Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general 2D meshes
Boris Andreianov, Franck Boyer, Florence Hubert

To cite this version:

HAL Id: hal-00005779
https://hal.science/hal-00005779v2
Submitted on 25 Mar 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract. Discrete duality finite volume schemes on general meshes, introduced by Hermeline in [22] and Domelevo & Omnes in [11] for the Laplace equation, are proposed for nonlinear diffusion problems with non homogeneous Dirichlet boundary condition. This approach allows the discretization of non linear fluxes in such a way that the discrete operator inherits the key properties of the continuous one. Furthermore, it is well adapted to very general meshes including the case of non-conformal locally refined meshes.

We show that the approximate solution exists and is unique, which is not obvious since the scheme is nonlinear. We prove that, for general $W^{-1,p'}(\Omega)$ source term and $W^{1,p}(\partial\Omega)$ boundary data, the approximate solution and its discrete gradient converge strongly towards the exact solution and its gradient respectively in appropriate Lebesgue spaces.

Finally, error estimates are given in the case where the solution is assumed to be in $W^{2,p}(\Omega)$. Numerical examples are given, including those on locally refined meshes.

Keywords. Finite-volume methods, Error estimates, Leray-Lions operators.

AMS Subject Classification. 35J65 - 65N15 - 74S10

1. Introduction.

1.1. Nonlinear elliptic equations. In this paper, we are interested in the study of a finite volume approximation of solutions to the nonlinear diffusion problem with non homogeneous Dirichlet boundary conditions:

$$
\begin{cases}
-\text{div} (\varphi(z, \nabla u_e(z))) = f(z), & \text{in } \Omega, \\
u_e = g, & \text{on } \partial\Omega,
\end{cases}
$$

where Ω is a given bounded polygonal domain in \mathbb{R}^2.

We first recall the usual functional framework ensuring that the problem above is well-posed. Let $p \in]1, \infty[$ and $p' = \frac{p}{p-1}$. The flux $\varphi : \Omega \times \mathbb{R}^2 \to \mathbb{R}^2$ in equation (1.1) is supposed to be a Caratheodory function which is strictly monotonic with respect to $\xi \in \mathbb{R}^2$:

$$
(\varphi(z, \xi) - \varphi(z, \eta), \xi - \eta) > 0, \text{ for all } \xi \neq \eta, \text{ for a.e. } z \in \Omega. \quad (\mathcal{H}_1)
$$

We also assume that there exist $C_1, C_2 > 0$, $b_1 \in L^1(\Omega)$, $b_2 \in L^{p'}(\Omega)$ such that

$$
(\varphi(z, \xi), \xi) \geq C_1|\xi|^p - b_1(z), \text{ for all } \xi \in \mathbb{R}^2, \text{ a.e. } z \in \Omega, \quad (\mathcal{H}_2)
$$

$$
|\varphi(z, \xi)| \leq C_2|\xi|^{p-1} + b_2(z), \text{ for all } \xi \in \mathbb{R}^2, \text{ a.e. } z \in \Omega. \quad (\mathcal{H}_3)
$$

These assumptions ensure that $u \mapsto -\text{div}(\varphi(\cdot, \nabla u))$ is a Leray-Lions operator, and in particular the map $G \in (L^p(\Omega))^d \mapsto \varphi(\cdot, G(\cdot)) \in (L^{p'}(\Omega))^d$ is continuous.

Theorem 1.1. Under assumptions $(\mathcal{H}_1), (\mathcal{H}_2), (\mathcal{H}_3)$, for any $f \in W^{-1,p'}(\Omega)$ and $g \in W^{1,p}(\partial\Omega)$ the problem (1.1) has a unique solution $u_e \in W^{1,p}(\Omega)$.
Remark 1.1. Note that, in view of the numerical approximation of the source term, it is necessary to suppose that \(f \in L^p(\Omega) \). This is not a restriction of our approach. Indeed, in order to treat the case of general source term \(f \in W^{-1,p}(\Omega) \), it is possible to write \(f = f_0 + \text{div} f_1 \) with \(f_0 \in L^p(\Omega) \) and \(f_1 \in \left(L^p(\Omega)\right)^2 \), so that the problem (1.1) is equivalent to

\[
-\text{div}(\hat{\varphi}(z, \nabla u_e)) = f_0(z),
\]

where \(\hat{\varphi} : (z, \xi) \rightarrow \varphi(z, \xi) + f_1(z) \). It is easily seen that, if \(\varphi \) satisfies (\(H_1 \))-(\(H_3 \)), so does the new flux \(\hat{\varphi} \). It is worth noticing that the couple \((f_0, f_1)\) is not unique and each choice will lead to a different approximation of the original equation (see [13]). As a consequence, from now on we always assume at least that \(f \in L^p(\Omega) \).

1.2. Examples. Our framework includes classical elliptic operators like the linear anisotropic Laplace equation

\[
-\text{div}(A(z)\nabla u_e) = f,
\]

(1.3)

\(A(z) \) being a uniformly coercive matrix-valued map, or the \(p \)-laplacian

\[
-\text{div}(|\nabla u_e|^{p-2}\nabla u_e) = f.
\]

(1.4)

One can also encounter, for instance in the modelling of non-newtonian fluids flows in a porous medium, equations like

\[
-\text{div}\left(k(z)|F(z) + \nabla u_e|^{p-2}(F(z) + \nabla u_e)\right) = f,
\]

(1.5)

where \(F \) is a vector-valued map and \(k \) a positive scalar map bounded from below. Notice that \(F \) is not necessarily a gradient, so that this problem may not reduce to the \(p \)-laplacian (1.4) through a change of variables. The models presented in [10] are even more general, since the flux \(\varphi \) depends also on the unknown \(u_e \). In [20], the authors also propose such nonlinear elliptic problem for the study of glacier flows. In this case, the flux \(\varphi \) depends only on \(\xi \) but in an implicit way.

We recall the key technical lemma which imply the monotonicity and continuity properties of the two non-linear model problems above (see [5]).

Lemma 1.2. For any \(p \in [1, +\infty[\) and \(\delta \geq 0 \), there exists \(\underline{C}, \overline{C} > 0 \) such that for any \(n \in \mathbb{N} \) we have

\[
(|\xi|^{p-2}\xi - |\eta|^{p-2}\eta, \xi - \eta) \geq \underline{C}|\xi - \eta|^{2+\delta}(|\xi| + |\eta|)^{p-2-\delta}, \quad \forall \xi, \eta \in \mathbb{R}^n,
\]

\[
|||\xi|^{p-2}\xi - |\eta|^{p-2}\eta|| \leq \overline{C}||\xi - \eta||^{1-\delta}(|\xi| + |\eta|)^{p-2+\delta}, \quad \forall \xi, \eta \in \mathbb{R}^n.
\]

1.3. Sobolev spaces on the boundary of polygonal domains. We need to recall briefly the definitions and main properties of the Sobolev spaces defined on \(\partial \Omega \) and related trace theorems. A complete study of these topics can be found, for instance, in [21].

Definition 1.3. Let \(\alpha \in [0, 1[\) and \(p \in [1, +\infty[\). We define \(W^{\alpha, p}(\partial \Omega) \), to be the space of functions \(g \in L^p(\partial \Omega) \) such that

\[
\|g\|_{W^{\alpha, p}(\partial \Omega)} \overset{\text{def}}{=} \|g\|_{L^p(\partial \Omega)}^p + \int_{\partial \Omega} \int_{\partial \Omega} \left| \frac{g(x) - g(y)}{|x-y|^{\alpha}} \right|^p \frac{d\lambda(x) \, d\lambda(y)}{|x-y|^\alpha} < \infty,
\]

where \(d\lambda \) is the natural length measure which can be defined on the boundary \(\partial \Omega \) (see [25]).

We recall that the trace operator \(\gamma \) is continuous from \(W^{1,p}(\Omega) \) onto \(W^{1-\frac{\alpha}{p}, p}(\partial \Omega) \) and that there exists a linear continuous lift operator \(\pi : W^{1-\frac{\alpha}{p}, p}(\partial \Omega) \rightarrow W^{1,p}(\Omega) \) such that

\[
\gamma \circ \pi = \text{Id}_{\partial \Omega}, \quad \|\pi(g)\|_{W^{1,p}} \leq C \|g\|_{W^{1-\frac{\alpha}{p}, p}(\partial \Omega)}.
\]

(1.6)
where C depends only on Ω and p. For any $g \in W^{1-\frac{1}{p}}(\partial\Omega)$ we denote by $W^{1,p}_g(\Omega)$ the closed subset of $W^{1,p}(\Omega)$ of all functions whose trace on $\partial\Omega$ is equal to g.

Let us denote by $\Gamma_1, \ldots, \Gamma_k$ the sides of Ω. Since each Γ_i is a segment we can define naturally the spaces $W^{1+\alpha,p}(\Gamma_i)$ by

$$h \in W^{1+\alpha,p}(\Gamma_i) \iff h \in W^{1,p}(\Gamma_i), \quad \text{and} \quad \int_{\Gamma_i} \int_{\Gamma_i} \frac{|\nabla_x h(x) - \nabla_x h(y)|^p}{|x-y|^\alpha} \, d\lambda(x) \, d\lambda(y) < \infty,$$

where $\nabla_x h$ stands for the derivative of h in the direction of $\partial\Omega$ that we call “tangential gradient”. Since $\partial\Omega$ is not smooth enough, it is not possible to define the space $W^{1+\alpha,p}(\partial\Omega)$ but we can introduce the following space

$$\tilde{W}^{1+\alpha,p}(\partial\Omega) = \{ g \in W^{1,p}(\partial\Omega), \ g|_{\Gamma_i} \in W^{1+\alpha,p}(\Gamma_i) \} ,$$

endowed with its natural norm. We recall that the trace operator γ is continuous from $W^{2,p}(\Omega)$ onto a finite codimensional subset of $\tilde{W}^{2-\frac{1}{p},p}(\partial\Omega)$ which can be described precisely (we do not need this description here and we refer to [21] for further developments on this topic).

We also recall that for any $p > 2$ the embedding of $W^{1,\frac{p}{p-1}}(\partial\Omega)$ in the Hölder space $C^{0,1-\frac{1}{p}}(\partial\Omega)$ holds true and that we have the following sharp estimate.

Lemma 1.4. Let $p > 2$, there exists a constant C depending only on p such that, for any connected subset σ of $\partial\Omega$ and any $g \in W^{1,\frac{p}{p-1}}(\partial\Omega)$ we have

$$|g(z) - g(z')| \leq C|z - z'|^{1 - \frac{2}{p}} \left(\int_{\sigma} \int_{\sigma} |g(x) - g(y)|^p \frac{d\lambda(x) \, d\lambda(y)}{|x-y|^{1-\frac{2}{p}}} \right)^{\frac{1}{p}}, \quad \forall z, z' \in \sigma. \quad (1.7)$$

Proof. The embedding of $W^{1,\frac{p}{p-1}}(\partial\Omega)$ in the Hölder space $C^{0,1-\frac{1}{p}}(\partial\Omega)$ is given by the Morrey theorem. In particular, there exists $C > 0$ such that (1.7) holds for the unit segment $\sigma = [0,1] \subset \mathbb{R}$ and any $g \in W^{1,\frac{p}{p-1}}([0,1])$. It is now easy, using a linear change of the variables, to see that (1.7) holds with the same constant C for any σ. \qed

1.4. Finite volume approach

Finite elements approximation of problems like (1.1) are now quite classical (see for instance [5, 24, 7, 19]). Nevertheless, it is also natural to consider finite volume methods for these problems. Indeed, finite volume methods allow more flexibility on the geometry of the meshes and ensure the local consistency of the numerical fluxes inside the domain. Furthermore, this kind of discretization is well-adapted if one adds a convective term in the problem (1.1).

The nonlinearity and the possible anisotropy of the flux φ with respect to ∇u_e makes it difficult to approximate the problem by standard cell-centered finite volume methods (as presented, e.g., in [16]), since only the normal component of ∇u_e on the interface between two adjacent volumes can be easily approximated on conformal meshes.

In the case of linear anisotropic Laplace equation, some studies are available in the literature for instance in [8], [12], [18], with various approaches. To our knowledge, three kinds of gradient reconstruction were proposed for the finite volume approximation of the fully non-linear equation. The one of [4] applies for the p-laplacian on meshes that are dual to triangular ones, moreover, the triangular meshes should be close enough to the structured mesh. The one of [1] applies on rectangular meshes. Finally, for general grids it was recently proposed in [15] to handle fluxes on the edges of a control volume as new unknowns, and reconstruct the discrete gradient, constant per control volume, using these fluxes. In all cases, the crucial feature is that the summation-by-parts procedure permits to reconstitute, starting from the one-dimensional finite differences $u_K - u_L$, the whole two-dimensional discrete gradient (see [4, Lemma 8, Proposition 4] and [1, Proposition 2.5, Lemma 2.7]). The coercivity and monotonicity properties of the continuous elliptic operator are then inherited by its discrete finite volume counterparts. For instance, the variational structure of the p-laplacian operator can be inherited by its discrete analogues.
We consider in this paper the class of finite volume schemes introduced by Hermeline in [22], by Domelevo, Omnes in [11] for the Laplace equation and in [9] for other linear equations like the Stokes or the Div-Curl system. More precisely, we show that the method can be successfully extended to the case of the nonlinear diffusion equation (1.1) we are interested in while preserving the main features of the continuous problem. In [9], these schemes are called “Discrete Duality Finite Volume” (DDFV for short) since the discrete gradient and discrete divergence operators are dual one from each other (see Lemma 4.1 below). The equation is approximated simultaneously on two interrelated meshes: the primal and the dual mesh. The number of variables and of equations doubles compared to usual cell-centered FV schemes, but the gradient approximation (the one already used by Coudière and al. [8]) becomes simple and quite efficient. Furthermore, the method is well-suited to almost arbitrary meshes since very few geometrical constraints are imposed to the primal and dual control volumes. Indeed, non convex control volumes, non matching triangulations or locally refined meshes can naturally be handled by this method and also fulfill the assumptions needed for the convergence analysis given in this paper.

1.5. Outline. This paper is organized as follows. The framework of DDFV meshes, the discrete gradient and the finite volume scheme associated to equation (1.1) are described in Section 2. In Section 3, we present the main results of discrete functional analysis necessary for the theoretical study of the finite volume method. These results include the discrete Poincaré inequality, the study of the mean-value projection of functions on the mesh and finally a discrete compactness result similar to the Rellich theorem. Existence and uniqueness of a discrete solution of the scheme as well as a priori estimates are given in section 4. The structure properties of Leray-Lions operators being inherited in the framework of DDFV schemes, the method we use is similar to the one for the continuous problem (1.1).

Section 5 is devoted to the proof of the convergence of the approximate solution in case of general data \(g \in W^{1-\frac{1}{p}}(\partial \Omega) \) and \(f \in W^{-1,\frac{1}{p}}(\Omega) \) (see Remark 1.1). Notice that the strong convergence of the discrete gradient of the approximate solution towards the gradient \(\nabla u_e \) of the exact solution is obtained in \((L^p(\Omega))^2 \) for any \(q < p \) in the general case and for \(q = p \) under a strong monotonicity assumption on the operator which is satisfied in many situations. In Section 6, we study the stability properties of the approximate solution with respect to the data \(f \) and \(g \) and finally in Section 7, we prove error estimates for the discrete gradient in \((L^p(\Omega))^2 \) in the case where the exact solution lies in \(W^{2,p}(\Omega) \), which is a usual assumption for the error analysis. The convergence rate obtained is \(\text{size}(T)^{-\frac{1}{p}} \) for \(p \geq 2 \) and \(\text{size}(T)^{p-1} \) for \(p < 2 \). These rates are the same than the one obtained in [24, 1] for different schemes. As an example, this result implies the first order convergence in the case of the anisotropic Laplace equation which Lipschitz coefficients.

Note that error estimates for general solutions of the p-laplacian equation with source term in \(L^{p'}(\Omega) \) were obtained in [2], making use of the intrinsic Besov regularity of continuous and discrete solutions, in the case of structured rectangular meshes. It is an open question how to generalize this Besov approach to the unstructured DDFV schemes.

In Section 8, we provide some numerical results which show in particular that, in the truly nonlinear case, the method behaves better than what is expected even for non conformal locally refined meshes. In the concluding Section 9, we discuss the extension of our study to some fully practical variants of the finite volume scheme and to even more general meshes than the ones described in Section 2.1.

2. The finite volume method.

2.1. Definition of the mesh. We call \(\mathcal{T} \) a triple \((\mathcal{M}, \mathcal{M}^*, \mathcal{D}) \) of meshes on \(\Omega \), defined as follows. The mesh \(\mathcal{M} \) is a set of disjoint polygonal control volumes \(\kappa \subset \Omega \) such that \(\bigcup \kappa = \Omega \). We note \(\partial \mathcal{M} \) the set of edges of the control volumes in \(\mathcal{M} \) included in \(\partial \Omega \), which we consider as degenerate control volumes. We associate to \((\mathcal{M}, \partial \mathcal{M}) \) a family of points \(\mathcal{P} \). The set \(\mathcal{P} = \mathcal{P}_{\text{int}} \cup \mathcal{P}_{\text{ext}} \) is composed of one point per control volume \(\kappa \in \mathcal{M} \) (called \(x_\kappa \in \mathcal{P}_{\text{int}} \)) and one point per degenerate control volume \(\kappa \in \partial \mathcal{M} \) (called \(x_\kappa \in \mathcal{P}_{\text{ext}} \)):

\[\mathcal{P}_{\text{int}} = \{ x_\kappa, \kappa \in \mathcal{M} \}, \quad \mathcal{P}_{\text{ext}} = \{ x_\kappa, \kappa \in \partial \mathcal{M} \}. \]

Let \(\mathcal{P}^* \) denote the set of vertices of the mesh \(\mathcal{M} \). The set \(\mathcal{P}^* \) can be decomposed into \(\mathcal{P}^* = \mathcal{P}_{\text{int}}^* \cup \mathcal{P}_{\text{ext}}^* \) where \(\mathcal{P}_{\text{int}}^* \cap \partial \Omega = \emptyset \) and \(\mathcal{P}_{\text{ext}}^* \subset \partial \Omega \) (see Figure 2.1). The sets \(\mathcal{M}^* \) and \(\partial \mathcal{M}^* \) are two families of “dual” control
volumes defined as follows. To any point $x_{K^*} \in \mathcal{P}_{int}^*$ (resp. $x_{K^*} \in \mathcal{P}_{ext}^*$) we associate the polygon $K^* \in \mathcal{M}^*$ (resp. $K^* \in \partial \mathcal{M}^*$) whose vertices are $\{x_K \in \mathcal{P} / x_{K^*} \in K, K \in \mathcal{M} \cup \partial \mathcal{M}\}$ (resp. $\{x_K \in \mathcal{P} / x_{K^*} \in K, K \in \mathcal{M} \cup \partial \mathcal{M}\}$).

For all adjacent control volumes κ and ζ, denote by $\sigma = \kappa | \zeta$ the edge between κ and ζ and by \mathcal{E} the set of such edges. The corresponding notations $\sigma^* = \kappa^* | \zeta^*$ and \mathcal{E}^* refer to the dual mesh $\mathcal{M}^* \cup \partial \mathcal{M}^*$. For each couple $(\sigma, \sigma^*) \in \mathcal{E} \times \mathcal{E}^*$ such that $\sigma = \kappa | \zeta = (x_{K^*}, x_{\zeta^*})$ and $\sigma^* = \kappa^* | \zeta^* = (x_K, x_{\zeta})$, we introduce the quadrilateral diamond cell D_{σ, σ^*} whose diagonals are σ and σ^*, as shown in Figure 2.2. If $\sigma \in \mathcal{E} \cap \partial \Omega$, then the quadrilateral D_{σ, σ^*} degenerate in a triangle. The set of diamond cells is denoted by \mathcal{D}. Notice that we have

$$\Omega = \bigcup_{\mathcal{D} \in \mathcal{D}} \mathcal{D}.$$

Let us point out the fact that the diamond cells can be non convex and that dual control volumes can be non convex and also may overlap in some very particular situations (see [11]).

2.2. Notations. For any control volume $\kappa \in \mathcal{M}$, we define

- m_{κ}, the measure of κ;
- $\mathcal{D}_\kappa = \{D_{\sigma, \sigma^*} \in \mathcal{D} / \sigma \subset \partial \kappa\}$.
- ν_{κ}, the outward unit normal vector to $\partial \kappa$.
- d_{κ}, the diameter of κ.

Fig. 2.1. Example of a DDFV mesh
For any degenerate control volume $\kappa \in \partial \mathcal{M}$, ν_{κ} stands for the outward unit normal vector to $\partial \Omega$. In the same way, for a “dual” control volume $\kappa^* \in \mathcal{M}^* \cap \partial \mathcal{M}^*$, we set

- m_{κ^*}, the measure of κ^*;
- $\mathcal{D}_{\kappa^*} = \{ \mathcal{D}_{\kappa^*} \in \mathcal{D} / \sigma^* \subset \partial \kappa^* \}$.
- ν_{κ^*}, the outward unit normal vector to $\partial \kappa^*$.
- d_{κ^*}, the diameter of κ^*.

For a diamond cell $\mathcal{D}_{\sigma, \sigma^*}$, recall that $(x_{\kappa}, x_{\kappa^*}, x_{\ell}, x_{\ell^*})$ are the vertices of $\mathcal{D}_{\sigma, \sigma^*}$ and note:

- m_{σ}, the length of σ, m_{σ^*} the length of σ^* and $m_{\mathcal{D}}$ the measure of the diamond cell.
- τ, the unit vector parallel to σ, oriented from x_{κ^*} to x_{ℓ^*}.
- ν, the unit vector normal to σ, oriented from x_{κ^*} to x_{ℓ^*}.
- τ^*, the unit vector parallel to σ^*, oriented from x_{κ} to x_{ℓ}.
- ν^*, the unit vector normal to σ^*, oriented from x_{κ^*} to x_{ℓ^*}.
- $\alpha_{\mathcal{D}}$, the angle between τ and τ^*.
- $d_{\mathcal{D}}$, the diameter of $\mathcal{D}_{\sigma, \sigma^*}$.

2.3. Unknowns and boundary data.

The finite volume method associates to all primal control volumes $\kappa \in \mathcal{M}$, an unknown value u_{κ} and to all dual control volumes $\kappa^* \in \mathcal{M}^*$, an unknown value u_{κ^*}. We denote the approximate solution on the mesh \mathcal{T} by

$$u^\tau = \left((u_{\kappa})_{\kappa \in \mathcal{M}} , (u_{\kappa^*})_{\kappa^* \in \mathcal{M}^*} \right).$$

In this paper we deal with non-homogeneous Dirichlet boundary condition. We describe here the way the boundary data will enter the scheme. Note first that

$$\partial \Omega = \bigcup_{\kappa \in \partial \mathcal{M}} \kappa = \bigcup_{\kappa^* \in \partial \mathcal{M}^*} (\kappa^* \cap \partial \Omega).$$

For any boundary data $g \in W^{1-\frac{1}{p}}(\partial \Omega)$ we introduce its discrete counterpart by defining for each $\kappa \in \partial \mathcal{M}$, a value g_{κ} and for each $\kappa^* \in \partial \mathcal{M}^*$, a value g_{κ^*}. The family $((g_{\kappa}), (g_{\kappa^*}))$ is denoted by g^τ and is also identified to a piecewise constant function in $L^p(\partial \Omega)$ as follows

$$g^\tau \sim \frac{1}{2} \sum_{\kappa \in \partial \mathcal{M}} 1_{\kappa} g_{\kappa} + \frac{1}{2} \sum_{\kappa^* \in \partial \mathcal{M}^*} 1_{\kappa^* \cap \partial \Omega} g_{\kappa^*},$$

where here and in the sequel, we denote by 1_E the characteristic function of any set E.

Fig. 2.2. Notations in a diamond cell $\mathcal{D}_{\sigma, \sigma^*}$

We will mainly consider the discrete boundary data denoted by \(\mathbb{P}_m^T g = ((g_\kappa), (g_{\kappa^*})) \) defined by
\[
g_\kappa = \frac{1}{m_{\sigma_\kappa}} \int_{\sigma_\kappa} g(s) \, ds, \quad g_{\kappa^*} = \frac{1}{m_{\sigma_{\kappa^*}}} \int_{\sigma_{\kappa^*}} g(s) \, ds. \tag{2.2}
\]
Here
\[
\sigma_\kappa \overset{\text{def}}{=} B(x_\kappa, \rho_\kappa) \cap \partial \Omega, \quad \text{and} \quad \sigma_{\kappa^*} \overset{\text{def}}{=} B(x_{\kappa^*}, \rho_{\kappa^*}) \cap \partial \Omega \tag{2.3}
\]
and \(\rho_\kappa \) and \(\rho_{\kappa^*} \) are positive numbers associated to the mesh \(T \) and such that
\[
\sigma_\kappa \subset \mathcal{K}, \quad \sigma_{\kappa^*} \subset \partial \mathcal{K^*}.
\]
Finally, introduce numbers \(\rho_\kappa \) and \(\rho_{\kappa^*} \) for any \(\kappa \in \mathcal{M} \) (resp. \(\kappa^* \in \mathcal{M}^* \)) such that
\[
B_\kappa \overset{\text{def}}{=} B(x_\kappa, \rho_\kappa) \subset \Omega, \quad B_{\kappa^*} \overset{\text{def}}{=} B(x_{\kappa^*}, \rho_{\kappa^*}) \subset \Omega. \tag{2.4}
\]
These balls are only introduced to prove the convergence of the scheme (but not to prove the error estimates). In particular, they do not enter the definition of the scheme. Of course, some assumptions are needed on the radii \(\rho_\kappa \) and \(\rho_{\kappa^*} \) as stated in the next paragraph.

2.4. Regularity of meshes.

We note \(\text{size}(T) \) the maximum of the diameters of the diamond cells in \(\mathcal{D} \). The following bounds follow:
\[
m_{\sigma} \leq \text{size}(T), \quad \forall \sigma \in \mathcal{E}; \quad m_{\sigma^*} \leq \text{size}(T), \quad \forall \sigma^* \in \mathcal{E}^*;
\]
\[
m_\kappa \leq \frac{\pi}{2} \text{size}(T)^2, \quad \forall \kappa \in \mathcal{M}; \quad m_{\kappa^*} \leq \frac{\pi}{2} \text{size}(T)^2, \quad \forall \kappa^* \in \mathcal{M}^*; \quad m_D \leq \frac{1}{2} \text{size}(T)^2, \quad \forall D \in \mathcal{D}.
\]
We introduce now a positive number that quantifies the regularity of a given mesh and is useful to perform the convergence analysis of the finite volume schemes. We first define \(\alpha_T \) to be the unique real number in \(\left[0, \frac{\pi}{2}\right] \) such that
\[
\sin \alpha_T \overset{\text{def}}{=} \min_{D \in \mathcal{D}} \left| \frac{\sin \alpha_D}{\sigma} \right|,
\]
that is the minimal angle between the diagonals of the diamond cells in the mesh.

Let us introduce the number
\[
\mathcal{N}_T \overset{\text{def}}{=} \sup_{x \in \Omega} \# \left\{ \kappa^* \text{ s.t. } x \in \kappa^* \cup B_{\kappa^*} \right\} + \sup_{x \in \Omega} \# \left\{ \kappa \text{ s.t. } x \in \kappa \cup B_\kappa \right\} + \sup_{x \in \Omega} \# \left\{ D \text{ s.t. } x \in D \cup B_\kappa, \ D \in \mathcal{D}_\kappa \right\} + \sup_{x \in \Omega} \# \left\{ D \text{ s.t. } x \in D \cup B_{\kappa^*}, \ D \in \mathcal{D}_{\kappa^*} \right\}, \tag{2.6}
\]
where \(\tilde{E} \) denotes the convex hull of any set \(E \subset \mathbb{R}^2 \). In the usual case where the primal control volumes, the dual control volumes and the diamond cells are convex and where \(B_\kappa \subset \kappa, B_{\kappa^*} \subset \kappa^* \) then \(\mathcal{N}_T \) can be bounded by a function of the maximal number of edges per primal and dual control volumes. Since we do not impose any convexity assumption on the meshes, we need to control this number \(\mathcal{N}_T \) in the convergence analysis. We can now introduce
\[
\text{reg}(T) \overset{\text{def}}{=} \max \left(\frac{1}{\alpha_T}, \mathcal{N}_T, \max_{D \in \mathcal{D}} \frac{d_D}{\sqrt{m_D}}, \max_{\kappa \in \mathcal{M}} \frac{d_\kappa}{\sqrt{m_\kappa}}, \max_{\kappa^* \in \mathcal{M}^*} \frac{d_{\kappa^*}}{\sqrt{m_{\kappa^*}}}, \max_{\kappa \in \mathcal{M} \cup \mathcal{M}^*} \left(\frac{d_\kappa}{\rho_\kappa} + \frac{\rho_\kappa}{d_\kappa} \right), \max_{\kappa^* \in \mathcal{M}^* \text{ corner}} \left(\frac{d_{\kappa^*}}{\rho_{\kappa^*}} + \frac{\rho_{\kappa^*}}{d_{\kappa^*}} \right), \right. \tag{2.7}
\]
\[
\max_{\kappa \in \mathcal{M}, \kappa^* \in \mathcal{M}^* \text{ corner}} \left(\frac{d_\kappa}{\rho_\kappa} \right), \max_{\kappa \in \mathcal{M}} \frac{d_\kappa}{d_D}, \max_{\kappa^* \in \mathcal{M}^*} \frac{d_{\kappa^*}}{d_D}\right),
\]
where, for any \(s \geq 0 \), we have

\[
\begin{align*}
\zeta_p(s) &= s, \text{ if } p < 2, \\
\zeta_p(s) &= s^{\frac{p'}{p}}, \text{ if } p > 2, \\
\zeta_2(s) &= s|\log s|.
\end{align*}
\]

This special treatment of the corner vertices of the mesh is a purely technical assumption which is used in the convergence rate analysis (see Lemma 7.3).

Let us point out that \(\text{reg}(T) \) essentially measures:

- how flat the diamond cells are.
- how large is the difference between the size of a primal control volume (resp. a dual control volume) and the size of a diamond cell as soon as they intersect.

Convention: In any estimate given in this paper, the dependence of the constants in \(\text{reg}(T) \) is implicitly assumed to be non-decreasing.

Remark 2.1. For conformal finite volume meshes (see [16]), it is assumed that for \(\alpha_D = \frac{\pi}{2} \) for any diamond \(D \in \mathcal{D} \), so that \(\alpha_T = \frac{\pi}{2} \). In our case, not only this orthogonality condition is relaxed but also \(\mathcal{M} \) can present atypical edges, non-convex dual control volumes and non-convex diamond cells (see Figure 2.3).

Remark 2.2. The boundedness of \(\text{reg}(T) \) imposes only local restriction on the mesh. It is easy to construct a family of locally refined mesh such that \(\text{reg}(T) \) is bounded independently on the level of the refinement. Figure 2.4 provides a very simple example of such a construction.

Finally, let us point out the fact that there exists \(C > 0 \) depending only on \(p \) and \(\text{reg}(T) \) such that

\[
\|P_n^T g\|_{L^p(\partial \Omega)} \leq C\|g\|_{W^{1,\frac{p}{2}}(\partial \Omega)}, \quad \forall g \in W^{1,\frac{p}{2}}(\partial \Omega),
\]

and that, for any sequence of meshes \(T_n \) such that \(\text{reg}(T_n) \) is bounded and \(\text{size}(T_n) \rightarrow 0 \) we have

\[
P_n^T g \xrightarrow{n \rightarrow \infty} g, \quad \text{in } L^p(\partial \Omega), \quad \forall g \in W^{1,\frac{p}{2}}(\partial \Omega).
\]

2.5. Discrete gradient. We consider the discrete gradient introduced by Coudière and al. in [8] and applied by Hermeline [22] and Domelevo and Omnes [11] in the framework of DDFV schemes described above.
Fig. 2.4. Local refinement allowed by the boundedness of $\text{reg}(T)$

For a given discrete Dirichlet data g^T as defined above, the discrete gradient operator $\nabla_{g^T}^T$ can be defined as follows: for any $u^T \in \mathbb{R}^T$, $\nabla_{g^T}^T u^T$ is the function, constant on each diamond cell D_{σ, σ^*}, given by

$$\nabla_{g^T}^T u^T = \sum_{D \in D} \nabla_{g^T}^D u^T 1_D,$$

with

$$\begin{align*}
\left(\nabla_{g^T}^D u^T, \tau \right) &= \frac{u_{\sigma^*} - u_{\sigma^*}}{m_{\sigma}}, \\
\left(\nabla_{g^T}^D u^T, \tau^* \right) &= \frac{u_{\sigma} - u_{\sigma^*}}{m_{\sigma^*}},
\end{align*}$$

where D_{σ, σ^*} is noted D when no confusion can arise. The dependence on g^T only appears when D_{σ, σ^*} intersects $\partial\Omega$, in which case we replace the values of u_{σ} or u_{σ^*} by g_{σ} or g_{σ^*}, for the points x_{σ} or x_{σ^*} located on the boundary. Remark that $\nabla_{g^T}^D u^T$ can be expressed in the (ν, ν^*) basis in the following way:

$$\nabla_{g^T}^D u^T = \frac{1}{\sin \alpha_D} \left(\frac{u_{\sigma} - u_{\sigma}}{m_{\sigma}} \nu + \frac{u_{\sigma^*} - u_{\sigma^*}}{m_{\sigma^*}} \nu^* \right),$$

thanks to the following lemma.

Lemma 2.1. Using the notations of Section 2.2 and Figure 2.2 (in particular the orientation conventions), for any vector $\xi \in \mathbb{R}^2$ we have

$$(\sin \alpha_D) \xi = (\xi, \tau) \nu^* + (\xi, \tau^*) \nu.$$
In particular, if \(0^T \) denotes the zero vector of \(\mathbb{R}^T \) then
\[
\nabla_{\partial_D}^P u^T - \nabla_{\partial_D}^D u^T = \nabla_{\partial_D}^D \partial_D^T 0^T, \forall u^T \in \mathbb{R}^T.
\]

2.6. The scheme. “Discrete Duality Finite Volume” schemes are obtained, as in Hermeline [22] or in Domelevo and Omnes [11], by integrating equation (1.1) on both control volumes \(\kappa \in \mathcal{M} \) and dual control volumes \(\kappa^* \in \mathcal{M}^* \):
\[
\int_{\kappa} f(z) \, dz = \int_{\kappa} -\text{div} \left(\varphi(z, \nabla u_e(z)) \right) \, dz = -\int_{\partial \kappa} \left(\varphi(s, \nabla u_e(s)), \nu_\kappa \right) \, ds
\]
\[
= \sum_{\mathcal{D}_{\kappa, \kappa^*} \in \mathcal{D}_\kappa} -\int_{\mathcal{D}_{\kappa, \kappa^*}} \left(\varphi(s, \nabla u_e(s)), \nu_\kappa \right) \, ds
\]
\[
\int_{\kappa^*} f(z) \, dz = \int_{\kappa^*} -\text{div} \left(\varphi(z, \nabla u_e(z)) \right) \, dz = -\int_{\partial \kappa^*} \left(\varphi(s^*, \nabla u_e(s^*)), \nu_{\kappa^*} \right) \, ds^*
\]
\[
= \sum_{\mathcal{D}_{\kappa, \kappa^*} \in \mathcal{D}_{\kappa^*}} -\int_{\mathcal{D}_{\kappa, \kappa^*}} \left(\varphi(s^*, \nabla u_e(s^*)), \nu_{\kappa^*} \right) \, ds^*.
\]

Let us introduce for any diamond \(\mathcal{D} \) the spatial approximation \(\varphi_D : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) of the flux \(\varphi \) defined by
\[
\varphi_D(\xi) = \frac{1}{m_D} \int_{\mathcal{D}} \varphi(z, \xi) \, dz.
\]

Other approximations of \(\varphi \) on each diamond are possible, we will discuss one of them in Section 9.

On each diamond \(\mathcal{D} \), we approximate \(\varphi(\cdot, \nabla u_e(\cdot)) \), using the discrete gradient operator \(\nabla_{\partial_D}^D \) introduced in section 2.5, by \(\varphi_D(\nabla_{\partial_D}^D u^T) \). Note that the choice of a constant value for the discrete flux \(\varphi_D(\xi) \) on each diamond is necessary in the calculations using Lemma 2.1. The DDFV finite volume scheme then reads
\[
a^\kappa(u^T) \overset{\text{def}}{=} -\sum_{\mathcal{D}_{\kappa, \kappa^*} \in \mathcal{D}_\kappa} m_{\sigma} \left(\varphi_D(\nabla_{\partial_D}^D \partial_D^T u^T), \nu \right) = m^\kappa f^\kappa, \forall \kappa \in \mathcal{M},
\]
\[
a_{\kappa^*}(u^T) \overset{\text{def}}{=} -\sum_{\mathcal{D}_{\kappa, \kappa^*} \in \mathcal{D}_{\kappa^*}} m_{\sigma^*} \left(\varphi_D(\nabla_{\partial_D}^D \partial_D^T u^T), \nu^* \right) = m_{\kappa^*} f_{\kappa^*}, \forall \kappa^* \in \mathcal{M}^*.
\]

where \(f^\kappa \) (resp. \(f_{\kappa^*} \)) denotes the mean value of the function \(f \) on \(\kappa \) (resp. \(\kappa^* \)). It is convenient for the analysis given below to introduce a notation for this kind of projections on the set of discrete functions.

DEFINITION 2.2 (Mean-value projection on the mesh \(\mathcal{T} \)). For any integrable function \(v \) on \(\Omega \), we set
\[
\mathbb{P}^T_m v \overset{\text{def}}{=} \left(\frac{1}{m^\kappa} \int_{\kappa} v(z) \, dz \right)_{\kappa \in \mathcal{M}}, \left(\frac{1}{m_{\kappa^*}} \int_{\kappa^*} v(z) \, dz \right)_{\kappa^* \in \mathcal{M}^*}.
\]

We call \(\mathbb{P}^T_m v \), the mean-value projection of \(v \) on the space \(\mathbb{R}^T \). We also introduce the mean-value projection on the control volumes
\[
\mathbb{P}^T_m v \overset{\text{def}}{=} \left(\frac{1}{m^\kappa} \int_{\kappa} v(z) \, dz \right)_{\kappa \in \mathcal{M}}, \left(\frac{1}{m_{\kappa^*}} \int_{\kappa^*} v(z) \, dz \right)_{\kappa^* \in \mathcal{M}^*}.
\]

The finite volume scheme above can now be written under a compact form
\[
a_g(u^T) = \mathbb{P}^T_m f,
\]
where
\[a_g(u^\tau) \overset{def}{=} \left(\left(\frac{1}{m_\kappa} a_\kappa(u^\tau) \right)_\kappa, \left(\frac{1}{m_{\kappa^*}} a_{\kappa^*}(u^\tau) \right)_{\kappa^*} \right). \tag{2.19} \]

We postpone to section 9 a discussion concerning some variants of the proposed scheme, in particular, with respect to the choice of the discretization of the data \(f \) and \(g \).

3. Discrete functions and their properties.

3.1. Preliminaries.

The space of all discrete functions \(u^\tau \) in the sense of definition (2.1) is denoted by \(\mathbb{R}^\tau \). Whenever it is convenient, we will identify the discrete function

\[u^\tau = ((u_\kappa)_{\kappa \in \mathcal{M}}, (u_{\kappa^*})_{\kappa^* \in \mathcal{M}^*}) \]

with the piecewise constant function

\[u^\tau = \frac{1}{2} \left(u^{\mathcal{M}} + u^{\mathcal{M}^*} \right), \tag{3.1} \]

where \(u^{\mathcal{M}} = \sum_{\kappa \in \mathcal{M}} 1_\kappa u_\kappa \), \(u^{\mathcal{M}^*} = \sum_{\kappa^* \in \mathcal{M}^*} 1_{\kappa^*} u_{\kappa^*} \). As a consequence, one can define for any \(r \in [1, +\infty] \) the \(L^r \) norm of \(u^\tau \). We denote by \(\langle \cdot , \cdot \rangle \) the inner product on \(\mathbb{R}^\tau \) given by

\[\|u^\tau , v^\tau\| = \frac{1}{2} \sum_{\kappa \in \mathcal{M}} m(\kappa) u_\kappa v_\kappa + \frac{1}{2} \sum_{\kappa^* \in \mathcal{M}^*} m(\kappa^*) u_{\kappa^*} v_{\kappa^*}, \]

which stands for a discrete \(L^2(\Omega) \) inner product, whereas the usual Euclidean inner product on \(\mathbb{R}^\tau \) is denoted by \(\langle \cdot , \cdot \rangle \) :

\[\langle u^\tau , v^\tau \rangle = \sum_{\kappa \in \mathcal{M}} u_\kappa v_\kappa + \sum_{\kappa^* \in \mathcal{M}^*} u_{\kappa^*} v_{\kappa^*}. \]

Let us finally state the discrete version of the Poincaré inequality. This result is classical in the case \(p = 2 \) (see for example [11, 16]). When \(p \neq 2 \), it is proved in a slightly different context in [4], without any geometrical assumptions on the mesh. In the DDFV framework, we need to assume a lower bound on \(\alpha_\tau \) defined in (2.5).

Lemma 3.1 (Discrete Poincaré inequality). Let \(\mathcal{T} \) be a mesh of \(\Omega \). There exists a constant \(C \), only depending on \(p \), on the diameter of \(\Omega \) and on \(\text{reg}(\mathcal{T}) \), such that for any \(u^\tau \in \mathbb{R}^\tau \) and any \(g \in W^{1-p, p}(\partial \Omega) \), we have

\[\|u^\tau\|_{L^p} \leq C \left(\|\nabla_{\mathcal{T}} u^\tau\|_{L^p} + \|g\|_{W^{1-p, p}(\partial \Omega)} \right), \]

where \(\nabla_{\mathcal{T}} g \) is defined in (2.2). Furthermore, if \(g = 0 \) then \(C \) only depends on \(\alpha_\tau \) instead of \(\text{reg}(\mathcal{T}) \).

3.2. Properties of the mean-value projection operators.

In the convergence analysis of our scheme we have to use some discrete approximation of test functions lying in \(W^{1-p}(\Omega) \). The natural projection (since these test functions may not be continuous when \(p < 2 \)) is the mean-value projection (see Definition 2.2). We give below the main properties of such a projection onto the set of discrete functions in our framework.

To begin with, we give the following crucial result, which is similar to [14, Lemma 7.2], [16, Lemma 3.4], generalized to the case of non convex control volumes and \(p \neq 2 \) (see also [15, Lemma 6.1]). We do not give the proof which is quite long and technical but is a straightforward extension of the proofs that one can found in the references above.

Lemma 3.2. For any \(q \geq 1 \), there exists a constant \(C \) depending only on \(q \) such that for any bounded set \(\mathcal{P} \subset \mathbb{R}^2 \), any segment \(\sigma \subset \mathbb{R}^2 \) and any \(v \in W^{1,q}(\mathbb{R}^2) \) we have

\[|v_{\mathcal{P}} - v_{\sigma}|^q \leq \frac{1}{m_\sigma m_{\mathcal{P}}} \int_{\mathcal{P}} \int_{\sigma} |v(x) - v(y)|^q \, dx \, dy \leq C \frac{\text{diam}(\widehat{\mathcal{P}}_{\sigma})^{q+1}}{m_\sigma m_{\mathcal{P}}} \int_{\widehat{\mathcal{P}}_{\sigma}} |\nabla v(z)|^q \, dz, \]

\[|v_{\mathcal{P}} - v_{\sigma}|^q \leq \frac{1}{m_\sigma m_{\mathcal{P}}} \int_{\mathcal{P}} \int_{\sigma} |v(x) - v(y)|^q \, dx \, dy \leq C \frac{\text{diam}(\widehat{\mathcal{P}}_{\sigma})^{q+1}}{m_\sigma m_{\mathcal{P}}} \int_{\widehat{\mathcal{P}}_{\sigma}} |\nabla v(z)|^q \, dz, \]
where \(v_\mathcal{P} \) denotes the mean value of \(v \) on \(\mathcal{P} \), \(v_\sigma \) the mean value of \(v \) on the segment \(\sigma \), and \(\overline{\mathcal{P}}_\sigma \) is the convex hull of \(\mathcal{P} \cup \sigma \).

Lemma 3.3 (Mean-value projection bounds). Let \(T \) be a mesh on \(\Omega \) and \(q \in [1, +\infty] \). There exists \(C \) depending on \(q \) and \(\text{reg}(T) \) such that

1. for any \(v \in L^q(\Omega) \), we have
 \[
 \| P_T^e v \|_{L^q} \leq C \| v \|_{L^q}, \quad \text{and} \quad \| \overline{P}_m^T v \|_{L^q} \leq \| v \|_{L^q}.
 \]
 (3.2)

2. for any \(v \in W^{1,q}(\Omega) \) we have
 \[
 \| \nabla P_T^e v \|_{L^q} \leq C \| \nabla v \|_{L^q},
 \]
 (3.3)

where \(g = \gamma(v) \) is the trace of \(v \) on \(\partial \Omega \).

Proof.

1. This point is straightforward consequence of the Jensen inequality and of (2.6) and (2.7).

2. Recall that
 \[
 \| \nabla P_T^e v \|_{L^q} \leq C \sum_{D \in \mathcal{D}} m_D \left(\frac{\| P_T^e v_K - P_T^e v_{\mathcal{L}} m_{\sigma^*} \|}{m_{\sigma^*}} + \frac{\| P_T^e v_{\mathcal{K}^*} - P_T^e v_{\mathcal{L}^*} m_{\sigma^*} \|}{m_{\sigma^*}} \right).
 \]
 For interior control volumes, we have
 \[
 \begin{align*}
 \left| \frac{P_T^e v_K - P_T^e v_{\mathcal{L}}}{m_{\sigma^*}} \right| & \leq \left| \frac{P_T^e v_K - v_\sigma}{m_{\sigma^*}} \right| + \left| \frac{P_T^e v_{\mathcal{L}}}{m_{\sigma^*}} \right|, \\
 \left| \frac{P_T^e v_{\mathcal{K}^*} - P_T^e v_{\mathcal{L}^*}}{m_{\sigma^*}} \right| & \leq \left| \frac{P_T^e v_{\mathcal{K}^*} - v_{\sigma^*}}{m_\sigma} \right| + \left| \frac{P_T^e v_{\mathcal{L}^*}}{m_\sigma} \right|
 \end{align*}
 \]
 (3.4)

where \(v_\sigma = \frac{1}{m_\sigma} \int_{\sigma} v(s) \, ds \) and \(v_{\sigma^*} = \frac{1}{m_{\sigma^*}} \int_{\sigma^*} v(s^*) \, ds^* \). Lemma 3.2 can be applied to each of the terms in the right-hand side of (3.4). The case of boundary control volumes is analogous, as shown in Figure 3.1, involving estimates of differences between the mean values on the balls \(B_\varepsilon \) and the mean values on edges. Thanks to (2.7) we have

\[
\text{diam}(\kappa \cup B_\varepsilon) \leq C(\text{reg}(T)) \, d_\varepsilon \leq \widetilde{C}(\text{reg}(T)) \, \min(m_\sigma, m_{\sigma^*}),
\]

\[
\text{diam}(\kappa^* \cup B_{\varepsilon^*}) \leq C(\text{reg}(T)) \, d_{\varepsilon^*} \leq \widetilde{C}(\text{reg}(T)) \, \min(m_\sigma, m_{\sigma^*}),
\]

12
and

\[m_T \leq C(\text{reg}(T)) m_{B_K}, \quad m_T \leq C(\text{reg}(T)) m_{B_{K^*}}, \]

so that:

\[
\| \nabla_{\mathbb{R}^d}^\tau P_m^\tau v \|_{L^q}^2 \leq C \sum_{\mathcal{D} \in \mathcal{D}} \int_{\mathcal{D} \cap \mathcal{B}_K} |\nabla v(z)|^q dz + \int_{\mathcal{D} \cap \mathcal{B}_{K^*}} |\nabla v(z)|^q dz + \int_{\mathcal{D} \cap \mathcal{B}_{K_{\tau}}} |\nabla v(z)|^q dz \leq 2C \left(\sum_{k \in \mathbb{N}} \int_{\mathcal{D} \cap \mathcal{B}_K} |\nabla v(z)|^q dz + \sum_{k^* \in \mathbb{N}} \int_{\mathcal{D} \cap \mathcal{B}_{K^*}} |\nabla v(z)|^q dz \right)
\leq N_T C \int_{\Omega} |\nabla v(z)|^q dz,
\]

and the claim is proved. □

Proposition 3.4 (Convergence of the mean-value projection). Let \(T \) be a mesh on \(\Omega \) and \(q \in [1, +\infty] \). There exists \(C \) depending on \(q \) and \(\text{reg}(T) \) such that

\[
\| P_m^\tau v - v \|_{L^q} + \| P_m^\tau v - v \|_{L^q} \leq C \text{size}(T) \| \nabla v \|_{L^q}, \quad \forall v \in W^{1,q}(\Omega), \tag{3.5}
\]

\[
\| \nabla_{\mathbb{R}^d}^\tau P_m^\tau v - \nabla v \|_{L^q} \leq C \text{size}(T) \| \nabla v \|_{W^{1,q}}, \quad \forall v \in W^{2,q}(\Omega), \quad g = \gamma(v). \tag{3.6}
\]

We postpone the proof of this result to Section 7.1.3.

Corollary 3.5. Let \(q \in [1, +\infty] \) and \((T_n)_n \) a sequence of meshes such that size\((T_n) \to 0 \) and \(\text{reg}(T_n) \) is bounded. We have

\[
P_m^\tau v \xrightarrow{n \to \infty} v \quad \text{and} \quad P_m^\tau v \xrightarrow{n \to \infty} v \quad \text{in} \quad L^q(\Omega), \quad \forall v \in L^q(\Omega),
\]

\[
\nabla_{g_n} P_m^\tau v \xrightarrow{n \to \infty} \nabla v, \quad \text{in} \quad (L^q(\Omega))^2, \quad \forall v \in W^{1,q}(\Omega),
\]

where \(g_n \) stands for \(P_m^\tau g \) with \(g = \gamma(v) \).

Proof. The two claims of the corollary can be shown in the same way. Let us give, for instance, the proof of the second point. For any \(v \in W^{1,q}(\Omega) \), by density of \(W^{2,q}(\Omega) \) in \(W^{1,q}(\Omega) \), for any \(\varepsilon > 0 \) there exists \(v^\varepsilon \in W^{2,q}(\Omega) \) such that \(\| v - v^\varepsilon \|_{W^{1,q}} \leq \varepsilon \). We denote its trace by \(g^\varepsilon = \gamma(v^\varepsilon) \) and its mean-value projection by \(g^\varepsilon_n = P_m^\tau g^\varepsilon \). Thanks to Lemma 3.3 and Proposition 3.4 we have

\[
\| \nabla_{g_n} P_m^\tau v - \nabla v \|_{L^q} \leq \| \nabla_{g_n} P_m^\tau v - \nabla_{g_n} P_m^\tau v^\varepsilon \|_{L^q} + \| \nabla_{g_n} P_m^\tau v^\varepsilon - \nabla v^\varepsilon \|_{L^q} + \| \nabla v^\varepsilon - \nabla v \|_{L^q} \leq C \| \nabla v - \nabla v^\varepsilon \|_{L^q} + C \text{size}(T_n) \| \nabla v^\varepsilon \|_{W^{1,q}} \leq C \varepsilon + C \text{size}(T_n) \| \nabla v^\varepsilon \|_{W^{1,q}}.
\]

The real number \(\varepsilon \) being fixed, for \(n \) large enough we have \(\text{size}(T_n) \| \nabla v^\varepsilon \|_{W^{1,q}} \leq \varepsilon \) so that we obtain

\[
\| \nabla_{g_n} P_m^\tau v - \nabla v \|_{L^q} \leq 2C \varepsilon,
\]

and the result follows. □

3.3. A compactness result. As usual, in the convergence analysis of finite volume schemes (see, e.g., [16]) one needs to prove a discrete compactness result, which is a discrete counterpart of the Rellich compactness theorem.

Lemma 3.6 (Discrete compactness). Consider a sequence of meshes \((T_n)_n \) such that \(\text{size}(T_n) \) tends to zero and \(\text{reg}(T_n) \) is bounded. Let \(g \in W^{1,\frac{d}{p}}(\partial\Omega) \) be the boundary data and \(g_n = P_m^\tau g \) its mean-value discretization on the mesh \(T_n \). Let \(u_{\tau n} \in \mathbb{R}^n \) be a sequence satisfying the discrete \(W^{1,p} \) bound

\[
\| \nabla_{g_n} u_{\tau n} \|_{L^p} \leq C, \quad \forall n \in \mathbb{N}, \tag{3.7}
\]
Then, there exists \(u \in W_{0}^{1,p}(\Omega) \) such that, up to a subsequence,
\[
u^{T_{n}} \overset{n \to \infty}{\longrightarrow} u \quad \text{in} \quad L^{p}(\Omega),
\]
\[
\nabla_{g_{n}}^{T_{n}} u^{T_{n}} \overset{n \to \infty}{\longrightarrow} \nabla u \quad \text{weakly in} \quad (L^{p}(\Omega))^{2}.
\]

Proof.

1. For any \(n \in \mathbb{N} \), consider \(u^{T_{n}} = u^{T_{n}} - \mathbb{P}^{-1}_{T_{n}} \mathcal{R}(g) \), where \(\mathcal{R} \) is the lift operator satisfying (1.6). By Lemma 3.3, we know that \(\nabla_{g_{n}}^{T_{n}} \mathbb{P}^{-1}_{T_{n}} \mathcal{R}(g) \) is bounded in \((L^{p}(\Omega))^{2} \) so that, using the bound (3.7) we deduce that
\[
\| \nabla_{0}^{T_{n}} v^{T_{n}} \|_{L^{p}} \leq C, \quad \forall n \in \mathbb{N}.
\]
Hence, by Lemma 3.1, the sequence \(v^{T_{n}} \) is bounded in \(L^{p}(\Omega) \). Let us now consider the sequence of discrete functions \(w^{T_{n}} \) defined by
\[
w^{T_{n}}_{\kappa} = |v^{T_{n}}_{\kappa}|^{p-1} v^{T_{n}}_{\kappa}, \quad \forall \kappa \in \mathcal{M}_{n},
\]
\[
w^{T_{n}}_{\kappa^{*}} = |v^{T_{n}}_{\kappa^{*}}|^{p-1} v^{T_{n}}_{\kappa^{*}}, \quad \forall \kappa^{*} \in \mathcal{M}^{*}_{n},
\]
and extended by 0 outside \(\Omega \). This sequence of functions is of course bounded in \(L^{1}(\mathbb{R}^{d}) \) and vanishes outside a bounded subset of \(\mathbb{R}^{2} \). For any \(x, \eta \in \mathbb{R}^{2} \), and any edge \(\sigma = \kappa \mid \kappa^{*} \) we define
\[
\psi_{\sigma}(x, \eta) = \begin{cases}
1, & \text{if } \sigma \cap [x, x + \eta] \neq \emptyset, \\
0, & \text{elsewhere}.
\end{cases}
\]
Hence, with the notations of Section 3.1 and by Lemma 1.2, we have for any \(x \in \mathbb{R}^{2} \),
\[
|w^{\mathcal{M}^{*}}(x + \eta) - w^{\mathcal{M}^{*}}(x)| \leq \sum_{\sigma = \kappa \mid \kappa^{*}} \psi_{\kappa \mid \kappa^{*}} \psi_{\kappa \mid \kappa^{*}}(x, \eta)|w_{\kappa} - w_{\kappa^{*}}|
\]
\[
\leq C \sum_{\sigma = \kappa \mid \kappa^{*}} m_{\sigma^{*}} \psi_{\kappa \mid \kappa^{*}} \left(\frac{v_{\kappa} - v_{\kappa^{*}}}{m_{\sigma^{*}}} \right) |v_{\kappa}|^{p-1} + |v_{\kappa^{*}}|^{p-1}.
\]
Now we remark that \(\int_{\mathbb{R}^{2}} \psi_{\sigma}(x, \eta) \, dx \leq m_{\sigma \mid \sigma^{*}} \) so that we have
\[
\|w^{\mathcal{M}^{*}}(\cdot + \eta) - w^{\mathcal{M}^{*}}(\cdot)\|_{L^{1}(\mathbb{R}^{2})} \leq C \text{reg}(\mathcal{T}_{n}) \| \nabla_{0}^{T_{n}} v^{T_{n}} \|_{L^{p}} \left(\sum_{\sigma = \kappa \mid \kappa^{*}} m_{\sigma^{*}} \left(|v_{\kappa}|^{p} + |v_{\kappa^{*}}|^{p} \right) \right)^{\frac{1}{p-1}}.
\]
The last factor in this inequality can be treated, as in [4], as follows:
\[
\sum_{\sigma \in D} m_{\sigma}(|v_{\kappa}|^{p} + |v_{\kappa^{*}}|^{p}) \leq C \sum_{\kappa} m_{\kappa} |v_{\kappa}|^{p} + C \text{reg}(\mathcal{T}_{n}) \| \nabla_{0}^{T_{n}} v^{T_{n}} \|_{L^{p}}^{p}.
\]
Hence, there exists \(C > 0 \) such that for all \(\eta \in \mathbb{R}^{2} \) and \(n \geq 0 \) we have
\[
\|w^{\mathcal{M}^{*}}(\cdot + \eta) - w^{\mathcal{M}^{*}}\|_{L^{1}(\mathbb{R}^{2})} \leq C|\eta|.
\]
Thanks to the Kolmogorov theorem, we deduce that there exists a subsequence of \((w^{\mathcal{M}^{*}}_{n})_{k} \) which converges towards a function \(w \in L^{1}(\mathbb{R}^{2}) \) which vanishes outside \(\Omega \). The definition of \(w^{T_{n}} \) reads as
\[
w^{T_{n}}(x) = T(w^{\mathcal{M}^{*}}_{n}(x)), \quad \forall x \in \Omega,
\]
where T is the nonlinear map defined by $T(\xi) = |\xi|^{\frac{1-p}{p}} \xi$. By Lemma 1.2, we know that T is $\frac{1}{p}$-Hölder continuous so that we have

$$\|v^{m_k} - T(w)\|_{L^p(\Omega)} \leq C \|w^{m_k} - w\|_{L^1(\Omega)},$$

which proves that $(v^{m_k})_k$ converges strongly in $L^p(\Omega)$. We can now apply the same technique to the subsequence $(v^{m_k})_k$ defined on the dual meshes. We deduce, using (3.1), that there exists a function $v \in L^p(\Omega)$ such that

$$v^{T_n} \xrightarrow{n \to \infty} v \text{ in } L^p(\Omega).$$

By Corollary 3.5, we know that $P^{T_n} \mathcal{R}(g)$ tends to $\mathcal{R}(g)$ in $L^p(\Omega)$, so that we finally have

$$u^{T_n} \xrightarrow{n \to \infty} v + \mathcal{R}(g) \overset{\text{def}}{=} u \text{ in } L^p(\Omega). \quad (3.8)$$

2. It remains to show that $u \in W^{1,p}_g(\Omega)$ and that the discrete gradient weakly converges. Thanks to the bound (3.7), there exists $\chi \in (L^p(\Omega))^2$ and a subsequence which is still indexed by n such that

$$\nabla g \nabla u_n \xrightarrow{n \to \infty} \chi \text{ weakly in } (L^p(\Omega))^2. \quad (3.9)$$

Let $\psi \in \mathcal{C}^\infty(\Omega)$. Using (3.8) and (3.9), we have

\[
I_n \overset{\text{def}}{=} \int_{\Omega} \left(\nabla g \nabla u_n (z), \psi(z) \right) dz + \int_{\Omega} u_n (z) \text{div} \psi(z) dz
\]

\[
\quad \xrightarrow{n \to \infty} \int_{\Omega} \left(\chi(z), \psi(z) \right) dz + \int_{\Omega} u(z) \text{div} \psi(z) dz.
\]

By definition of the discrete gradient we have

\[
\int_{\Omega} \left(\nabla g \nabla u_n (z), \psi(z) \right) dz = \sum_{\mathcal{D} \in \mathcal{D}} m_{\mathcal{D}} \left(\nabla g \nabla u_n, \psi_{\mathcal{D}} \right), \quad (3.10)
\]

where $\psi_{\mathcal{D}} = \frac{1}{m_{\mathcal{D}}} \int_{\mathcal{D}} \psi(z) dz$. For each diamond $\mathcal{D} = D_{\sigma,\sigma^*}$ let us introduce

$$\psi_{\sigma} = \frac{1}{m_{\sigma}} \int_{\sigma} \psi(s) ds, \quad \psi_{\sigma^*} = \frac{1}{m_{\sigma^*}} \int_{\sigma^*} \psi(s) ds,$$

and finally $\tilde{\psi}_{\mathcal{D}}$ uniquely defined by

$$(\psi_{\mathcal{D}}, \nu) = (\psi_{\sigma}, \nu_{\sigma}), \quad (\tilde{\psi}_{\mathcal{D}}, \nu_{\sigma}) = (\psi_{\sigma^*}, \nu_{\sigma^*}).$$

The test function ψ being smooth enough we have, using Lemma 2.1,

\[
|\psi_{\mathcal{D}} - \tilde{\psi}_{\mathcal{D}}| \leq \frac{1}{\sin \alpha_\mathcal{T}_n} (|\psi_{\mathcal{D}} - \psi_{\sigma}| + |\psi_{\mathcal{D}} - \psi_{\sigma^*}|)
\]

\[
\leq 2 \text{reg}(\mathcal{T}_n) \text{size}(\mathcal{T}_n) \|\nabla \psi\|_{L^\infty}.
\]

(3.12)

Coming back to (3.11) we deduce

\[
\int_{\Omega} \left(\nabla g \nabla u_n (z), \psi(z) \right) dz = \sum_{\mathcal{D} \in \mathcal{D}} m_{\mathcal{D}} \left(\nabla g \nabla u_n, \psi_{\mathcal{D}} \right) + \sum_{\mathcal{D} \in \mathcal{D}} m_{\mathcal{D}} \left(\nabla g \nabla u_n, \psi_{\mathcal{D}} - \tilde{\psi}_{\mathcal{D}} \right),
\]

\[
15
\]
and using (3.12) and the bound (3.7), we see that the second term tends to zero as \(n \) goes to infinity. As far as the first term is concerned, we use (2.12) to obtain

\[
\sum_{D \in \mathcal{D}} m_D \left(\nabla_{g_n} u_n^{T^*}, \tilde{\psi}_D \right) = \frac{1}{2} \sum_{D \in \mathcal{D}} m_D \left(\frac{u_{\kappa} - u_{\kappa}}{m_{\sigma}} \nu + \frac{u_{\kappa} - u_{\kappa}^*}{m_{\sigma}} \nu^*, \tilde{\psi}_D \right)
\]

\[
= - \frac{1}{2} \sum_{\kappa \in \mathcal{K}} u_{\kappa} \sum_{\sigma \in \mathcal{E}_K} m_{\sigma} \left(\tilde{\psi}_D, \nu_{\kappa}^* \right) - \frac{1}{2} \sum_{\kappa^* \in \mathcal{E}_{K^*}} u_{\kappa^*} \sum_{\sigma^* \in \mathcal{E}_{K^*}} m_{\sigma^*} \left(\tilde{\psi}_D, \nu_{\kappa^*}^* \right)
\]

\[
+ \frac{1}{2} \sum_{\kappa \in \partial \Omega} \mathbb{P}_m g_{\kappa} \sum_{\sigma \in \mathcal{E}_K} m_{\sigma} \left(\tilde{\psi}_D, \nu_{\kappa} \right) - \frac{1}{2} \sum_{\kappa^* \in \partial \Omega^*} \mathbb{P}_m g_{\kappa^*} \sum_{\sigma^* \in \mathcal{E}_{K^*}} m_{\sigma^*} \left(\tilde{\psi}_D, \nu_{\kappa^*} \right).
\]

We recall here that the two boundary terms above have different forms since the elements of \(\partial \mathcal{M} \) are degenerate control volumes whereas the elements \(\partial \mathcal{M}^* \) are plain dual control volumes located near the boundary of the domain. Thanks to the definition of \(\tilde{\psi}_D \) we have

\[
\sum_{D \in \mathcal{D}} m_D \left(\nabla_{g_n} u_n^{T^*}, \tilde{\psi}_D \right) = - \frac{1}{2} \sum_{\kappa \in \mathcal{K}} u_{\kappa} \int_{\kappa} \mathrm{div} \psi(z) \, dz - \frac{1}{2} \sum_{\kappa^* \in \mathcal{E}_{K^*}} u_{\kappa^*} \int_{\kappa^*} \mathrm{div} \psi(z) \, dz
\]

\[
+ \frac{1}{2} \sum_{\kappa \in \partial \Omega} \mathbb{P}_m g_{\kappa} \int_{\kappa} \left(\psi(s), \nu_{\kappa} \right) \, ds - \frac{1}{2} \sum_{\kappa^* \in \partial \Omega^*} \mathbb{P}_m g_{\kappa^*} \int_{\kappa^*} \mathrm{div} \psi(z) \, dz
\]

\[
+ \frac{1}{2} \sum_{\kappa \in \partial \Omega} \mathbb{P}_m g_{\kappa} \sum_{\sigma \in \mathcal{E}_K} \int_{\sigma} \left(\psi(s), \nu_{\kappa} \right) \, ds
\]

\[
= - \int_{\Omega} u_n^{T^*}(z) \, \mathrm{div} \psi(z) \, dz + \int_{\partial \Omega} \mathbb{P}_m g_{\kappa} \psi(z) \, ds
\]

\[
- \frac{1}{2} \sum_{\kappa^* \in \partial \Omega^*} \mathbb{P}_m g_{\kappa^*} \int_{\kappa^*} \mathrm{div} \psi(z) \, dz.
\]

Notice that the last term tends to zero thanks to (2.9) since \(\left| \int_{\kappa^*} \mathrm{div} \psi(z) \, dz \right| \leq C\|\nabla \psi\|_{\infty, \text{size}(T_n)^2} \). Gathering all the computations above and using the property (2.10), we find that \(I_n \) (defined in (3.10)) converges towards

\[
\int_{\partial \Omega} g(s)(\psi(s), \nu) \, ds,
\]

so that we finally proved that, for any \(\psi \in (C^\infty(\overline{\Omega}))^2 \) we have

\[
\int_{\Omega} (\chi(z), \psi(z)) \, dz + \int_{\Omega} u(z) \, \mathrm{div} \psi(z) \, dz = \int_{\partial \Omega} g(s)(\psi(s), \nu) \, ds.
\]

This proves that \(u \in W^{1,p}(\Omega) \) with \(\nabla u = \chi \) and that \(\gamma(u) = g. \)
4. Properties of the scheme. In this section we show that the finite volume scheme (2.18) inherits from the properties of the continuous problem (1.1). In particular, we show the existence and uniqueness of a solution to this scheme. In a second paragraph we concentrate on the very important, in view of many applications such as (1.3)-(1.5), variational case.

4.1. The general case. Let us begin with a basic lemma which express the duality, through the discrete summation-by-parts procedure, of the discrete gradient and discrete divergence operators on DDFV meshes. Let us recall that the nonlinear map a_g defining the scheme is introduced in (2.19).

Lemma 4.1 (Summation by parts). For any $(u^T, v^T) \in \mathbb{R}^T \times \mathbb{R}_T$, we have

$$\| a_g(u^T), v^T \| = \sum_{D \in \mathcal{D}} m_D \left(\varphi_D(\nabla_{E g}^D u^T), \nabla_{0}^D v^T \right).$$

Proof. Performing the summation-by-parts from the definition (2.18) of a_g we deduce

$$\| a_g(u^T), v^T \| = \frac{1}{2} \sum_{\kappa \in \mathcal{G}} a_{\kappa}(u^T)v_{\kappa} + \frac{1}{2} \sum_{\kappa' \in \mathcal{G}} a_{\kappa'}(u^T)v_{\kappa'}.$$

Reorganizing the summation over the set of diamonds, we get using the definition (2.12) of the discrete gradient

$$\| a_g(u^T), v^T \| = \frac{1}{2} \sum_{D_{\sigma}, \sigma' \in \mathcal{D}} m_{\sigma} \left(\varphi_D(\nabla_{E g}^D u^T), \nu \right) (v_{\kappa} - v_{\ell}) - \frac{1}{2} \sum_{D_{\sigma}, \sigma' \in \mathcal{D}} m_{\sigma'} \left(\varphi_D(\nabla_{E g}^D u^T), \nu' \right) (v_{\kappa'} - v_{\ell'}).$$

Thanks to Lemma 2.1, we conclude that

$$\| a_g(u^T), v^T \| = \frac{1}{2} \sum_{D_{\sigma}, \sigma' \in \mathcal{D}} m_{\sigma} m_{\sigma'} \sin \alpha_D \left(\varphi_D(\nabla_{E g}^D u^T), \nabla_{0}^D v^T \right).$$

It is now possible to prove the coercivity of the nonlinear map a_g from \mathbb{R}^T into itself.

Lemma 4.2 (Coercivity). Assume that the flux φ satisfies (H2), (H3) and let T be a mesh on Ω. There exist $C > 0$ depending on C_1, C_2 and $\text{reg}(T)$ such that for any $g \in W^{1-\frac{1}{2}p', p}(\partial \Omega)$ and $f \in L^p(\Omega)$ we have

$$\| a_g(u^T) - \overline{P}_{m}^{T} f, u^T - \overline{P}_{m}^{T} r(g) \| \geq C \| \nabla_{E g}^D u^T \|_{L^p}^p - C \left(\| g \|_{W^{1-\frac{1}{2}p', p}}^p + \| f \|_{L^{p'}} + \| b_1 \|_{L^1} + \| b_2 \|_{L^{p'}} \right), \forall u^T \in \mathbb{R}^T.$$

Proof. By Lemma 4.1, we have for any $v^T \in \mathbb{R}^T$

$$\| a_g(u^T) - \overline{P}_{m}^{T} f, u^T - v^T \| = \sum_{D \in \mathcal{D}} m_D \left(\varphi_D(\nabla_{E g}^D u^T), \nabla_{0}^D (u^T - v^T) \right) - \| \overline{P}_{m}^{T} f, u^T - v^T \|$$

$$= \sum_{D \in \mathcal{D}} m_D \left(\varphi_D(\nabla_{E g}^D u^T), \nabla_{E g}^D u^T \right) + \sum_{D \in \mathcal{D}} m_D \left(\varphi_D(\nabla_{E g}^D u^T), \nabla_{E g}^D v^T \right) - \| \overline{P}_{m}^{T} f \|_{L^{p'}} \| u^T - v^T \|_{L^p}.$$
We derive thanks to assumptions \((H_2)\),\((H_3)\) and to the inequality (3.2)
\[
\left[a_g(u^T) - \overline{p}_m f, u^T - v^T \right] \geq C_1 \left\| \nabla_{x,g}^T u^T \right\|_{L^p}^p - \left\| b_1 \right\|_{L^1} - C \left(\left\| \nabla_{x,g}^T u^T \right\|_{L^p}^{p-1} + \left\| b_2 \right\|_{L^{p'}} \right) \left\| \nabla_{x,g}^T v^T \right\|_{L^p} - C \left\| f \right\|_{L^{p'}} \left\| u^T - v^T \right\|_{L^p}.
\]
Using the Young inequality and the discrete Poincaré inequality (Lemma 3.1 applied to \(u^T - v^T\) and \(g = 0\)) we deduce
\[
\left[a_g(u^T) - \overline{p}_m f, u^T - v^T \right] \geq C_1 \left\| \nabla_{x,g}^T u^T \right\|_{L^p}^p - C \left\| b_1 \right\|_{L^1} - C \left\| b_2 \right\|_{L^{p'}} - C \left\| f \right\|_{L^{p'}} - C \left\| \nabla_{x,g}^T v^T \right\|_{L^p}^p.
\]
The claim is then proved by taking \(v^T = \overline{p}_R^n g\) and by using the continuity of the operator \(R\) given in (1.6) and the estimate (3.3).

Lemma 4.3 (Monotonicity). Assume that the flux \(\varphi\) satisfies \((H_1)\). For any mesh \(T\) on \(\Omega\) and any distinct elements \(u^T\) and \(v^T\) of \(\mathbb{R}^T\), we have
\[
\left\| a_g(u^T) - a_g(v^T), u^T - v^T \right\| > 0.
\]

Proof. By Lemma 4.1, and using (2.13), it follows
\[
\left\| a_g(u^T) - a_g(v^T), u^T - v^T \right\| = \sum_{D \in \mathcal{D}} m_D \left(\varphi_D(\nabla_{x,g}^D u^T) - \varphi_D(\nabla_{x,g}^D v^T), \nabla_{x,g}^D u^T - \nabla_{x,g}^D v^T \right).
\]
Thus, the claim derives from assumption \((H_1)\).

We can now prove the main result of this section, that is the existence and uniqueness of the approximate solution.

Theorem 4.4. Assume that the flux \(\varphi\) satisfies \((H_1)\), \((H_2)\), \((H_3)\). For any \(f \in L^{p'}(\Omega)\) and \(g \in W^{1-\frac{1}{p},p}(\partial \Omega)\) and any mesh \(T\) on \(\Omega\), the finite volume scheme (2.18) admits a unique solution \(u^T \in \mathbb{R}^T\). Furthermore, there exists \(C > 0\) depending only on \(C_1, C_2\) and \(\text{reg}(T)\), such that the following estimate holds
\[
\left\| \nabla_{x,g}^T u^T \right\|_{L^p} \leq C \left(\left\| g \right\|_{W^{1-\frac{1}{p},p}^\star} + \left\| f \right\|_{L^{p'}} + \left\| b_1 \right\|_{L^1} + \left\| b_2 \right\|_{L^{p'}} \right).
\]

Proof. The continuity of the map \(u^T \mapsto a_g(u^T)\) follows from (1.2). Thanks to the coercivity property (Lemma 4.2) and the Poincaré inequality (Lemma 3.1) we can use one of the classical consequences of the Brouwer fixed point theorem (see [23]) to obtain the existence of a solution of the scheme. The uniqueness of the solution follows readily from the strict monotonicity of the map \(a_g\) (Lemma 4.3).

Finally, since \(a_g(u^T) = \overline{p}_R^n f\), the estimate (4.1) is a straightforward consequence of Lemma 4.2.

4.2. The potential case. Let us pay special attention to the case where the flux \(\varphi\) derives from a convex potential \(\Phi\):
\[
\begin{align*}
\varphi(z, \xi) &= \nabla_\xi \Phi(z, \xi), \quad \text{for all } \xi \in \mathbb{R}^2 \text{ and a.e. } z \in \Omega, \\
\Phi(z, 0) &= 0, \quad \text{for a.e. } z \in \Omega.
\end{align*}
\]

For instance, the p-laplacian (1.4) derives from \(\Phi(z, \xi) = \frac{1}{p} |\xi|^p\), the anisotropic laplacian (1.3) from \(\Phi(z, \xi) = \frac{1}{2} (A(z) \xi, \xi)\) and the general model (1.5) from \(\Phi(z, \xi) = \frac{1}{p} k(z) |\xi|^p + F(z)\). Noting that we have \(\varphi_D(\xi) = \nabla_\xi \Phi_D(\xi)\), where \(\Phi_D\) is naturally defined by
\[
\Phi_D(\xi) = \frac{1}{m_D} \int_D \Phi(z, \xi) \, dz,
\]
where \(m_D\) is the
we can define on \mathbb{R}^T the discrete energy $J_{g,T}$ associated to the scheme by:

$$J_{g,T}(u^T) = \sum_{D \in \mathcal{D}} m_D \Phi_D(\nabla_{\mathcal{P}^T_{m}} u^T) - \left[u^T, \nabla_{\mathcal{P}^T_{m}} f \right] = \int_{\Omega} \Phi(z, \nabla_{\mathcal{P}^T_{m}} u^T) \, dz - \left[u^T, \nabla_{\mathcal{P}^T_{m}} f \right].$$

Proposition 4.5 (Variational structure of the scheme). Assume that φ has the form (4.2) and satisfies $(\mathcal{H}_1), (\mathcal{H}_2), (\mathcal{H}_3)$, then $J_{g,T}$ is a strictly convex coercive functional. Furthermore, the scheme (2.18) is the Euler-Lagrange equation associated to the minimization problem for $J_{g,T}$. More precisely, we have

$$(\nabla J_{g,T}(u^T), v^T) = \left[a_g(u^T) - \nabla_{\mathcal{P}^T_{m}} f, v^T \right], \quad \forall u^T, v^T \in \mathbb{R}^T.$$

The proof is straightforward using Lemma 4.1.

Corollary 4.6. Under assumptions $(\mathcal{H}_1), (\mathcal{H}_2), (\mathcal{H}_3)$ and (4.2), the solution $u^T \in \mathbb{R}^T$ of the scheme (2.18) is the unique minimizer of the functional $J_{g,T}$ on the set \mathbb{R}^T.

The practical computation of the approximate solution can take advantage of the particular structure (4.2), for instance, in the context of the modelling of non-Newtonian fluids in a porous medium, this means nothing but the velocity of the fluid.

5. Convergence of the scheme. The aim of this section is to prove the convergence of the solution of the finite volume scheme given by Theorem 4.4 towards the solution u_ϵ to the continuous problem (1.1). In fact, we will prove two results. The first one (Theorem 5.1) applies to the general case where the flux φ only satisfies $(\mathcal{H}_1), (\mathcal{H}_2), (\mathcal{H}_3)$. It gives the strong convergence of the approximate solution in $L^p(\Omega)$, the strong convergence of the discrete gradients towards ∇u_ϵ in $(L^q(\Omega))^2$ for any $q < p$, and the strong convergence of the discrete fluxes towards $\varphi(\cdot, \nabla u_\epsilon)$ in $(L^r(\Omega))^2$ for any $r < p'$. This last convergence is crucial in the applications since the flux $\varphi(\cdot, \nabla u_\epsilon)$ is often an important physical quantity that one may want to compute precisely. For instance, in the context of the modelling of non-Newtonian flows in a porous medium, this flux is nothing but the velocity of the fluid.

The second result shows that the aforementioned convergences also hold with $q = p$ and $r = p'$ provided that a stronger monotonicity of the flux φ is assumed, that is

- If $1 < p \leq 2$, there exist $C_3 > 0$ and $b_3 \in L^1(\Omega)$ such that for all $(\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2$ and almost every $z \in \Omega$,

 $$(\varphi(z, \xi) - \varphi(z, \eta), \xi - \eta) \geq C_3|\xi - \eta|^2 (b_3(z) + |\xi|^p + |\eta|^p)^{\frac{p-2}{p}}.$$

 (\mathcal{H}_{1a})

- If $p > 2$, there exists $C_3 > 0$ such that for all $(\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2$ and almost every $z \in \Omega$,

 $$(\varphi(z, \xi) - \varphi(z, \eta), \xi - \eta) \geq C_3|\xi - \eta|^p.$$

 (\mathcal{H}_{1b})

Notice that most of the usual examples (like those given in Section 1.2) satisfy these stronger assumptions (see Lemma 1.2 and [5, 24, 7]).

Theorem 5.1. Assume that the flux φ satisfies $(\mathcal{H}_1), (\mathcal{H}_2), (\mathcal{H}_3)$ and consider a family of meshes T_n such that $\text{size}(T_n)$ tends to zero and $\text{reg}(T_n)$ is bounded. For any $f \in L^{p'}(\Omega)$, $g \in W^{1-\frac{1}{p'}, p'}(\Omega)$, the solution $u_{\epsilon,n}$ to the scheme (2.18) on the mesh T_n converges towards the solution u_ϵ of the problem (1.1) as n goes to infinity. More precisely, if we note to simplify $g_n = \mathbb{P}^T_{m} g$, we have

$$\begin{aligned}
\lim_{n \to \infty} u_{\epsilon,n}^T &= u_\epsilon \text{ strongly in } L^p(\Omega), \\
\lim_{n \to \infty} \nabla_{g_n} u_{\epsilon,n}^T &= \nabla u_\epsilon \text{ strongly in } (L^q(\Omega))^2 \forall q < p, \text{ and weakly in } (L^p(\Omega))^2, \\
\lim_{n \to \infty} \varphi(\cdot, \nabla_{g_n} u_{\epsilon,n}^T) &= \varphi(\cdot, \nabla u_\epsilon) \text{ strongly in } (L^r(\Omega))^2, \forall r < p', \text{ and weakly in } \left(L^{p'}(\Omega)\right)^2.
\end{aligned}$$

(5.1)
Proof. As usual (see for instance [23]) the key-point of the proof is to take advantage of the monotonicity properties in order to pass to the limit in the nonlinear terms (this is known in the literature as the Minty-Browder argument, see [23]).

- Using the estimate (4.1) and thanks to assumption \((\mathcal{H}_3)\), we see that the families of functions \(u^{\tau_n}, \nabla^{\tau_n} u^{\tau_n}\) and \(z \to \varphi(z, \nabla^{\tau_n} u^{\tau_n}(z))\) are bounded in \(L^p(\Omega), (L^p(\Omega))^2, (L^p(\Omega))^2\) respectively. Hence by the discrete compactness result of Lemma 3.6, there exists a function \(u \in W^{1,p}_0(\Omega)\) such that up to a subsequence,

\[
\begin{align*}
 u^{\tau_n} & \rightharpoonup u \quad \text{in} \quad L^p(\Omega), \\
 \nabla^{\tau_n} u^{\tau_n} & \rightharpoonup \nabla u \quad \text{weakly in} \quad (L^p(\Omega))^2,
\end{align*}
\]

and a function \(\zeta \in \left(L^p(\Omega) \right)^2\) such that

\[
\varphi(\cdot, \nabla^{\tau_n} u^{\tau_n}) \rightharpoonup \zeta \quad \text{weakly in} \quad \left(L^p(\Omega) \right)^2. \tag{5.2}
\]

Let \(w \in C^\infty_c(\Omega)\) and take \(P^{\tau_n} w\) as a discrete test function in the scheme (2.18). By Lemma 4.1 it follows

\[
0 = \left[a_{g_n}(u^{\tau_n}) - \frac{\partial}{\partial \tau} P^{\tau_n} w, \frac{\partial}{\partial \tau} P^{\tau_n} w \right] = \int_\Omega \left(\varphi(z, \nabla^{\tau_n} u^{\tau_n}(z)), \nabla_{g_n} P^{\tau_n} w(z) \right) dz - \left[\frac{\partial}{\partial \tau} P^{\tau_n} f, \frac{\partial}{\partial \tau} P^{\tau_n} w \right].
\]

We can pass to the limit in this equality using (5.2) and Corollary 3.5. We get

\[
\int_\Omega f(z)w(z) \, dz = \int_\Omega (\zeta(z), \nabla u(z)) \, dz. \tag{5.3}
\]

By density, we deduce that for any function \(v \in W^{1,p}_0(\Omega)\), we have

\[
\int_\Omega f(z)(u(z) - v(z)) \, dz = \int_\Omega (\zeta(z), \nabla u(z) - \nabla v(z)) \, dz. \tag{5.4}
\]

- Thanks to the monotonicity of the scheme (Lemma 4.3), we have

\[
\left[a_{g_n}(u^{\tau_n}) - a_{g_n}(P^{\tau_n} v), u^{\tau_n} - P^{\tau_n} v \right] \geq 0. \tag{5.5}
\]

Let us pass to the limit as \(n \to \infty\), in this inequality. First, using the definition of the scheme (2.18) and Corollary 3.5, we find

\[
\left[a_{g_n}(u^{\tau_n}), u^{\tau_n} - P^{\tau_n} v \right] = \left[\frac{\partial}{\partial \tau} P^{\tau_n} f, u^{\tau_n} - P^{\tau_n} v \right] \rightharpoonup \int_\Omega f(z)(u(z) - v(z)) \, dz.
\]

Using Lemma 4.1 and (2.15), we can write

\[
\left[a_{g_n}(P^{\tau_n} v), u^{\tau_n} - P^{\tau_n} v \right] = \int_\Omega \left(\varphi(z, \nabla^{\tau_n} P^{\tau_n} v(z)), \nabla_{g_n} u^{\tau_n}(z) - \nabla_{g_n} P^{\tau_n} v(z) \right) dz.
\]

Using Corollary 3.5 and the property (1.2), we see that the function \(\varphi(\cdot, \nabla_{g_n} P^{\tau_n} v)\) converges strongly in \((L^p(\Omega))^2\) towards the function \(\varphi(\cdot, \nabla v)\). As a consequence, from the weak convergence of \(\nabla^{\tau_n} u^{\tau_n}\) towards \(\nabla u\) it follows that \([a_{g_n}(P^{\tau_n} v), u^{\tau_n} - P^{\tau_n} v]\) converges to \(\int_\Omega \left(\varphi(z, \nabla v(z)), \nabla u(z) - \nabla v(z) \right) dz\). Hence, taking the limit as \(n\) goes to infinity in (5.5) gives

\[
\int_\Omega f(z)(u(z) - v(z)) \, dz - \int_\Omega \left(\varphi(z, \nabla v(z)), \nabla u(z) - \nabla v(z) \right) dz \geq 0,
\]
for all functions \(v \in W_{g}^{1,p}(\Omega) \). By (5.4) it follows that

\[
\int_{\Omega} \left(\zeta(z) - \varphi(z, \nabla v(z)), \nabla u(z) - \nabla v(z) \right) \, dz \geq 0. \tag{5.6}
\]

• Let us take in (5.6) \(v = u \pm tw \) with \(w \in C_{c}^{\infty}(\Omega) \) and \(t > 0 \), dividing by \(t \) we get

\[
\pm \int_{\Omega} \left(\zeta(z) - \varphi(z, \nabla u \pm t\nabla w), \nabla w(z) \right) \, dz \geq 0.
\]

When \(t \) tends to zero, using (1.2) we obtain that for all \(w \in C_{c}^{\infty}(\Omega) \)

\[
\int_{\Omega} \left(\zeta(z) - \varphi(z, \nabla u), \nabla w(z) \right) \, dz = 0.
\]

We conclude using (5.3) that \(\text{div} \varphi(\cdot, \nabla u) = \delta \zeta = -f \). Thus \(u \in W_{g}^{1,p}(\Omega) \) is nothing but the unique solution \(u_{e} \) of the problem (1.1). Finally, the uniqueness of \(u_{e} \) also guarantees that the convergence of \(u_{e}^{n} \) towards \(u_{e} \) in the sense of (5.1), holds without extracting a subsequence.

• It remains to show the strong convergence properties of the discrete gradients. Let us note \(G_{n}(z) \defeq \nabla_{g_{n}}^{T} u_{e}^{n}(z), H_{n}(z) \defeq \nabla_{g_{n}}^{T} P^{n}_{=} u_{e}(z) \) and \(\Psi_{n}(z) \defeq (\varphi(z, G_{n}(z)) - \varphi(z, H_{n}(z)), G_{n}(z) - H_{n}(z)) \). By assumption (\(\mathcal{H}_{1} \)), we know that \(\Psi_{n} \geq 0 \). Furthermore, the first part of the proof above shows that the left-hand side term in (5.5) tends to zero which reads, by Lemma 4.1, as

\[
\int_{\Omega} \Psi_{n}(z) \, dz \xrightarrow{n \to \infty} 0. \tag{5.7}
\]

Hence, \((\Psi_{n})_{n} \) tends to 0 in \(L^{1}(\Omega) \). Furthermore, by Corollary 3.5, \((H_{n})_{n} \) converges towards \(\nabla u_{e} \) in \((L^{p}(\Omega))^{2} \). Thus, there exists a set \(E \subset \Omega \) such that \(\Omega \setminus E \) has a zero Lebesgue measure and a subsequence, always indexed by \(n \), such that \(\Psi_{n}(z) \to 0 \) and \(H_{n}(z) \to \nabla u_{e}(z) \) for any \(z \in E \). We can also assume that (\(\mathcal{H}_{1} \)), (\(\mathcal{H}_{2} \)) and (\(\mathcal{H}_{3} \)) hold for any \(z \in E \).

First of all, using (\(\mathcal{H}_{3} \)) and (\(\mathcal{H}_{4} \)) we have

\[
\Psi_{n}(z) \geq \frac{C_{1}}{2} |G_{n}(z)|^{p} - C |H_{n}(z)|^{p} - b_{1}(z) - 2b_{2}(z)(|H_{n}(z)| + |G_{n}(z)|), \quad \forall z \in E. \tag{5.8}
\]

For \(z \in E \) fixed, the sequence \((H_{n}(z))_{n} \) is bounded and \((\Psi_{n}(z))_{n} \) tends to 0. By (5.8), we deduce that \((G_{n}(z))_{n} \) is a bounded sequence in \(\mathbb{R}^{2} \). Moreover, if \(\widetilde{G} \) is the limit of any subsequence \((G_{n_{k}}(z))_{k} \), we have

\[
0 = \lim_{k \to \infty} \Psi_{n_{k}}(z) = (\varphi(z, \widetilde{G}) - \varphi(z, \nabla u_{e}(z)), \widetilde{G} - \nabla u_{e}(z)).
\]

Using the monotonicity assumption (\(\mathcal{H}_{1} \)), we deduce that \(\widetilde{G} = \nabla u_{e}(z) \). Thus, we have shown that for any \(z \in E \), the whole sequence \((G_{n}(z))_{n} \) converges towards \(\nabla u_{e}(z) \) in \(\mathbb{R}^{2} \).

Since we have already proved that \((G_{n})_{n} \) weakly converges towards \(\nabla u_{e} \) in \((L^{p}(\Omega))^{2} \), using the Vitali theorem we deduce that the sequence \((G_{n}(z))_{n} \) (which is in fact a subsequence of the initial sequence) strongly converges towards \(\nabla u_{e} \) in \((L^{2}(\Omega))^{2} \) for any \(q < p \). At the present stage, we have proved that \((G_{n})_{n} \) is relatively compact in the strong topology of \((L^{2}(\Omega))^{2} \) and that \(\nabla u_{e} \) is its unique accumulation point. Thus, the whole sequence \((G_{n})_{n} \) converges strongly in \((L^{2}(\Omega))^{2} \) towards \(\nabla u_{e} \) for any \(q < p \).

Finally, the strong convergence of the fluxes \(\varphi(\cdot, G_{n}(\cdot)) \) towards \(\varphi(\cdot, \nabla u_{e}(\cdot)) \) comes from the property (1.2) which remains true when one replaces \(p \) by \(q \) and \(p' \) by \(\frac{q}{p-1} \). In particular, the weak limit \(\zeta \) of \(\varphi(\cdot, G_{n}) \) in \((L^{p'}(\Omega))^{2} \) is equal to \(\varphi(\cdot, \nabla u_{e}) \) which proves the weak convergence property of the fluxes in \((L^{p}(\Omega))^{2} \).

Remark 5.1. In many interesting cases, we can also prove the strong convergence of the gradients and the fluxes in \((L^{p}(\Omega))^{2} \) and \((L^{p}(\Omega))^{2} \), respectively. More exactly, assume that the map \(\mathcal{L} : G \in (L^{p}(\Omega))^{2} \to \mathbb{R}^{2} \) is
\[\left(\int_{\Omega} (\varphi(z,G(z)) - \varphi(z,0), G(z)) \, dz \right)^{\frac{1}{p}} \] defines on \((L^p(\Omega))^2\) an equivalent norm, and that \(((L^p(\Omega))^2, \mathcal{L})\) is uniformly convex. Then (5.1) holds with \(q = p\) and \(r = p'\).

Indeed, we have the weak convergence of \(\varphi(\cdot, G_n(\cdot))\) towards \(\varphi(\cdot, \nabla u_e(\cdot))\), so that (5.7) also implies

\[\int_{\Omega} (\varphi(z,G_n(z)), G_n(z)) \, dz = \int_{\Omega} (\varphi(z,\nabla u_e(z)), \nabla u_e(z)) \, dz. \]

Hence, as \(n \to \infty\), we have \(G_n \rightharpoonup \nabla u_e\) in \(((L^p(\Omega))^2, \mathcal{L})\) weakly, and \(\mathcal{L}(G_n) \to \mathcal{L}(\nabla u_e)\). By the uniform convexity of the space \(((L^p(\Omega))^2, \mathcal{L})\), we can conclude that \(G_n \to \nabla u_e\) strongly in \(((L^p(\Omega))^2, \mathcal{L})\) and thus in \((L^p(\Omega))^2\). The strong convergence of the fluxes in \((L^p(\Omega))^2\) follows from (1.2).

This proof applies, for instance, for the three examples given in the introduction: the anisotropic Laplace operator (1.3), the \(p\)-laplacian (1.4) or the generalized \(p\)-laplacian (1.5) with a minor adaptation of the argument.

Under the assumptions \((\mathcal{H}_1')-(\mathcal{H}_1b)\) (which are in fact fulfilled in each of the aforementioned examples, thanks to Lemma 1.2), we can obtain the conclusion of Remark 5.1 in a more straightforward way. Note that \((\mathcal{H}_1')-(\mathcal{H}_1b)\) will be further used in section 7 in order to quantify the rate of convergence in (5.1) in case \(u_e \in W^{2,p}(\Omega)\) (see Theorem 7.1).

Theorem 5.2. Under assumptions of Theorem 5.1 if we suppose that the flux \(\varphi\) also satisfies assumption \((\mathcal{H}_1')-(\mathcal{H}_1b)\), then the strong convergences of \(\nabla_{\gamma_n}^\tau u_n^\tau\) and \(\varphi(\cdot, \nabla_{\gamma_n}^\tau u_n^\tau)\) also hold in \((L^p(\Omega))^2\) and \((L^p(\Omega))^2\), respectively.

Proof. We use the same notations as in the proof of the previous theorem. Take \(v = u_e\). In the case \(p \leq 2\), from (5.5) and \((\mathcal{H}_1')\) we get

\[\|G_n - H_n\|_{L^p}^p \leq C\|\nabla u_e\|_{L^1} \left(\|b_3\|_{L^1}^{2p} + \|G_n\|_{L^p}^{2-p} + \|H_n\|_{L^p}^{2-p} \right). \]

Similarly, for \(p > 2\) using \((\mathcal{H}_1b)\), we obtain

\[\|G_n - H_n\|_{L^p}^p \leq C\|\nabla u_e\|_{L^1}. \]

We deduce from (5.7) that \(\|G_n - H_n\|_{L^p}\) tends to zero as \(n\) goes to infinity. Using Corollary 3.5, we obtain the strong convergence of the discrete gradients in \((L^p(\Omega))^2\). Finally, the property (1.2) yields the strong convergence of the discrete flux. \(\square\)

6. Stability with respect to the data.

In this section we address the problem of the continuous dependence of the approximate solution with respect to the data. More precisely, we show that, as for the continuous problem (1.1), the discrete gradient of the solution to the finite volume scheme is Hölder continuous with respect to \(f\) and the boundary data \(g\) uniformly with respect to the mesh.

This property is important because it ensures, for instance, that the numerical method is stable with respect to the fully practical computation of the discretization of the data through quadrature formulae. Notice that the computations below will also be useful in the proof of the error estimate theorem in section 7.

From now on, we need to assume some kind of Hölder regularity with respect to \(\xi\) for the flux \(\varphi(z,\xi)\). More precisely, we consider the following assumptions:

- If \(1 < p \leq 2\), there exists \(C_4 > 0\) such that for all \((\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2\) and almost every \(z \in \Omega,\)

\[|\varphi(z,\xi) - \varphi(z,\eta)| \leq C_4|\xi - \eta|^{p-1}. \] \(\mathcal{H}_{4a}\)

- If \(p > 2\), there exist \(C_4 > 0\) and \(b_4 \in L^{\frac{2p}{p-2}}(\Omega)\) such that for all \((\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2\), and almost every \(z \in \Omega,\)

\[|\varphi(z,\xi) - \varphi(z,\eta)| \leq C_4(b_4(z) + |\xi|^{p-2} + |\eta|^{p-2})|\xi - \eta|. \] \(\mathcal{H}_{4b}\)
We want to point out that, once more, these assumptions are classical in this context and are satisfied for the various examples given in Section 1.2 (see Lemma 1.2 and [7, 10]). Furthermore, these new assumptions do not involve regularity of \(\varphi \) with respect to the space variable \(z \). This allows, for instance, the presence of spatial discontinuities in the coefficients of the problem we are studying.

Proposition 6.1. Let \(T \) be a mesh on \(\Omega \) and \(f_1, f_2 \in L^p(\Omega) \), \(g_1, g_2 \in W^{1-\frac{1}{p}}(\partial \Omega) \). Under assumptions \((H_3), (H_{1a}),(H_{1b}),(H_{4a}),(H_{4b})\), if \(u_1^T \) and \(u_2^T \) are the solutions of the scheme (2.18) corresponding respectively to the data \(P_m^g g_1, P_m^g f_1 \) and \(P_m^g g_2, P_m^g f_2 \), then we have

\[
\|\nabla_{m,T}^T u_1^T - \nabla_{m,T}^T u_2^T\|_{L^p} \leq C \left(M^{2-p} \|f_1 - f_2\|_{L^p} + M^{\frac{2}{p-2}} \|g_1 - g_2\|_{W^{1-\frac{1}{p}}(\partial \Omega)} \right), \quad \text{if } 1 < p < 2,
\]

\[
\|\nabla_{m,T}^T u_1^T - \nabla_{m,T}^T u_2^T\|_{L^p} \leq C \left(\|f_1 - f_2\|_{L^{p'}} + \|g_1 - g_2\|_{W^{1-\frac{1}{p'}}(\partial \Omega)} + M \frac{2}{p-2} \|g_1 - g_2\|_{W^{1-\frac{1}{p'}}(\partial \Omega)} \right), \quad \text{if } p > 2,
\]

where \(C \) depends only on \(\text{reg}(T) \), \((b_i)_{1 \leq i \leq 4}, (b_i)_{1 \leq i \leq 4}, \) and \(M \) is defined by

\[
M = C + \|g_1\|_{W^{1-\frac{1}{p}}(\partial \Omega)} + \|g_2\|_{W^{1-\frac{1}{p}}(\partial \Omega)} + \|f_1\|_{L^{p'}} + \|f_2\|_{L^{p'}}.
\]

Proof. Let us introduce \(v_1^T = \bar{P}_m^T \mathcal{R}(g_1) \) and \(v_2^T = \bar{P}_m^T \mathcal{R}(g_2) \), \(\mathcal{R} \) being the lift operator (see (1.6)). Testing the two schemes with \(u_1^T - v_1^T - u_2^T + v_2^T \), we obtain by Lemma 4.1

\[
0 = \left\| a_{g_1}(u_1^T) - a_{g_2}(u_2^T), u_1^T - u_2^T + v_1^T - v_2^T \right\| - \left\| \bar{P}_m f_1 - \bar{P}_m f_2, u_1^T - v_1^T - u_2^T + v_2^T \right\|
\]

\[
= \sum_{D \in \mathcal{D}} m_D \left(\varphi_D(\nabla_{m,T}^T u_1^T) - \varphi_D(\nabla_{m,T}^T u_2^T), \nabla_{m,T}^T u_1^T - \nabla_{m,T}^T u_2^T \right)
\]

\[
- \left\| \bar{P}_m f_1 - \bar{P}_m f_2, u_1^T - v_1^T - u_2^T + v_2^T \right\|.
\]

Using (2.13), we obtain

\[
\sum_{D \in \mathcal{D}} m_D \left(\varphi_D(\nabla_{m,T}^T u_1^T) - \varphi_D(\nabla_{m,T}^T u_2^T), \nabla_{m,T}^T u_1^T - \nabla_{m,T}^T u_2^T \right)
\]

\[
= \sum_{D \in \mathcal{D}} m_D \left(\varphi_D(\nabla_{m,T}^T u_1^T) - \varphi_D(\nabla_{m,T}^T u_2^T), \nabla_{m,T}^T u_1^T - \nabla_{m,T}^T u_2^T \right)
\]

\[
+ \left\| \bar{P}_m f_1 - \bar{P}_m f_2, u_1^T - v_1^T - u_2^T + v_2^T \right\|. \tag{6.1}
\]

*In the case \(1 < p \leq 2 \), assumption \((H_{1a})\) gives

\[
\sum_{D \in \mathcal{D}} m_D \left(\varphi_D(\nabla_{m,T}^T u_1^T) - \varphi_D(\nabla_{m,T}^T u_2^T), \nabla_{m,T}^T u_1^T - \nabla_{m,T}^T u_2^T \right)
\]

\[
= \sum_{D \in \mathcal{D}} \int_D \left(\varphi(z, \nabla_{m,T}^T u_1^T(z)) - \varphi(z, \nabla_{m,T}^T u_2^T(z)), \nabla_{m,T}^T u_1^T(z) - \nabla_{m,T}^T u_2^T(z) \right) dz
\]

\[
\geq \frac{1}{C} \int_{\Omega} \left(|b_3(z) + |\nabla_{m,T}^T u_1^T(z)|^p + |\nabla_{m,T}^T u_2^T(z)|^p \right) \left| \nabla_{m,T}^T u_1^T(z) - \nabla_{m,T}^T u_2^T(z) \right|^2 dz.
\]
By the Hölder inequality, we get

\[
\int_{\Omega} \left| \nabla_{T, g_{1}} u_{1}^{\tau} - \nabla_{T, g_{2}} u_{2}^{\tau} \right|^{p} dz \\
= \int_{\Omega} \frac{\left| \nabla_{T, g_{1}} u_{1}^{\tau} - \nabla_{T, g_{2}} u_{2}^{\tau} \right|^{p}}{b_{3} + \left| \nabla_{T, g_{1}} u_{1}^{\tau} \right|^{p} + \left| \nabla_{T, g_{2}} u_{2}^{\tau} \right|^{p}} \left(b_{3} + \left| \nabla_{T, g_{1}} u_{1}^{\tau} \right|^{p} + \left| \nabla_{T, g_{2}} u_{2}^{\tau} \right|^{p} \right)^{-\frac{2-p}{p}} dz \\
\leq \left(\int_{\Omega} \left| \nabla_{T, g_{1}} u_{1}^{\tau} - \nabla_{T, g_{2}} u_{2}^{\tau} \right|^{2} \left(b_{3} + \left| \nabla_{T, g_{1}} u_{1}^{\tau} \right|^{p} + \left| \nabla_{T, g_{2}} u_{2}^{\tau} \right|^{p} \right)^{\frac{p-2}{p}} dz \right)^{\frac{p}{2}} \\
\times \left(\int_{\Omega} b_{3} + \left| \nabla_{T, g_{1}} u_{1}^{\tau} \right|^{p} + \left| \nabla_{T, g_{2}} u_{2}^{\tau} \right|^{p} dz \right)^{\frac{2-p}{2}}.
\]

Hence, we have

\[
\left\| \nabla_{T, g_{1}} u_{1}^{\tau} - \nabla_{T, g_{2}} u_{2}^{\tau} \right\|_{L^{p}}^{2} \leq C \left(\left\| b_{3} \right\|_{L^{1}}^{\frac{2-p}{p}} + \left\| \nabla_{T, g_{1}} u_{1}^{\tau} \right\|_{L^{p}}^{2-p} + \left\| \nabla_{T, g_{2}} u_{2}^{\tau} \right\|_{L^{p}}^{2-p} \right) \times \left(\sum_{D \in \mathcal{D}} m_{D} \left(\varphi_{D}(\nabla_{T, g_{1}} u_{1}^{\tau}) - \varphi_{D}(\nabla_{T, g_{2}} u_{2}^{\tau}) \right) \right). (6.2)
\]

Thanks to assumption (H4α), (6.1) gives

\[
\sum_{D \in \mathcal{D}} m_{D} \left(\varphi_{D}(\nabla_{T, g_{1}} u_{1}^{\tau}) - \varphi_{D}(\nabla_{T, g_{2}} u_{2}^{\tau}) \right) \leq C \left(\left\| \nabla_{T, g_{1}} u_{1}^{\tau} - \nabla_{T, g_{2}} u_{2}^{\tau} \right\|^{p-1}_{L^{p}} \left\| \nabla_{T, g_{1}} u_{1}^{\tau} - \nabla_{T, g_{2}} u_{2}^{\tau} \right\|_{L^{p}} \right) \cdot f_{1} + f_{2} \left\| \varphi_{D} \right\|_{L^{1}} \cdot f_{1} + f_{2} \left\| \varphi_{D} \right\|_{L^{1}}.
\]

Combining the last two inequalities, we get the result.

• In the case \(p > 2 \), using assumption (H1α), we have

\[
\sum_{D \in \mathcal{D}} m_{D} \left(\varphi_{D}(\nabla_{T, g_{1}} u_{1}^{\tau}) - \varphi_{D}(\nabla_{T, g_{2}} u_{2}^{\tau}) \right) \leq C \left(\left\| \nabla_{T, g_{1}} u_{1}^{\tau} - \nabla_{T, g_{2}} u_{2}^{\tau} \right\|^{p-1}_{L^{p}} \left\| \nabla_{T, g_{1}} u_{1}^{\tau} - \nabla_{T, g_{2}} u_{2}^{\tau} \right\|_{L^{p}} \right) \cdot f_{1} + f_{2} \left\| \varphi_{D} \right\|_{L^{1}} \cdot f_{1} + f_{2} \left\| \varphi_{D} \right\|_{L^{1}}.
\]

Denote by \(b_{4}^{p} \) the mean value of \(b_{4} \) on \(D \). By (H4β) and the Young inequality, (6.1) implies

\[
\frac{1}{C} \left\| \nabla_{T, g_{1}} u_{1}^{\tau} - \nabla_{T, g_{2}} u_{2}^{\tau} \right\|_{L^{p}}^{p} \leq \sum_{D \in \mathcal{D}} m_{D} \left| \nabla_{T, g_{1}} u_{1}^{\tau} - \nabla_{T, g_{2}} u_{2}^{\tau} \right| \left| \nabla_{T, g_{1}} u_{1}^{\tau} - \nabla_{T, g_{2}} u_{2}^{\tau} \right| \right|_{L^{p}}^{p} \times \left(\left| b_{4}^{p} \right| + \left| \nabla_{T, g_{1}} u_{1}^{\tau} \right|^{p-2} + \left| \nabla_{T, g_{2}} u_{2}^{\tau} \right|^{p-2} \right) \\
+ C \left(\left\| u_{1}^{\tau} - u_{2}^{\tau} \right\|_{L^{p}} + \left\| u_{1}^{\tau} - u_{2}^{\tau} \right\|_{L^{p}} \right) \cdot f_{1} + f_{2} \left\| \varphi_{D} \right\|_{L^{1}} \cdot f_{1} + f_{2} \left\| \varphi_{D} \right\|_{L^{1}}.
\]
The discrete Poincaré inequality and (3.3) then lead to

\[\|\nabla_{\Omega G_1} u_1^\tau - \nabla_{G_2}^\tau u_2^\tau\|_{L^p} \leq C \left(\|g_1 - g_2\|_{W^{-1,p'}} + \|\nabla_{\Omega G_1} u_1^\tau\|_{L^p} + \|\nabla_{\Omega G_1}^\tau u_2^\tau\|_{L^p} \right)^{\frac{1}{p'}} + \|g_1 - g_2\|_{W^{-1,p'}} + \|f_1 - f_2\|_{L^p}. \]

The claim follows thanks to the estimate (4.1) applied to \(u_1^\tau \) and \(u_2^\tau \). \(\square \)

7. Error estimates for \(W^{2,p} \) solutions

We conclude the study of the convergence of the solution to the finite volume scheme (2.18) by providing an error estimate in the case where the exact solution of the problem (1.1) lies in the space \(W^{2,p}(\Omega) \) and the flux \(\varphi \) is smooth enough with respect to the spatial variable \(z \). More precisely, we consider in this section the following additional assumptions on \(\varphi \):

- If \(1 < p \leq 2 \), there exist \(C_5 > 0 \) and \(b_5 \in (W^{1,p}(\Omega))^2 \) such that for all \(\xi \in \mathbb{R}^2 \) and almost every \((z, z') \in \Omega^2 \),
 \[|\varphi(z, \xi) - \varphi(z', \xi)| \leq C_5(1 + |\xi|^{p-1})|z - z'|^{p-1} + |b_5(z) - b_5(z')|^{p-1}. \]

- If \(p > 2 \), there exist \(C_5 > 0 \) and \(b_6 \in L^p(\Omega) \) such that for all \(\xi \in \mathbb{R}^2 \) and almost every \(z \in \Omega \),
 \[\left| \frac{\partial \varphi}{\partial z}(z, \xi) \right| \leq C_5 \left| b_6(z) + |\xi|^{p-1} \right|. \]

Of course, these stronger assumptions do not allow to consider non regular data \(f \in W^{-1,p'}(\Omega) \) through the manipulation of Remark 1.1.

Let us comment on these assumptions in the case of the examples given in section 1.2. For the anisotropic Laplace equation (1.3), assumption (H5a) is fulfilled as soon as the map \(A \) is Lipschitz. In the nonlinear example (1.5), the assumptions above are satisfied if the map \(k \) is Lipschitz and if the vector-field \(F \) lies in \(W^{1,p}(\Omega) \).

Our main result is the following.

Theorem 7.1. Assume that the flux \(\varphi \) satisfies not only (H2), (H3), but also (H1a)-(H1b), (H4a)-(H4b), (H5a)-(H5b). Let \(f \in L^p(\Omega) \) and assume that the solution \(u_e \) to (1.1) belongs to \(W^{2,p}(\Omega) \), which implies that \(g \in \overline{W}^{2-\frac{1}{p}}(\partial \Omega) \). Let \(T \) be a mesh on \(\Omega \). There exists \(C > 0 \) depending on \(\|u_e\|_{W^{2,p}}, \) on \(\text{reg}(T) \), on the norms of the functions \(f, g, (b_i)_{1 \leq i \leq 6} \), \(i = 1, \ldots, 6 \) in their natural spaces and on \((C_i)_{1 \leq i \leq 5} \), such that

\[
\left\{ \begin{array}{l}
\|u_e - u^\tau\|_{L^p} + \|\nabla u_e - \nabla_{\Omega G_1}^\tau u^\tau\|_{L^p} \leq C \text{size}(T)^{p-1}, & \text{if } 1 \leq p \leq 2, \\
\|u_e - u^\tau\|_{L^p} + \|\nabla u_e - \nabla_{\Omega G_1}^\tau u^\tau\|_{L^p} \leq C \text{size}(T)^{p-2}, & \text{if } p > 2.
\end{array} \right.
\]

(7.1)

Recall that J.W. Barrett and W.B. Liu proved in [5], in the particular case of the \(p \)-laplacian on a convex domain \(\Omega \), that if \(f \in L^p(\Omega) \) and if \(1 < p \leq 2 \), then \(u_e \) belongs to \(H^2(\Omega) \) and then to \(W^{2,p}(\Omega) \), so that the assumption in the previous theorem is fulfilled. On the other hand, when \(p > 2 \), there exist solutions of (1.1) with \(f \in L^p(\Omega) \) which are not in \(W^{2,p}(\Omega) \) but in Besov space \(B^{1+p-1}_{\infty,1} \). In this last case, optimal error estimates were obtained in [2], in the framework of cartesian meshes.

7.1. Center-value projection of continuous functions. In the proof of the convergence results (Theorems 5.1 and 5.2) we have shown that the difference of the discrete gradient of the approximate solution and the discrete gradient of the mean-value projection of the exact solution \(P_{\Omega} u_e \) tends to 0. Using the properties of the mean-value projection of any function in \(W^{1,p}(\Omega) \) (Corollary 3.5), we were able to conclude to the convergence of the discrete gradient towards the exact gradient \(\nabla u_e \).
Lemma 7.3. Discretizations of the boundary data. In the same way, any we see that we have two kinds of terms to estimate in each diamond cell:

1. The first point is a consequence of the embedding of our scheme. Hence, since the boundary data is needed to evaluate the contribution in the error of the difference $P^T_g - P^T_c g$, it is possible to define a more natural projection of this function on \mathbb{R}^T of discrete functions. We call it is the center-value projection of v on the space \mathbb{R}^T of discrete functions.

In the same way, any $g \in \tilde{W}^{2, \frac{1}{p}}(\partial \Omega)$ is Hölder continuous and we can consider its central-value discretization on the boundary $P^T_c g = ((g_k), (g_{k^*}))$ to be defined by

$$g_k = g(x_k), \quad g_{k^*} = g(x_{k^*}), \quad \forall k \in \partial \Omega, \quad g_{k^*}, \quad \forall k^* \in \partial \Omega^*.$$ \hspace{1cm} (7.2)

7.1.1. Discrete boundary data. As stated before, we use P^T_{ue} to compute the consistency error of our scheme. Hence, since the boundary data g enters the scheme through its mean-value projection $P^T_{m} g$, it is needed to evaluate the contribution in the error of the difference $P^T_{c} g - P^T_{m} g$ between the two possible discretizations of the boundary data.

Lemma 7.3. Let \mathcal{T} be a mesh on Ω.

1. For any $p > 2$, there exists C depending on p and $\text{reg}(\mathcal{T})$ such that for any $g \in W^{1, \frac{1}{p}}(\partial \Omega)$ we have

$$\|\nabla_{\mathcal{T}} P^T_{m} g - P^T_{c} g\|_{L^p} \leq C\|g\|_{W^{1, \frac{1}{p}}(\partial \Omega)},$$ \hspace{1cm} (7.3)

2. For any $p > 1$, there exists C depending on p and $\text{reg}(\mathcal{T})$ such that for any $g \in \tilde{W}^{2, \frac{1}{p}}(\partial \Omega)$ we have

$$\|\nabla_{\mathcal{T}} P^T_{m} g - P^T_{c} g\|_{L^p} \leq C\text{size}(\mathcal{T})\|g\|_{\tilde{W}^{2, \frac{1}{p}}(\partial \Omega)},$$ \hspace{1cm} (7.4)

Proof. We want to estimate $G^D \stackrel{\text{def}}{=} \nabla_{\mathcal{T}} P^T_{m} g - P^T_{c} g$ for any diamond cell D near the boundary of Ω since in the other cases this term is zero. Using the definition of $P^T_{m} g$ given in (2.2), (2.3) and the one of $P^T_{c} g$ given in (7.2), we see that we have two kinds of terms to estimate in each diamond cell:

- **Term along the direction of τ^***: If $k \in \partial \Omega \cap D$ (case I in Figure 3.1), we have

$$(G^D, \tau^*) = -\frac{1}{m_{\sigma^*}} \left(g(x_k) - \frac{1}{m_{\sigma}} \int_{\sigma_k} g(s) \, ds\right),$$ \hspace{1cm} (7.5)

whereas in the case II in Figure 3.1, this term is zero.

- **Term along the direction of τ**: Two situations may occur a shown in Figure 3.1. In the case II, we have

$$(G^D, \tau) = -\frac{1}{m_{\sigma}} \left(g(x_{k^*}) - \frac{1}{m_{\sigma_{k^*}}} \int_{\sigma_{k^*}} g(s) \, ds\right),$$ \hspace{1cm} (7.6)

and in the case I,

$$(G^D, \tau) = \frac{1}{m_{\sigma}} \left(\left[g(x_{k^*}) - \frac{1}{m_{\sigma_{k^*}}} \int_{\sigma_{k^*}} g(s) \, ds\right] - \left[g(x_{k^*}) - \frac{1}{m_{\sigma_{k^*}}} \int_{\sigma_{k^*}} g(s) \, ds\right]\right).$$ \hspace{1cm} (7.7)

1. The first point is a consequence of the embedding of $W^{1, \frac{1}{p}}(\partial \Omega)$ in the Hölder class $C^{0, \frac{1}{p}}(\partial \Omega)$. Indeed, each of the terms in (7.5)-(7.7) can be treated in the same way. For instance, by Lemma 1.4, the term (7.5)
Let us prove the second point.

We consider here the terms of the form (7.5). Let us suppose that (κ, κ) is defined in (2.3) and is chosen in such a way that x_κ is located at the middle of the edge σ_κ. We can write

$$ (G^D, \tau^*) = \frac{1}{h_\kappa^2} \int_{-h_\kappa}^{h_\kappa} \int_0^1 \nabla_T g(tx) x \, dx \, dt = \int_0^1 \frac{1}{t^2 h_\kappa^2} \int_{-th_\kappa}^{th_\kappa} \nabla_T g(s) s \, ds \, dt. $$

Now since $\int_{-a}^a \nabla_T g(y) s \, ds = \nabla_T g(y) \int_{-a}^a s \, ds = 0$ for any $a > 0$, integrating in $y \in [-th_\kappa, th_\kappa]$ we get

$$ \frac{1}{t^2 h_\kappa^2} \int_{-th_\kappa}^{th_\kappa} \nabla_T g(s) s \, ds = \frac{1}{t^2 h_\kappa^2} \int_{-th_\kappa}^{th_\kappa} \int_{-th_\kappa}^{th_\kappa} (\nabla_T g(s) - \nabla_T g(y)) s \, ds \, dy $$

$$ = \frac{1}{t^2 h_\kappa^2} \int_{-th_\kappa}^{th_\kappa} \int_{-th_\kappa}^{th_\kappa} \frac{\nabla_T g(s) - \nabla_T g(y)}{|s-y|} |s-y| s \, ds \, dy. $$

It follows that

$$ |(G^D, \tau^*)|^p \leq \int_0^1 \frac{1}{(t_{\kappa}h_\kappa)^p} \left(\frac{1}{(t_{\kappa}h_\kappa)^2} \int_{-th_\kappa}^{th_\kappa} \frac{|\nabla_T g(s) - \nabla_T g(y)|}{|s-y|} |s-y| s \, ds \, dy \right)^p \, dt $$

$$ \leq \int_0^1 \frac{1}{(t_{\kappa}h_\kappa)^p} \left(\frac{1}{(t_{\kappa}h_\kappa)^2} \int_{-th_\kappa}^{th_\kappa} \frac{\left| \nabla_T g(s) - \nabla_T g(y) \right|^p}{|s-y|} |s-y|^p |s-y| s \, ds \, dy \right) \, dt $$

$$ \leq C \int_0^1 \left(\frac{1}{(t_{\kappa}h_\kappa)^{p-1}} \int_{-th_\kappa}^{th_\kappa} \left| \nabla_T g(s) - \nabla_T g(y) \right|^p \, ds \, dy \right) \, dt $$

$$ \leq C h_\kappa^{p-2} \left(\int_0^1 \left(\frac{1}{(t_{\kappa}h_\kappa)^{p-2} dt} \left(\int_{-th_\kappa}^{th_\kappa} \left| \nabla_T g(s) - \nabla_T g(y) \right|^p \, ds \, dy \right) \right. \right) \, $$

Finally we have

$$ \sum_{D \in D} m_D \left| (G^D, \tau^*) \right|^p \leq C \text{size}(T)^p \sum_{\kappa \in \partial D_R} \left(\int_{\sigma_D} \int_{\sigma_D} \left| \nabla_T g(s) - \nabla_T g(y) \right|^p \, ds \, dy \right) $$

$$ \leq C \text{size}(T)^p \sum_{i=1}^k \int_{F_i} \int_{F_i} \left| \nabla_T g(s) - \nabla_T g(y) \right|^p \, ds \, dy $$

$$ \leq C \text{size}(T)^p \left| g \right|_{W^{2-\frac{p}{2}, p}(\partial D)}^p. $$
Provided that neither $x_{z'}$ nor $x_{k'}$ are corners of Ω, we have as previously, in the case (7.6),

$$m_D \left| (G^D, \tau) \right|^p \leq C \text{size}(T)^p \int_{\sigma_{z'}} \int_{\sigma_{x_{z'}}} \frac{|\nabla_T g(s) - \nabla_T g(y)|}{|s - y|^{1 + \frac{1}{p}}} ds dy,$$

and in the case (7.7),

$$m_D \left| (G^D, \tau) \right|^p \leq C \text{size}(T)^p \int_{\sigma_{k'}} \int_{\sigma_{x_{k'}}} \frac{|\nabla_T g(s) - \nabla_T g(y)|}{|s - y|^{1 + \frac{1}{p}}} ds dy.$$

If $x_{z'}$, for instance, is a corner of the domain Ω, say the corner between the edges Γ_j and Γ_k, we estimate separately the contributions of $\sigma_{z'} \cap \Gamma_j$ and $\sigma_{z'} \cap \Gamma_k$. More precisely, for $p < 2$ we use the embedding of $W^{2 - rac{1}{p}, p}(\Gamma_i)$ in $C^{0,2(1 - rac{1}{p})}(\Gamma_i)$ for $i \in \{j, k\}$, to find that

$$\sum_{D \in D} m_D \left| (G^D, \tau) \right|^p \leq C \text{size}(T)^p \|g\|_{W^{2 - rac{1}{p}, p}(\partial \Omega)}^p.$$

In the case $p > 2$, we recall that, thanks to (2.7) and (2.8), $\sigma_{z'} \cap \Gamma_j$ and $\sigma_{z'} \cap \Gamma_k$ are of size $C \text{size}(T)^{2 - \frac{1}{p}}$. We use the embedding of $W^{2 - rac{1}{p}, p}(\Gamma_i)$ in $C^{0,1}(\Gamma_i)$ to conclude.

Finally, in the case $p = 2$ we use the embedding of $H^{\frac{1}{2}}(\Gamma_i)$ in the set of Log-Lipschitz functions and the definition (2.7) of $\text{reg}(T)$ with (2.8).

\section*{Properties of the center-value projection}

We sum up in this section the properties of the center-value projection operator which are used in the estimate of the consistency error of our finite volume scheme.

\begin{lemma}[Center-value projection Lemma] Let T be a mesh on Ω. There exists a constant $C > 0$, depending only on p and $\text{reg}(T)$, such that for any function v in $W^{k,p}(\Omega)$, denoting by $g = \gamma(v)$ its trace, we have

1. For $p \geq 2$,

$$\|\nabla^p_{\ell^p} g \|^2 \leq C \|v\|_{L^p};$$

2. If, in addition, $v \in W^{2,p}(\Omega)$,

 (a) for $p > 1$,

 $$\|\nabla v - \nabla^p_{\ell^p} g \|^2 \leq C \text{size}(T) \|v\|_{W^{1,p}};$$

 (b) for $1 < p < 2$,

 $$\|\nabla^p_{\ell^p} g \|^2 \leq C \left(\|v\|_{L^p} + \text{size}(T) \|\nabla v\|_{W^{1,p}} \right).$$

\end{lemma}

\begin{proof}

\begin{itemize}
 \item Let D be a diamond cell, we use the notations of Figure 2.2. As $v \in W^{1,p}(\Omega)$, for all $z \in D$ we get by first-order Taylor expansion of v,

 $$(v(x_{z'}) - v(x_{k'})) = \left(\int_0^1 \nabla v((1 - t)z + tx_{z'}) |(x_{z'} - z) dt \right) - \left(\int_0^1 \nabla v((1 - t)z + tx_{k'}) |(x_{k'} - z) dt \right)$$ \hspace{1cm} (7.10)

 and

 $$(v(x_{z'}) - v(x_{k'})) = \left(\int_0^1 \nabla v((1 - t)z + tx_{z'}) |(x_{z'} - z) dt \right) - \left(\int_0^1 \nabla v((1 - t)z + tx_{k'}) |(x_{k'} - z) dt \right).$$ \hspace{1cm} (7.11)

\end{itemize}
\end{proof}
Using (2.12) and Lemma 2.1, we get
\[
\sin \alpha_D \nabla \mathcal{P}^T \mathcal{P}^T v = \frac{\nu}{m_{\sigma^*}} \left(\int_0^1 \nabla v((1-t)z + tx_{x_0})(x_{x_0} - z) \, dt - \int_0^1 \nabla v((1-t)z + tx_{x_k})(x_{x_k} - z) \, dt \right) + \frac{\nu^*}{m_{\sigma}} \left(\int_0^1 \nabla v((1-t)z + tx_{x^*})(x_{x^*} - z) \, dt - \int_0^1 \nabla v((1-t)z + tx_{x^*})(x_{x^*} - z) \, dt \right).
\tag{7.12}
\]

Let us define the quantity I_{k,σ^*} (and, by appropriate permutations of the subscripts, I_{c,σ^*}, I_{x^*,σ^*}, $I_{x^*,\sigma}$) as
\[
I_{k,\sigma^*} \overset{\text{def}}{=} \frac{1}{m_D} \int_D \left| \frac{1}{m_{\sigma^*}} \int_0^1 \nabla v((1-t)z + tx_{x_k})(x_{x_k} - z) \, dt \right| \, dz.
\]

Averaging (7.12) over \mathcal{D} and using (2.7), we obtain
\[
|\nabla \mathcal{P}^T \mathcal{P}^T v| \leq C(\text{reg}(T)) \left(I_{k,\sigma^*} + I_{c,\sigma^*} + I_{x^*,\sigma^*} + I_{x^*,\sigma} \right).
\]

Using the change of variables $z \mapsto z' = (1-t)z + tx_{x_k}$, we can now bound each of the four terms in this inequality. For instance, we have
\[
I_{k,\sigma^*} \leq \frac{1}{m_D m_{\sigma^*}} \int_D \left(\int_0^1 |\nabla v((1-t)z + tx_{x_k})(x_{x_k} - z)| \, dt \right) \, dz,
\]
\[
\leq \frac{C}{m_D} \left(\int_D |\nabla v((1-t)z + tx_{x_k})| \, dz \right) \, dt
\]
\[
\leq \frac{C}{m_D} \int_0^1 \left(\frac{1}{(1-t)^{p-1}} \int_D |\nabla v(z')| \, dz' \right) \, dt,
\]
where \mathcal{D}_1 is the rescaled diamond as shown in Figure 7.1. Notice that \mathcal{D}_1 is included in \mathcal{D}. We have $m_{\mathcal{D}_1} = (1-t)^2 m_{\mathcal{D}}$; since $p > 2$, by Hölder inequalities we obtain
\[
I_{k,\sigma^*} \leq \frac{C}{m_D} \left(\int_{\mathcal{D}_1} \frac{1}{(1-t)^{p-1}} \left(\int_{\mathcal{D}_1} |\nabla v(z')|^p \, dz' \right)^{\frac{1}{p}} m_{\mathcal{D}_1} \, dt \right)
\]
\[
\leq \frac{C m_{\mathcal{D}_1}^{\frac{p-1}{p}}}{m_D} \left(\int_D |\nabla v(z)|^p \, dz \right)^{\frac{1}{p}} \int_0^1 (1-t)^{-\frac{2}{p}} \, dt
\]
\[
\leq C m_{\mathcal{D}}^{-\frac{2}{p}} \left(\int_D |\nabla v(z)|^p \, dz \right)^{\frac{1}{p}}.
\]
With similar calculations for I_{k,s^*}, $I_{k^*,s}$, I_{k^*,s^*}, we deduce that

$$m_D |\nabla_{\mathbb{R}^d}^P T^z v|^p \leq C \int_D |\nabla v(z)|^p \, dz.$$

We conclude by summing this estimate over the diamonds set that

$$\|\nabla_{\mathbb{R}^d}^P T^z v\|_{L^p}^p = \sum_{D \in \mathcal{D}} m_D |\nabla_{\mathbb{R}^d}^P T^z v|^p \leq C \sum_{D \in \mathcal{D}} \int_D |\nabla v|^p \, dz = C \int_{\Omega} |\nabla v|^p \, dz,$$

using the fact that the number N_T defined in (2.6) is bounded by $\text{reg}(T)$.

• Assume that $v \in C^3(\Omega)$, the claim will follow by density. Let D be a diamond cell; the Taylor expansions (7.10), (7.11) can be replaced by the to second-order ones, so that

$$\frac{1}{m_{\sigma^*}} (v(x_{\sigma^*}) - v(x_{\sigma})) = (\nabla v(z), \tau^*) + \frac{1}{m_{\sigma^*}} \int_0^1 (1 - t) \left(D^2 v((1 - t)z + tx_{\sigma})(x_{\sigma} - z), (x_{\sigma} - z) \right) \, dt$$

$$- \frac{1}{m_{\sigma^*}} \int_0^1 (1 - t) \left(D^2 v((1 - t)z + tx_{\sigma})(x_{\sigma} - z), (x_{\sigma} - z) \right) \, dt,$$

$$\frac{1}{m_{\sigma}} (v(x_{\sigma^*}) - v(x_{\sigma})) = (\nabla v(z), \tau) + \frac{1}{m_{\sigma}} \int_0^1 (1 - t) \left(D^2 v((1 - t)z + tx_{\sigma})(x_{\sigma^*} - z), (x_{\sigma^*} - z) \right) \, dt$$

$$- \frac{1}{m_{\sigma}} \int_0^1 (1 - t) \left(D^2 v((1 - t)z + tx_{\sigma})(x_{\sigma^*} - z), (x_{\sigma^*} - z) \right) \, dt,$$

for any point $z \in D$. Using (2.12) and Lemma 2.1, we get

$$\sin \alpha_D (\nabla_{\mathbb{R}^d}^P T^z v - \nabla v(z)) = \frac{\nu}{m_{\sigma^*}} \int_0^1 (1 - t) \left(D^2 v((1 - t)z + tx_{\sigma})(x_{\sigma} - z), (x_{\sigma} - z) \right) \, dt$$

$$- \frac{\nu}{m_{\sigma^*}} \int_0^1 (1 - t) \left(D^2 v((1 - t)z + tx_{\sigma})(x_{\sigma} - z), (x_{\sigma} - z) \right) \, dt$$

$$+ \frac{\nu^*}{m_{\sigma}} \int_0^1 (1 - t) \left(D^2 v((1 - t)z + tx_{\sigma})(x_{\sigma^*} - z), (x_{\sigma^*} - z) \right) \, dt$$

$$- \frac{\nu^*}{m_{\sigma}} \int_0^1 (1 - t) \left(D^2 v((1 - t)z + tx_{\sigma})(x_{\sigma^*} - z), (x_{\sigma^*} - z) \right) \, dt. \quad (7.13)$$

As in the proof of the first point, we take the average of (7.13) over D. It follows that it is sufficient to control by means of $\int_D |D^2 v|^p$ the four similar quantities $II_{k,s^*}, II_{k,s^*}, II_{k^*,s}, II_{k^*,s^*}$ where, for instance,

$$H_{k,s^*} \overset{\text{def}}{=} \int_D \left| \frac{1}{m_{\sigma^*}} \int_0^1 (1 - t) \left(D^2 v((1 - t)z + tx_{\sigma})(x_{\sigma} - z), (x_{\sigma} - z) \right) \, dt \right|^p \, dz,$$

$$\leq \frac{1}{m_{\sigma^*}} \int_D \int_0^1 (1 - t)^p |D^2 v((1 - t)z + tx_{\sigma})(x_{\sigma} - z), (x_{\sigma} - z)|^p \, dt \, dz.$$

The Jacobian determinant of the change of variables $z \mapsto z' = (1 - t)z + tx_{\sigma}$ equals $(1 - t)^2$. Hence,

$$II_{k,s^*} \leq \frac{d^{2p}_{\sigma^*}}{m^{2p}_{\sigma^*}} \left(\int_0^1 (1 - t)^{p-2} \, dt \right) \int_D |D^2 v(z')|^p \, dz'.$$

Since $p - 2 > -1$, using (2.7), we find

$$II_{k,s^*} \leq \frac{1}{p - 1} \frac{d^{2p}_{\sigma^*}}{m^{2p}_{\sigma^*}} \int_D |D^2 v(z)|^p \, dz, \leq C(\text{reg}(T)) d^{p}_{\sigma} \int_D |D^2 v(z)|^p \, dz.$$
With similar calculations for \(\Pi_{\kappa, \sigma'} \), \(\Pi_{\kappa', \sigma} \), and \(\Pi_{\kappa, \sigma} \), we have
\[
\int_D |\nabla_{\mathbb{E}_T^g} \mathbb{P}_m^T v(z) - \nabla v(z)|^p \, dz \leq C(\text{reg}(T)) \int_D |D^2 v(z)|^p \, dz,
\] (7.14)
and the claim is proved by summing (7.14) over the diamonds set.

- The estimate (7.9) is a straightforward consequence of (7.8).

Corollary 7.5. Let \(T \) be a mesh on \(\Omega \). There exists a constant \(C > 0 \), depending only on \(p \) and \(\text{reg}(T) \), such that

1. For any \(p > 2 \) and any \(v \in W^{1,p}(\Omega) \), denoting by \(g = \gamma(v) \) its trace, we have
 \[
 \| \nabla_{\mathbb{E}_T^g} \mathbb{P}_m^T v \|_{L^p} \leq C\|v\|_{W^{1,p}} \quad \text{and} \quad \| \nabla_{\mathbb{E}_T^g} \mathbb{P}_m^T v \|_{L^p} \leq C\|v\|_{W^{1,p}}.
 \]

2. For any \(p > 1 \) and any \(v \in W^{2,p}(\Omega) \), denoting by \(g = \gamma(v) \) its trace, we have
 \[
 \begin{aligned}
 &\left\| \nabla_{\mathbb{E}_T^g} \mathbb{P}_m^T v \right\|_{L^p} \leq C\|\nabla v\|_{L^p} + \text{Csize}(T)\|\nabla v\|_{W^{1,p}}, \\
 &\left\| \nabla_{\mathbb{E}_T^g} \mathbb{P}_m^T v \right\|_{L^p} \leq C\|\nabla v\|_{L^p} + \text{Csize}(T)\|\nabla v\|_{W^{1,p}}.
 \end{aligned}
 \] (7.15)

Proof. By (2.13), we have
\[
\nabla_{\mathbb{E}_T^g} \mathbb{P}_m^T v = \nabla_{\mathbb{E}_T^g} \mathbb{P}_m^T v + \nabla_{\mathbb{E}_T^g} \mathbb{P}_m^T 0^T.
\]
Using the results of Lemmas 7.3 and 7.4, we deduce the first estimate of the first point. The other estimates are proved in the same way.

7.1.3. Convergence of the mean-value projection. In this section, we return to the proof of Proposition 3.4.

- Let us prove (3.5). The case \(q = +\infty \) is straightforward so that we only treat the case of finite values of \(q \). We first remark that
\[
\int_{\Omega} |v(x) - \mathbb{P}_m^T v(x)|^q \, dx \leq C \left(\sum_{\kappa \in \mathcal{D}^t} \int_{\kappa} |v(x) - \mathbb{P}_m^T v_\kappa|^q \, dx + \sum_{\kappa \in \mathcal{D}^t} \int_{\kappa} |v(x) - \mathbb{P}_m^T v_\kappa|^q \, dx \right).
\]
Furthermore, using the Jensen inequality we get
\[
\begin{aligned}
\int_{\kappa} |v(x) - \mathbb{P}_m^T v_\kappa|^q \, dx &\leq \frac{1}{m_\kappa} \int_{\kappa} \int_{\kappa} |v(x) - v(y)|^q \, dx \, dy \\
&\leq \frac{C}{m_\kappa} \int_{\kappa} \int_{\kappa} (|v(x) - v_\sigma|^q + |v_\sigma - v(y)|^q) \, dx \, dy,
\end{aligned}
\]
\[
\leq \frac{C}{m_\sigma} \int_{\kappa} \int_{\kappa} |v(x) - v(s)|^q \, dx \, ds + \frac{Cm_\kappa}{m_\sigma m_{B_\kappa}} \int_{B_\kappa} \int_{B_\kappa} |v(x) - v(s)|^q \, ds \, dx.
\]
where \(\sigma \in \mathcal{E}_\kappa \) and \(v_\sigma = \frac{1}{m_\sigma} \int_{\sigma} v(s) \, ds \), and the same with \(\kappa, B_\kappa, \sigma \) replaced with \(\kappa^*, B_{\kappa^*}, \sigma^* \). Thanks to Lemma 3.2 and to (2.7), we get
\[
\begin{aligned}
\int_{\kappa} |v(x) - \mathbb{P}_m^T v(x)|^q \, dx &\leq Cd_\kappa^q \int_{\kappa \cup B_\kappa} |\nabla v(z)|^q \, dz, \quad \text{and} \quad \int_{\kappa^*} |v(x) - \mathbb{P}_m^T v(x)|^q \, dx \leq Cd_\kappa^q \int_{\kappa^* \cup B_{\kappa^*}} |\nabla v(z)|^q \, dz.
\end{aligned}
\]
Hence, (3.5) follows since the theorem \(\mathcal{N}_T \) defined in (2.6) is bounded by \(\text{reg}(T) \).

- Let us now sketch the proof of (3.6). We follow the same lines as that of (7.8) in Lemma 7.4. Note that it is crucial that the mean-value projection operator \(\mathbb{P}_m^T \) averages \(v \) over balls centered at \(x_\kappa \) and \(x_{\kappa^*} \).
Assume first that \(v \in C^2(\overline{\Omega}) \). Let \(y_1 \in B_{\mathcal{K}}, y_2 \in B_{\mathcal{L}} \) and \(z \in \mathcal{D} \) and use the second-order Taylor expansion, we have

\[
(v(y_2) - v(y_1)) = (\nabla v(z), y_2 - y_1) + \int_{0}^{1} (1 - t) \left(D^2 v((1 - t)z + ty_2)(y_2 - z), (y_2 - z) \right) \, dt
\]

\[
- \int_{0}^{1} (1 - t) \left(D^2 v((1 - t)z + ty_1)(y_1 - z), (y_1 - z) \right) \, dt.
\]

Take the average of this relation with respect to \(y_1 \in B_{\mathcal{K}} \) and \(y_2 \in B_{\mathcal{L}} \) and integrate in \(z \in \mathcal{D} \). In particular, we point out that

\[
\frac{1}{m_{\mathcal{K}}} \frac{1}{m_{\mathcal{L}}} \int_{B_{\mathcal{K}}} \int_{B_{\mathcal{L}}} \left(\nabla v(z), y_2 - y_1 \right) \, dy_1 \, dy_2 = (\nabla v(z), x_{\mathcal{L}} - x_{\mathcal{K}}) = m_{\sigma^*} (\nabla v(z), \nu^*).
\]

Proceeding as for the estimate of \(\Omega_{\mathcal{K}, \sigma^*} \) in the proof of Lemma 7.4, we find out that

\[
\int_{\mathcal{D}} \left| \frac{1}{m_{\sigma^*}} \left(\frac{1}{m_{\mathcal{K}}} \int_{B_{\mathcal{K}}} v(y_2) \, dy_2 - \frac{1}{m_{\mathcal{L}}} \int_{B_{\mathcal{L}}} v(y_1) \, dy_1 \right) - (\nabla v(z), \nu^*) \right|^q \, dz
\]

\[
\leq \frac{1}{m_{\mathcal{K}}} \int_{B_{\mathcal{K}}} \int_{\mathcal{D}} \left| \frac{1}{m_{\sigma^*}} \int_{0}^{1} (1 - t) \left(D^2 v((1 - t)z + ty_2)(y_2 - z), (y_2 - z) \right) \, dt \right|^q \, dz \, dy_2
\]

\[
+ \frac{1}{m_{\mathcal{L}}} \int_{B_{\mathcal{L}}} \int_{\mathcal{D}} \left| \frac{1}{m_{\sigma^*}} \int_{0}^{1} (1 - t) \left(D^2 v((1 - t)z + ty_1)(y_1 - z), (y_1 - z) \right) \, dt \right|^q \, dz \, dy_1
\]

\[
\leq (C(\text{reg}(\mathcal{T})))^q \int_{B_{\mathcal{K}} \cup B_{\mathcal{L}}} |D^2 v|^q \, dz + (C(\text{size}(\mathcal{T})))^q \int_{B_{\mathcal{K}} \cup B_{\mathcal{L}}} |D^2 v|^q \, dz.
\]

We conclude using (2.6) and (2.7). The general case of \(v \in W^{2,q}(\Omega) \) follows by density. Finally, the case \(v \in W^{2,\infty}(\Omega) \) follows from the limit \(q \to +\infty \). \(\square \)

7.2. Consistency error of the scheme.

As usual, for the error analysis of finite volume methods (see e.g. [16]), the consistency error which has to be studied is the error on the numerical fluxes across each of the edges and dual edges in the mesh. We first give the precise definition of these terms, then we state the various estimates needed to prove Theorem 7.1 in section 7.3.

Definition 7.6 (Pointwise consistency error). For any diamond cell \(\mathcal{D} \in \mathcal{D} \), we define the pointwise consistency error in \(\mathcal{D} \) by

\[
R_{\mathcal{D}}(z) = \varphi_{\mathcal{D}}(\nabla_{\mathcal{D}} \bar{u}_{\mathcal{D}}) - \varphi(z, \nabla u(z)), \quad \forall z \in \Omega.
\]

The pointwise consistency error \(R_{\mathcal{D}} \) can be split into three different contributions \(R_{\mathcal{D}}^{\text{grad}}, R_{\mathcal{D}}^{\text{bound}}, \) and \(R_{\mathcal{D}}^{\text{ext}} \). They originate, respectively, from the errors due to the approximation of the gradient, to the discretization of the boundary data, and to the approximation with respect to the spatial variable of the flux \(\varphi(\cdot, \nabla u(\cdot)) \):

\[
R_{\mathcal{D}}(z) = R_{\mathcal{D}}^{\text{bound}} + R_{\mathcal{D}}^{\text{grad}} + R_{\mathcal{D}}^{\text{ext}}(z),
\]

where

\[
R_{\mathcal{D}}^{\text{bound}} = \varphi_{\mathcal{D}}(\nabla_{\mathcal{D}} \bar{u}_{\mathcal{D}}) - \varphi_{\mathcal{D}}(\nabla_{\mathcal{D}} \bar{u}_{\mathcal{D}}),
\]

\[
R_{\mathcal{D}}^{\text{grad}} = \varphi_{\mathcal{D}}(\nabla_{\mathcal{D}} \bar{u}_{\mathcal{D}}) - \frac{1}{m_{\mathcal{D}}} \int_{\mathcal{D}} \varphi(z', \nabla u(z')) \, dz' - \varphi(z, \nabla u(z)).
\]

\[
R_{\mathcal{D}}^{\text{ext}}(z) = \frac{1}{m_{\mathcal{D}}} \int_{\mathcal{D}} \varphi(z', \nabla u(z')) \, dz' - \varphi(z, \nabla u(z)).
\]
Recall that σ and σ^* are the diagonals of $\mathcal{D} = \mathcal{D}_{\sigma, \sigma^*}$. Let us introduce the following consistency errors on the numerical fluxes:

$$R_{\sigma, \xi} \overset{\text{def}}{=} -R_{\sigma, \xi}^\ast \overset{\text{def}}{=} \frac{1}{m_\sigma} \int_{\sigma} (R_\mathcal{D}(s), \nu) \, ds, \quad R_{\sigma} \overset{\text{def}}{=} |R_{\sigma, \xi}| = |R_{\sigma, \xi}^\ast|$$ \hfill (7.17)

$$R_{\sigma, \xi}^\ast \overset{\text{def}}{=} -R_{\sigma, \xi} \overset{\text{def}}{=} \frac{1}{m_\sigma} \int_{\sigma^*} (R_\mathcal{D}(s^*), \nu^*) \, ds^*, \quad R_{\sigma^*} \overset{\text{def}}{=} |R_{\sigma, \xi}^\ast| = |R_{\sigma, \xi}|.$$ \hfill (7.18)

In order to control R_{σ} and R_{σ^*}, let us estimate separately the different terms in the right-hand side of (7.16).

Proposition 7.7 (Error due to the discrete gradient). Assume that φ satisfies (\mathcal{H}_4a)--(\mathcal{H}_4b) and that $u_\mathcal{D} \in W^{2,p}(\Omega)$. For any mesh \mathcal{T} on Ω, there exists a constant $C > 0$, depending only on p, C_4 and reg(\mathcal{T}), such that

- in the case $1 < p \leq 2$,
 $$\sum_{\mathcal{D} \in \mathcal{D}} m_\mathcal{D} |R_\mathcal{D}^{\text{grad}}|^{\frac{p}{p-1}} \leq C \text{size}(\mathcal{T})^p \|D^2 u_\mathcal{D}\|_{L^p}^{p};$$

- in the case $p > 2$,
 $$\sum_{\mathcal{D} \in \mathcal{D}} m_\mathcal{D} |R_\mathcal{D}^{\text{grad}}|^{\frac{p}{p-1}} \leq C \left(\text{size}(\mathcal{T})^p \|D^2 u_\mathcal{D}\|_{L^p}^{p} + \text{size}(\mathcal{T})\frac{p}{p-1} \left(\|b_4\|_{L^{\frac{p}{p-1}}}^{\frac{p}{p-1}} + \|\nabla u_\mathcal{D}\|_{L^{\infty}} \right)\|D^2 u_\mathcal{D}\|_{L^p}^{\frac{p}{p-1}} \right).$$

Proof. Let $\varepsilon(z) = \nabla_{z}^2 g \frac{\partial \varphi}{\partial z} u_\mathcal{D} - \nabla u_\mathcal{D}(z)$ be the error of approximation of the gradient.

- In the case $p \leq 2$, using the definition (2.15) of $\varphi_\mathcal{D}$, by assumption (\mathcal{H}_4a) and the Jensen inequality we have
 $$|R_\mathcal{D}^{\text{grad}}| \leq C \frac{1}{m_\mathcal{D}} \int_{\mathcal{D}} |\varepsilon(z)|^{p-1} \, dz \leq C \left(\frac{1}{m_\mathcal{D}} \int_{\mathcal{D}} |\varepsilon(z)|^{p} \, dz \right)^{\frac{p-1}{p}}.$$

Using the estimate of ε given in (7.14), we get
 $$m_\mathcal{D} |R_\mathcal{D}^{\text{grad}}|^{\frac{p}{p-1}} \leq C d_\mathcal{D}^p \int_{\mathcal{D}} |D^2 u_\mathcal{D}(z)|^p \, dz,$$

and the claim is proved by summing this inequality over the diamonds set and using (2.6) and (2.7).

- In the case $p > 2$, we use (2.15) and the assumption (\mathcal{H}_4b) to obtain
 $$|R_\mathcal{D}^{\text{grad}}| \leq \frac{C}{m_\mathcal{D}} \int_{\mathcal{D}} \left(b_4(z) + |\nabla u_\mathcal{D}(z)|^{p-2} + |\nabla_{z}^2 g \frac{\partial \varphi}{\partial z} u_\mathcal{D}|^{p-2} \right) |\varepsilon(z)| \, dz \leq \frac{C}{m_\mathcal{D}} \int_{\mathcal{D}} \left(b_4(z) + |\nabla u_\mathcal{D}(z)|^{p-2} + |\varepsilon(z)|^{p-2} \right) |\varepsilon(z)| \, dz.$$

Using the embedding of $W^{1,p}(\Omega)$ into $L^\infty(\Omega)$ and the Hölder inequality, we deduce
 $$|R_\mathcal{D}^{\text{grad}}| \leq C \left(\frac{1}{m_\mathcal{D}} \int_{\mathcal{D}} |b_4(z)|^{\frac{p}{p-2}} \, dz \right)^{\frac{p-2}{p}} + \|\nabla u_\mathcal{D}\|_{L^\infty}^{\frac{p-2}{p}} \left(\frac{1}{m_\mathcal{D}} \int_{\mathcal{D}} |\varepsilon(z)|^{p} \, dz \right)^{\frac{p-1}{p}} + C \left(\frac{1}{m_\mathcal{D}} \int_{\mathcal{D}} |\varepsilon(z)|^{p} \, dz \right)^{\frac{p-1}{p}}.$$

Using once more (7.14) to estimate ε, and summing $m_\mathcal{D} |R_\mathcal{D}^{\text{grad}}|^{\frac{p}{p-1}}$ over the diamonds, we conclude the proof. \[\square \]

Proposition 7.8 (Error due to the boundary data). Assume that φ satisfies (\mathcal{H}_4a)--(\mathcal{H}_4b) and that $g \in \overline{W}^{2,\frac{p}{p-1}}(\partial \Omega)$. For any mesh \mathcal{T} on Ω, there exists a constant $C > 0$, depending only on p, C_4 and reg(\mathcal{T}), such that
\[
\text{in the case } 1 < p \leq 2, \\
\sum_{D \in \mathcal{D}} m_D |R_D^{\text{bound}}|^{\frac{p}{p-1}} \leq C \text{size}(T)^p \|g\|_{W^{2,\frac{p}{p-1}}(\partial \Omega)}^p ;
\]

\[
\text{in the case } p > 2, \\
\sum_{D \in \mathcal{D}} m_D |R_D^{\text{bound}}|^{\frac{p}{p-1}} \leq C \text{size}(T)^{\frac{p}{p-1} \|g\|_{W^{2,\frac{p}{p-1}}(\partial \Omega)}^p} \times \left(\|b_4\|_{L^{\frac{p}{p-1}}} + \|\nabla u_e\|_{L^p} \leq \text{size}(T)^{p-2} \|D^2 u_e\|_{L^p} \right)^{\frac{p}{p-1}} .
\]

Proof. We just have to use assumptions (H_{4a}) and (H_{4b}) and the estimates (7.4) and (7.15). □

We define \(R_\sigma^\circ \) and \(R_\sigma^{\circ \ast} \) to be the respective contributions of \(R_D^\circ(z) \) to \(R_\sigma \) and \(R_{\sigma^*} \), that is

\[
R_\sigma^\circ = \left| \frac{1}{m_\sigma} \int_\sigma (R_D^\circ(s, \nu)) \, ds \right|, \quad \text{and} \quad R_\sigma^{\circ \ast} = \left| \frac{1}{m_{\sigma^*}} \int_{\sigma^*} (R_D^{\circ \ast}(s^*, \nu^*)) \, ds^* \right|. \tag{7.19}
\]

PROPOSITION 7.9 (Error due to the approximate flux). Assume that \(\varphi \) satisfies (H_{4a})-(H_{4b}) and (H_{5a})-(H_{5b}). For any mesh \(T \) on \(\Omega \), there exists a constant \(C > 0 \), depending only on \(p, C_4, C_5 \) and \(\text{reg}(T) \), such that

- in the case \(1 < p \leq 2 \\
\sum_{D \in \mathcal{D}} m_D |R_\sigma^\circ|^\frac{p}{p-1} + \sum_{D \in \mathcal{D}} m_D |R_{\sigma^*}^{\circ \ast}|^\frac{p}{p-1} \leq C \text{size}(T)^p \left(1 + \|\nabla u_e\|_{L^p}^p + \|D^2 u_e\|_{L^p}^p + \|\nabla b_5\|_{L^p}^p \right) ;
\]

- in the case \(p > 2 \\
\sum_{D \in \mathcal{D}} m_D |R_\sigma^\circ|^\frac{p}{p-1} + \sum_{D \in \mathcal{D}} m_D |R_{\sigma^*}^{\circ \ast}|^\frac{p}{p-1} \leq C \text{size}(T)^{\frac{p}{p-1} \|g\|_{W^{2,\frac{p}{p-1}}(\partial \Omega)}^p} \times \left(\|b_4\|_{L^{\frac{p}{p-1}}} + \|\nabla u_e\|_{L^p} \leq \text{size}(T)^{p-2} \|D^2 u_e\|_{L^p} \right)^{\frac{p}{p-1}} .
\]

Proof. Let us give the proof for the terms involving the edges \(\sigma \); the terms involving the dual edges \(\sigma^* \) are estimated in the same way. First, by definition of \(R_\sigma^\circ(z) \), for each \(z \in \mathcal{D} \) we have

\[
|R_\sigma^\circ(z)| \leq \frac{1}{m_\sigma} \int_{\mathcal{D}} \varphi(z', \nabla u_e(z')) - \varphi(z, \nabla u_e(z)) \, dz' \\
\leq \frac{1}{m_\sigma} \int_{\mathcal{D}} \varphi(z', \nabla u_e(z')) - \varphi(z, \nabla u_e(z')) \, dz' + \frac{1}{m_\sigma} \int_{\mathcal{D}} |\varphi(z, \nabla u_e(z'))| - \varphi(z, \nabla u_e(z)) \, dz'.
\]

- If \(1 < p \leq 2 \), assumptions (H_{4a}) and (H_{5a}) yield

\[
|R_\sigma^\circ(z)| \leq \frac{1}{m_\sigma} \int_{\mathcal{D}} |b_5(z') - b_5(z)|^{p-1} \, dz' + \frac{C}{m_\sigma} \int_{\mathcal{D}} (1 + |\nabla u_e(z')|^{p-1}) |z' - z|^{p-1} \, dz' + \frac{C}{m_\sigma} \int_{\mathcal{D}} |\nabla u_e(z') - \nabla u_e(z)|^{p-1} \, dz' .
\]

Averaging this inequality over the edge \(\sigma \) and summing over the diamonds set give

\[
\sum_{D \in \mathcal{D}} m_D |R_\sigma^\circ|^\frac{p}{p-1} \leq C \left(\sum_{D \in \mathcal{D}} m_D \frac{1}{m_D m_{\sigma}} \int_{\mathcal{D}} |b_5(z) - b_5(s)|^p \, ds \, dz + \frac{p}{p-1} \int_{\mathcal{D}} (1 + |\nabla u_e(z)|^p) \, dz \right) \\
+ \frac{1}{m_\sigma} \int_{\mathcal{D}} \sum_{D \in \mathcal{D}} m_D |\nabla u_e(z) - \nabla u_e(s)|^p \, ds \, dz .
\]

Applying Lemma 3.2 to \(b_5 \) and \(\nabla u_e \), we obtain

\[
\sum_{D \in \mathcal{D}} m_D |R_\sigma^\circ|^\frac{p}{p-1} \leq C \text{size}(T)^p \left(1 + \|\nabla b_5\|_{L^p}^p + \|\nabla u_e\|_{L^p}^p + \|D^2 u_e\|_{L^p}^p \right) .
\]
If \(p > 2 \), thanks to assumptions \((\mathcal{H}_{4b})\) and \((\mathcal{H}_{5b})\), we see by the chain rule that the map \(\psi : z \mapsto \varphi(z, \nabla u_e(z)) \) belongs to \((W^1, \psi'(\Omega))^{2}\) and that

\[
\|\nabla \psi\|_{L^{p'}} \leq C \left(\|D^2 u_e\|_{L^p}^{p-1} + \|b_4\|_{L^{p-2}} + \|b_6\|_{L^{p'}} + \|\nabla u_e\|_{L^p}^{p-1} \right).
\]

Applying the notations and the result of Lemma 3.2 to the function \(\psi \), we deduce that

\[
|R_\nu^*| = |\psi_\nu - \psi_\frac{dD}{D}| \leq C dD \left(\frac{1}{mD} \int_D |\nabla \psi(z)|^{p'} dz \right)^{\frac{1}{p'}},
\]

and the claim follows by summing \(mD |R_\nu^*|^{p'} \) over the diamond cells. \[\Box\]

7.3. Proof of Theorem 7.1

We are now in the position to prove the error estimate (7.1) stated in Theorem 7.1. First, of all, we have

\[
\|\nabla u_e - \nabla_{g_{x,g}}^Tu^T\|_{L^p} \leq \|\nabla u_e - \nabla_{g_{x,g}}^Tu^T\|_{L^p} + \|\nabla_{g_{x,g}}^Tu^T\|_{L^p} + \|\nabla_{g_{x,g}}^Tu^T - \nabla_{g_{x,g}}^Tu^T\|_{L^p}.
\]

(7.20)

Thanks to Lemma 7.4, the first term in the right-hand side of (7.20) is controlled by \(C \text{size}(T) \|\nabla u_e\|_{W^{2,p}} \). Thanks to Lemma 7.3, the second term is controlled by \(C \text{size}(T) \|g\|_{
abla^2 \cdot \psi'(\partial\Omega)} \). Therefore, in order to prove Theorem 7.1 it is sufficient to estimate the last term in (7.20). To this end, let us prove the following inequalities:

- in the case \(1 < p \leq 2 \),

\[
\|\nabla_{g_{x,g}}^Tu^T - \nabla_{g_{x,g}}^Tu^T\|_{L^p} \leq C \text{size}(T)^{\frac{p-1}{p}} \left(\|u_e\|_{W^{2,p}} + \|b_4\|_{L^{p-2}} + \|b_6\|_{L^{p'}} \right).
\]

(7.21)

- in the case \(p > 2 \),

\[
\|\nabla_{g_{x,g}}^Tu^T - \nabla_{g_{x,g}}^Tu^T\|_{L^p} \leq C \text{size}(T)^{\frac{p-1}{p}} \left(\|u_e\|_{W^{2,p}} + \|b_4\|_{L^{p-2}} + \|b_6\|_{L^{p'}} \right).
\]

(7.22)

For \(p > 2 \), taking \(u^T_1 = \mathbb{P}^T u_e, u^T_2 = u^T \) and \(g_1 = g_2 = g \) in formula (6.3), we obtain

\[
\|\nabla_{g_{x,g}}^Tu^T - \nabla_{g_{x,g}}^Tu^T\|_{L^p} \leq C \|a_g(\mathbb{P}^T u_e) - a_g(u^T), \mathbb{P}^T u_e - u^T \|.
\]

Similarly, for \(1 < p \leq 2 \) we use (6.2) to obtain

\[
\|\nabla_{g_{x,g}}^Tu^T - \nabla_{g_{x,g}}^Tu^T\|_{L^p}^2 \leq C \left(\|b_1\|_{L^2} + \|\nabla_{g_{x,g}}^Tu^T\|_{L^{p}}^2 + \|\nabla_{g_{x,g}}^Tu^T\|_{L^{p}}^2 \right) \|a_g(\mathbb{P}^T u_e) - a_g(u^T), \mathbb{P}^T u_e - u^T \|.
\]

Set \(I \overset{\text{def}}{=} \|a_g(\mathbb{P}^T u_e) - a_g(u^T), \mathbb{P}^T u_e - u^T \| \). Let us express \(I \) through the consistency errors \(R_{\sigma,\kappa} \) and \(R_{\sigma',\kappa'} \). Integrating equation (1.1) over the control volumes \(\kappa \) and the dual control volumes \(\kappa' \) leads to (2.14), which is the exact counterpart of the finite volume scheme (2.16)-(2.17). Substraction of these equations, together with the definitions (7.16), (7.17) and (7.18), yield

\[
a_{\kappa}(u^T) - a_{\kappa}(\mathbb{P}^T u_e) = \sum_{\mathbb{D}_{\sigma,\kappa}} m_{\sigma} R_{\sigma,\kappa}, \quad \forall \kappa \in \mathcal{M},
\]

\[
a_{\kappa}(u^T) - a_{\kappa'}(\mathbb{P}^T u_e) = \sum_{\mathbb{D}_{\sigma,\kappa}} m_{\sigma} R_{\sigma,\kappa'}, \quad \forall \kappa' \in \mathcal{M}'.
\]
Therefore,
\[
I = \sum_{\kappa \in \Omega} \sum_{\sigma \in D_{\kappa}} m_\sigma R_{\sigma, \kappa} (\varphi(x) - u_\kappa) + \sum_{\kappa' \in \Omega} \sum_{\sigma' \in D_{\kappa'}} m_\sigma R_{\sigma' \kappa'} (\varphi(x) - u_{\kappa'}). \]

Let us rewrite \(I \) using the conservativity property of the fluxes in (7.17) and (7.18), the definitions (2.11) and (2.12) of the discrete gradient, and the summation-by-parts Lemma 4.1. We get
\[
I = \sum_{\sigma \in \Delta} m_\sigma R_{\sigma, \kappa} (\varphi(x) - u_\kappa) + \sum_{\kappa' \in \Omega} \sum_{\sigma' \in D_{\kappa'}} m_\sigma R_{\sigma' \kappa'} (\varphi(x) - u_{\kappa'}). \]

In this section, we illustrate our theoretical study by showing the results of some numerical experiments. We suppose that \(\Omega \) is the square \([-1, 1]^2\). We will consider two kinds of analytic radial solutions for which the corresponding boundary data and source term are computed explicitly in order to test the accuracy of the method. For any real parameter \(\alpha \in \mathbb{R} \), we define
\[
\varphi_1(\sigma) = |\sigma|^{\alpha}, \quad \varphi_2(\sigma) = \exp\left(-\frac{|\sigma|^2}{\alpha^2}\right). \]
We compare the results obtained on two kinds of meshes. The mesh 1 is a family of rectangular locally refined meshes obtained by successive global refinements of the original mesh shown in Figure 8.1. The mesh 2 is a family of standard unstructured triangulations of \(\Omega \).

In all the figures below, we plot in a logarithmic scale the \(L^p \) relative error defined by \(\frac{\| u_e - u^T \|_{L^p}}{\| u_e \|_{L^p}} \) and the \(W^{1,p} \) error defined by \(\frac{\| \nabla u_e - \nabla g \|_{L^p}}{\| \nabla u_e \|_{L^p}} \) as functions of the size of the mesh size(\(T \)) (top plot) but also as a function of the number of unknowns for the discrete problem \(N \) (bottom plot).

Let us point out that for the locally refined mesh 1, the size of the control volumes in the refined zone equals 0.5 size(\(T \)).

8.1. Anisotropic Laplace operator. We consider here the anisotropic Laplace operator (1.3) with a diffusion tensor \(A(z) = \frac{1}{|z|^2} \begin{pmatrix} z_1^2 + 2z_2^2 & -z_1 z_2 \\ -z_1 z_2 & 2z_1^2 + z_2^2 \end{pmatrix} \), which is diagonalisable in a rotating frame around the origin with eigenvalues 1 and 2.

For smooth solutions, we observed the first order convergence in the \(H^1 \) norm (given by Theorem 7.1 for \(p = 2 \)) and the second order convergence in the \(L^2 \) norm (this superconvergence is proved for the Laplace equation in [11]). We only present here the results obtained for the radial function \(u_1 \) which is not in \(H^2(\Omega) \) but only in \(H^3(\Omega) \) for any \(\varepsilon > 0 \). We find here a convergence rate of 0.4 in the \(H^1 \) norm and 0.5 in the \(L^2 \) norm. This convergence rate is the one expected, at least for the usual Laplace operator and cell-centered finite volume schemes on admissible meshes (see [14]).

8.2. Fully non-linear operators. First, we consider the model (1.5) for \(p = 3 \), \(k(z) = 1 \) and \(F(z) = (z_2, -z_1) \) for any \(z = (z_1, z_2) \in \Omega \). Notice that \(F \) is not a gradient field. The exact solution we used is \(u_1^{1.35} \).

The coefficient \(\alpha = 1.35 \) is chosen just greater than \(\frac{1}{3} \) to ensure that \(u_1^{1.35} \) is not much more smooth than \(W^{2,p}(\Omega) \).

First of all, we observe an order of 1.73 in \(L^3 \) norm and an order of 0.98 in \(W^{1,3} \) for both kinds of meshes. Thus, the theoretical convergence order obtained by Theorem 7.1 is pessimistic just like for many other studies in this field (see [1, 5, 24, 7]). To our knowledge, very few optimal error estimates for nonlinear diffusion problems are available in the literature. Some of them can be found, with in [24] for the \(P1 \) finite element approximation of the p-Laplacian and in [3] for the FV approach on cartesian meshes.

Nevertheless, an important feature is that the convergence rate is not sensitive to the presence of non conforming control volumes in the mesh 1. Furthermore, in the second plot, we observe that, a number of unknowns being fixed, the mesh 1 (that is the one refined near the singularity) gives better results than the non refined triangular mesh 2. This means that the finite volume scheme presented in this paper for nonlinear equations, can be successfully used in conjunction with local refinement methods in order to save some CPU time without loss of precision. Of course, the analysis of possible \textit{a posteriori} error indicators and adaptative refinement techniques would be of great interest in this framework.
In a second test case, in Figure 8.4, we consider the p-laplacian operator (1.4) with \(p = 3.0 \) and a gaussian radial exact solution \(u_{0.2}^2 \). We observe a numerical convergence rate of 1.66 which is far better than the theoretical prevision; this is not surprising since the solution is very smooth. We observe, as expected, that the refined mesh gives better results since the solution is essentially supported in the refinement zone of the mesh 1 thanks to the choice of the parameter \(\alpha = 0.2 \).

9. Extensions and conclusions.

9.1. Remarks on the discrete data. In the scheme studied above, one takes into account the boundary data through its mean-value projection. This choice permits to cope with the general situation with possibly discontinuous boundary data. In the case where \(g \) is a more regular (say, Hölder continuous) function, it is natural to consider a slightly different scheme by replacing the operator \(\nabla_T \varphi \) by \(\nabla_T \varphi \) in the definition of the scheme, that is in the choice of the discrete gradient appearing in (2.16) and (2.17). Similarly, for a smooth
enough data f, one can replace $\mathbb{P}_n^T f$ by $\mathbb{P}_c^T f$ in the source terms of the scheme (that is in (2.18)). For such smooth enough data, it is easily seen that our analysis also holds. In particular Lemmas 4.2 and 4.3 can be easily adapted to any discrete source data f^T and any discrete boundary condition g^T, and then Theorem 4.4 also holds for any discrete data.

In the same spirit, if φ is smooth enough with respect to the spatial variable z, one can replace the integral definition (2.15) of φ_D by a pointwise definition $\varphi_D(\xi) = \varphi(z_D, \xi)$, where z_D is a particular point in the diamond cell D.

9.2. Remarks on the meshes. The mesh T can be constructed in a more general way, starting from the diamond cells \mathcal{D}. Indeed, let $\mathcal{D} = (D)$ be a family of disjoint quadrilaterals such that

- $\bigcup \mathcal{D} = \Omega$,
- If $(D_1, D_2) \in \mathcal{D}^2$ and if d_1 and d_2 denote respectively an edge of D_1 and an edge of D_2, then either the two edges coincide or they have at most one common point.
We note \((x_{k}, x_{k+1}, x_{k+10}, x_{k+11})\) the vertices of a diamond \(D\) as shown in Figure 2.2. A diamond can degenerate in a triangle, that is three of the points \((x_{k}, x_{k+1}, x_{k+10}, x_{k+11})\) can be aligned. One can prove by induction in \(\text{card}(\mathcal{D})\) that the set of the diagonals of this set of quadrilaterals is made of two connected subsets \(S\) and \(S^*\). The meshes \(\mathcal{M}\) or \(\mathcal{M}^*\) can be associated to \(S\) and \(S^*\), respectively. Indeed, the set \(S\) of edges partition \(\mathbb{R}^2 = \mathcal{P}_0 \cup \mathcal{P}_1\), where \(\mathcal{P}_0\) is unbounded and \(\mathcal{P}_1\) is a finite union of disjoints polygons. These polygons are the control volumes of \(\mathcal{M}\); \(\mathcal{P}_1 = \bigcup_{K \in \mathcal{M}} K\). The set of vertices of \(S\) (resp. \(S^*\)) is noted \(\mathcal{P}^*\) (resp. \(\mathcal{P}\)), \(\mathcal{P}\) (resp. \(\mathcal{P}^*\)) can be splitted into parts \(\mathcal{P}_{\text{int}}\) (resp. \(\mathcal{P}^*_{\text{int}}\)) and \(\mathcal{P}_{\text{ext}}\) (resp. \(\mathcal{P}^*_{\text{ext}}\)) corresponding to the interior points and to the points on the boundary. The mesh \(\mathcal{M}^*\) is obtained in the same way from \(S^*\).

9.3. Possible extensions. Let us mention here some of the possible extensions of the present work to more general situations.

- It is possible, in a quite straightforward way, to extend the finite volume method to Neumann boundary conditions on a part \(\Gamma_N \subset \partial \Omega\). To this end, it is necessary to assume that \(g_N\) for \(\kappa \subset \partial \mathcal{M}\) such that \(\kappa \cap \Gamma_N \neq \emptyset\) and \(g_{\kappa^*}\) for \(\kappa^* \subset \partial \mathcal{M}^*\) such that \(\partial \kappa^* \cap \Gamma_N \neq \emptyset\) are new unknowns for the problem. New equations for these supplementary unknowns are obtained by integrating the equation (1.1) over the corresponding non-degenerate boundary dual control volumes \(\kappa^* \subset \partial \mathcal{M}^*\) and by imposing the value of \(\varphi_D(\nabla_N u^r) \cdot \nu\) on each of the corresponding degenerate boundary control volumes \(\kappa \subset \partial \mathcal{M}\). This is possible thanks to the coercivity and monotonicity of the map \(\varphi_D\) for each diamond \(D\).
- In this paper, we did not allow the flux \(\varphi\) to depend on \(u_e\). Such a study can be carried out, within the framework of pseudomonotone Leray-Lions type operators \(-\text{div}(\varphi(z, \cdot, \nabla \cdot))\), see e.g. [15] for a study of another kind of finite volume approximation for such nonlinear problems.
- Finally, the extension to the DDFV approach to the 3D case is possible under some geometrical conditions on the meshes. At least for linear equations, this extension was proposed and studied in [6].

9.4. Conclusions. We proposed in this paper to use the framework of DDFV schemes for the numerical approximation of fully nonlinear elliptic problems of Leray-Lions kind. This method is well-adapted to general 2D meshes, even locally refined ones, and ensures that the discrete problem has the same properties than the continuous one. In particular, if the problem (1.1) derives from a potential so does the discrete equations. This feature is very useful to provide a fully practical algorithm to compute the approximate solution. We proved that, under very general assumptions including possibly source terms in \(W^{-1,p'}(\Omega)\), the scheme converges. More precisely, the approximate solution, its discrete gradient and the corresponding discrete fluxes converge towards \(u_e\), \(\nabla u_e\) and \(\varphi(\cdot, \nabla u_e)\), respectively, strongly in the appropriate Lebesgue spaces. We proved that the discrete solution is stable with respect to the data and provided an error analysis as soon as the exact solution lies in \(W^{2,p}(\Omega)\).

Finally, we have shown numerical evidences that the method behaves better, even for locally refined meshes, than the theoretical convergence order.

REFERENCES