more than one 1-dimensional submodule, ifand only if the di�erential Galois group of M is DSL22 . Moreover, in this 
ase3



there are pre
isely three 1-dimensional submodules of sym2KM and ea
h onede�nes a di�erent quadrati
 extension of K.Proof. (1) and (2) follow by straightforward 
omputation. In 
ase (3) wegive M the stru
ture of a ve
tor spa
e over L by pres
ribing ÆB1 = B2and ÆB2 = �B1. Thus we obtain a ve
tor spa
e N = LB1 over L. Let� on M satisfy �B1 = aB1 + bB2 with a; b 2 K. Then � on N is de-�ned by �B1 = (a + bÆ)B1. From the assumption that �(B22 � �B21) is amultiple of (B22��B21), it follows that ResL=K is isomorphi
 toM . The obvi-ous morphism sym2KM ! ResL=K(N) is given by B21 ; B1B2; B22 have imagesB21 ; ÆB21 ; Æ2B21 . The map is surje
tive and its kernel is generated by B22��B21 .The only freedom one has in givingM a stru
ture of di�erential module overL is by pres
ribing �B1 = (a� bÆ)B1. The rest of the statement (3) followsby easy 
omputation.The �rst statement of (4) is well known and follows in fa
t from the 
lassi-�
ation of the algebrai
 subgroups of Sl2(C). Suppose that the di�erentialGalois group of M is DSl22 . Then the di�erential Galois group of sym2M isthe group D2 (of order 4) and sym2M is the dire
t sum L1 � L2 � L3 ofsubmodules. Ea
h Lj 
orresponds to a di�erent surje
tive homomorphism�j : D2 ! f�1g. The quadrati
 extension of K 
orresponding to Lj is the�xed �eld of the Pi
ard-Vessiot �eld under the kernel of �j. 2In 
ase (3) of Lemma 1.1, the di�erential module will be 
alled imprimitive.Remark.In 
ase (4) of Lemma 1.1, the 
ondition that C is algebrai
ally 
losed 
annotbe omitted. We study this in detail.The assumptions are: M=K irredu
ible and dimension 2; �2M trivial,i.e., isomorphi
 to Ke with �e = 0; sym2M has more than one �-invariantline. We want to investigate whether the 
on
lusion of part (4) of the lemmais still valid if C is not algebrai
ally 
losed.If CK 
K M is irredu
ible, then the di�erential Galois group of thismodule over CK is DSL22 and there are pre
isely 3 �-invariant lines in CK 
sym2M . Two of them are already de�ned over K and thus the third one isalso de�ned over K.Suppose that CK
M is redu
ible. This module over CK is semi-simpleand is in parti
ular the sum of �-invariant lines.4



Case (i). Assume that CK 
M has more than two invariant lines. Thenthe di�erential Galois group G of this module a
ts on the solution spa
e V(of dimension 2 over C) and has more than two invariant lines. Thus G isa subgroup of the group C�. Sin
e also G � SL(V ), one �nds G � f�1g.Sin
e 0 = C 
 ker(�;M) = ker(�; CK 
M), one 
on
ludes that G = f�1g.Then G a
ts trivially on sym2V and sym2(CK 
M) is trivial. This impliesthat sym2M is trivial. The triviality of �2M implies that M �= M�. Thenone �nds that M 
 M� �= M 
 M �= sym2(M) � �2M is also a trivialdi�erential module. Amitsur gave a 
onstru
tion of su
h modules M . Forthis 
onstru
tion one needs a base �eld K whi
h is more 
ompli
ated than a�eld of the type C(z) with 0 = ddz . For a modern des
ription, using quaternion�elds, and examples we refer to [H-P℄, se
tion 2.5.Case (ii) Assume that CK
M has pre
isely two invariant lines. These linesare 
onjugated under the Galois group of C=C. Thus there exists a quadrati
extension C(w) � C, with w2 2 C su
h that K(w)
M = K(w)e1+K(w)e2and the following properties hold:(a) Let � denote the non trivial element of the Galois group of C(w)=C.Then we may suppose that �e1 = e2 and �e2 = e1.(b) �e1 = ae1 with a 2 K(w) and �e2 = �(a)e2.(
) a+ �(a) = f 0f for some f 2 K�.(d) M is generated by f1 = e1 + e2 and f2 = w(e1 � e2).Further �f1 = a+�(a)2 f1 + a��(a)w f2 and �f2 = wa�w�(a)2 f1 + a+�(a)2 f2.We dedu
e some more properties.(e) For any 
 2 K(w)�, the line K(w)(
e1 + �(
)e2) is not invariant under�. Indeed, this line 
omes from a line in M . This translates into: for every
 2 CK with 
 6= 0 one has 
0
 + a 62 K.(f) sym2(K(w) 
 M) = (K(w)e21 + K(w)e22) � K(w)e1e2 has at least two�-invariant K(w)-lines whi
h 
ome from sym2M . The line K(w)e1e2 
omesfrom sym2M . This module over K is trivial sin
e �e1e2 = f 0f e1e2. Hen
ethere must be a 
 2 K(w)� su
h that K(w)(
e21 + �(
)e22) is invariant under�. This translates into 
0
 + 2a 2 K. Thus a = �12 
0
 + b with b 2 K.(g) From (
) it follows that 2b = f 0f + 12 (N(
))0N(
) , where N(
) = 
�(
) is thenorm of 
. Thus a = �12 
0
 + 12 f 0f + 14 N(
)0N(
) .(h) N(
) is not a square in K, otherwise the module sym2(K(w)
M) wouldbe trivial. We 
on
lude the di�erential Galois group of CK
M is the 
y
li
group of order 4. 5



Finally, in order to show that there exists an example for the above sit-uation, we 
onsider the 
ase K = C(z) with 0 = ddz , w as above and wetake for the 
 in (f) the element z � w. With the 
hoi
e f = 1 we �nda = �14 1z�w + 14 1z+w . One easily veri�es this is indeed an example of therequired type. 2Corollary 1.2 Let M be an irredu
ible di�erential module of dimension 2over K. Then M is imprimitive if and only if there exists a quadrati
 exten-sion L � K su
h that L
K M has a 1-dimensional submodule.Proof. Suppose that M is imprimitive. Then M = ResL=K(N) for suitableL and N . The kernel of the 
anoni
al map L
K ResL=K(N)! L
LN = Nis a 1-dimensional submodule of L
K M .On the other hand, suppose that L
KM has a 1-dimensional submoduleT1. Using the 
onjugation of L=K one �nds another 1-dimensional submoduleT2. The 1-dimensional submodule T1 
L T2 of L 
K sym2KM is invariantunder the 
onjugation of L=K and thus provides a 1-dimensional submoduleof sym2M . 2Suppose thatM is an imprimitive di�erential module over K of dimension2. For every integer n � 2, the di�erential module symnKM has an expli
it 2-dimensional fa
tor (dire
t summand) ResL=K(symnLN). We use the notationof Lemma 1.1, i.e., L = K(Æ), Æ2 = �, N = LB1 and �B1 = (a+bÆ)B1. ThensymnLN has generator e = Bn1 and �e = n(a + bÆ)e. Then ResL=K(symnLN)has basis e; Æe and the matrix of � with respe
t to this basis reads� na nb�nb na + �02� � :The above method to �nd a fa
tor of the nth symmetri
 power 
an alsobe given expli
itly for s
alar equations. Consider a s
alar equation y00+a1y0+a0y = 0 over K with C algebrai
ally 
losed, su
h that its di�erential Galoisis an irredu
ible subgroup of DSL21 . The (abstra
t) solution spa
e has a basisy1; y2 su
h that the di�erential Galois group permutes the two lines Cy1; Cy2.Then S = y1y2 is a solution of the se
ond symmetri
 power and S2 2 K.This se
ond symmetri
 power readsy000 + 3a1y00 + (4a0 + 2a21 + a01)y0 + (2a00 + 4a0a1)y = 0 :6



The term S0S 
an be 
omputed expli
itly. As a 
onsequen
e the expressionS00S = (S0S )0 + (S0S )2 is known as element of K. Further y01y1 and y02y2 satisfy thepolynomial equationU2 � S 0S U + (a0 + a1 S 02S + S 002S ) = 0 over K:From this one derives a di�erential equation Ln for yn1 and yn2 .Ln(y) = y00 + (a1 + (1� n)S 0S )y0 + (n2a0 + (n2 � n)a1 S 02S + (n2 � n)S 002S )y:2 Conne
tions with 4 spe
ial singular pointsConsider an irredu
ible 
onne
tion of rank 2 on P1C having 4 singular points0; 1; t;1 and lo
al exponents 1=4;�1=4 for ea
h singular point. The generi
�bre of this 
onne
tion is a di�erential module M of dimension 2 over C(z),the �eld of rational fun
tions of P1C .Proposition 2.1 The moduleM is imprimitive and there is a 1-dimensionalsubmodule of sym2M su
h that the 
orresponding quadrati
 extension L �C(z) has the form C(z)(w) with w2 = 
z(z � 1)(z � t) and 
 2 C�.A dire
t proof by 
omputation will be given later on. First we 
onsiderthe 
ase where C is the �eld of 
omplex numbers C and we present an analyti
proof. We start by investigating the monodromy of M . One 
hooses a basepoint in P1C n f0; 1; t;1g and generators �1; : : : ; �4 of the fundamental group�1 of this spa
e, 
onsisting of loops around the points 0; 1; t;1 su
h that�1 � � ��4 = 1. The monodromy is a homomorphism �1 ! Sl2(C ), sendingea
h �j to an element Bj of order 4. The monodromy is therefore des
ribedby elements B1; : : : ; B4 2 Sl2(C ) of order 4 with B1 � � �B4 = 1.Lemma 2.2 Let B1; : : : ; B4 2 Sl2(C ) satisfy B1 � � �B4 = 1 and B4j = 1 forevery j. Let G be the group generated by the Bj. There are two possibilities:(i) G is redu
ible and 
ontained in a Borel subgroup of Sl2(C ).(ii) G is irredu
ible and 
ontained in DSl21 .Proof. We repla
e ea
h Bj by its image bj in PGl2(C ). Ea
h bj has order 2and b1 � � � b4 = 1. We have to 
onsider several possibilities.7



(1) Suppose that b1b2 has pre
isely two �xed points p1; p2 2 P1C . Then ea
hbj inter
hanges the points p1; p2 and the group generated by b1; : : : ; b4 is anirredu
ible subgroup of D1.Proof. b2b1 is the inverse of b1b2 and has also �xed points p1; p2. Nowb1b2b1(p1) = b1(p1) and thus b1(p1) 2 fp1; p2g. If b1(p1) = p1, then b2(p1) =b2b1(p1) = p1. Also b1b2b1(p2) = b1(p2) and therefore b1(p2) = p2. It followsthat b2(p2) = p2. Sin
e b1 and b2 have order 2 one �nds the 
ontradi
tionthat b1 = b2. We 
on
lude that b1 and b2 inter
hanges the points p1; p2.One has b1b2b3(p1) = b3b2b1(p1), sin
e b1b2b3 = (b1b2b3)�1 = b3b2b1. More-over b3b2b1(p1) = b3(p1). Hen
e b3(p1) 2 fp1; p2g. Similarly b3(p2) 2 fp1; p2g.Suppose that b3(p1) = p1 and b3(p2) = p2. Then b1b2b3 and b3 have bothorder two and both p1; p2 as �xed points. Then b1b2b3 = b3 and we �nd the
ontradi
tion b1b2 = 1.(2) Suppose that b1b2 has pre
isely one �xed point p. Then p is a �xed pointof every bj and the group generated by the b1; : : : ; b4 is redu
ible.Proof. b2b1 = (b1b2)�1 has also �xed point p. Now b1b2b1(p) = b1(p) and thusb1(p) = p. Then also b2(p) = p. Further b1b2b3(p) = b3b2b1(p) = b3(p) andthus b3(p) = p. Take for 
onvenien
e p = 1. Then one sees that the groupgenerated by all bj lies in an upper triangle group of matri
es. Hen
e thisgroup is redu
ible.(3) Suppose that b1 = b2. Then the group generated by b1; : : : ; b4 is the sameas the group generated by b1; b3. If b1b3 has pre
isely two �xed points, then the
orresponding group is an irredu
ible subgroup of D1. If b1b3 has pre
iselyone �xed point then the 
orresponding group is redu
ible. Finally b1 = b3 alsoprodu
es a redu
ible group.Proof. One 
an repeat the arguments in the proofs of (1) and (2) to provestatement (3). 2Se
ond proof. Let E denote the ellipti
 
urve given by the aÆne equationw2 = z(z � 1)(z � t). Let p1; : : : ; p4 2 E denote the points of E with im-ages 0; 1; t;1. Then E� := E n fp1; : : : ; p4g ! P1� := P1 n f0; 1; t;1g is a
overing of degree 2 and the homomorphism I : �1(E�) ! �1(P1�) is inje
-tive and its image is a subgroup of index 2. Write, as before, �1(P1�) =<�1; : : : ; �4j�1 � � ��4 = 1 >. Then the image of I is the kernel of the homo-morphism �1(P1�) ! f�1g that sends ea
h �j to �1. One 
an give �1(E�)generators a; b; �1; : : : ; �4 su
h that:(i) Ea
h �j is a loop around pj and I maps �j to a 
onjugate of �2j .8



(ii) There is only one relation, namely �1�2�3�4aba�1b�1 = 1.(iii) The images of a; b in �1(E) under the 
anoni
al map �1(E�) ! �1(E)are generators of �1(E).(iv) Conjugation with an (or any) element � 2 �1(P1�), not 
ontained in�1(E�), a
ts as �1 on the abelianized group (�1(E�))ab.We use the map I to identify �1(E�) with a subgroup of �1(P1�).Consider a homomorphism h : �1(P1�) ! SL2(C ) whi
h sends ea
h �j toBj. Then h(�j) = �1 for all j and h(a) 
ommutes with h(b). In parti
ular,h(�1(E�)) is an abelian subgroup of SL2(C ). Further, h indu
es a homomor-phism �1(E)! SL2(C ) whi
h will also be 
alled h. There are the followingpossibilities:(a) This abelian subgroup has pre
isely one invariant line C e in C2. ThenC e is also invariant under h(�1(P1�)) and the representation h is redu
ible.(b) This abelian subgroup has pre
isely two invariant lines C e1 ; Ce2. Thenh : �1(E) ! SL2(C ) has the form h(
)e1 = �(
)e1 and h(
)e2 = �(
)�1e2,for some 
hara
ter � of �1(E) �= Z2 su
h that �2 6= 1. For any � 2 �1(P1�),not 
ontained in �1(E�), h(�) inter
hanges the two lines C e1 and C e2 . Thisfollows from (iv). In parti
ular, the representation h is irredu
ible and itsimage is an irredu
ible subgroup of DSl21 .(
) This abelian subgroup has more than two invariant lines. Then h mapsevery element of �1(E�) to �1. Then h(�1(P1�)) is abelian (a
tually a 
y
li
group of order 4) and the representation is redu
ible. 2Observations 2.3 We supplement the information of Lemma 2.2 with a wellknown des
ription of the monodromy. The monodromy tuple (B1; : : : ; B4),asso
iated to a di�erential module as above, is only determined up to si-multaneous 
onjugation. The 
olle
tion T of all tuples (B1; : : : ; B4) 2 Sl42satisfying B4j = 1 for every j and B1 � � �B4 = 1 is a 
losed subset of Sl42.The group PSL2 a
ts on T by 
onjugation. There is a 
ategori
al quotient,namelyQ = Spe
[t1; t2; t3℄=(t21+t22+t23+t1t2t3�4). The morphism q : T ! Qis given by(B1; : : : ; B4) 7! (t1 = tr(B1B2); t2 = tr(B2B3); t3 = tr(B1B3)):S = f(�2; 2; 2); (2;�2; 2); (2; 2;�2); (�2;�2;�2)g is the set of the singularpoints of Q. The preimage of S is the lo
us in T des
ribing the redu
iblegroups (this follows easily from the proof of Lemma 2.2). Let Tirred denotethe open subset 
orresponding to the irredu
ible groups. Then q : Tirred !9



Q n S is a geometri
 quotient for the a
tion of the group PSL2 (this followseasily from the se
ond proof of Lemma 2.2). In parti
ular, Tirred is redu
ed,irredu
ible, smooth and has dimension 5.The se
ond proof of Lemma 2.2 leads to a 
onne
tion between the mon-odromy of the ellipti
 
urve E and the spe
ial monodromy for P1�. Let ahomomorphism � : �1(E)! C � , with �2 6= 1 be given. De�ne h : �1(E�)!SL2(C ) by h(�j) = �1 for every j and h(x) is the diagonal matrix withentries �(x); �(x)�1, for x = a; b. This homomorphism 
an be extended toa homomorphism � : �1(P1�) ! SL2(C ) as follows: for any x 2 �1(E�) onede�nes  (x) = h(x) (of 
ourse) and  (x�4) = h(x) � � 0 1�1 0�. Using (iv), oneeasily veri�es that  is indeed a homomorphism.We note that two 
hara
ters �1; �2 : �1(E) ! C � with �21 6= 1 6= �22indu
e isomorphi
 irredu
ible representations �1; �2 : �1(P1�)! Sl2(C ) if andonly if �2 2 f�1; ��11 g. We see TE := Hom(�1(E); C �) as an algebrai
 toruswith group of 
hara
ters �1(E). Let TE[2℄ denote the subgroup of the pointsof order dividing 2. Consider (TE n TE[2℄)= �, where �1 � �2 if and only if�2 2 f�1; ��11 g. The above 
onstru
tion indu
es an isomorphism of algebrai
varieties (TE n TE[2℄)= ��! Q n S:This isomorphism extends to an isomorphism TE= ��! Q:The isomorphism 
an be made expli
it as follows. One 
onsiders an element(B1; : : : ; B4) 2 T . Suppose that this tuple generates an irredu
ible subgroup,then the tuple is an example for 
ase (b) in the se
ond proof of Lemma 2.2.In the 
onjuga
y 
lass of the tuple there is an element of the form�� 0 r�1=r 0 � ;� 0 s�1=s 0 � ;� 0 t�1=t 0 � ;� 0 1�1 0 �� ;with s = rt be
ause B1 � � �B4 = 1. Moreover, (r; t) 6= (�1;�1). Theabove element is unique up to 
onjugation with � 0 1�1 0 �. This opera-tion 
hanges (r; t) into (1=r; 1=t). Thus we �nd an isomorphism betweenf(C �)2 n f(�1;�1)gg= � and Q n S, whi
h is essentially the same as theabove isomorphism.Proof of Proposition 2.1. We �rst 
onsider the 
ase where C is the �eld of
omplex numbers C . A

ording to Lemma 2.2, the monodromy group of M ,generated by B1; : : : ; B4, is an irredu
ible subgroup of DSl21 and the same10



holds for its Zariski 
losure whi
h is the di�erential Galois group. It followsthat sym2M 
ontains a 1-dimensional submodule.In 
ase the di�erential Galois group G is DSl21 or DSl2n with n > 2, there isonly one 1-dimensional submodule. The 
orresponding �eld extension L �C (z) 
orresponds to the unique surje
tive homomorphism h : G ! f�1g.The elements Bj 2 G have order 4 and it follows that h(Bj) = �1 for everyj. This implies that L � C (z) is rami�ed above ea
h of the points 0; 1; t;1.The extension L is therefore given by L = C (z)(w) with w2 = z(z�1)(z� t).If the di�erential Galois group G is DSl22 , then there are pre
isely three1-dimensional submodules of sym2M and there are also pre
isely three sur-je
tive homomorphisms h : G ! f�1g. As above, it suÆ
es to verify thatthere exists a homomorphism with h(Bj) = �1 for all j. The 
ommuta-tor subgroup of G is identi
al with the 
enter of G. Consider the imagesb1; : : : ; b4 2 PSl2 of B1; : : : ; B4. They generate a 
ommutative group withtwo generators, say A and B, ea
h with order two. One has bj 2 fA;B;ABgfor all j. Further the surje
tive homomorphisms h : G! f�1g are given by(h(A); h(B)) = (�1;�1); (�1; 1); (1;�1). Up to a 
hoi
e for A and B thereare three possibilities:(i) (b1; b2; b3; b4) 7! (A;B;A;B). The possibilities for L � C (z) are given bythe sets of rami�ed points f0; 1; t;1g; f0; tg; f1;1g.(ii) (b1; b2; b3; b4) 7! (A;B;B;A). The possibilities for the sets of rami�edpoints are f0; 1; t;1g; f0;1g; f1; tg.(iii) (b1; b2; b3; b4) 7! (A;A;B;B). The possibilities for the sets of rami�edpoints are f0; 1; t;1g; f0; 1g; ft;1g.In parti
ular, in ea
h 
ase one of the 
orresponding �elds is C (z)(w) withw2 = z(z�1)(z� t). In the algorithmi
 part of this paper we will verify thatea
h of the 
ases (i){(iii) are present in our family.Now we 
onsider a general 
ase. We may suppose that the algebrai

losure C of C is a sub�eld of C . Let M+ denote the di�erential moduleC(z) 
C(z) M . For this di�erential module the statement of the proposi-tion follows easily from the statement for the 
ase C . Further sym2M+ hasone or three 1-dimensional submodules. They produ
e one or three distin
tquadrati
 extensions of C(z). It follows that the Galois group of C=C pre-serves these 1-dimensional submodules. Therefore sym2M has one or three1-dimensional submodules. For one of them the �eld extension is over C(z)given by w2 = z(z � 1)(z � t). Thus over the �eld C(z) this equation readsw2 = 
z(z � 1)(z � t) for some 
 2 C�. 211



3 Regular 
onne
tions on an ellipti
 
urveIn this se
tion the base �eld will be C , the �eld of 
omplex numbers. Let Mdenote a di�erential module over C (z) with four singular points 0; 1; t;1 andlo
al exponents 1=4;�1=4 for ea
h of them. A

ording to Proposition 2.1,M is the restri
tion to C (z) of a di�erential module of rank one over the �eldC (z; w) with w2 = z(z � 1)(z � t). After tensoring M with the di�erentialmodule (C (z)e; �), where �(e) = (1=4z + 1=4z�1 + 1=4z�t)e, the new di�erentialmodule has lo
al exponents 1=2; 0 at ea
h singular point. The 
orrespondingrank one di�erential module over C (z; w) = C (E) has no singularities. HereE denotes the ellipti
 
urve given by the equation w2 = z(z � 1)(z � t). Westart by des
ribing the regular 
onne
tions on E.A regular 
onne
tion is a pair (L;r) of a line bundle on E and a 
on-ne
tion r : L ! 
 
 L, where 
 denotes the sheaf of the holomorphi
di�erentials. Its generi
 stalk is a ve
tor spa
e C (E)e together with a 
on-ne
tion r given by re = ! 
 e where ! of a meromorphi
 di�erential onE. The 
ondition that the 
onne
tion has no singularities translates into !has only simple poles and all its residues are in Z. Further ! is unique up tothe addition of a term dff , with f 2 C (E)� . For any meromorphi
 di�erentialform ! with at most simple poles, we de�ne Res(!) :=Pp2E resp(!)[p℄. Thisis a divisor of degree 0 on E if all the residues of ! are integers. Let ! de�nea regular 
onne
tion and let the line bundle L 
orrespond to Res(!). Then! 
orresponds to a global regular 
onne
tion r : L ! 

 L on E.If L is trivial (i.e., isomorphi
 to OE), then ! has the form 
 dz2w for some
 2 C .If L is not trivial then this line bundle 
orresponds to a divisor [q℄� [1E℄,where 1E is the neutral element of E (as usual taken to be the point z =1) and q = (z0; w0) is some point (6= 1E) on the aÆne 
urve given byw2 = z(z � 1)(z � t). In this 
ase ! 
an be written in normalized form as(
+ w+w0z�z0 ) dz2w with 
 2 C .Now we make a 
omplex analyti
 study of the regular 
onne
tions on E.Consider the exa
t sequen
e of sheaves on E0! C � ! O�E ! 
! 0;where C � is the 
onstant sheaf, O�E is the sheaf of invertible holomorphi
fun
tions and 
 is the sheaf of holomorphi
 di�erential forms. The morphism12



O�E ! 
 is given by f 7! dff . This indu
es an exa
t sequen
e for 
ohomologygroups 0! C dz2w ! H1(E; C �)! H1(E;O�E)! H1(E;
) � � � :H1(E;O�E) is the group of the equivalen
e 
lasses of line bundles Pi
(E).Its subgroup Pi
0(E) of equivalen
e 
lasses of line bundles of degree 0 isidenti�ed with E. Further H1(E; C �) is equal to Hom(�1(E); C �), where�1(E) denotes the fundamental group of E. One easily derives from theabove that the following sequen
e is exa
t0! C dz2w ! Hom(�1(E); C �)! E ! 0:Lemma 3.1 There is a natural isomorphism of groupsHom(�1(E); C �)! f(L;r)g= �;where the last group is the group of the equivalen
e 
lasses of the regular
onne
tions on E of rank 1.Proof. Let U : C u ! E denote the uniformization of E. Here u denotes theglobal parameter of C . The kernel � of U is identi�ed with �1(E). Supposethat a homomorphism � : � ! C � is given. Let C u � C v denote the trivial(geometri
) line bundle on C u provided with the trivial 
onne
tion. Here vdenotes the global parameter on the linear spa
e C . Let � a
t on C u � C vby �(u; v) = (u+ �; �(�)v). The quotient by the a
tion of � is a (geometri
)line bundle (C u � C v )=�! C u=� = E with indu
ed 
onne
tion. The sheafof se
tions of this geometri
 line bundle is a line bundle L on E (of degree0) and is provided with a regular 
onne
tion.Let, on the other hand, a regular 
onne
tion (L;r) on E be given. ThenU�(L;r) is a trivial 
onne
tion on C u . The group � a
ts on the 1-dimensionalsolution spa
e of this trivial 
onne
tion and this produ
es a homomorphism� : �! C � . 2A slightly di�erent way to �nd the isomorphism of Lemma 3.1 is thefollowing. Consider the exa
t sequen
e of sheaves on E:0! C � !M� ! 
sp ! 0;13



where M� denotes the sheaf of the invertible meromorphi
 fun
tions on Eand 
sp denotes the sheaf of the spe
ial meromorphi
 di�erentials having atmost simple poles and having residues in Z. The morphism M� ! 
sp isgiven by f 7! dff . The 
ohomology sequen
e reads0! C � ! C (E)� ! H0(E;
sp)! H1(E; C �)! 0:Indeed, H1(E;M�) = 0 is known. The 
okernel of C (E)� ! H0(E;
sp) hasalready been identi�ed with the isomorphism 
lasses of the regular 
onne
-tions on E.Proposition 3.2 Let � : E ! P1 denote the morphism, indu
ed by the map(z; w) 7! z. Let (L;r) denote a regular 
onne
tion (of rank one) on E. Then��(L;r) is a rank 2 
onne
tion on P1 having 4 regular singular points, namely0; 1; t;1. At ea
h singular point the lo
al exponents are 0; 1=2. Further ��OEis isomorphi
 to the ve
tor bundle O(0)�O(�2) on P1 and ��L, with L 6= OE,is isomorphi
 to the ve
tor bundle O(�1)� O(�1) on P1.Proof. Let U : C u ! E denote again the universal 
overing. Let ~� denotethe group of the automorphisms of C u generated by the translations over theelements of � and the map u 7! �u. Then C u=~� is identi�ed with P1. Thetrivial 
onne
tion on C u (provided with a homomorphism � : �! C �) yieldsa 
onne
tion on P1 whi
h is 
learly regular outside the rami�
ation points.For a point of rami�
ation, say the image in P1 of the neutral element ofE, one easily veri�es that the lo
al exponents are 0; 1=2. Indeed, one knowsthat the lo
al exponents at a rami�
ation point give, multiplied with therami�
ation index (in this 
ase 2), the lo
al exponents above. The latter aref0; 1g.A line bundle L on E and its dire
t image ��L have 
ohomology groupsof the same dimension. This proves the se
ond statement. 2Remarks 3.3 From rank one 
onne
tions on E to Lam�e 
onne
tions.Now ��(L;r) is tensorized with the rank one 
onne
tion T := (T;r) onP1 with singularities in 0; 1; t;1, given by T = O([1℄)e (i.e., the sheaf ofmeromorphi
 fun
tions having at most a simple pole at 1) andre = (�1=4z + �1=4z � 1 + �1=4z � t )dz 
 e = �dw2w 
 e:14



Then ��(L;r) 
 T has lo
al exponents 1=4;�1=4 at ea
h singular point.Moreover this rank 2 bundle is free if L 6= OE and has the form O(1)�O(�1)in 
ase L = OE. A

ording to Proposition 2.1 we obtain in this way all theirredu
ible 
onne
tions on P1C with 4 singular points 0; 1; t;1 and all lo
alexponents 1=4;�1=4 as push forward of a 
onne
tion re = ! 
 e on E,where ! is given in standard form by (
+ w+w0z�z0 ) dz2w � dw2w or 
 dz2w � dw2w , with 
a 
onstant and (z0; w0) 2 E (distin
t from 1E). We note that the term �dw2wtakes 
are of the required shift of the lo
al exponents. The se
ond standardform for ! 
an be seen as a limit 
ase for the �rst one where (z0; w0) tendsto 1E. This 
onstru
tion produ
es also four redu
ible 
onne
tions on P1C ,namely for the ! su
h that 2! = dFF for some rational fun
tion F on E. Thefour 
ases are! = wz dz2w � dw2w; wz � 1 dz2w � dw2w; wz � t dz2w � dw2w; �dw2w :Moreover every irredu
ible 
onne
tion on P1C is obtained pre
isely twi
e sin
e! and �! produ
e the same 
onne
tion. These statements easily follow fromObservations 2.3. Indeed, the above 
onstru
tion (L;r) 7! ��(L;r) 
 Ttranslates into the 
onstru
tion, explained in Observations 2.3, whi
h as-so
iates to � 2 Hom(�1(E); C �) a tuple (B1; : : : ; B4) (with the propertiesstated above) modulo the a
tion by 
onjugation of the group PSL2(C ).4 The analyti
 universal familyThe Legendre family Legendre of ellipti
 
urves w2 = z(z � 1)(z� t) over C
an be written as algebrai
 varietyProj(C [t; 1t(t� 1)℄[z; w; s℄=(sw2 � z(z � s)(z � st)))! P1 n f0; 1;1g:If one allows the values 0; 1;1 for t, then one obtains an ellipti
 surfa
eE ! P1 having singular �bres above 0; 1;1. The uniformization of theLegendre family is equal to H � C u , where H is the upper half plane and C umeans C where we use u as variable. The group a
ting upon this spa
e isZ2o�(2)�, where: �(2)� is the subgroup of Sl2(Z) 
onsisting of the matri
es�a b
 d� su
h that a; d � 1 mod 4 and b; 
 � 0 mod 2. This group is free ontwo generators and �(2)�nH is isomorphi
 to P1 n f0; 1;1g.The a
tion (by 
onjugation) of �(2)� on Z2 is given by 
�nm�
�1 =t 
�1�nm�.15



The a
tion of 
 = �a b
 d� on H � C u is given by 
(�; u) = (a�+b
�+d ; u
�+d). Thea
tion of Z2 is given by �nm�(�; u) = (�; u+ n� +m).Above the Legendre family we want to 
onstru
t the universal line bundlewith a regular 
onne
tion. Put T = Hom(Z2; C �); this is an algebrai
 torus.Consider the produ
t T � H � C u � C v , where the last term means C withparameter v. This is seen as a geometri
 line bundle with trivial 
onne
tionabove T � H � C u . The group Z2 o �(2)� a
t as follows:For 
 = �a b
 d� 2 �(2)�, one de�nes 
(�; �; u; v) = (
(�); a�+b
�+d ; u
�+d ; v), wherethe a
tion of �(2)� on T is indu
ed by its a
tion on Z2. Further, for �nm� 2 Z2one de�nes �nm�(�; �; u; v) = (�; �; u+ n� +m; �(�nm�)v).The quotient L := Z2o �(2)�n(T � H � C u � C v ) is a geometri
 line bundlewith a regular 
onne
tion above the family of ellipti
 
urvesZ2 o �(2)�n(T � H � C u) parametrized by Par := �(2)�n(T � H ). LetL be the sheaf of se
tions of L. It has an indu
ed 
onne
tion and thuswe �nd a universal regular 
onne
tion (L;r) above the family of ellipti

urves. The parameter spa
e Par := �(2)�nT � H is a T-bundle above�(2)�nH = P1 n f0; 1;1g. The family of ellipti
 
urves 
an be written asPar �P1nf0;1;1g LegendreFix t 2 P1 n f0; 1;1g and � 2 H with image t and a � 2 Hom(Z2; C �).The `evaluation' of (L;r) at the point (�; t) is a 
onne
tion on the 
urveEt = Eu=(Z� +Z) (with equation w2 = z(z� 1)(z� t)) 
orresponding to thehomomorphism �1(Et) = Z� + Z! C � given by n� +m 7! �(�nm�).One 
onsiders the subset f(�; �)j9
 2 C su
h that �(�nm�) = e
(n�+m)g ofT� H . This subset is given by the equation log �(10)�� log �(01)2�i 2 Z� +Z. (Notethat this equation does not depend on the 
hoi
e of the logarithms). Hen
ethis subset is an analyti
 divisor on T � H . The map C � H ! T � H ,given by (
; �) 7! (�; �) with ��nm� = e
(n�+m), indu
es an isomorphism ofC � H with this divisor. The divisor is invariant under the a
tion of �(2)�and yields a divisor � in the parameter spa
e Par. The subset of the pointsin the parameter spa
e where the `evaluation' of L is trivial, i.e., isomorphi
to OEt, is pre
isely �. This ends the des
ription of the universal 
onne
tionof rank one (L;r) above the spa
e Par �P1nf0;1;1g Legendre.The next step is to push this universal 
onne
tion down to the proje
tiveline. One 
onsiders the obvious morphism Legendre! (P1�f0; 1;1g)�P1.This indu
es a morphism � : Par �P1nf0;1;1g Legendre ! Par � P1. Oneobtains a 
onne
tion ��(L;r) of rank 2 on Par � P1. This 
onne
tion is16



tensorized by the rank 1 
onne
tion (O([1℄)e;r) given by re = �dw2w 
 e.The result is a 
onne
tion of rank two on the spa
e Par � P1 with regularsingular se
tions Par�f0g; : : : ; Par�f1g and lo
al exponents 1=4;�1=4 forea
h singular se
tion. We delete from Par the 
losed subset �(2)�nT[2℄� H .On the result Par� there is a free a
tion of an automorphism of order 2,indu
ed by the map T�H ! T�H given by (�; �) 7! (��1; �). The resultingspa
e will de denoted by Par��. This automorphism also a
ts upon the
onne
tion ��(L;r)
(O([1℄)e;r) restri
ted to Par��P1. As a 
onsequen
ewe �nd a 
onne
tion (M;r) on Par�� � P1. This is �nally the universalfamily of rank two irredu
ible 
onne
tions on P1 with regular singularitiesat 0; 1; t;1 and lo
al exponents 1=4;�1=4 at ea
h singular point, that wewanted to 
onstru
t.The image ��� of � in Par�� is the lo
us where the ve
tor bundle M isnot free (and a
tually is isomorphi
 to O(1)� O(�1)). On the 
omplementof the divisor ��� in Par��, the ve
tor bundle M is free.The analyti
 T-bundle Par! P1 n f0; 1;1g is probably not trivial. Thesame holds for the bundle Par�� ! P1 n f0; 1;1g. Ea
h �bre is equal toT n T [2℄= �. This spa
e has been identi�ed with Q n S.The morphism �(2)�n(C � H ) ! P1 n f0; 1;1g is an analyti
 line bundleand therefore free. It follows that the divisor ��� on Par�� is, as a variety,isomorphi
 to the spa
e C ��(P1nf0; 1;1g). The restri
tion of the 
onne
tion(M;r) to ��� will be 
alled the spe
ial family. In Se
tion 6 we will makethis spe
ial family expli
it. The restri
tion of (M��;r) to Par�� n ��� hasthe property that the `evaluation' ofM�� at every point of this spa
e is free.The 
onne
tion (M��;r) will be studied from an algebrai
 point of view inSe
tion 5.5 Algebrai
 
onstru
tion of a moduli familyThe aim is to 
onstru
t a `universal' family of irredu
ible 
onne
tions (M;r)on the proje
tive line withM free, regular singularities at 0; 1; t;1 and lo
alexponents 1=4;�1=4 at ea
h singular point.The parameter t is seen as a point in P1 n f0; 1;1g. Thus we will workwith the proje
tive line over Q [t; 1t(t�1) ℄. After �xing a basis ofH0(M) and re-pla
ingr by r ddz we obtain a di�erential operator of the form ddz+P3j=1 Ajz�sj17



with s1 = 0; s2 = 1; s3 = t and where the matri
es Aj = � aj bj
j �aj � forj = 1; 2; 3 satisfy the 
onditions:a2j + bj
j = 1=16 for j = 1; 2; 3 and ( 3Xj=1 aj)2 + ( 3Xj=1 bj)( 3Xj=1 
j) = 1=16:We still have to �nd the 
onditions whi
h express that the equation isirredu
ible and moreover we want to divide by the a
tion (by 
onjugation)of the group PGl2.The stru
ture of the parameter spa
e.One 
onsiders tuples (A1; : : : ; A4) of 2 � 2-matri
es su
h that PAj = 0and ea
h Aj has eigenvalues 1=4;�1=4. The tuples form an aÆne algebrai
variety V ar of dimension 5, having an a
tion of PGl2, by 
onjugation. Thestabilizer of a tuple (A1; : : : ; A4) is not trivial if and only if there are twodistin
t lines invariant under all Aj. This 
ondition is equivalent to \all Aj
ommute". In this 
ase the stabilizer is the multipli
ative group G m . Thesubset V ar1 of V ar, 
onsisting of these tuples, is 
losed; it has dimension 2and 
onsists of three PGl2-orbits.The subset V ar2 of V ar, 
onsisting of the tuples su
h that the A1; : : : ; A4have a 
ommon eigenve
tor, is also 
losed. Let e be the 
ommon eigenve
torfor all Aj. Then Aje = �1=4e for all j and the sum of the eigenvalues is0. This implies that V ar2 has six irredu
ible 
omponents, say V ar2(i) withi = 1; : : : ; 6, ea
h of dimension 4. Ea
h V ar2(i) is invariant under the a
tionof PGl2. Further the quotient of V ar2(i) n (V ar2(i) \ V ar1) by the a
tion ofPGl2 is seen to be a proje
tive line.We are interested in the stru
ture of the quotient PGl2nV ar. There isno geometri
 quotient. However we will 
ompute the ring Rinv of PGl2-invariant regular fun
tions of V ar. First of all, A4 is normalized to ��1=4 00 1=4�.This de�nes a 
losed subspa
e V ar0 of V ar. The stabilizer of A4, underthe a
tion of PGL2 is its maximal torus, isomorphi
 to the multipli
ativegroup G m . Thus Rinv 
an be identi�ed with the ring of the regular fun
-tions on V ar0, invariant under G m . The ring of regular fun
tions on V ar0 isQ [a1 ; a2; b1; b2; 
1; 
2℄ with generating relations: bj
j = 1=16� a2j for j = 1; 2and b1
2 + b2
1 = �2(a1 � 1=4)(a2 � 1=4). Using these relations one �nds afree basis of the above ring over Q [a1 ; a2℄ 
onsisting of the monomials:b>01 b�02 ; b>02 
�01 ; 
�01 
�02 :18



From this it follows easily that the ring Rinv has the form Q [a1 ; a2; H℄ withH = b2
1. There is only one equation, namelyH2 + 2H(a1 � 1=4)(a2 � 1=4) + (a21 � 1=16)(a22 � 1=16) = 0 :We note that also b1
2 satis�es this equation. We 
ould have 
hosen b1
2 forH, however we prefer H = b2
1 in view of later 
omputations. The singularlo
us of Rinv is equal to(a1; a2; H) = (1=4; 1=4; 0); (1=4;�1=4; 0); (�1=4; 1=4; 0) :This singular lo
us is pre
isely the 
olle
tion of points where the 4 matri
esA1; : : : ; A4 have a 
ommon eigenve
tor. Hen
e the regular lo
us of Spe
(Rinv)
oin
ides with the variety PGl2n(V ar � V ar2). This spa
e is not aÆne andfor further 
al
ulations we 
onsider the open aÆne subset given by (a21 �1=16)(a22 � 1=16)(a23 � 1=16) 6= 0 (note that a3 = 1=4 � a1 � a2). For themissing points, given by aj = �1=4 with j = 1; 2; 3, we make separate
al
ulations. 2The open aÆne part U of the parameter spa
e P .The 
omplete parameter spa
e P is given byP := Spe
(Q [t; 1t(1� t) ℄)� (PGL2n(V ar � V ar2)):As before we normalize A4 and identify the right hand side with the regularlo
us of Spe
(Rinv). Further we 
onsider the open aÆne subset U given bys 6= 0 where s = (a21 � 1=16)(a22 � 1=16)(a23 � 1=16). Then H 6= 0 and thusb2
1 6= 0. We normalize further by 
1 = 1. The 
orresponding ring is nowRU := Q [t; 1t(1�t) ℄[a1; a2; 1s ; b2℄=(Rel) with Rel = b22+2b2(a1�1=4)(a2�1=4)+(a21� 1=16)(a22� 1=16). The other variables are expressed in a1; a2; b2; 1=s bythe formulasb1 = 1=16� a21; 
2 = b�12 (1=16� a22); a3 = 1=4� a1 � a2b�12 = �b2a23 � 1=16s � 2(a1 � 1=4)(a2 � 1=4)(a23 � 1=16)sb3 = �b2 � 1=16 + a21; 
3 = �1� b�12 (1=16� a22)The lo
us of the redu
ible equations.We sear
h the lo
us Predu
ible � P , 
onsisting of the points in P (Q ), where19



the 
orresponding di�erential operator D := ddz +P3j=1 Ajz�sj is redu
ible. Apoint 
orresponds to pres
ribed values in Q for a1; a2; a3; : : : ; t. Redu
ibilityis equivalent to the existen
e of a non zero ve
tor v 2 Q [z℄ 
 Q 2 su
h thatD(v) = fv for some f 2 Q (z). The ve
tor v 
an be normalized su
h thatthe g.
.d. in the ring Q [z℄ of all its 
oeÆ
ients is 1. Thus one 
onsidersv := v0+v1z+ � � �+vdzd, with all vi 2 Q 2, vd 6= 0 and v0+v1s+ � � �+vdsd 6= 0for all s 2 Q , and satisfying the equation D(v) = fv for some f 2 Q (z).One easily veri�es that f = (P3j=1 �jz�sj ) where the �j are eigenvalues of Aj.Expanding the equation D(v) = fv at z =1 yields that d =P4j=1 �j, where�4 is some eigenvalue of A4 = �P3j=1Aj. In this spe
ial 
ase there are onlytwo possibilities, namely d = 0 and d = 1. In �rst 
ase all Aj have a 
ommoneigenve
tor. This 
ase is ex
luded by the de�nition of the parameter spa
eP . The 
ase d = 1 is equivalent to the equation( ddz + 3Xj=1 Aj � 1=4z � sj )(v0 + v1z) = 0 :The normalization of A4 implies v1 = e2 = �01�, where e1; e2 is the stan-dard basis of Q 2 . The above equation is equivalent to the system of matrixequations(A1 � 1=4)v0 = 0; (A2 � 1=4)(v0 + e2) = 0; (A3 � 1=4)(v0 + te2) = 0:The existen
e of a solution v0 leads to 
ertain relations between the 
oeÆ-
ients of the matri
es A1; A2; A3, des
ribing in fa
t Predu
ible.The dire
t approa
h. Let T denote the aÆne ring of V ar0. Re
all thatT := Q [a1 ; a2; b1; b2; 
1; 
2℄ with generating relations bj
j = 1=16 � a2j forj = 1; 2 and b1
2 + b2
1 = �2(a1 � 1=4)(a2 � 1=4). Consider T [x1; x2℄,where v0 = �x1x2�. The system of matrix equations de�nes an ideal I �T [x1; x2℄. Using Gr�obner basis one 
al
ulates J = I \ T . This ideal isinvariant under the a
tion by 
onjugation of G m . Therefore J is indu
ed byan ideal J0 of T Gm = Rinv = Q [t; 1t(t�1) ℄[a1; a2; H℄ (with generating relationRel = H2+2H(a1�1=4)(a2�1=4)+(a21�1=16)(a22�1=16) = 0) in the sensethat J = J0T . The ideal J0 turns out to be generated by the two elementsf(t) = (a1 + a2 � 1=2)2t(t� 1) + (a1 + 1=4)2t+ (a2 + 1=4)2(1� t) and2H + (a1 + a2 � 1=2)2t + (a2 + 1=4)(a1 � a2) :20



One 
omputes that the ideal I also 
ontains the elements x1+2b1t+2b2t�2b2and x2+1=2t�a1t�a2t+a2+1=4. Thus T [x1; x2℄=I = T=J and (T=J)Gm =Rinv=J0. The last algebra equals Q [t; 1t(t�1) ℄[a1; a2℄=(f(t)). One easily veri�esthat f(t) is irredu
ible. Therefore Q [t; 1t(t�1) ℄[a1; a2℄=(f(t)) is a domain ofdimension 2. Thus J0 � Rinv is a prime ideal of height 1 and de�nes a
losed irredu
ible subset of Spe
(Rinv) of 
odimension 1. The interse
tion ofthis 
losed subset with P is Pirredu
ible and the latter is therefore 
losed andirredu
ible of dimension 2. Moreover Pirredu
ible has the following rationalparametrization by t; �a1 = t� 2�24t ; a2 = t + 1 + 2�2 + 4�4(t� 1) ; H = (�+ 1)�(�2 � t)4t(t� 1) ;with � = ta1 + ta2 � t=2� a2 � 1=4.6 The spe
ial familyThe `spe
ial family' that we 
ompute here is the family of irredu
ible 
on-ne
tions (M;r) on P1 with (as before) 4 regular singular points at 0; 1; t;1,lo
al exponents 1=4;�1=4 at ea
h singular point and su
h that M is notfree. We note that for a suitable shift of the lo
al exponents over integersthe 
onne
tion 
an be presented with a free ve
tor bundle.The se
ond exterior power �2(M;r) is a rank one 
onne
tion withoutsingularities on P1. Hen
e �2M is the trivial line bundle and the 
onne
tionon it is also trivial. The irredu
ibility of (M;r) implies thatM is isomorphi
to the sheaf O(1) � O(�1). Using this information one 
an 
al
ulate the amatrix form for the 
onne
tion. Instead of produ
ing the results of this
al
ulation, we will des
ribe an easier method to obtain the spe
ial family.Proposition 3.2 provides another way to obtain this family. On the ellipti

urve E, given by w2 = z(z � 1)(z � t), one 
onsiders the 
onne
tion r :OEf0 ! 

OEf0 given by r(f0) = 
 dz2w 
 f0 with 
 6= 0. The dire
t image,under the morphism E ! P1 has w.r.t. the basis f0; f1 = wf0 the matrixform ddz + � 0 
=2
2w2 w0w � :One has to shift over � w02w in order to obtain the lo
al exponents 1=4;�1=4.After a 
onjugation with the 
onstant matrix � 2
�1 00 1 � one obtains the21



required form (with d = 
2=4)ddz + � � w02w d1w2 w02w � :The above is in fa
t a family over the base ring Q [t; 1t(t�1) ; d; d�1℄.The 
lassi
al Lam�e equation is Ln := y00 + f 02f y0 � n(n+1)z+Bf y, with f =4(z3 + az + b). The transformation z 7! z � 1+t3 , with suitable t, transformsf into 4z(z � 1)(z � t) and the equation intoy00 + g02gy0 � n(n+ 1)(z � (1 + t)=3) +B4g y with g = z(z � 1)(z � t):The lo
al exponents are 0; 1=2 for 0; 1; t and �n=2; (n+ 1)=2 at 1.For n = 0 one writes w2 = g. The 
ompanion matrix equation for the se
onds
alar equation is ddz + � 0 �1�B4w2 w0w �. The shift yields ddz + � � w02w �1�B4w2 w02w �.If B 6= 0, then 
onjugation with a 
onstant matrix yields the equationddz + � � w02w 4B1w2 w02w �. This is the spe
ial family.7 Expli
it formulas and Painlev�e VI7.1 An inverse approa
hThe family f(M;r)g 
an be 
omputed dire
tly from the normalized di�er-ential form ! = (
 + w+w0z�z0 ) dz2w of se
tion 3. The di�erential module abovethe ellipti
 
urve reads �f0 = (
 + w+w0z�z0 ) 12wf0. With respe
t to the basisf0; f1 = wf0 over the �eld of rational fun
tions on P1 one �nds the operatorddz + " 12(z�z0) (
+ w0(z�z0))=212w2 (
+ w0(z�z0)) w0w + 12(z�z0) # : The shift over � w02w yieldsL0 := ddz + " 12(z�z0) � w02w (
 + w0(z�z0))=212w2 (
+ w0(z�z0)) w02w + 12(z�z0) # : This is repla
ed byL1 := � 1 �
z0 1 �L0� 1 
z0 1 � in order to remove the apparent pole oforder 2 at 1. 22



The formulas for w0 6= 0 (equivalently z0 6= 0; 1; t).z0 is an apparent singularity of L1 whi
h 
an be removed as follows. First
al
ulate the 
onjugateL2 := � 12w0 �1=212w0 1=2 �L1� w0 w0�1 1 � : Then again a 
onjugateL3 := � 1 00 z � z0 �L2� 1 00 (z � z0)�1 � :Then L3 is 
onjugated by �0 11 0� in order to normalize the matrix at in�nity to� �1=4 00 1=4 �. Finally, a 
onjugation with a 
onstant matrix of the form�1 00 s� is needed to obtain 
1 = 1. The �nal operator ddz + U belongs to ourfamily, normalized with 
1 = 1.U = 1� � N (
z � 
z0 + w0)F=t�4zt(�3 
z0 + 2w0 + 
+ 
t+ 
3)=F + 4t �N �where � = 4z(z � 1)(z � t);N = z2 + (2 
2 � 2 z0)z + 2 z0t� t� 2 
2z0 � 2 z02 + 2 z0F = 3 
z02 � 3 
z0t� 3 
z0 � w0z0 + 
3z0 + 2 
t� 3 
2w0 + w0t+ w0Remarks 7.1(1) This formula for U is derived under the assumption that w0 6= 0. Thenormalization 
1 = 1 introdu
es the denominator F in the (2; 1) entry ofU . Thus the formula for U is valid under the assumptions that w0 6= 0 andF 6= 0. The involution of the ellipti
 
urve maps (
; w0) to (�
;�w0). Oneobserves that the formula for U is, as it should be, invariant under this map.(2) Suppose again that w0 6= 0 and F 6= 0. Conjugation of U with the
onstant matrix � t 00 F� yieldsU� = 1� � N 
z � 
z0 + w0�4z(�3 
z0 + 2w0 + 
+ 
t+ 
3) + 4F �N �Thus ddz + U is equivalent to ddz + U�. The latter expression is also valid forF = 0. We will show that the formula ddz + U� remains valid for w0 = 0.Another advantage of U� is that its (1; 2) entry has a zero if 
 6= 0. We notethat U� is not invariant under the involution of the ellipti
 
urve.23



The formulas for w0 = 0 (equivalently z0 2 f0; 1; tg).As before L0 := ddz + " 12(z�z0) � w02w 
=2
2w2 w02w + 12(z�z0) # and L1 is obtained by
onjugating L0 with � 1 
(z � z0)0 1 �. Further L2 is obtained from L1 by
onjugation with  1 00 (z � z0)�1 !. Finally L3 is obtained from L2 by
onjugation with �0 11 0�. We will not further normalize L3. One �nds thefollowing formulas.(1) For z0 = 0, L3 = ddz + U0 withU0 = 1� " z2 � t+ 2 
2z 
z4 
 ((�1� t� 
2) z + 2 t) �z2 + t� 2 
2z #(2) For z0 = 1, L3 = ddz + U1 withU1 = 1� " z2 + 2(
2 � 1)z � 2 
2 + t 
(z � 1)�4z(
t� 2
+ 
3) + 4
3 � 4
t �z2 � 2(
2 � 1)z + 2 
2 � t #(3) For z0 = t, L3 = ddz + Ut where Ut equals1� " z2 + (�2 t+ 2 
2) z � t (�1 + 2 
2) 
(z � t)�4z(�2
t + 
+ 
3) + 4
3t� 4
t �z2 + (2t� 2
2)z + t(�1 + 2
2) #These formulas are spe
ializations of U� for w0 = 0 and z0 = 0; 1; t.7.2 A dire
t approa
hOn the spa
e P n Predu
ible, the matrix U (or U�) expresses a1; a2; b2; t interms of z0; w0; 
. The aim is to express the rational fun
tions z0; w0
 ; 
2 onthis spa
e in terms of a1; a2; b2. One 
an view the data of U and U� as polyno-mials a1; a2; b2; z0; w0; 
; t, generating an ideal in Q [a1 ; a2; b2; t; 1t(t�1) ; z0; w0; 
℄(b2 stands for H and there are known relations for a1; a2; b2 and z0; w0; 
).Elimination for a suitable order produ
es two elements in this ideal, namely(16t2a21 � 32a22t+ 32a1a2t2 � 32a1a2t� 16t2a1 + 24a1t+ 16a22 + 16a22t2 + 8a2 � 16a2t2 + 8a2t+ 1 + 4t2 � 4t)z0�t ��3 + 48 a1a2t+ 20 a1 � 20 a2t+ 20 a2 � 12 a1t� 48 a2a1 + 4 t+ 16 ta12 + 32 tb2 � 32 b2�24



and((�32 + 32 t) b2 � (1 + 4 a1) (4 a1t� 4 a2t+ 1 + 4 a2)) z0 + t (1 + 4 a1)2 :We re
all that the lo
us Predu
ible was given by an ideal (Eq1; Eq2), given byEq1 = (a1 + a2 � 1=2)2 t (t� 1) + (a1 + 1=4)2 t + (a2 + 1=4)2 (�t + 1)Eq2 = 2 b2 + (a1 + a2 � 1=2)2 t + (a2 + 1=4) (a1 � a2)The 
oeÆ
ients P1; P2 of z0 in the above equations satisfy P1 = 16 � Eq1and P2 = 16(t� 1) � Eq2 � 16 � Eq1. Thus (P1; P2) = (Eq1; Eq2). The lo
usP n Predu
ible is the union of the two open subsets of P given by P1 6= 0 andP2 6= 0. On ea
h one of them, z0 is a regular expression in a1; a2; b2; t. ForP2 6= 0 this expression isz0 = � t (1 + 4 a1)232 (t� 1) b2 � (1 + 4 a1) (4 a1t� 4 a2(t� 1) + 1) :On
e z0 is known, we may 
hoose a solution w0 of w20 = z0(z0 � 1)(z0 � t).For the zero q of the (1; 2) 
oeÆ
ient of U we have two expression, namelyq = z0 � w0
 and q = � t(16 a12�1)16 (t�1)b2�t(16 a12�1) . This yields a formula for 
. Were
all that the pair (w0; 
) is unique up to a sign.7.3 Intermezzo on Painlev�e VIWe 
onsider a family of 
onne
tions, more general than the Lam�e 
onne
tion,ddz + A = ddz + A1z + A2z � 1 + A3z � t with Aj = � aj bj
j �aj � for j = 1; 2; 3:Put A1 = �A1 � A2 � A3. The assumptions are:Aj has eigenvalues ��j=2 (equivalently a2j + bj
j = �2j=4 for j = 1; 2; 3),A1 = � ��1=2 00 �1=2 � (equivalently P aj = �1=2, P bj = 0; P 
j = 0).The (1; 2) entry of A has a single zero, namely q := b1tb1t+b2(t�1) (if b1t+ b2(t�1) = 0 then we write q = 1). One 
onsiders in this spa
e of 
onne
tions afamily ddz+A(t) (i.e., all aj; bj; q; : : : are analyti
 fun
tions of t). S
hlesinger'stheorem 
an be formulated as follows (
ompare [J-M℄).25



Theorem 7.2 (S
hlesinger) Suppose that �j 62 Z for j = 1; 2; 3;1. Con-sider family ddz +A(t), holomorphi
 in t and de�ned in a neighbourhood of t0.Suppose that not all Aj(t0) 
ommute and that q(t0) 6=1. Then the family isisomonodromi
 if and only if q = q(t) satis�es the two equationsq0 = 2a1 q � 1t� 1 + 2a2 qt + (1� �1)q(q � 1)t(t� 1) andq00 = 1=2(1q + 1q � 1 + 1q � t)(q0)2 � (1t + 1t� 1 + 1q � t)q0+q(q � 1)(q � t)t2(t� 1)2 �(�1 � 1)22 � �212 tq2 + �222 t� 1(q � 1)2 � �23 � 12 t(t� 1)(q � t)2� :The last equation is the Painlev�e VI equation with parameters (�1; �2; �3; �1).We note that the �rst equation for q0 is hard to �nd in the literature. More-over the Painlev�e VI equation is sometimes parametrized in a di�erent way.If q is known, then one re
overs all aj; bj; 
j (up to the a
tion of G m on the bjand 
j) from the equality q := b1tb1t+b2(t�1) and the equation for q0. The 
hoi
e�j = 1=2 for j = 1; 2; 3;1 de�nes the Lam�e 
onne
tion.A point of order m on the ellipti
 
urve w2 = z(z � 1)(z � t) 
an beseen as a pair (z0(t); w0(t)) of algebrai
 fun
tions in t. It has been shownby �E. Pi
ard, [Pi
℄, that the 
oordinate z0(t) is a solution of PVI (0; 0; 0; 1)(
ompare [Maz℄).We will use the transformation w1w2w1 of Okamoto to obtain solutionsfor PVI (1=2; 1=2; 1=2; 1=2). This transformation is des
ribed as follows (see[Ok, p. 356℄).Suppose that q is a solution of PVI for the parameters (�1; �2; �3; �1). Thenq + 12p with p = t(t� 1)q02q(q � 1)(q � t) + �12q + �22(q � 1) + �3 � 12(q � t)is a solution of PVI for the parameters��1 = 1=2(�1 � �2 + �3 + �1)� 1; ��2 = 1=2(��1 + �2 + �3 + �1)� 1;��3 = 1=2(�1 + �2 + �3 � �1) + 1; ��1 = 1=2(�1 + �2 � �3 + �1) + 1:26



In parti
ular, a solution q of PVI (0; 0; 0; 1) yields a solution q+ 12p , with p =t(t�1)q02q(q�1)(q�t) � 12(q�t) with q0 = dqdt is a solution of PVI (�1=2;�1=2; 1=2; 3=2).A

idently this equation is identi
al with PVI (1=2; 1=2; 1=2; 1=2).In parti
ular, a point (z0(t); w0(t)) of order m on the ellipti
 
urve yieldsthe algebrai
 solution z0 � z0(z0�1)(z0�t)z0(z0�1)�t(t�1)z00 (with z0 = z0(t) and z00 = dz0dt ) forPVI (1=2; 1=2; 1=2; 1=2).7.4 Points of �nite order on the ellipti
 
urveEa
h member r� of the Lam�e family is indu
ed by a regular equation of rankone on the ellipti
 
urve E, given by w2 = z(z � 1)(z � t). Taking the shiftinto a

ount, r� is the push forward of re = f(
+ w+w0z�z0 ) dz2w � dw2wg 
 e or ofre = f
 dz2w � dw2wg 
 e, where 
 a 
onstant and (z0; w0) 2 E.For the moment we �x a 
omplex value for t (di�erent from 0; 1;1) andtake (z0; w0) 2 E(C ). The di�erential Galois group of r� is equal to DSL2n ifand only if the 
orresponding rank one equation on E has a 
y
li
 di�erentialGalois group of order 2n. The latter is equivalent to the statement that theequation re = (
 + w+w0z�z0 ) dz2w 
 e or re = 
 dz2w 
 e, has a 
y
li
 di�erentialGalois of order m su
h that l:
:m:(m; 2) = 2n. Thus m = n or m = 2n ifn is odd and m = 2n if n is even. We note that re = 
 dz2w 
 e has in�nitedi�erential Galois group if 
 6= 0. Thus we may omit this 
ase.If re = (
 + w+w0z�z0 ) dz2w 
 e has a 
y
li
 di�erential Galois group of orderm, then (z0; w0) is a point of exa
t order m. Moreover, for a point (z0; w0)of exa
t order m, there is pre
isely one value of 
 su
h that the di�erentialGalois group is 
y
li
 of order m.We 
ontinue the dis
ussion in se
tion 3 and analyze the exa
t sequen
e0! C ! Hom(�1(E); C �)! E ! 0 :As before, E = C =(Z + C �) and we 
hoose as generators a; b of �1(E) the
ir
les R=Z and R=Z� . This identi�es Hom(�1(E); C �) with C � � C � , byh 7! (h(a); h(b)). The �rst map of the exa
t sequen
e is d 7! (ed; ed� ). PutS1 = fz 2 C � j jzj = 1g. Every element of C � � C � 
an be written uniquelyas (ed; ed� ) � (s1; s2) with d 2 C and s1; s2 2 S1. In parti
ular, the restri
tionof the se
ond map of the exa
t sequen
e to S1 � S1 is a bije
tion. Thus fora given point (z0; w0) 2 E of exa
t order m, there is pre
isely one value of
 su
h that re = (
 + w+w0z�z0 ) dz2w 
 e has a 
y
li
 di�erential Galois group of27



order m. We note that it is, a priori, diÆ
ult to produ
e a formula for this
. However, F. Beukers has proposed a formula (see [Be℄).Now we 
onsider t as a variable and investigate a family of Lam�e 
onne
-tions r(t) with �xed di�erential Galois group DSL2n . The 
orresponding rankone 
onne
tion re = (
(t)+ w+w0(t)z�z0(t) ) dz2w has the property that (z0(t); w0(t)) isa point of order m. This point is de�ned over a suitable algebrai
 extensionof C (t). The monodromy of this family depends in a 
ontinuous way on tand lies in Hom(�1(E); f� 2 C � j �m = 1g). Sin
e this group is �nite, thefamily has 
onstant monodromy.The 
orresponding algebrai
 solution for PVI (1=2; 1=2; 1=2; 1=2) is z0�w0
a

ording to Theorem 7.1 and the formula for the (1; 2) entry of U . A 
ombi-nation of Pi
ard's result and Okamoto's transformation yield the expressionz0 � z0(z0�1)(z0�t)z0(z0�1)�t(t�1)z00 for this solution. For the uniquely determined 
(t) we�nd therefore the following formulaw0(t) 
(t) = z0(t)(z0(t)� 1)� t(t� 1)z0(t)0 :8 The lo
us PN for DSL2N with N = 2; 3; 48.1 Division polynomialsIn this subse
tion we re
all some fa
ts on torsion points on ellipti
 
urvesdire
tly related to the lo
us for DSL2n . First we follow [Was℄ (or [Sil℄, p. 105)in the des
ription of the division polynomials  m with m � 1. Suppose thatthe ellipti
 
urve E is given in the Weierstrass form w2 = z3 + Az +B.The points 6= 1E of order dividing m lie on this aÆne part of the 
urveE. Their number is m2 � 1 (over an algebrai
ally 
losed �eld of 
hara
-teristi
 0). The z-
oordinates of these points are the zeros of a polynomial m 2 Z[A;B℄[z; w℄ (with de�ning relation w2 = z3 + Az + B). For odd m, m 2 Z[A;B℄[z℄ and for m even,  m 2 wZ[A;B℄[z℄. In the latter 
ase onemay repla
e  m by  2m in order to have a polynomial in Z[A;B℄[z℄. Thesepolynomials are given by the following re
urren
e relations 0 = 0;  1 = 1;  2 = 2w;  3 = 3z4 + 6Az2 + 12Bz � A2 ; 4 = 4w (z6 + 5Az4 + 20Bz3 � 5A2z2 � 4ABz � 8B2 � A3); 2m+1 =  m+2 3m �  m�1 3m+1 for m � 2 ;28



 2m = (2w)�1 �  m � ( m+2 2m�1 �  m�2 2m+1) :The zero set of  2m (or its square free part  �m) is pre
isely the set of thez-
oordinates of the of points with order 6= 1 and dividing m.We spe
ialize this by repla
ing Z[A;B℄ by the fun
tion �eld F := C (j) ofthe j-line. Then E is the `universal 
urve' above the j-line. The splitting �eldof F de�ned by  �m is the fun
tion �eld of the modular 
urve X(m). The ram-i�ed Galois 
overing j : X(m) ! P1 is known to have group PSL2(Z=mZ).It follows that the Galois group GalF of F=F a
ts transitively on the pointsof pre
ise order m. Thus the minimal polynomial for the z-
oordinate of apoint of pre
ise order m is given by Qdjm( �d)�(m=d).Here we are interested in the division polynomials over the �eld C (t) whi
his a Galois extension of C (j) with Galois group S3. The substitution z !z+ t+13 brings z(z�1)(z� t) into the Weierstrass form z3+A(t)z+B(t). Put�m =  m(A(t); B(t); z� t+13 ). This is the division polynomial for the Legendrefamily. Let ��m denote the square free part of �m. The z-
oordinates of thepoints of pre
ise order m are the zeros of the polynomial Qdjm(��d)�(m=d).For odd m this polynomial is irredu
ible. For even m this polynomialhas three irredu
ible fa
tors, whi
h are permuted by the Galois group S3of C (t)=C (j). These statements 
an be dedu
ed from the Galois a
tion ofGalC (t) on the group (Z=mZ)2 of all points of order dividing m.We note that � 2 S3 permutes in fa
t the three points of rami�
ation andpermutes the three �nite singular points of the Lam�e 
onne
tions.8.2 Points of order 2The points of pre
ise order two on the ellipti
 
urve yield redu
ible Lam�e
onne
tions with 
y
li
 di�erential Galois groups of order 4. The formulasfor these 
onne
tions are obtained from the formula ddz + U� of subse
tion7.1, spe
ialized with w0 = 0; 
 = 0 and z0 = 0; 1; t. Put � = 4z(z�1)(z� t).One �nds(1) For z0 = 0, ddz + 1� " z2 � t 00 �z2 + t #.(2) For z0 = 1, ddz + 1� " z2 � 2z + t 00 �z2 + 2z � t #.(3) For z0 = t, ddz + 1� " z2 � 2tz + t 00 �z2 + 2tz � t #.29



These equations do not 
orrespond to points of the parameter spa
e P .They 
orrespond in fa
t to the three singular points of Spe
(Rinv).8.3 The lo
us P2 for DSL22 and points of order 4The equation for the z-
oordinates of the points of pre
ise order 4 is�4(z)�2(z) = (z2 � t)(z2 � 2 z + t)(z2 � 2 t z + t) 2 C(t)[z℄ :The three irredu
ible fa
tors produ
e the 
omponents of P2. Let z0 de-note a zero of the polynomial. The formulas w20 = z0(z0 � 1)(z0 � t) andw0 
 = z0(z0�1)� t(t�1)dz0dt and the universal family of subse
tion 7.1 yieldexpli
it formulas for the 
onne
tion above the three 
omponents of P2. Ea
h
omponent is an open subset of the proje
tive line, parametrized by � := z0.This open subset is determined by the 
ondition t 6= 0; 1;1.1. The �rst fa
tor is parametrized by z0 = �; t = �2. One has further2w0 
 = 2 t � z0 � z0t. Put � = 8 (z � �2) (z � 1) z. After 
onjugation ofthe system by  1 00 8� !, one obtains1� " 2 z2 � (�+ 1)2 z + � (�2 + 1) (�� 1)2 (�+ 1)2 (��� z)�� 3 z �2 z2 + (�+ 1)2 z � � (�2 + 1) #2. The se
ond fa
tor is parametrized by z0 = �; t = ��2 + 2�. One has2w0
 = �t�z0t+2 z0. Put � = 8 (z + �2 � 2�) (z � 1) z. After 
onjugationof the system by  �+ 2 00 8 !, one obtains1� " 2 z2 + � (�4 + �) z � �2 (�� 2) � (�� 2) (�� 2 + z)(�� 2) (��� 2 + 3 z)� �2 z2 � �(�4 + �)z + �2(�� 2) # :3. The third fa
tor is parametrized by z0 = �; t = �22��1 . One has 2w0
 =2 tz0 � t� z0. Put � = 8 (2�� 1) z (z � 1)�z � �22��1�. One �nds1� " (2�� 1) (2 z2 + (�2�� 1) z + �) 1=8 (4��1)((�2�+1)z+�)�8 � ((�6�+3)z+� (4��1))4��1 (2�� 1)(�2z2 + (2�+ 1)z � �) # :30



After 
onjugation with  4�� 1 00 8� ! one obtains the system1� " (2�� 1) (2 z2 + (�2�� 1) z + �) (�2�+ 1) z + �(�6�+ 3) z + � (4�� 1) (2�� 1)(�2z2 + (2�+ 1)z � �) #8.4 The lo
us P3 for DSL23 and points of order 3 and 6The lo
us P3 is derived from the points of order 3 and 6. The z-
oordinatesof the points of pre
ise order 3 are given by the irredu
ible polynomial�3(z) = �3 z4 + 4 z3t+ 4 z3 � 6 z2t + t2For the points of pre
ise order 6 this is the polynomial F6 := �6(z)�3(z)�2(z) . Thelatter has three irredu
ible fa
torsF6;a = �z4 + 4 z3 � 6 z2t + 4 zt2 � t2 ;F6;b = z4 � 4 z3t + 6 z2t� 4 zt + t2 ;F6;
 = z4 � 6 z2t+ 4 zt2 + 4 zt� 3 t2 :These de�ne the four 
onne
ted 
omponents of P3. Ea
h one has a rationalparametrization. For a zero z0 of �6 one has w20 = z0(z0 � 1)(z0 � t) andw0
 = z0(z0�1)�t(t�1)dz0dt . We note that the solutions q of PVI atta
hed tothis examples happen to have poles that do not 
orrespond to t 2 f0; 1;1g.Using se
tion 7.1, one derives a formula for the 
onne
tion above ea
h ofthese 
omponents.1. �3(z0; t) = 0 is parametrized by z0 = �22��1 ; t = � (��2)�32��1 . Moreover6w0
 = t� 2 z0t� 2 z0 + 3 z02. After 
onjugation by  1 00 24� ! the systemis26664 G1(2�� 1)� 25 (�� 2) (�+ 1)2 ���2 � �+ 1� z + �2 (�� 2)��9(�� 2) �(2�� 1) z � �2�(2�� 1)� �G1(2�� 1)� 37775where � = 63 z (z � 1)�z + (�� 2) �32�� 1 �31



G1 = (�54 + 108�) z2 + 12 ��2 � 4�+ 1� (�+ 1)2 z � 6�2 (�� 2) �4�2 � �+ 4�2. The parametrization of F6;a(z0; t) = 0 given by z0 = �2; t = � (��2)�32��1 .Conjugation with  �3 + 6�� 2 00 18� ! yields the system " H1� Q�H2� �H1� #,where � = 36 (2�� 1) z (z � 1)�z + (�� 2)�32�� 1 � ;Q = (2�� 4) (�+ 1)2 �(2�� 1) z + �2 (�� 2)� ;H1 = (18�� 9)z2 + 2(2�� 1)(2�3 � 6�2 � 1)z � �2(�� 2)(2�3 + 3�� 4);H2 = (2�� 4)((2�� 1) �5�2 � 2�+ 2� z � �2 ��3 + 6�� 2�) :3. The parametrization of F6;b(z0; t) = 0 is z0 = �� (��2)2��1 ; t = � (��2)�32��1 .After 
onjugation by  2�3 � 6�2 � 1 00 �2 ! one obtains the system2664 H1� 1=9 (2�� 1) (�� 2) (�+ 1)2 (�� z)�H2� �H1� 3775where � = 36 (2�� 1) z (z � 1)�z + (�� 2)�32�� 1 � ;H1 = (18�� 9) z2+2 (�� 2) ��3 + 6�� 2� z+� (�� 2) �4�3 � 3�2 � 2� ;H2 = (36�� 72)(� (2�� 1) �2�2 � 2�+ 5� z � � �2�3 � 6�2 � 1�) :4. The parametrization of F6;
(z0; t) = 0 is z0 = �� (�� 2) ; t = � (��2)�32��1 .After 
onjugation by  (�2 � 4�+ 1) (�2 � �+ 1) 00 18�2 ! one obtains thesystem 264 H1� 2 (�+ 1)2 (�� 2) ((�2�+ 1) z + � (�2 � �+ 1))�H2� �H1� 37532



where � = 36 (2�� 1) (z � 1)�z + (�� 2)�32�� 1 � z ;Q = (2�� 4) (�+ 1)2 �(�2�+ 1) z + � ��2 � �+ 1�� ;H1 = (�9 + 18�) z2 + 4 (2�� 1) (�� 2) (�+ 1)2 z+� (�� 2) �2�4 � 4�3 � 3�2 � 4�+ 2� ;H2 = �(2�� 4)((2�� 1)(5�2 � 8�+ 5)z + �(�2 � 4�+ 1)(�2 � �+ 1)):8.5 The lo
us P4 and points of order 8The polynomial �8(z)�4(z) has three irredu
ible fa
tors. One of them is F8(z) =z8� 20tz6+32(t+ t2)z5� (16t+58t2+16t3)z4+(2t2+32t3)z3� 20t3z2+ t4:This fa
tor des
ribes one of the three 
onne
ted 
omponents of P4. A rationalparametrization of F8(z0; t) = 0 is given byz0 = �4 (�� 1)3 �(2�� 1)3 ; t = 16 �4 (�� 1)4(2�� 1)4After 
onjugation with� (36�4 � 32�3 + 4�2 + 1) (6�2 � 4�+ 1) 00 32 (�� 1)�3 (2�� 1)3 �one obtains the system " H1� Q�H2� �H1� #where � = 32 (2�� 1)7 z (z � 1) z � 16 �4 (�� 1)4(2�� 1)4 !Q = 1=4 �2�2 � 1�2 �2�2 � 4�+ 1�2��4� �6�2 � 4�+ 1� (�� 1)3 + �2�2 � 4�+ 3� (2�� 1)3 z�33



H1 =�4�(144�8 � 448�7 + 608�6 � 416�5 + 152�4 � 48�3 + 24�2 � 8�+ 1)(�� 1)3�(9� 16�+ 4�2 + 4�4)(2�2 � 4�+ 1)2(2�� 1)3z + 8(2�� 1)7z2H2 = 16� �36�4 � 32�3 + 4�2 + 1� �6�2 � 4�+ 1� (�� 1)3+12 �40�6 � 80�5 + 100�4 � 112�3 + 86�2 � 36�+ 7� (2�� 1)3 zRemarks 8.1 We note that the formula for Ln(y), given at the end of se
tion1, provides an eÆ
ient method to verify that the di�erential Galois group ofa given equation is 
ontained in DSL2n . It suÆ
es to test if Ln(y) = 0 (for neven) or L2n(y) = 0 (for n odd) has a rational solution. In the formula forLn(y) the exponential solution S of the se
ond symmetri
 power of L(y) isneeded. If L(y) is obtained from the system ddz + U using the 
y
li
 ve
tor(1; 0), then S = z � z0pz(z � 1)(z � t) :8.6 De
idableLet a di�erential operator ddz +P3j=1 Aiz�sj be given where the Aj satisfy the
onditions of se
tion 5. We suppose that the equation is irredu
ible and thatthe �eld K, generated by all entries (in
luding t), is a �nite extension of Q(t).We 
laim that there is an algorithm de
iding whether the di�erential Galoisgroup is DSl2n for some integer n � 2 or equals DSl21 . This 
laim is equivalentto the assertion that there is an algorithm de
iding whether a point on theellipti
 
urve w2 = 
z(z� 1)(z� t) has �nite order or not. This problem hasbeen studied by B. Work, F. Baldassarri and B.M. Trager et al.(see [Tra℄).If K is a number �eld, then a

ording to a theorem of L. Merel [Mer℄,there is an e�e
tive fun
tion N of [K : Q ℄ su
h that any ellipti
 
urve, de�nedover K, has, over K, no point of order > N . Hen
e there is an algorithm inthis situation.Suppose that t is trans
endent. Then there is also an e�e
tive bound onthe order n of points on E with values in K. This bound 
omes from the fa
tthat the genera of the modular 
urves X1(n) tend to in�nity. If the genusof X1(n) is larger than the genus of K (viewed as a 
urve) then the ellipti

urve has no points of order n with values in K. Again there is an algorithmin this 
ase. 34



9 Variations on the Lam�e 
onne
tionThe aim is to des
ribe the family of 
onne
tions (M;r) on P 1 with ve
-tor bundle M �= O(0) � O(�1), 
onne
tion r with regular singular points0; 1; t;1 and lo
al exponents 0; 1=2 for the �rst three and 0;�1=2 for 1.We present M as the sub-bundle Oe1 � O(�[1℄)e2 of the free bundleOe1 � Oe2. The 
al
ulations will be given in terms of this basis e1; e2. Thegroup of the automorphisms Aut of M equals� a 
+ dz0 b � ; with a; b 2 C� and 
; d 2 C :r :M ! 
([0℄ + [1℄ + [t℄ + [1℄)
M , and thusre1 = ( Xj=1;2;3 ajz � sj )dz 
 e1 + ( Xj=1;2;3 bjz � sj )dz 
 e2 with X bj = 0 ;re2 = (
0 + Xj=1;2;3 
jz � sj )dz 
 e1 + ( Xj=1;2;3 djz � sj )dz 
 e2 ;where s1; s2; s3 = 0; 1; t. One �nds that L = r ddz equalsL = ddz + Xj=1;2;3 1z � sj � aj 
jbj dj � + � 0 
00 0 � ;with relations aj+dj = 1=2, ajdj = bj
j for j = 1; 2; 3 andP bj = 0. Now we
ompute the matrix of r, lo
ally at z = 1. We use the notations s = 1=zand f1 = e1; f2 = se2.rf1 = �(X aj1� sjs)dss 
 f1 � (s�1X bj1� sjs)dss 
 f2 ;rf2 = �(
0 +X 
j1� sjs)dss 
 f1 + (1�X dj1� sjs)dss 
 f2 :Thus the \residue matrix" of r at 1 is equal to� �P aj �
0 �P 
j�P bjsj 1�P dj � :35



This matrix has eigenvalues 0;�1=2 and this gives the relations�X aj + 1�X dj = �1=2 and(�X aj)(1�X dj) = (
0 +X 
j) �X bjsj :The �rst relation is super
uous. In total we have 13 variables and 8(ni
e) relations; this yields a spa
e S of dimension 5. After division by theautomorphism group of the bundle M we �nd a spa
e of dimension 2 (as itshould be). We make this pre
ise by 
omputing, step by step, S=Aut. Theexpression ~L := � 1 �z0 1 � � L � � 1 ��z0 1 � ; for a 
onstant �;is again a 
onne
tion of the required type. Let its 
oeÆ
ients be denoted by~a1; : : : ; ~
0. One 
al
ulates that~
0 = 
0 + �(�1�X aj +X dj)� �2X sjbj ;and ~bj = bj for all j.Suppose that the 
oeÆ
ient P bjsj of �2 is zero.(This is a rather spe
ial). Then (�P aj)(1�P dj) = 0 and the 
oeÆ
ientof � is not zero. In this 
ase there is a unique � su
h that ~
0 = 0.After performing this transformation, we may suppose that 
0 = 0. Now we
onsider the transformation~L := � 1 �0 1 � � L � � 1 ��0 1 � ; for a 
onstant � :The (1; 2) 
oeÆ
ient of the new matrix is��X ajz � sj � �2X bjz � sj + �X djz � sj +X 
jz � sj :One develops this 
oeÆ
ient at z =1 as series in s, this yieldssf�(X dj �X aj) +X 
jg+ s2� ;36



and there is a unique � su
h that the 
oeÆ
ient of s is 0. After performingthis transformation, one has that P 
j = 0 and the `residue matrix' of r atz =1 is � �P aj 00 1�P dj � :There are two possibilities for this matrix, namelyP aj = 0; 1�P dj = �1=2orP aj = �1=2; 1�P dj = 0. We 
ontinue with the �rst 
ase. One performsthe transformation~L := � 
 00 1 � � L � � 
�1 00 1 � ; for a non zero 
onstant 
 :If P bjz�sj = 0 or P 
jz�sj = 0, then r is `very redu
ible' in the sense thatOe1 or O(�[1℄)e2 is invariant. We remove this very redu
ible 
ase from theparameter spa
e.Suppose thatP bjz�sj 6= 0, then is follows that (b1; b2; b3) � (t�1;�t; 1). Onemay normalize, using 
, su
h that (b1; b2; b3) = (t� 1;�t; 1).For the se
ond possibility, P aj = �1=2 and 1 �P dj = 0, one 
anperform the same steps. We note that this 
ase is not equivalent under thea
tion of Aut to the 
ase P aj = 0.Suppose that the 
oeÆ
ient P bjsj of �2 is not zero.(This is the general situation). There are two values for � whi
h transform
0 into 0. At least one of them allows a value of � whi
h transforms, in thenext step,P 
j into 0. Thus we may already suppose that 
0 = 0; P 
j = 0.Now we 
onsider again the transformation~L := � 1 � + �z0 1 � � L � � 1 �� � �z0 1 � ; for 
onstants �; �;and suppose that the property 
0 = 0; P 
j = 0 is preserved. We observethat (�P aj)(1 �P dj) = 0. Suppose that P aj = 0. Then one 
omputesthe existen
e of a unique non zero element � + �z, that preserves 
0 =0; P 
j = 0. This element transforms P aj = 0 into P aj = 1=2. If onestarts with P dj = 1 (or equivalently P aj = 1=2), there is again a uniquenon zero element � + �z, that preserves 
0 = 0; P 
j = 0. This elementtransforms P aj = 1=2 into P aj = 0. Thus we 
an eliminate the a
tionof the group of transformation f� 1 � + �z0 1 � j �; � 2 Cg by requiring37




0 = 0; P 
j = 0; P aj = 0. Then we are left with the a
tion of the groupf� 
 00 1 � j 
 2 C�g. This a
tion 
an be eliminated by requiring that, say,P bjsj = 1.A spa
e of 
onne
tionsWe restri
t ourselves to 
onne
tions with 
0 = 0;P 
j = 0. Of the twopossibilities for P aj we 
hoose P aj = 0. Here we have omitted the rathermysterious spe
ial situation P sjbj = 0 and P aj = 1=2. As before, the
onne
tion is 
alled `very redu
ible' if either Oe1 or O(�[1℄)e2 is invariantunder the 
onne
tion. Consider the spa
e X of 
onne
tions given by:
0 = 0;X aj = 0;X bj = 0;X 
j = 0; aj(1=2� aj) = bj
j (j = 1; 2; 3);(b1; b2; b3) 6= (0; 0; 0) and (
1; 
2; 
3) 6= (0; 0; 0). Thus we have ex
luded the`very redu
ible' 
onne
tions. We still have to divide X by the a
tion of G m .Any g 2 G m = C� multiplies the bj with g, the 
j with g�1 and leaves the ajinvariant.Consider the G m -invariant morphism X ! A 2 � P1, whi
h maps a pointof X to ((a1; a2; a3); [b1; b2; b3℄). For 
onvenien
e we have identi�ed A 2 withf(a1; a2; a3) 2 A3j P aj = 0g and similarly we write P1 for f[b1; b2; b3℄ 2P2j P bj = 0g. The image lies in the subset Y of (A 2 nf(0; 0; 0)g)�P1 de�nedby the equation b2b3a1(1=2� a1) + b1b3a2(1=2� a2) + b1b2a3(1=2� a3) = 0.A small 
al
ulation shows that Y is in fa
t the geometri
 quotient of X forthe a
tion of G m . One 
an verify that Y is non singular. In fa
t, the �bresof Y ! P1 are non singular 
oni
s in A 2 . The �bres are 
onne
ted ex
ept forthe points [1;�1; 0℄; [1; 0;�1℄; [0; 1;�1℄. For ea
h of these points the �bre
onsists of two parallel lines.We note that A 2 ;P1 should be seen as aÆne and proje
tive variety over theaÆne s
heme Spe
(C[t; 1t(t�1) ℄). The same holds for X and Y .The spe
ial familyOn the ellipti
 
urve one 
onsiders the family of 
onne
tions re = 
dzw 
 e(with 
 6= 0) on the trivial line bundle OEe. This is pushed down to theproje
tive line as the family ddz + � 0 

w2 w0w � ;this is already a 
onne
tion on M with the pres
ribed lo
al exponents. Fur-ther [b1; b2; b3℄ = [t � 1;�t; 1℄ 2 P1 and P bjsj = 0. Conjugation with the38



matrix � 1 � + �z0 1 �, with � = 2(1+ t)=3+8
3=3 and � = �2
 transformsthese 
onne
tions into the points of Y witha1 = 2
2(1 + t)=3 + 8
4=3t ; a2 = 2
2(1 + t)=3 + 8
4=3� 2
21� t anda3 = 2
2(1 + t)=3 + 8
4=3� 2
2tt2 � t ; [b1; b2; b3℄ = [t� 1;�t; 1℄ :As before, the lo
us of the redu
ible equations 
an be 
omputed. Thesame holds for the universal family of 
onne
tions, expressed in terms of thedi�erential (
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