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Abstract

An approximation Ansatz for the operator solution, U(z′, z), of a hyper-
bolic first-order pseudodifferential equation, ∂z +a(z, x, Dx) with Re(a) ≥
0, is constructed as the composition of global Fourier integral operators
with complex phases. We investigate the propagation of singularities for
this Ansatz and prove microlocal convergence: the wavefront set of the
approximated solution is shown to converge to that of the exact solution
away from the region where the phase is complex.
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0 Introduction

We consider the Cauchy problem

∂zu+ a(z, x,Dx)u = 0, 0 < z ≤ Z(0.1)

u |z=0 = u0,(0.2)

with Z > 0 and a(z, x, ξ) ∈ C ([0, Z], S1(Rn × R
n)), with the usual notation

D = 1
i ∂. Further assumptions will be made on the symbol a(z, x, ξ). When

a(z, x, ξ) is independent of x and z it is natural to treat such a problem by
means of Fourier transformation:

u(z, x′) =

∫∫
exp[i〈x′ − x|ξ〉 − za(ξ)] u0(x) d

−ξ dx,

where d−ξ := dξ/(2π)n. For this to be well defined for all u0 ∈ S (Rn) we shall
impose the real part of the principal symbol of a to be non-negative. When the
symbol a depends on both x and z we can naively expect

u(z, x′) ≈ u1(z, x
′) :=

∫∫
exp[i〈x′ − x|ξ〉 − za(0, x′, ξ)] u0(x) d

−ξ dx,

for z small, and hence approximately solve the Cauchy problem (0.1)–(0.2) for
z ∈ [0, z(1)] with z(1) small. If we want to progress in the z direction we have
to solve the Cauchy problem

∂zu+ a(z, x,Dx)u = 0, z(1) < z ≤ Z

u(z, .) |z=z(1) = u1(z
(1), .),

which we again approximatively solve by

u(z, x′) ≈ u2(z, x
′)

:=

∫∫
exp[i〈x′ − x|ξ〉 − (z − z(1))a(z(1), x′, ξ)] u1(z

(1), x) d−ξ dx.

This procedure can be iterated until we reach z = Z.

If we denote by G(z′,z) the operator with kernel

G(z′,z)(x
′, x) =

∫
exp[i〈x′ − x|ξ〉] exp[−(z′ − z)a(z, x′, ξ)] d−ξ,

then combining all iteration steps above involves composition of such operators:
let 0 ≤ z(1) ≤ · · · ≤ z(k) ≤ Z, we then have

uk+1(z, x) = G(z,z(k)) ◦ G(z(k) ,z(k−1)) ◦ · · · ◦ G(z(1) ,0)(u0)(x),

if z ≥ z(k). We then define the operator WP,z for a subdivision P of [0, Z],
P = {z(0), z(1), . . . , z(N)} with 0 = z(0) < z(1) < · · · < z(N) = Z,

WP,z :=





G(z,0) if 0 ≤ z ≤ z(1),

G(z,z(k))

1∏

i=k

G(z(i) ,z(i−1)) if z(k) ≤ z ≤ z(k+1).
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According to the procedure described above WP,z(u0) yields an approximation
Ansatz for the solution to the Cauchy problem (0.1)–(0.2) with step size ∆P =
supi=1,...,N (zi − zi−1). The operator G(z′,z) is often referred to as the thin-slab
propagator (see e.g. [3, 2]).

The approximation Ansatz proposed here is a tool to compute approximations
of the exact solution to the Cauchy problem (0.1)–(0.2). Such computations
in application to geophysical problems have been used in [3]. In exploration
seismology one is confronted with solving equations of the type

(∂z − ib(z, x,Dt, Dx) + c(z, x,Dt, Dx))v = 0,(0.3)

v(0, .) = v0(.),(0.4)

where t is time, z is the vertical coordinate and x is the lateral or transverse
coordinate; b and c are first-order pseudodifferential operators, with real prin-
cipal parts b1 and c1, where c1(z, x, τ, ξ) is non-negative. Note that the Cauchy
problem (0.1)–(0.2) studied here is more general. The problem (0.3)–(0.4) is
obtained in geophysics by a (microlocal) decoupling of the up-going and down-
going wavefields in the acoustic wave equation (see Appendix A in [15] and [19]
for details). In practice, the proposed Ansatz can then be a tool to approximate
the exact solution for the purpose of imaging the Earth’s interior [3, 2]. As
explained in [15, Appendix A] the operator c acts as a damping term that sup-
presses singularities in the microlocal region where its symbol does not vanishes.
We show that this effect is recovered in the proposed Ansatz.

Seismic imaging aims at recovering the singularities in the subsurface (see for
instance [23, 1]). Thus, seismologists are not only interested in the convergence
of this Ansatz to the exact solution of the Cauchy problem (0.3)–(0.4) but they
also expect the wavefront set of the approximate solution to be close, in some
sense, to that of the exact solution. Therefore, we investigate the microlocal
properties of the proposed Ansatz and show how the results presented here and
those of [15] can be applied to seismic imaging.

In the present paper, the operators G(z′,z) and WP,z are frequently considered
as Fourier integral operators (FIO) with complex phase. They could be consid-
ered as FIO with real phase but with amplitude of type 1

2 (see [15] and below).
However, the wavefront set and the damping effect of the real part of the prin-
cipal part of a(x, ξ) would not be recovered in the same way. We follow here the
terminology introduced in [10, Sections 25.4-5] for FIOs with complex phases.

We state our main results which are proved in the subsequent sections.

Theorem 1. Let z(N) ≥ z(N−1) ≥ · · · ≥ z(0) ∈ [0, Z]. If

∆ = max
0≤i≤N−1

(z(i+1) − z(i))

is sufficiently small then G(z(N),...,z(0)) := G(z(N),z(N−1)) ◦ · · · ◦ G(z(1) ,z(0)) is a
global Fourier integral operator of order 0. It can be globally parameterized by
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the non-degenerate phase function of positive type

φ(z(N),...,z(0))(x
(N), x(0), ξ(N−1), x(N−1), . . . , ξ(1), x(1), ξ(0))

:=

N∑

i=1

φ(z(i) ,z(i−1))(x
(i), x(i−1), ξ(i−1))

=
N∑

i=1

〈x(i) − x(i−1)|ξ(i−1)〉 + (z(i) − z(i−1)) a1(z
(i−1), x(i), ξ(i−1)),

where a1 is the principal symbol of a.

Corollary 2. For ∆P sufficiently small, the operator WP,z (z ∈ [0, Z]) is a
global Fourier integral operator of order 0 with complex phase.

In Section 3, we shall denote by χz the bicharacteristic flow associated to
−b1(x, ξ) = Im(a1(x, ξ)).

Theorem 3. Let u0(.) ∈ H(−∞)(Rn) and u(z, .), z ∈ [0, Z], be the solution
to the Cauchy problem (0.1)–(0.2). Let Z ′ ∈ [0, Z] and K be a compact set in
T ∗(Rn) such that for all γ(0) = (x0, ξ0) ∈ K \ 0 the bicharacteristics χz(γ

(0))
associated to −b1 originating from γ(0) at z = 0 remains away from the region
where c1 > 0 for all z ∈ [0, Z ′]. Then γ(0) ∈ K ∩ WF(u0) implies χZ′(γ(0)) ∈
WF(u(Z ′, .)). For a subdivision P of [0, Z], with ∆P sufficiently small, we then
have

dist
(
χz(γ

(0)),WF(WP,z(u0))
)
→ 0, as ∆P → 0,

uniformly w.r.t. γ(0) ∈ K ∩ WF(u0) and z ∈ [0, Z ′]. Furthermore, the conver-
gence is of order α, 0 < α ≤ 1, if b(z, .) is in C 0,α([0, Z], S1(Rn,Rn)), in the
sense that,

b(z′, x, ξ) − b(z, x, ξ) = (z′ − z)α b̃(z′, z, x, ξ), 0 ≤ z ≤ z′ ≤ Z,

where b̃(z′, z, x, ξ) is bounded w.r.t. z′ and z with values in S1(Rn × R
n).

In [15], a different approximation Ansatz, W̃P,z , was introduced for which the
convergence rate for the Sobolev norm was improved with less regularity of the
symbol az(x, ξ) w.r.t. z. Here, we also show that this phenomenon occurs and
that the continuity of az(x, ξ) w.r.t. z implies the convergence of order 1 of the

wavefront set of W̃P,z(u0) to that of the solution of the Cauchy problem (0.1)–
(0.2) (in the sense given in the previous theorem — see Theorem 3.12).

In Section 1, we briefly recall some of the set-up and assumptions of [15] which
will be used here. In Section 2 we present the geometrical properties of the
Ansatz WP,z and prove that it is a global FIO with complex phase. In Section 3
we show microlocal convergence of WP,z to the exact solution of the Cauchy
problem (0.1)–(0.2). In Section 4 we show how the analysis made in this paper
and [15] can be applied to seismic imaging theory via the so-called ‘double-
square-root’ equation. Appendix A is dedicated to some general results on
FIOs with complex phases.
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In the present paper we shall generally write X , X ′, X ′′, X(1), . . . , X(N) for
R
n, according to variables, e.g., x, x′, . . . , x(N).

Throughout the paper, we use spaces of global symbols: a function a ∈ C ∞(Rn×
R
p) is in Smρ,δ(R

n × R
p), 0 < ρ ≤ 1, 0 ≤ δ < 1, if for all multi-indices α, β there

exists Cαβ > 0 such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ (1 + |ξ|)m−ρ|β|+δ|α|, x ∈ R

n, ξ ∈ R
p.

The best possible constants Cαβ , i.e.,

pαβ(a) := sup
(x,ξ)∈Rn×Rp

(1 + |ξ|)−m+ρ|β|−δ|α||∂αx ∂
β
ξ a(x, ξ)|,

define seminorms for a Fréchet space structure on Smρ,δ(R
n × R

p). As usual we

write Smρ (Rn × R
p) in the case ρ = 1 − δ, 1

2 ≤ ρ < 1, and Sm(Rn × R
p) in the

case ρ = 1, δ = 0.

1 Assumptions and previous results

The symbol a(z, x, ξ) is assumed to satisfy

Assumption 1.1.

az(x, ξ) = a(z, x, ξ) = −i b(z, x, ξ) + c(z, x, ξ)

where b, c ∈ C 0([0, Z], S1(Rn × R
n)); b has real principal symbol b1 and c has

non-negative principal symbol c1. The principal symbols b1 and c1 are homoge-
neous of degree 1 for |ξ| ≥ 1.

We denote by a1 = −ib1 + c1 the principal symbol of a and write b = b1 + b0
and c = c1 + c0 with b0, c0 ∈ C 0([0, Z], S0(Rn × R

n)). Assumption 1.1 ensures
that the hypotheses (i)–(iii) of Theorem 23.1.2 in [11] are satisfied. Then there
exists a unique solution in C 0([0, Z], H(s+1)(Rn)) ∩ C 1([0, Z], H(s)(Rn)) to the
Cauchy problem (0.1)–(0.2) if u0 ∈ H(s+1)(Rn).

By Proposition 9.3 in [5, Chapter VI] the family of operators (az)z∈[0,Z] gen-
erates a strongly continuous evolution system, U(z ′, z), on the Sobolev space
H(s+1)(Rn), s ∈ R,

U(z′′, z′) ◦ U(z′, z) = U(z′′, z), Z ≥ z′′ ≥ z′ ≥ z ≥ 0.

and

∂zU(z, z0)u0 + a(z, x,Dx)U(z, z0)u0 = 0, 0 ≤ z0 < z ≤ Z,

U(z0, z0)u0 = u0 ∈ H(s+1)(Rn)

while U(z, z0)u0 ∈ H(s+1)(Rn) for all z ∈ [z0, Z].

We now recall some results obtained in [15]. Let z′, z ∈ [0, Z] with z′ ≥ z and
let ∆ := z′ − z. Define φ(z′,z) ∈ C∞(X ′ ×X × R

n) by

(1.5) φ(z′,z)(x
′, x, ξ) := 〈x′ − x|ξ〉 + i∆a1(z, x

′, ξ)

= 〈x′ − x|ξ〉 + ∆b1(z, x
′, ξ) + i∆c1(z, x

′, ξ).
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Lemma 1.2. φ(z′,z) is a non-degenerate complex phase function of positive type
(at any point (x′0, x0, ξ0) where ∂ξφ(z′,z) = 0).

We put

g(z′,z)(x, ξ) := exp[−∆a0(z, x, ξ)] ∈ S0(X × R
n).(1.6)

and define a distribution kernel G(z′,z)(x
′, x) ∈ D ′(X ′ × X) by the oscillatory

integral

G(z′,z)(x
′, x) =

∫
exp[i〈x′ − x|ξ〉] exp[−∆a(z, x′, ξ)] d−ξ

=

∫
exp[iφ(z′,z)(x

′, x, ξ)] g(z′,z)(x
′, ξ) d−ξ.

We denote the associated operator by G(z′,z). (This corresponds to the thin-slab
propagator (see e.g. [3, 2]).)

Let J(z′,z) be the canonical ideal locally generated by the phase function φ(z′,z).

Proposition 1.3. There exists ∆1 > 0, such that, for all z′, z ∈ [0, Z], with
z′ > z and ∆ = z′ − z ≤ ∆1, the phase function φ(z′,z) globally generates the
canonical ideal J(z′,z). Alternatively, it is also generated by the functions

vξj
(x′, x, ξ′, ξ) = ∂x′

j
φ(z′,z)(x

′, x, ξ) − ξ′j = ξj − ξ′j + i∆∂xj
a1(z, x

′, ξ),(1.7)

vxj
(x′, x, ξ′, ξ) = ∂ξj

φ(z′,z)(x
′, x, ξ) = x′j − xj + i∆∂ξj

a1(z, x
′, ξ),

j = 1, . . . , n.

Proposition 1.4. If 0 ≤ ∆ = z′ − z ≤ ∆1 then the operator G(z′,z) is a
global Fourier integral operator with complex phase and kernel G(z′,z) ∈ I0(X ′×

X, (J(z′,z))
′,Ω

1/2
X′×X).

We denote the half density bundle on X ′×X by Ω
1/2
X′×X and note that (J(z′,z))

′

stands for the twisted canonical ideal, i.e. a Lagrangian ideal (see Section 25.5
in [10]).

Proposition 1.5. Let s ∈ R. There exists ∆2 > 0 such that if z′, z ∈ [0, Z]
with 0 ≤ ∆ := z′ − z ≤ ∆2 then G(z′,z) continuously maps S into S , S ′ into

S ′, and H(s)(Rn) into H(s)(Rn).

The approximation Ansatz is defined by

Definition 1.6. Let P = {z(0), z(1), . . . , z(N)} be a subdivision of [0, Z] with
0 = z(0) < z(1) < · · · < z(N) = Z such that z(i+1) − z(i) = ∆P. The operator
WP,z is defined as

WP,z :=





G(z,0) if 0 ≤ z ≤ z(1),

G(z,z(k))

1∏

i=k

G(z(i) ,z(i−1)) if z(k) ≤ z ≤ z(k+1).
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In the sequel we shall need the following lemma [15].

Lemma 1.7. Consider H : R
n → R

n, H(∆,z,x′,x)(ξ) = ξ + ∆h(z, x′, x, ξ),
where h is continuous w.r.t. z with values in S1(R2n × R

n). If ∆ is sufficiently
small, uniformly w.r.t. z ∈ [0, Z], then H(∆,z,x′,x) is a global diffeomorphism.

Furthermore, ξ̃(∆, z, x′, x, ξ) = H−1
(∆,z,x′,x)(ξ) is homogeneous of degree 1 in ξ,

for |ξ| ≥ 1, continuous w.r.t. z, and C ∞ w.r.t. ∆ with values in S1(R2n × R
n),

when ∆ is sufficiently small, i.e.,

∃∆3 > 0, ξ̃ ∈ C 0([0, Z],C∞([0,∆3], S
1(R2n × R

n))).

Recall the smoothness (or differentiability) of a map with values in a Frechet
space is to be understood in the sense of Definition 40.2 in [25].

In the applications we have in mind, the principal part of the damping term,
c1, will affect only certain parts of phase-space (see Appendix A in [15]). In
this paper, where the propagation of singularities is analyzed, we shall make
the additional assumption

Assumption 1.8. The open set Ω =
(
[0, Z] × (T ∗(Rn) \ 0)

)
\ supp(c1) is not

empty.

2 Geometrical and FIO properties of WP

In this section we investigate the microlocal properties of WP. To do so we need
to analyze how the product

WP,z = G(z,z(k))

1∏

i=k

G(z(i),z(i−1))

for z(k) ≤ z ≤ z(k+1), k ≥ 1, can be understood as a composition of FIOs
and yields in turn an FIO. Let z′, z ∈ [0, Z] with z′ ≥ z and put ∆ = z′ − z.
We recall that the global phase function of G(z′,z) is given by (1.5). As in [10,
Sections 25.4 and 25.5], if I is an ideal of complex valued functions on T ∗(Rn),
we denote by IR the subset of T ∗(Rn) where all the functions in I vanish. By
Lemma 1.3 the following holds globally :

(2.8) J(z′,z)R =
{
(x′, ∂x′φ(z′,z)(x

′, x, ξ), x, ξ) | ∂ξφ(z′,z)(x
′, x, ξ) = 0,

(x′, x, ξ) ∈ X ′ ×X × (Rn \ 0)
}
⊂ T ∗(X ′ ×X) \ 0.

Remark 2.1. (i). The phase function φ(z′,z) is homogeneous of degree 1 for
|ξ| ≥ 1. With a cut-off function ψ ∈ C ∞

c (R) such that ψ(ξ) = 1 when

|ξ| ≤ 1 and ψ(ξ) = 0 when |ξ| ≥ 2 we can write G(z′,z) = G
(1)
(z′,z) + G

(2)
(z′,z)

with respective amplitudes ψ(ξ)g(z′,z)(x
′, ξ) and (1−ψ(ξ))g(z′,z)(x

′, ξ). We
can now assume that φ(z′,z) is homogeneous of degree 1 in the expression

of the kernel of G
(2)
(z′,z) and G

(1)
(z′,z) is a regularizing operator. For the study

of the microlocal properties of G(z′,z), and WP,z, we may thus consider

G
(2)
(z′,z) in place of G(z′,z). Note that G

(2)
(z′,z) maps S into S and S ′ into S ′,
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H(s)(Rn) intoH(s)(Rn), for any s ∈ R, continuously, as does G(z′,z). In the
sequel, we may therefore assume that φ(z′,z), b1 and c1 are homogeneous
of degree 1 in ξ.

(ii). Observe that the composition of the two FIOs G(z′′,z′) and G(z′,z) is natural

as operators on S , S ′, or H(s)(Rn), without further requirement such as
having the operators properly supported.

(iii). If ∂ξφ(z′,z) = 0 then ∂ξc1(z, x
′, ξ) = 0. Since c1 is homogeneous of degree

1 in ξ, Euler’s identity then yields c1(z, x
′, ξ) = 0. Conversely, since

c1(z, x
′, ξ) is non-negative, c1(z, x

′, ξ) = 0 implies ∂xc1(z, x
′, ξ) = 0 and

∂ξc1(z, x
′, ξ) = 0. Thus if (x′, ξ′, x, ξ) ∈ J(z′,z)R then ∂xc(z, x

′, ξ) = 0 and
∂ξc(z, x

′, ξ) = 0 which is equivalent to having c1(z, x
′, ξ) = 0. Observe

that ∂x′φ(z′,z)(x
′, x, ξ) is thus real in (2.8).

Lemma 2.2. There exists ∆4 > 0 such that for all z′, z ∈ [0, Z] with ∆ =
z′ − z ∈ [0,∆4] we have J(z′,z)R ⊂ T ∗(X ′) \ 0 × T ∗(X) \ 0.

Proof. Let (x′, ξ′, x, ξ) ∈ J(z′,z)R. Then by Proposition 1.3 we have

ξ − ξ′ + i∆∂xa1(z, x
′, ξ) = 0, x′ − x+ i∆∂ξa1(z, x

′, ξ) = 0.(2.9)

Remark 2.1-(iii) (or only considering the real part in (2.9)) yields

ξ − ξ′ + ∆∂xb1(z, x
′, ξ) = 0, x′ − x+ ∆∂ξb1(z, x

′, ξ) = 0.

By Lemma 1.7 the map ξ 7→ ξ + ∆∂xb1(z, x
′, ξ) is a global diffeomorphism for

∆ sufficiently small and its inverse map is also homogeneous of degree 1. We
thus obtain that ξ = 0 ⇔ ξ′ = 0. Since J(z′,z)R ⊂ T ∗(X ′ × X) \ 0 the result
follows.

Let z(N) ≥ z(N−1) · · · ≥ z(0) ∈ [0, Z]. We define

J̃(z(N),...,z(0))R := J(z(N),z(N−1))R ◦ · · · ◦ J(z(1) ,z(0))R.(2.10)

By induction on N one proves

Lemma 2.3. For all z(N) ≥ z(N−1) ≥ · · · ≥ z(0) ∈ [0, Z], with z(i+1) − z(i) ≤
∆4, i = 0, . . . , N − 1, we have

J̃(z(N),...,z(0))R ⊂ T ∗(X(N)) \ 0 × T ∗(X(0)) \ 0.

Lemma 2.4. There exists ∆5 > 0 such that with z′′ ≥ z′ ≥ z ∈ [0, Z] the map

π : J(z′′,z′)R × J(z′,z)R ∩ T ∗(X ′′) × diag(T ∗(X ′)) × T ∗(X) → T ∗(X ′′ ×X) \ 0

(x′′, ξ′′, x′, ξ′, x′, ξ′, x, ξ) 7→ (x′′, ξ′′, x, ξ)

is injective and proper if max(z′′ − z′, z′ − z) ≤ ∆5.

We write diag(T ∗(X ′)) for the diagonal of T ∗(X ′) × T ∗(X ′). Here we give a
direct proof of the lemma but it follows in fact from results on the real part of
the phase function (see (2.20) and Remark 2.13-(i) below) and Proposition 3.13
in [13, Chapter 10].
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Proof. Let γ = (x′′, ξ′′, x, ξ) be in the range of π, that is in J(z′′,z′)R ◦ J(z′,z)R.
With Lemma 1.3 (use Remark 2.1-(iii)) we have

ξ − ξ′ + ∆∂xb1(z, x
′, ξ) = 0,(2.11)

x′ − x+ ∆∂ξb1(z, x
′, ξ) = 0,(2.12)

ξ′ − ξ′′ + ∆′∂xb1(z
′, x′′, ξ′) = 0,(2.13)

x′′ − x′ + ∆′∂ξb1(z
′, x′′, ξ′) = 0,(2.14)

where ∆ := z′ − z and ∆′ := z′′ − z′. Define F (ξ′) := ξ′′ −∆′∂xb1(z
′, x′′, ξ′). It

follows that

|F (ξ′) − F (ξ̃′)| ≤ ∆′ sup(|∂ξi
∂xj

b1(z
′, x′′, ξ′)|) |ξ′ − ξ̃′|,

where the supremum is taken over z ∈ [0, Z], x′′ ∈ R
n, ξ′ ∈ R

n and 1 ≤ i, j ≤ n.
As b1 ∈ C 0([0, Z], S1(X × R

n)) it follows that ∂ξi
∂xj

b1(z
′, x′′, ξ′) is globally

bounded. Thus, for ∆′ sufficiently small the map F is a contraction and ξ′

in (2.13) is uniquely defined by the fixed point theorem. Equation (2.14) then
shows that x′ is uniquely defined by the above identities if ∆′ is sufficiently
small. Hence the map π is injective. (Notice that we only need either ∆ or ∆′

to be sufficiently small to reach the conclusion; in fact we could form G(x′) =
x− ∆∂ξb1(z, x

′, ξ) and prove that it is contracting for sufficiently small ∆.)

Let now K ⊂ T ∗(X ′′ × X) \ 0 be a compact set. As π−1(K) is closed we
just have to prove that it is bounded. Note that the equations above give
x′ = x + ∆∂ξb1(z, x

′, ξ) and since ∂ξb1 ∈ C 0([0, Z], S0(X × R
n)), it is globally

bounded. Assume then that γ ∈ K. Then x stays in a bounded set and so does
x′. We also have ξ′ = ξ+∆∂xb1(z, x

′, ξ). As x′ and ξ stay in a bounded domain
so does ξ′ by (2.11). Therefore, π is a proper map.

Lemma 2.5. There exists ∆6 > 0 such that if z′′ ≥ z′ ≥ z ∈ [0, Z] with
z′′ − z′ ≤ ∆6 and z′ − z ≤ ∆6 then

φ(z′′,z′,z)(x
′′, x, ξ′, x′, ξ) := φ(z′′,z′)(x

′′, x′, ξ′) + φ(z′,z)(x
′, x, ξ)

is a non-degenerate phase function of positive type in X ′′ ×X × (R3n \ 0).

This follows from a more general result which will be of use in the sequel as well

Lemma 2.6. There exists ∆6 > 0 such that if z(N) ≥ z(N−1) ≥ · · · ≥ z(0) ∈
[0, Z] with z(i) − z(i−1) ≤ ∆6, i = 1, . . . , N , then

(2.15) φ(z(N),...,z(0))(x
(N), x(0), ξ(N−1), x(N−1), . . . , ξ(1), x(1), ξ(0))

:=
N∑

i=1

φ(z(i) ,z(i−1))(x
(i), x(i−1), ξ(i−1))

=

N∑

i=1

〈x(i) − x(i−1)|ξ(i−1)〉 + (z(i) − z(i−1)) a1(z
(i−1), x(i), ξ(i−1))

is a phase function of positive type in X (N) × X(0) × (Rn(2N−1) \ 0) which is
non-degenerate.
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We collect the phase variables of φ(z(N),...,z(0)) as

θN−1 := (ξ(N−1), x(N−1), . . . , ξ(1), x(1), ξ(0)) ∈ R
n(2N−1).(2.16)

The function φ is homogeneous of degree 1 in

θ̃N−1 := (ξ(N−1), λx(N−1), . . . , ξ(1), λx(1), ξ(0)) ∈ R
n(2N−1) \ 0,

where λ := |(ξ(N−1), . . . , ξ(0))|. Apart from the reasoning immediately below we
shall, as usual, omit this scaling. Yet one should keep in mind that θ̃N−1 is the
actual phase variable for φ(z(N),...,z(0)). When we write that the phase variable

belongs to (Rn(2N−1))\0 in the statement of the lemma, it is meant in the sense
that θ̃N−1 ∈ (Rn(2N−1)) \ 0.

Proof. For simplicity, we write φ instead of φ(z(N),...,z(0)). Suppose dφ = 0 then

∂x(0)φ = · · · = ∂x(N−1)φ = 0

yield ξ(0) = · · · = ξ(N−1) = 0 and with the scaling by λ we have θ̃N−1 = 0. Thus
dφ 6= 0 in X(N) ×X(0) × (Rn(2N−1) \ 0). Clearly Imφ ≥ 0. It remains to show
that the differentials d(∂x(i)φ), i = 1, . . . , N − 1, and d(∂ξ(j)φ), j = 0, . . . , N − 1
are linearly independent. We observe that

∂x(i)φ = ξ(i−1) − ξ(i) + i∆(i−1)∂xaz(i−1) (x(i), ξ(i−1)), i = 1, . . . , N − 1,

∂ξ(j)φ = x(j+1) − x(j) + i∆(j)∂ξaz(j) (x
(j+1), ξ(j)), j = 0, . . . , N − 1,

where ∆(i) := z(i+1) − z(i). The structure of the partial differentials ∂(∂x(i)φ),
i = 1, . . . , N − 1, and ∂(∂ξ(j)φ), j = 0, . . . , N − 1, w.r.t. x(0), . . . , x(N) and

ξ(0), . . . , ξ(N−1) can be summarized as follows

x(0)

ξ(0)

x(1)

ξ(1)

x(2)

ξ(2)

...

ξ(N−2)

x(N−1)

ξ(N−1)

x(N)

∂(φ′

ξ(0) ) ∂(φ′

x(1) ) ∂(φ′

ξ(1) ) ∂(φ′

x(2) ) . . . ∂(φ′

x(N−1)) ∂(φ′

ξ(N−1) )

−I 0 0 0 . . . 0 0
� � 0 0 . . . 0 0
� � −I 0 . . . 0 0
0 −I � � . . . 0 0
0 0 � � . . . 0 0
0 0 0 −I . . . 0 0
...

. . .
...

0 0 0 0 . . . � 0
0 0 0 0 . . . � −I

0 0 0 0 . . . −I �

0 0 0 0 . . . 0 �

where � is some n × n matrix and � is a n × n matrix of the form I +
i∆(j)∂x∂ξaz(j) for some 0 ≤ j ≤ N − 1. As ∂xk

∂ξl
az(j) ∈ S0(X × R

n) con-
tinuously w.r.t. z(j), it is globally bounded. Thus for ∆(j) sufficiently small
every matrix � is invertible. The partial differentials of interest are thus of
maximal rank.
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Definition 2.7. For z′′ ≥ z′ ≥ z ∈ [0, Z] we write G(z′′,z′,z) := G(z′′,z′) ◦

G(z′,z) and more generally for z(N) ≥ z(N−1) ≥ · · · ≥ z(0) ∈ [0, Z] we write
G(z(N),...,z(0)) := G(z(N),z(N−1)) ◦ · · · ◦ G(z(1),z(0)).

Proposition 2.8. Let z′′ ≥ z′ ≥ z ∈ [0, Z]. The operator G(z′′ ,z′,z) is a global
Fourier integral operator if z′′ − z′ ≤ min(∆4,∆5,∆6) and z′ − z ≤ ∆5. Its

kernel G(z′′,z′,z) is in I0(X ′′×X, (J(z′′,z′,z))
′,Ω

1/2
X′′×X) where the canonical ideal

is given by J(z′′,z′,z) := J(z′′,z′) ◦ J(z′,z) with transversal composition. J(z′′,z′,z)

is globally parameterized by the non-degenerate phase function of positive type
φ(z′′,z′,z).

I0(X ′′×X, (J(z′′,z′,z))
′,Ω

1/2
X′′×X) is the set of Lagrangian-distribution half-densi-

ties on X ′′ × X of order 0 associated to the Lagrangian ideal (J(z′′ ,z′,z))
′ (see

[10, Definition 25.4.9]).

Proof. We apply Theorem 25.5.5 in [10] and we use Lemmas 2.2, and 2.4.
Lemma 2.5 and Proposition A.4 yield transversal composition for the two canon-
ical ideals J(z′′,z′) and J(z′,z). Observe that J(z′′,z′,z)R = J(z′′,z′)R ◦ J(z′,z)R by
proposition A.3. At every point of J(z′′,z′)R ◦ J(z′,z)R the non-degenerate phase
function φ(z′′,z′,z) locally defines J(z′′,z′) ◦ J(z′,z) by Proposition 25.5.4 in [10]
hence we obtain that φ(z′′,z′,z) is a global phase function for J(z′′,z′,z) and con-
sequently for G(z′′,z′,z). The order of G(z′′,z′,z) follows since both kernels G(z′′,z′)

and G(z′,z) are in I0.

Theorem 2.9. Let z(N) ≥ z(N−1) ≥ · · · ≥ z(0) ∈ [0, Z] with ∆(i) := z(i+1) −
z(i) ≤ min(∆4,∆5,∆6), for all i = 0, . . . , N − 1. Then G(z(N),...,z(0)) is a global
Fourier integral operator with complex phase and with distribution kernel

G(z(N),...,z(0)) ∈ I0(X(N) ×X(0), (J(z(N),...,z(0)))
′,Ω

1/2

X(N)×X(0)),

where J(z(N),...,z(0)) := J(z(N),z(N−1)) ◦ · · · ◦ J(z(1) ,z(0)) with transversal composi-
tions. J(z(N),...,z(0)) is globally parameterized by the non-degenerate phase func-
tion of positive type φ(z(N),...,z(0)). We have J(z(N),...,z(0))R = J(z(N),z(N−1))R◦· · ·◦
J(z(1),z(0))R.

Proof. We proceed by induction assuming the result is true for G(z(N),...,z(0))

and J(z(N),...,z(0)). By Lemma 2.6 and Proposition A.4 we see that J(z(N+1),z(N))

and J(z(N),...,z(0)) compose transversally. Lemma 2.3 shows that J(z(N+1),z(N))R ⊂

T ∗(X(N+1))\0×T ∗(X(N))\0. In the induction we assume that J(z(N),...,z(0))R =

J̃(z(N),...,z(0))R (see (2.10)) thus J(z(N),...,z(0))R ⊂ T ∗(X(N)) \ 0×T ∗(X(0)) \ 0. At
this point we claim

Lemma 2.10. The map

πN : J(z(N+1),z(N))R × J(z(N),...,z(0))R ∩ T ∗(X(N+1)) × ∆T ∗(X(N)) × T ∗(X(0))

→ T ∗(X(N+1) ×X(0)) \ 0

(x(N+1), ξ(N+1), x(N), ξ(N), x(N), ξ(N), x(0), ξ(0)) 7→ (x(N+1), ξ(N+1), x(0), ξ(0))

is injective and proper if ∆(i) = z(i+1) − z(i) ≤ ∆5, i = 0, . . . , N − 1.
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The proof of this lemma can be copied to a large extent from that of Lemma 2.4
(with an induction). (This lemma also follows directly from (2.20) and Re-
mark 2.13-(i) below.)

With the above observations we can apply Theorem 25.5.5 in [10], which yields
the first part of the result. Now, Lemma A.3 yields

J(z(N+1),...,z(0))R = J(z(N+1),z(N))R ◦ J(z(N),...,z(0))R = J̃(z(N+1),...,z(0))R.

which completes the induction.

Corollary 2.11. Let P = {z(0), z(1), . . . , z(N)} be a subdivision of [0, Z] with
0 = z(0) < z(1) < · · · < z(N) = Z such that z(i+1) − z(i) ≤ ∆P. Let z ∈
[0, Z]. Then the operator WP,z given in Definition 1.6 is a global Fourier integral
operator of order 0 if ∆P < min(∆4,∆5,∆6).

Let z(N) ≥ z(N−1) · · · ≥ z(0) ∈ [0, Z]. Note that

(x(N), ξ(N), x(0), ξ(0)) ∈ J(z(N),...,z(0))R

if and only if there exists θN−1 ∈ R
n(2N−1) \ 0 as defined in (2.16) such that

ξ(j) − ξ(j+1) + ∆(j)∂xb1(z
(j), x(j+1), ξ(j)) = 0,(2.17)

x(j+1) − x(j) + ∆(j)∂ξb1(z
(j), x(j+1), ξ(j)) = 0,(2.18)

for j = 0, . . . , N , and

c1(z
(j), x(j+1), ξ(j)) = 0, j = 0, . . . , N − 1(2.19)

(see Remark 2.1-(iii)).

Let z(N) ≥ z(N−1) · · · ≥ z(0) ∈ [0, Z] we define

(2.20) J(z(N),...,z(0)) =
{
(x(N), ξ(N), x(0), ξ(0)) | ∃ θN−1 ∈ R

n(2N−1) \ 0

as defined in (2.16) such that (2.17)–(2.18) are satisfied
}
.

Note that J(z′,z)R = J(z′,z) ∩ {(x′, ξ′, x, ξ) | c1(z, x′, ξ) = 0} and

(2.21) J(z(N),...,z(0))R =
{

(x(N), ξ(N), x(0), ξ(0)) ∈ J(z(N),...,z(0)) |

for θN−1 ∈ R
n(2N−1) \ 0 defined above

c1(z
(j), x(j+1), ξ(j)) = 0, for j = 0, . . . , N − 1

}
.

Note also that J(z(N),...,z(0)) is locally a canonical relation from T ∗(X(0))\0 into

T ∗(X(N)) \ 0: simply apply the classical results for real phase functions [4, 10]
to the non-degenerate phase function ϕ(z(N),...,z(0)) = Re φ(z(N),...,z(0)), that is,

(2.22) ϕ(z(N),...,z(0))(x
(N), x(0), ξ(N−1), x(N−1), . . . , ξ(1), x(1), ξ(0))

:= Re

N∑

i=1

φ(z(i) ,z(i−1))(x
(i), x(i−1), ξ(i−1))

=

N∑

i=1

〈x(i) − x(i−1)|ξ(i−1)〉 + (z(i) − z(i−1)) b1(z
(i−1), x(i), ξ(i−1)).
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Proposition 1.3, in the case of a real phase function, yields that J(z(N),...,z(0)) is
a canonical relation globally defined by ϕ(z(N),...,z(0)). We can actually say more
about J(z(N),...,z(0)):

Lemma 2.12. There exists ∆7 > 0 such that if z(N) ≥ z(N−1) · · · ≥ z(0) ∈ [0, Z]
with z(i) − z(i−1) ≤ ∆7 then J(z(N),...,z(0)) is a one-to-one canonical transfor-

mation from T ∗(X(0)) \ 0 onto T ∗(X(N)) \ 0.

Proof. It suffices to prove the result for J(z′,z), with z′ − z sufficiently small,
as

J(z(N),...,z(0)) = J(z(N),z(N−1)) ◦ · · · ◦ J(z(1) ,z(0)).

The canonical relation J(z′,z) is globally generated by the non-degenerate real
phase function ϕ(z′,z) = 〈x′ − x|ξ〉+ (z′ − z)b1(z, x

′, ξ). For ∆ sufficiently small
we see that ϕ(z′,z) − 〈x|ξ〉 satisfies Definition 1.2 in [13, Chapter 10]. Then
Proposition 3.13 in [13, Chapter 10] applies.

Remark 2.13. (i). With the results obtained so far we immediately deduce
that the projection

π̃ : J(z′′,z′) × J(z′,z) ∩ T
∗(X ′′) × diag(T ∗(X ′)) × T ∗(X)

→ T ∗(X ′′ ×X) \ 0

(x′′, ξ′′, x′, ξ′, x′, ξ′, x, ξ) 7→ (x′′, ξ′′, x, ξ)

and also

π̃N : J(z(N+1),z(N)) × J(z(N),...,z(0)) ∩ T
∗(X(N+1)) × ∆T ∗(X(N)) × T ∗(X(0))

→ T ∗(X(N+1) ×X(0)) \ 0

(x(N+1), ξ(N+1), x(N), ξ(N), x(N), ξ(N),x(0), ξ(0))

7→ (x(N+1), ξ(N+1), x(0), ξ(0))

are injective and proper (see [9, pages 174-175]). This alternatively yields
the results of Lemma 2.4 and Lemma 2.10 as J(z(N),...,z(0))R is closed in
J(z(N),...,z(0)).

(ii). Since J(z′′ ,z′) and J(z′,z), z
′′ ≥ z′ ≥ z are canonical transformations,

they compose transversally (see [9, pages 174-175]). However, this does
not apply to J(z′′,z′) and J(z′,z) since their tangent spaces, in the complex-
ification of the tangent space of T ∗(X ′′ × X ′ \ 0) and T ∗(X ′ × X \ 0)
at γ′ = (x′′, ξ′′, x′, ξ′) and γ = (x′, ξ′, x, ξ), may differ from those of
J(z′′,z′) and J(z′,z). In fact Tγ(J(z′,z)) is defined by dvξj

= 0, dvxj
= 0,

j = 1, . . . , n by Proposition 1.3, while Tγ(J(z′ ,z)) is defined by dṽξj
= 0,

dṽxj
= 0, j = 1, . . . , n with

ṽξj
(x′, x, ξ′, ξ) = ξj − ξ′j + i∆∂xj

b1(z, x
′, ξ), j = 1, . . . , n,

ṽxj
(x′, x, ξ′, ξ) = x′j − xj + i∆∂ξj

b1(z, x
′, ξ), j = 1, . . . , n.

Note that J(z(N),...,z(0))(x
(0), ξ(0)) now means the image of (x(0), ξ(0)) under

the map defined according to Lemma 2.12. In a similar fashion, we shall write
J(z(N),...,z(0))R(x(0), ξ(0)) as the image, if it exists , of (x(0), ξ(0)) under the relation
J(z(N),...,z(0))R.
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3 Convergence of the wavefront set of WP(u0)

Consider the Hamilton system (associated to −b1 = Im(a1))

dx

dz
= −∂ξb1(z, x, ξ),(3.23)

dξ

dz
= ∂xb1(z, x, ξ).(3.24)

We denote its flow by χz: for initial conditions x(0) = x(0), and ξ(0) = ξ(0) we
write the solution to this system as (x(z), ξ(z)) := χz(x

(0), ξ(0)). Observe that
Assumption 1.1 ensures unique solutions to system (2.17)–(2.18) for z ∈ [0, Z].

We note that equations (2.17)–(2.18) form a one-step discrete scheme for this
Hamilton system. The scheme is explicit for ξ, while implicit for x. Standard
numerical analysis results (see e.g. [6, 8]) show that such a scheme converges
uniformly1 w.r.t. initial conditions (x(0), ξ(0)) in a compact domainK of T ∗(Rn).
The consistency order is then equal to the Hölder exponent of (−∂ξb1, ∂xb1)
w.r.t. z. We thus have the following basic convergence result.

Lemma 3.1. Let P = {z(0), z(1), . . . , z(N)} be a subdivision of [0, Z] with 0 =
z(0) < z(1) < · · · < z(N) = Z such that z(i+1) − z(i) ≤ ∆P. Let ε > 0 and let
K be a compact set in T ∗(Rn). There exists d > 0 such that for ∆P ≤ d and
(x(0), ξ(0)) ∈ K \ 0 we have

|(x(j), ξ(j)) − χz(j) (x
(0), ξ(0))| ≤ ε(3.25)

where j = 0, . . . , N and (x(i), ξ(i)), i = 1, . . . , N , are solutions to

ξ(j) − ξ(j+1) + ∆(j)∂xb1(z
(j), x(j+1), ξ(j)) = 0,(3.26)

x(j+1) − x(j) + ∆(j)∂ξb1(z
(j), x(j+1), ξ(j)) = 0.(3.27)

Furthermore, if the map

z 7→ (−∂ξb1(z, ., .), ∂xb1(z, ., .)) ∈ C 0,α([0, Z], (C ∞(Rn × R
n))2), 0 < α ≤ 1,

i.e. is Hölder continuous of order α w.r.t. to z, then the convergence rate is of
order α.

Remark 3.2. (i). By homogeneity of b1 w.r.t. ξ it suffices that the initial
condition x(0) stays in a compact domain. Then (3.25) may be replaced
by |x(j) − x(z(j))| ≤ ε, and |ξ(j) − ξ(z(j))| ≤ ε|ξ(0)|.

(ii). Such a numerical scheme is often referred to as a symplectic Euler method
[7]. It exhibits the interesting property of preserving the symplectic form
at each step of the integration process hence preserving volume in the
cotangent bundle T ∗(Rn) \ 0.

(iii). The Hölder continuity condition above can be fulfilled by assuming as in
[15, Theorem 3.11] that b(z, .) is in C 0,α([0, Z], S1(Rn,Rn)), that is,

b(z′, x, ξ) − b(z, x, ξ) = (z′ − z)α b̃(z′, z, x, ξ), 0 ≤ z ≤ z′ ≤ Z

with b̃(z′, z, x, ξ) bounded w.r.t. z′ and z with values in S1(Rn × R
n).

1The convergence proofs in [6, 8] can be adapted here to be uniform w.r.t. initial conditions
varying in a bounded domain.
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We now apply the results of [26, Sections XI.1, XI.2] to problem (0.1)–(0.2).
In Treves’ notation a+ = b1 and a− = c1. Theorem 2.2 in [26] yields that
singularities at z can only propagate along bicharacteristics associated to −b1
along which c1 vanishes in the interval [0, z]. This is illustrated in the following
example

Example 3.3. Assume here that b(z, x, ξ) = 0 and c(z, x, ξ) = c1(z, x, ξ) = |ξ|
and assume n = 1. The Cauchy problem (0.1)–(0.2) then becomes

∂zu+ |Dx|u = 0, 0 < z ≤ Z,

u |z=0 = u0 ∈ H(s+1)(Rn).

Consider the case u0 = δ0, the Dirac measure. We can solve this problem
explicitly by mean of a Fourier transformation in x:

u(z, x) =

∫
exp[ixξ − z|ξ|] d−ξ

=

∫ ∞

0

exp[ixξ − zξ] d−ξ +

∫ ∞

0

exp[−ixξ − zξ] d−ξ

=
1

2π
(

1

z + ix
−

1

−z + ix
),

which is smooth when z > 0. (Note that Example 3.1.13 in [12] yields that the
initial condition is indeed satisfied.) In this example, where the support of c1 is
[0, Z]×(T ∗(Rn) we observe that the initial-value singularity does not propagate.

Thus the region where c1 = 0 must not be too ‘small’ to allow for propagation
of singularities in the solution to the Cauchy problem (0.1)–(0.2). We set

Ω :=
(
[0, Z]× (T ∗(Rn) \ 0)

)
\ supp(c1).

The previous example motivates the following basic assumption, which is essen-
tial in Lemma 3.5 below:

Assumption 3.4. Ω is not empty.

We shall see that this ensures the propagation of some singularities. Theorem
2.2 in [26] states that singularities only propagate in Ω. We can actually make
this result more precise.

Lemma 3.5. Define Ωz := {(x, ξ) ∈ T ∗(Rn) \ 0 | (z, x, ξ) ∈ Ω}. Let u(z),
z ∈ [0, Z] be the solution of problem (0.1)–(0.2). Let Z ′ ∈ [0, Z] and assume
γ0 = (x(0), ξ(0)) is such that χz(γ0) ∈ Ωz for all z ∈ [0, Z ′]. Then γ0 ∈ WF(u0)
if and only if χZ′(γ0) ∈ WF(u(Z ′, .)).

Proof. The proof is along the lines of that of Theorem 23.1.4 in [11]. Suppose
(x(0), ξ(0)) ∈ T ∗(Rn) \ 0 and (x(0), ξ(0)) /∈ WF(u0). Choose q0 and q ∼

∑
j qj

polyhomogeneous in S0(Rn × R
n) such that q0(x

(0), ξ(0)) 6= 0 and q vanish
outside a small neighborhood of (x(0), ξ(0)). We can choose A = ∪jsupp(qj)
sufficiently small such that

χz(A) ∩ supp(c1(z, .)) = ∅, z ∈ [0, Z ′].
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We then define

U = {(z, x, ξ) | z ∈ [0, Z ′] and (x, ξ) = χz(xA, ξA) for some (xA, ξA) ∈ A}.

We now design an 0-order ψdo, with symbol Q ∼
∑
j≥0 Qj such that [∂z −

ib(z, x,Dx) + c0(z, x,Dx), Q(z, x,D)] is regularizing. The principal part of the
commutator is given by {ζ − b1, Q0} = (∂z −Hb1)Q0, where {., .} denotes the
Poisson bracket of two functions. Hb1 is the Hamiltonian vector field associated
to b1

Hb1 =
∑

1≤i≤n

(∂ξi
b1)∂xi

− (∂xi
b1)∂ξi

.

The term Qj of order −j, j ≥ 1, is given by (∂z − Hb1)Qj + Rj where Rj
is determined by Q0, . . . , Qj−1. We recursively set these terms to zero. This
yields Q0(z, x, ξ) := q0(χ

−1
z (x, ξ)). Then, supp(Q0) ∩ supp(c1) = ∅. We then

find supp(R1) ⊂ U . With Q1 following as

Q1(z, χz(y, η)) = q1(y, η) −

∫ z

0

R1(s, χs(y, η)) ds,

we obtain supp(Q1) ⊂ U (use that if (z, χz(y, η)) /∈ U then (s, χs(y, η)) /∈ U
for all s ∈ [0, z]). The construction thus gives supp(Q) ⊂ U and the operator
Q(z, x,Dx) commutes with ∂z − ib(z, x,Dx) + c0(z, x,Dx) up to a regularizing
operator. Now u(z, .) satisfies

∂zu(z, .) + (c0(z, x,Dx) − ib(z, x,Dx))u(z, .) = −c1(z, x,Dx)u(z, .), z ∈]0, Z].

Observe that Q(z, x,Dx)◦c1(z, x,Dx) is a regularizing operator by construction,
because of the support of Q ∼

∑
j≥0Qj . We then obtain that

(∂z + c0(z, x,Dx) − ib(z, x,Dx))Q(z, x,Dx)u(z, .) ∈ C ∞(Rn)(3.28)

for all z ∈ [0, Z ′]. As Q(z, x,Dx)u(0, .) is smooth by the choice we made
for q, application of Theorem 23.1.2 in [11] for all s ∈ R thus proves that
Q(z, x,Dx)u(z, .) is smooth for all z ∈ [0, Z ′]. Since Q0(Z

′, x, ξ) 6= 0 for (x, ξ) =
χZ′(x(0), ξ(0)) we have (x, ξ) /∈ WF(u(Z ′, .)). We can now reverse the evolution
parameter z in (3.28), since the principal symbol of c0(z, x,Dx) − ib(z, x,Dx))
is pure imaginary, and the proof is complete.

Remark 3.6. The proof of Theorem 23.1.4 in [11] makes use of the homo-
geneity of the principal part b1. In the Cauchy problem (0.1)–(0.2), b1 is only
homogeneous of degree 1 in ξ for |ξ| ≥ 1. For the wavefront set we are only
interested in the direction of ξ. We can thus assume that along the flow χz we
remain in the region where b1 is homogeneous by taking ξ0 sufficiently large.

We now naturally focus on initial conditions γ(0) = (x(0), ξ(0)) = (x(0), ξ(0))
such that γ(0) ∈ Ω0, i.e. away from the support of c1(0, ., .).

Let Z ′ > 0 and γ(0) ∈ Ω0 such that χz(γ
(0)) ∈ Ωz for all z ∈ [0, Z ′]. Lemma 3.1

shows that there exists d > 0 such that for any subdivision P of [0, Z], with
∆P ≤ d, if z(k) ≤ Z ′ < z(k+1), then (x(j), ξ(j)) ∈ Ωz(j) for j = 1, . . . , k. This
can be done uniformly w.r.t. γ(0) in a compact domain K of T ∗(Rn). We have
thus proved the following convergence result (illustrated in Fig. 1).
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Figure 1: Convergence of the discrete Hamiltonian flow away from the region
where c1 is positive.

Proposition 3.7. Let K be a compact set in T ∗(Rn), K ⊂ Ω0, and Z ′ ∈ [0, Z]
such that χz(γ

(0)) ∈ Ωz for all z ∈ [0, Z ′] and for all γ(0) ∈ K \ 0. Let ε > 0 be
such that

ε < dist
(
{(z, χz(γ

(0))) | z ∈ [0, Z ′], γ(0) ∈ K \ 0} , supp(c1))
)
.

There exists d > 0 such that for any subdivision P = {z(0), z(1), . . . , z(N)} of
[0, Z] with ∆P ≤ d and all (x(0), ξ(0)) ∈ K \ 0 the following holds:

γ(j) := (x(j), ξ(j)) = J(z(j) ,...,z(0))(γ
(0)), j = 1, . . . , N

is such that γ(j) ∈ Ωz(j) for j = 1, . . . , k, that is γ(j) = J(z(j) ,...,z(0))R(γ(0)) and

|γ(j) − χz(j) (γ
(0))| ≤ ε, j = 1, . . . , k.

where k is defined by z(k) ≤ Z ′ < z(k+1).

Since WP,z is an FIO with complex phase, one can estimate the wave front set
of WP,z(u0) if u0 ∈ E ′(Rn)

WF(WP,z(u0)) ⊂ J(z,z(l),...,z(0))R(WF(u0))

when z(l) ≤ z ≤ z(l+1). Kumano-go [13, Theorem 3.14, Chapter 10] proves such
an estimate of the wavefront set in the case of particular real phase functions for
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u0 ∈ H(−∞)(Rn) =
⋃
s∈R

H(s)(Rn). For z′ − z sufficiently small, we can apply
Kumano-go’s result to the real phase function ϕ(z′,z) and obtain that

WF(G(z′,z)(u0)) ⊂ J(z′,z)(WF(u0)),

considering G(z′,z) as an FIO with real phase and amplitude of type (ρ, δ) with

δ = 1−ρ and 0 ≤ ρ ≤ 1
2 (cf.[15]). By induction, for ∆P sufficiently small, this re-

sult applies to the real phase function ϕ(z,z(l) ,...,z(0)) and thus yields propagation

of singularities along J(z,z(l) ,...,z(0)) for the operator WP,z for u0 ∈ H(−∞)(Rn).
However, the upper-bound given by map J(z,z(l),...,z(0)) is too large and we
would like to obtain a similar result with J(z,z(l),...,z(0))R instead; that is, consid-
ering WP,z as an FIO with complex phase. We therefore aim at a result similar
to that of Kumano-go, in the case of a complex phase function, which yields the
expected propagation of singularities along J(z,z(l),...,z(0))R for WP,z. We also
allow for u0 to be in S ′(Rn) since the considered operators map S ′(Rn) into
S ′(Rn) for ∆P sufficiently small.

Proposition 3.8. Let Z ≥ z(N) ≥ z(n−1) ≥ · · · ≥ z(0) ≥ 0 with z(j+1) − z(j) ≤
∆, j = 0, . . . , N − 1. Let A(z(j) ,z(j−1)), j = 1, . . . , N be (global) Fourier inte-
gral operators with complex phase functions φ(z(j) ,z(j−1)) (∆ chosen sufficiently
small). Then for all u0 ∈ S ′(Rn)

WF(A(z(N),z(N−1)) ◦ · · · ◦ A(z(1),z(0))(u0)) ⊂ J(z(N),...,z(0))R(WF(u0)).

Proof. It suffices to prove the result for A(z(1) ,z(0)). In the proof we shall alter-
natively consider A(z(1) ,z(0)) as an FIO with complex phase and symbol of type
(1, 0), or as an FIO with real phase and symbol of type (ρ, δ) with δ = 1 − ρ
and 0 ≤ ρ ≤ 1

2 ; the values of ρ and δ depends on the symbol c1(x, ξ) (see [15]).

Let ψ ∈ C ∞
c (Rn). Choose χ ∈ C ∞

c (Rn) such that χ is 1 on

K = πx
(
(πx ◦ J(z(1) ,z(0)))

−1(supp(ψ))
)
,

where πx(x, ξ) = x is the natural projection of T ∗(Rn) onto R
n. Note that K

is compact. We then have

ψ(x′)A(z(1) ,z(0))(u0)(x
′) = ψ(x′)A(z(1) ,z(0))(χu0)(x

′)

+ ψ(x′)A(z(1) ,z(0))((1 − χ)u0)(x
′), u0 ∈ S ′(Rn).

Considering A(z(1) ,z(0)) as an FIO with real phase and symbol of type (ρ, δ),
ρ ≥ δ, and denoting its distribution kernel by A(z(1),z(0))(x

′, x), we can apply
the asymptotic formula (3.42) of [13, Section 10.3] to the symbol σ(x′, ξ) of the
Lagrangian distribution ψ(x′)A(z(1) ,z(0))(x

′, x)(1 − χ(x)),

ψ(x′)A(z(1) ,z(0))(x
′, x)(1 − χ(x)) =

∫
exp[iϕ(z(1),z(0))(x

′, x, ξ)] σ(x′, ξ) d−ξ,

which is then in Ψ−∞
ρ,δ (Rn × R

n). (For the case ρ = 1
2 , see the bottom of page

310 in [13].)

If u0 ∈ S (Rn) we can write

Dα
x′ (ψ(x′)A(z(1) ,z(0))((1 − χ)u0))(x

′)

= 〈û0(ξ), D
α
x′ (exp[i〈x′|ξ〉 + i(z(1) − z(0))b1(z

(0), x′, ξ)] σ(x′, ξ))〉.
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Since the right-hand side is continuous from S ′(Rn) into C 0(Rn) we obtain
that ψ(x′)A(z(1) ,z(0))((1 − χ)u0)(x

′) ∈ C∞(Rn) if u0 ∈ S ′(Rn). This yields

WF(ψA(z(1) ,z(0))(u0)) = WF(ψA(z(1) ,z(0))(χu0)) ⊂ WF(A(z(1) ,z(0))(χu0)),

⊂ J(z(1) ,z(0))R(WF(χu0)) ⊂ J(z(1) ,z(0))R(WF(u0))

since χu0 ∈ E ′(Rn) when we use A(z(1) ,z(0)) as an FIO with complex phase.

Corollary 3.9. Let P = z(0), . . . , z(N) be a subdivision of [0, Z] and let u0 ∈
S ′(Rn). Then

WF(G(z(j) ,...,z(0))(u0)) ⊂ J(z(j) ,...,z(0))RWF(u0), j = 1, . . . , N

WF(WP,z(u0)) ⊂ J(z,z(l),...,z(0))R(WF(u0)),

if z(l) ≤ z ≤ z(l+1).

In the following statement, we give a sharper estimate of the wavefront set of
WP,z(u0).

Proposition 3.10. Let K be a compact set in Ω0 and Z ′ ∈]0, Z] be such that
every bicharacteristics χz(γ

(0)) associated to −b1 = Im(a1) originating from
γ(0) ∈ K \0 at z = 0 satisfies χz(γ

(0)) ∈ Ωz for all z ∈ [0, Z ′]. Then there exists
d > 0 such that if ∆P ≤ d and z ∈ [0, Z ′], with z(l) ≤ z < z(l+1), then K \ 0 is
in the domain of the relation J(z,z(l),...,z(0))R and

J(z,z(l),...,z(0))R(γ(0)) ∈ WF(WP,z(u0))

for all u0 ∈ S ′(Rn) and γ(0) ∈ WF(u0) ∩K. Moreover J(z,z(l),...,z(0))R(γ(0)) ∈

WF(WP,z(u0)) implies γ(0) ∈ WF(u0).

Proof. Since here J(z,z(l),...,z(0))R(γ(0)) = J(z,z(l),...,z(0))(γ
(0)) by Proposition 3.7,

the last statement follows from Corollary 3.9 and Lemma 2.12.

Let ε > 0 be such that

ε < dist
(
{(z, χz(γ

(0))) | z ∈ [0, Z ′], γ(0) ∈ K \ 0} , supp(c1)
)
.

Choose d > 0, according to Proposition 3.7, such that

|γ(j) − χz(j) (γ
(0))| ≤

ε

2
, j = 1, . . . , k,

where k is defined by z(k) ≤ Z ′ < z(k+1), and γ(0) ∈ K \ 0 (see Fig. 1 with ε
replaced by ε/2). Assume further that d is sufficiently small such that

d|∂ξb1(z, x, ξ)| ≤
ε

2
, ∀z ∈ [0, Z], ∀x ∈ R

n, ∀ξ ∈ R
n.(3.29)

We then choose a subdivision P of [0, Z] satisfying ∆P ≤ d.

Let γ(0) = (x(0), γ(0)) ∈ K \ 0 and 0 ≤ j < k. Then (x(j+1), ξ(j)) ∈ Ωz(j) as
|(x(j+1), ξ(j)) − γ(j))| ≤ ε

2 by (3.29) and (3.27). Thus for all j, 0 ≤ j < k,
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c1(z
(j), x(j+1), ξ(j)) = 0 which implies that γ(0) is in the domain of the relation

J(z(j) ,...,z(0))R, for all j, 0 ≤ j ≤ k, by (2.21).

Now let z ∈ [0, Z ′] with z(l) ≤ z < z(l+1). We have

(xz , ξz) := J(z,z(l),...,z(0))R(γ(0)) = Jz,(z(l),...,z(0))(γ
(0)) ∈ Ωz .

Let ψ0(x, ξ) ∈ S0(Rn × R
n), e.g. homogeneous of degree 0 w.r.t. ξ, be equal

to 1 in a conic neighborhood of (x(1), ξ(0)) with support in Ωz(0) . Define the

operator Gψ0

(z(1) ,z(0))
with distribution kernel

Gψ0

(z(1),z(0))
(x′, x) :=

∫
exp[iφ(z′,z)(x

′, x, ξ)] ψ0(x
′, ξ) g(z′,z)(x

′, ξ) d−ξ.

On the support of ψ0 the phase function is real and thus Gψ0

(z(1) ,z(0))
is a global

FIO associated with the real phase ϕ(z(1) ,z(0)) defined in (2.22) with an amplitude
of type (1, 0). Furthermore because of the choice of the support of ψ0 we have

(x(1), ξ(1), x(0),−ξ(0)) /∈ WF(Gψ0

(z(1) ,z(0))
−G(z(1) ,z(0)))(3.30)

by Theorem 8.1.9 in [12]. Note that the operator Gψ0

(z(1) ,z(0))
is non-characteristic

at (x(1), ξ(1), x(0), ξ(0)) because of the forms of ψ0 and g(z(1),z(0)) (see Definition

25.3.4 in [10]). It then follows that (Gψ0

(z(1) ,z(0))
)∗ ◦ Gψ0

(z(1) ,z(0))
∈ Ψ0(Rn) and is

non-characteristic at (x(0), ξ(0)). If γ(0) ∈ WF(u0) then

γ(0) ∈ WF((Gψ0

(z(1) ,z(0))
)∗ ◦ Gψ0

(z(1) ,z(0))
(u0))

and thus γ(1) ∈ WF(Gψ0

(z(1) ,z(0))
(u0)) as the canonical transformation J −1

(z(1) ,z(0))

associated to (Gψ0

(z(1) ,z(0))
)∗ is bijective. In turn, by (3.30), we obtain

γ(1) ∈ WF(G(z(1) ,z(0))(u0)).(3.31)

Inspecting the proof of Theorem 2.22 in [15] one finds that, while the operator
(G(z(1) ,z(0)))

∗ ◦G(z(1) ,z(0)) ∈ Ψ0
1
2

(Rn), it is non-characteristic and in Ψ0 in a conic

neighborhood of (x(0), ξ(0)). This alternatively yields (3.31).

By induction we prove that γ(j) ∈ WF(G(z(j) ,...,z(0))(u0)), j = 1, . . . , l, and that
(xz , ξz) ∈ WF(WP,z(u0)).

With the previous results we have thus obtained the following microlocal con-
vergence result of the wavefront set:

Theorem 3.11. Let u0(.) ∈ H(−∞)(Rn) and u(z, .), z ∈ [0, Z], be the solution
to the Cauchy problem (0.1)–(0.2). Let Z ′ ∈ [0, Z] and K be a compact set in
T ∗(Rn) such that for all γ(0) = (x(0), ξ(0)) ∈ K \ 0 the bicharacteristics χz(γ

(0))
associated to −b1 originating from γ(0) at z = 0 satisfies χz(γ

(0)) ∈ Ωz for all
z ∈ [0, Z ′]. Then if γ(0) ∈ K ∩ WF(u0) we have χZ′(γ(0)) ∈ WF(u(Z ′, .)). For
a subdivision P of [0, Z], with ∆P sufficiently small, we then have

dist (χz(γ
(0)),WF(WP,z(u0))) → 0, as ∆P → 0
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uniformly w.r.t. γ(0) ∈ K ∩ WF(u0) and z ∈ [0, Z ′]. Furthermore, the conver-
gence is of order α, 0 < α ≤ 1, if b(z, .) is in C 0,α([0, Z], S1(Rn,Rn)), in the
sense that,

b(z′, x, ξ) − b(z, x, ξ) = (z′ − z)α b̃(z′, z, x, ξ), 0 ≤ z ≤ z′ ≤ Z

with b̃(z′, z, x, ξ) bounded w.r.t. z′ and z with values in S1(Rn × R
n).

As in [15] we introduce the second following Ansatz by modifying the thin-
slab propagator. For a symbol q(z, y, η) ∈ C 0([0, Z], Sm(Rp × R

r)) we define
q̂(z′,z)(y, η) ∈ C 0([0, Z]2, Sm(Rp × R

r))

q̂(z′,z)(y, η) :=
1

z′ − z

∫ z′

z

q(s, y, η) ds.

Then we set

(3.32) φ̂(z′,z)(x
′, x, ξ) := 〈x′ − x|ξ〉 + i∆â1(z′,z)(x

′, ξ)

= 〈x′ − x|ξ〉 + ∆b̂1(z′,z)(x
′, ξ) + i∆ĉ1(z′,z)(x

′, ξ)

and

ĝ(z′,z)(x, ξ) := exp[−∆â0(z′,z)(x, ξ)].(3.33)

Finally, following [14], we denote by Ĝ(z′,z) the FIO with distribution kernel

Ĝ(z′,z)(x
′, x) =

∫
exp[i〈x′ − x|ξ〉] exp[−∆â(z′,z)(x

′, ξ)] d−ξ

=

∫
exp[iφ̂(z′,z)(x

′, x, ξ)] ĝ(z′,z)(x
′, ξ) d−ξ.

The corresponding approximation Ansatz is as follows: let P be a subdivision
of [0, Z], P = {z(0), z(1), . . . , z(N)} with 0 = z(0) < z(1) < · · · < z(N) = Z such

that z(i+1) − z(i) = ∆P. The operator ŴP,z is defined by

ŴP,z :=





Ĝ(z,0) if 0 ≤ z ≤ z(1),

Ĝ(z,z(k))

1∏

i=k

Ĝ(z(i) ,z(i−1)) if z(k) ≤ z ≤ z(k+1).

Results of Section 2 apply to this Ansatz2 as well. We define the set (which

turns out to be a graph) Ĵ(z(N),...,z(0)) by the following equations (compare with
(2.17)–(2.18)):

(x(N), ξ(N), x(0), ξ(0)) ∈ Ĵ(z(N),...,z(0))

if there exists θN−1 ∈ R
n(2N−1) \ 0 as defined in (2.16) such that

ξ(j) − ξ(j+1) + ∆(j)∂xb̂1(z(j+1) ,z(j))(x
(j+1), ξ(j)) = 0,(3.34)

x(j+1) − x(j) + ∆(j)∂ξ b̂1(z(j+1) ,z(j))(x
(j+1), ξ(j)) = 0.(3.35)

2Some small modifications are required, e.g. in the proof of Lemma 2.2: there, Lemma 1.7
is used but in the present case smoothness of the change of variables w.r.t. ∆ is lost; only
continuity w.r.t. ∆ remains. This modification is of no consequence here.
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The numerical scheme (3.34)–(3.35) is of the same nature as (3.26)–(3.27). Here
however the order of consistency is 1 even if b1(z, ., .) is only continuous w.r.t. z.
We thus observe convergence of order 1. As all the results in this section apply
to the second Ansatz we obtain

Theorem 3.12. Let u0(.) ∈ H(−∞)(Rn) and u(z, .), z ∈ [0, Z], be the solution
to the Cauchy problem (0.1)–(0.2). Let Z ′ ∈ [0, Z] and K be a compact set in
T ∗(Rn) such that for all γ(0) = (x(0), ξ(0)) ∈ K \ 0 the bicharacteristics χz(γ

(0))
associated to −b1 originating from γ(0) at z = 0 satisfies χz(γ

(0)) ∈ Ωz for all
z ∈ [0, Z ′]. Then if γ(0) ∈ K ∩ WF(u0) we have χZ′(γ(0)) ∈ WF(u(Z ′, .)). For
P a subdivision of [0, Z], with ∆P sufficiently small, we then have

dist (χz(γ
(0)),WF(ŴP,z(u0))) → 0, as ∆P → 0

uniformly w.r.t. γ(0) ∈ K ∩ WF(u0) and z ∈ [0, Z ′] with a convergence rate of
order 1.

4 Application to the ‘double-square-root’ equa-
tion and imaging

In [19], it was shown, following [24], that the acoustic wave field can be be
microlocally decomposed into up-going and down-going components (see also
[15, Appendix A]). Each component is then the solution to a ‘one-way’ wave
equation

(∂z + a(z, x,Dt, Dx))v(z, t, x) = 0,

v(0, .) = v0(.),

with a(z, x,Dt, Dx) = −ib(z, x,Dt, Dx)+ c(z, x,Dt, Dx), to which the results of
[15] and the present paper apply: the symbols of the operators are assumed to
be continuous w.r.t. z and the principal symbol c1 is assumed non-negative.

The so-called ‘downward continuation’ operator for seismic data is actually the
solution operator H(z′, z) to

(∂z + a(z, s,Dt, Ds) + a(z, r,Dt, Dr))v(z, t, s, r) = 0,(4.36)

v(0, .) = v(0, .),(4.37)

(see [22]). Here r ∈ R
d and s ∈ R

d are the source and receiver coordinates
respectively and t ∈ R is time. Equation (4.36) is the so-called ‘double-square
equation’ (DSR), since in the ‘propagating regime’, c1 = 0, the principal symbol
of the operator b(z, x,Dt, Dx) is the square root of the symbol of an operator
[19].

From H(z′, z) one can generate a linear3 seismic modeling operator F (see [22])

F (δv)(s, r, t) := Q∗
r(0)Q∗

s(0)

∫ Z

0

(H(0, z)Qr(z)Qs(z)g(z, .))dz, δv ∈ E ′(Rd+1),

3The scattering problem is linearized by mean of the Born approximation.
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where Qr(z) and Qs(z) are two families of properly chosen pseudodifferential
operators and g(z, .) is given by

g(z, s, r, t) := δ(t)δ(s − r)

(
δv

v0

)
(z,

s+ r

2
).

The compactly supported distribution δv represents the singular component of
the wavespeed responsible for the scattering of the incoming wave in a seismic
experiment and is thus responsible for the data recorded at the surface. The
total wavespeed is given by v0 + δv and v0 is in fact used in the computation of
the symbol b(z, x, τ, ξ).

With the results of [20] and [22], we observe that for the solution u to the DSR
equation we have

WF(u(z)) ⊂ {(t, s, r, τ, σ, ρ); |σ| ≤ K(z, s)τ, |ρ| ≤ K(z, r)τ}.

The constantsK(z, s) andK(z, r) are given by the choices made for the damping
terms in the DSR equation, i.e. the real part of the symbol az (see [19, 18]).

Define ψz(s, r, τ, σ, ρ) to be a z-parametrized family of symbols in S0(R2d+1 ×
R

2d+1) such that

ψz(s, r, τ, σ, ρ) = 0 if |σ| ≥ 2K(z, s)τ and σ ≥ 1,

or |ρ| ≥ 2K(z, s)τ and ρ ≥ 1;

ψz(s, r, τ, σ, ρ) = 1 if |σ| ≤ K(z, s)τ and |σ| ≤ K(z, s)τ.

With such a pseudodifferential cut-off we define

az(s, r,Dt, Ds, Dr) := ψz(s, r,Dt, Ds, Dr) ◦ (az(s,Dt, Ds) + az(r,Dt, Dr))

and observe with Theorem 18.1.35 in [11] that az is a z-parametrized family of
pseudodifferential operators in t, s and r. The solutions of

(∂z + az(s, r,Dt, Ds, Dr)v(z, t, s, r) = 0,(4.38)

v(0, .) = v0(.),(4.39)

are microlocally equal to that of (4.36)–(4.37) while the z-parametrized family
of operators az falls into the class of operators studied in the present paper
and in [15]. We thus obtain approximations for the ‘downward continuation’
operator H(z′, z) with Sobolev and microlocal convergence of the wavefront set,
i.e. Theorems 3.18 in [15] can be applied as well as Theorems 3.11 and 3.12
proved here.

Noting that the operatorH(z′, z)∗ is at the heart of the seismic imaging operator
[21], we thus obtain approximations for this imaging operator.

A Some results on Lagrangian (and canonical)

ideals

In this section we give some results on Lagrangian (or canonical) ideals of pos-
itive type and on related complex phase functions of positive type. We also
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provide simple criteria for transversal composition of FIOs. These results are to
be used in Section 2. We follow the notations of [10, Sections 25.4, 25.5]. The
following proposition can be viewed as a complement to Proposition 25.4.4 in
[10].

In this paper we do not rely on the techniques of almost analytic continuation
developed in [16, 17] but we use the techniques of Lagrangian ideals as developed
in [10, Sections 25.4, 25.5]. The following two propositions have their counter-
part in [16], namely Theorem 3.6, p. 167, for Proposition A.1 and Proposition
7.1, p. 204, for Proposition A.3, but it seems that they are not included in [10].

Proposition A.1. Let X be a C ∞ manifold of dimension n, Γ ⊂ X × (RN\0)
an open conic neighborhood of (x0, θ0) and let φ ∈ C ∞(Γ) be a non-degenerate
phase function of positive type at (x0, θ0). Let ξ0 = φ′x(x

0, θ0) 6= 0 Let J be the
Lagrangian ideal defined by φ in a conic neighborhood of (x0, ξ0). Then locally
JR = {(x, ξ) | (x, θ) ∈ Γ, ξ = φ′x(x, θ) with φ′θ(x, θ) = 0}.

Proof. We have {(x, ξ) | (x, θ) ∈ Γ, ξ = φ′
x(x, θ) with φ′θ(x, θ) = 0} ⊂ JR. We

follow the proof of Proposition 25.4.4 in [10] and use its notations. The ideal Ĵ
is locally generated by ∂θj

φ(x, θ)− ξk , j = 1, . . . , N and ∂xk
φ(x, θ), k = 1, . . . , n

(x1,. . . ,xn are local coordinates on X and ξ1,. . . ,ξn are the corresponding coor-
dinates in T ∗(X)). One can choose the local coordinates on X such that Ĵ is
actually generated by functions of the form

xk −Xk(ξ), θj − Θj(ξ), k = 1, . . . , n, j = 1, . . . , N,

where the Xk are homogeneous of degree 0 and the Θj are homogeneous of
degree 1. A function f0(ξ) can be chosen homogeneous of degree 1 such that

Imf0(ξ) ≥ C(|ImX(ξ)|2 + |ImΘ(ξ)|2)

in a conic neighborhood of (x0, ξ0) and such that J is generated by xk+∂ξk
f0(ξ),

k = 1, . . . , n. Let us now take (x1, ξ1) ∈ JR in the considered neighborhood of
(x0, ξ0). We then have x1

k +∂ξk
f0(ξ1) = 0, k = 1, . . . , n which gives ∂ξk

f0(ξ1) ∈
R. Euler’s identity yields f0(ξ1) ∈ R from which we find ImXk(ξ

1) = 0, k =
1, . . . , n, and ImΘj(ξ

1) = 0, j = 1, . . . , N . Define θ1
j = Θ1

j (ξ
1) ∈ R, j =

1, . . . , N . As 0 6= θ0j = Θ1
j (ξ

0) we can shrink the conic neighborhood of (x0, ξ0)

so that θ1j 6= 0. Then the generators of Ĵ vanish at (x1, ξ1, θ1) (in fact note

that the function xk −Xk(ξ), k = 1, . . . , n, of Ĵ are independent of θ and hence
belong to J and thus vanish at (x1, ξ1)). We therefore obtain ∂θj

φ(x1, θ1) = 0,
j = 1, . . . , N and ∂xk

φ(x1, θ1) − ξ1k = 0, k = 1, . . . , n. In other words

(x1, ξ1) ∈ {(x, ξ) | (x, θ) ∈ Γ, ξ = φ′x(x, θ) with φ′θ(x, θ) = 0},

which completes the proof.

Remark A.2. Note that if a Lagrangian ideal J is globally parameterized by
a phase function φ(x, θ) then globally we have JR = {(x, ξ) | (x, θ) ∈ Γ, ξ =
φ′x(x, θ) with φ′θ(x, θ) = 0}.

To understand the propagation of singularities when composing two FIOs with
respective canonical ideals J1 in T ∗(X×Y )\0 and J2 in T ∗(Y ×Z)\0 we need to
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keep track of the set JR = (J1 ◦J2)R. Characterizing the set JR is of importance
to further compose the resulting FIO with other FIOs (see [10, Theorem 25.5.5]).
This is the subject to the following proposition. This point is of importance here
as in Sections 2 and 3 we compose FIOs with the number of factors tending to
∞.

Proposition A.3. Let J1 and J2 be two positive conic canonical ideals in
T ∗(X × Y )\0 and T ∗(Y × Z)\0 respectively such that

1. J1R ⊂ (T ∗(X)\0) × (T ∗(Y )\0), J2R ⊂ (T ∗(Y )\0) × (T ∗(Z)\0),

2. the composition is transversal at each point

(x0, ξ0, y0, η0) ∈ J1R, (y0, η0, z0, ζ0) ∈ J2R,

3. the projection

π : J1R × J2R ∩ (T ∗(X)) × diag(T ∗(X)) × (T ∗(Z)) → T ∗(X × Z)\0

(x, ξ, y, η, y, η, z, ζ) 7→ (x, ξ, z, ζ)

is injective and proper.

Then (J1 ◦ J2)R = J1R ◦ J2R.

Proof. By Theorem 25.5.5 in [10] J1 ◦ J2 is defined locally in neighborhoods of
points in J1R ◦ J2R (away from such neighborhoods J1 ◦ J2 is locally the trivial
algebra, i.e. the whole set of C ∞ functions and there (J1 ◦ J2)R = ∅). The
definition J1 ◦ J2 naturally yields J1R ◦ J2R ⊂ (J1 ◦ J2)R (see Proposition 25.5.3
in [10] and its proof).

Let (x0, ξ0, z0, ζ0) ∈ J1R ◦ J2R. Then there exists (y0, η0) ∈ T ∗(Y )\0 such
that (x0, ξ0, y0, η0) ∈ J1R and (y0, η0, z0, ζ0) ∈ J2R. In a neighborhood of
(x0, ξ0, y0, η0), J1 is defined by a non-degenerate phase function φ1(x, y, θ) ∈
C∞(X × Y × (RNθ\0)). In a neighborhood of (y0, η0, z0, ζ0), J2 is defined by a
non-degenerate phase function φ2(y, z, τ) ∈ C ∞(X × Y × (RNτ \0)). This also
means that there exists θ0 ∈ R

Nθ\0 and τ0 ∈ R
Nτ \0 such that

∂θφ1(x
0, y0, θ0) = 0, ξ0 = ∂xφ1(x

0, y0, θ0), η0 = −∂yφ1(x
0, y0, θ0),

∂τφ2(y
0, z0, τ0) = 0, η0 = ∂yφ2(y

0, z0, τ0, ζ0 = −∂zφ2(y
0, z0, τ0).

By Proposition 25.5.4 in [10] φ1(x, y, θ) + φ2(y, z, τ) defines J1 ◦ J2 in a neigh-
borhood U of (x0, ξ0, z0, ζ0). By Proposition A.1 we have that in U (or possibly
a smaller neighborhood)

(J1 ◦ J2)R = {(x, ξ, z, ζ) | ∂θφ1(x, y, θ) = 0, ∂τφ2(y, z, τ) = 0

∂y(φ1(x, y, θ) + φ2(y, z, τ)) = 0, ξ = ∂xφ1(x, y, θ), ζ = −∂zφ2(y, z, τ)}

Let (x1, ξ1, z1, ζ1) ∈ (J1 ◦ J2)R ∩ U . Let θ1, τ1, y1 be such that

∂θφ1(x
1, y1, θ1) = 0, ∂τφ2(y

1, z1, τ1) = 0,

∂y(φ1(x
1, y1, θ1) + φ2(y

1, z1, τ1)) = 0,

ξ1 = ∂xφ1(x
1, y1, θ1), ζ1 = −∂zφ2(y

1, z1, τ1).
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Noting that η1 := −∂yφ1(x
1, y1, θ1) = ∂yφ2(y

1, z1, τ1) is real we see that φ1

is of positive type at (x1, y1, θ1) and hence (x1, ξ1, y1, η1) ∈ J1R and similarly
(y1, η1, z1, ζ1) ∈ J2R. We thus find that locally (J1 ◦ J2)R ⊂ J1R ◦ J2R.

The following proposition gives easy-to-check criteria to ensure transversality
in the composition of FIOs. It is a converse to Proposition 25.5.4 in [10]. In
the case of non-degenerate real phase functions this result is implicit in [9, p.
175-176]. In the case of clean real phase functions it is clear that the proof of
Proposition 21.2.19 in [11] yields the converse of its statement. Here we only
treat the case of non-degenerate complex phase functions and use the techniques
of canonical ideals.

Let X , Y , Z be three C ∞ manifolds of dimension nx,ny and nz. Let x1, . . . , xnx
,

y1, . . . , yny
and z1, . . . , znz

be local coordinates for X , Y and Z with ξ1, . . . , ξnx
,

η1, . . . , ηny
and ζ1, . . . , ζnz

the corresponding coordinates in T ∗(X), T ∗(Y ) and
T ∗(Z).

Proposition A.4. Let φ1(x, y, θ) and φ2(y, z, τ) be two non-degenerate com-
plex phase functions of positive type at (x0, y0, θ0) ∈ X × Y × (RNθ\0) and
(y0, z0, τ0) ∈ Y × Z × (RNτ \0) respectively such that

η0 := −∂yφ1(x
0, y0, θ0) = ∂yφ2(y

0, z0, τ0) ∈ R
ny\0.

Define ξ0 := ∂xφ1(x
0, y0, θ0) ∈ R

nx\0 and ζ0 = −∂zφ2(y
0, z0, τ0) ∈ R

nz\0. Let
J1 and J2 be the canonical ideals parameterized by φ1 and φ2 in neighborhoods of
(x0, ξ0, y0, η0) and (y0, η0, z0, ζ0) respectively. J1 and J2 compose transversally
at these points if and only if φ1 + φ2 is non degenerate at (x0, z0, θ0, τ0, y0)
(where y is considered as a phase variable).

Proof. Throughout the proof everything is done locally; neighborhoods are re-
fined if necessary without mentioning it. Ĵ1 is the ideal generated by the func-
tions ∂θj

φ1(x, y, θ), ∂xi
φ1(x, y, θ) − ξi and ∂yk

φ1(x, y, θ) + ηk, j = 1, . . . , Nθ,
i = 1, . . . , nx, k = 1, . . . , ny. We call these functions Ui(x, y, θ, ξ, η), i =
1, . . . , Nθ + nx + ny. The differentials dUi, i = 1, . . . , Nθ + nx + ny, are linearly
independent (use Definition 25.4.3 in [10]). The canonical ideal J1 is locally
the set of functions of Ĵ1 that are independent of θ. There are nx + ny gener-
ators of J1 in the considered neighborhood. We denote them by ui(x, y, ξ, η),
i = 1, . . . , nx+ny. The differentials dui, i = 1, . . . , nx+ny, are linearly indepen-
dent. We can thus chose nx′ x coordinates, ny′ y coordinates, nξ′ ξ coordinates
and nη′ η coordinates such that (after reordering the coordinates) x = (x′, x′′),
y = (y′, y′′), ξ = (ξ′, ξ′′), η = (η′, η′′) with nx′ + ny′ + nξ′ + nη′ = nx + ny and
the partial differentials of the functions ui, i = 1, . . . , nx + ny w.r.t. x′, y′, ξ′, η′

are linearly independent. (Note that nx′ may differ from nξ′ and so on.) We
denote nx′′ = nx − nx′ , ny′′ = ny − ny′ , nξ′′ = nx − nξ′ , nη′′ = ny − nη′ .
Theorem 7.5.7 in [12] gives the existence of some functions gij(x, y, ξ, η, θ), and
Ri(θ, x

′′, y′′, ξ′′, η′′), i = 1, . . . , nx + ny +Nθ, j = 1, . . . , nx + ny, such that

(A.40) Ui(x, y, θ, ξ, η) =

nx+ny∑

j=1

gij(x, y, ξ, η, θ)uj(x, y, ξ, η)

+Ri(θ, x
′′, y′′, ξ′′, η′′), i = 1, . . . , nx + ny +Nθ,
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in a neighborhood of (x0, y0, θ0, ξ0, η0). As the Ui and uj are in Ĵ1, so are the
the functions Ri. With (A.40) we see that the functions Ri, i = 1, . . . , nx +
ny + Nθ, and the functions uj , j = 1, . . . , nx + ny generate Ĵ1. Yet, their
differentials are not linearly independent but they are of rank nx + ny + Nθ
like the differentials d(Ui), i = 1, . . . , nx + ny + Nθ. The partial differentials
of uj , j = 1, . . . , nx + ny w.r.t. x′, y′, ξ′ and η′ are of rank nx + ny while
the functions Ri, i = 1, . . . , nx + ny + Nθ, are independent of these variables.
From this we obtain that the differentials d(Ri),i = 1, . . . , nx + ny +Nθ are of
rank Nθ. We can therefore select R1, . . . , RNθ

(after some reordering) such that
the functions uj , Ri, j = 1, . . . , nx + ny, i = 1, . . . , Nθ, have their differentials

linearly independent and generate Ĵ1 (use Lemma 7.5.8 in [12]).

To carry on with the proof of Proposition A.4 we need the following lemma.

Lemma A.5. The matrix R := (∂θj
Ri) 1≤i≤Nθ

1≤j≤Nθ

is of rank Nθ at the point

(x0, y0, ξ0, η0, θ0).

Proof. Let us first consider the system
∑Nθ

j=0 ∂θj
Ri dθj = 0 at the point4

(x0, y0, ξ0, η0, θ0). For the θ variables it is equivalent to the system





du1 = · · · = dunx+ny
= 0,

dR1 = · · · = dRNθ
= 0,

dx = 0, dy = 0, dξ = 0, dη = 0,

as the functions ui, i = 1, . . . , nx + ny solely depend on x′, y′, ξ′, η′. Now this
system is equivalent to (see the proof of Lemma 7.5.8 in [12])

{
dU1 = · · · = dUnx+ny+Nθ

= 0,
dx = 0, dy = 0, dξ = 0, dη = 0,

which, using the expressions of the functions Ui, can be written as





∂2
θxφ1 dx + ∂2

θyφ1 dy + ∂2
θθφ1 dθ = 0,

∂2
xxφ1 dx+ ∂2

xyφ1 dy + ∂2
xθφ1 dθ − dξ = 0,

∂2
yxφ1 dx+ ∂2

yyφ1 dy + ∂2
yθφ1 dθ + dη = 0,

dx = 0, dy = 0, dξ = 0, dη = 0.

This implies the system

∂2
θθφ1 dθ = 0, ∂2

xθφ1 dθ = 0, ∂2
yθφ1 dθ = 0,

which in turn yields dθ = 0 as the phase function φ1 is non-degenerate. The
matrix (∂θj

Ri) 1≤i≤Nθ
1≤j≤Nθ

is thus of rank Nθ.

End of the proof of Proposition A.4: We now perform the same analysis on
the phase function φ2(y, z, τ). Denote by Ĵ2 the ideal locally generated by
∂τj

φ2(y, z, τ), ∂yi
φ2(y, z, τ) − ηi and ∂zk

φ2(y, z, τ) + ζk, j = 1, . . . , Nτ , i =
1, . . . , ny, k = 1, . . . , nz. We call these functions Vi(y, z, τ, η, ζ), i = 1, . . . , Nτ +

ny + nz . The ideal Ĵ2 is also generated by some functions v1, . . . , vny+nz
,

4Function are to be evaluated at this point in the proof of Lemma A.5.
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S1, . . . , SNτ
, where the functions vj , j = 1, . . . , ny + nz, solely depend on y,

z, η, and ζ and locally generate J2 while the matrix S := (∂τj
Si) 1≤i≤Nτ

1≤j≤Nτ

is of

rank Nτ by the previous lemma.

The tangent planes Tγ0(J1) and Tε0(J2) at γ0 = (x0, y0, ξ0, η0) and ε0 =
(y0, z0, η0, ζ0) are respectively defined by the equations (in the complexifica-
tion of Tγ0(T ∗(X) × T ∗(Y )) and Tε0(T

∗(Y ) × T ∗(Z)))

du1 = · · · = dunx+ny
= 0,

and

dv1 = · · · = dvny+nz
= 0,

evaluated5 at (x0, y0, ξ0, η0) and (y0, z0, η0, ζ0) respectively. The ideals J1 and
J2 compose transversally at γ0 and ε0 if and only if Tγ0(J1)×Tε0(J2) intersects
transversally with

∆̃ = Tx0,ξ0(T
∗(X)) × diag(Ty0,η0(T ∗(Y ))) × Tz0,ζ0(T

∗(Z))

that is

Tγ0(J1) × Tε0(J2) ∩ {0} × diag(Ty0,η0(T ∗(Y ))) × {0} = {0},(A.41)

as Tγ0(J1) × Tε0(J2) is Lagrangian for the symplectic form σ = σX − σY +

σỸ − σZ and ∆̃σ = {0} × diag(Ty0,η0(T ∗(Y ))) × {0}. We have denoted by σỸ
the symplectic form on the second copy of T ∗(Y ). Equation (A.41) in turn is
equivalent to





du1 = · · · = dunx+ny
= 0,

dv1 = · · · = dvny+nz
= 0,

dx = 0, dξ = 0, dz = 0, dζ = 0,
dỹ = dy, dη̃ = dη,

⇒ dy = 0, dη = 0,(A.42)

where (ỹ, η̃) are the coordinates in the second copy of T ∗(Y ). The previous
statement is equivalent to





du1 = · · · = dunx+ny
= 0,

dv1 = · · · = dvny+nz
= 0,

dx = 0, dξ = 0, dz = 0, dζ = 0,
dỹ = dy, dη̃ = dη,
dRi = · · · = dRNθ

= 0, dSj = · · · = dSNτ
= 0,

⇒
dy = 0, dη = 0,
dθ = 0, dτ = 0.

(A.43)

In fact (A.42) states that the rank of the first system is 2nx + 4ny + 2nz and
(A.43) states that the rank of the first system is 2nx + 4ny + 2nz +Nθ +Nτ .
As the matrices R and S are of full rank, by Lemma A.5, the statements are
equivalent. Using some argument in the proof of Lemma A.5 we obtain that
(A.43) is equivalent to





dU1 = · · · = dUnx+ny+Nθ
= 0,

dV1 = · · · = dVny+nz+Nτ
= 0,

dx = 0, dξ = 0, dz = 0, dζ = 0,
dỹ = dy, dη̃ = dη,

⇒
dy = 0, dη = 0,
dθ = 0, dτ = 0.

5In the remaining of the proof functions are to be evaluated at (x0, y0, z0, ξ0, η0, ζ0, θ0, τ0).
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Because of the forms of the Ui and Vj the previous statement is equivalent to





∂2
xθφ1 dθ +∂2

xyφ1 dy = 0,
∂2
zτφ2 dτ +∂2

zyφ2 dy = 0,
∂2
θθφ1 dθ +∂2

θyφ1 dy = 0,

∂2
ττφ2 dτ +∂2

τyφ2 dy = 0,
∂2
yθφ1 dθ +∂2

yτφ2 dτ +(∂2
yyφ1 + ∂2

yyφ2) dy = 0,

∂2
yθφ1 dθ +∂2

yyφ1 dy +dη = 0,

⇒





dy = 0,
dη = 0,
dθ = 0,
dτ = 0.

This now yields that the matrix




∂2
xθφ1 0 ∂2

xyφ1

0 ∂2
zτφ2 ∂2

zyφ2

∂2
θθφ1 0 ∂2

θyφ1

0 ∂2
ττφ2 ∂2

τyφ2

∂2
yθφ1 ∂2

yτφ2 (∂2
yyφ1 + ∂2

yyφ2)




evaluated at (x0, z0, θ0, τ0, y0) is of rank Nθ + Nτ + ny. If we now write
Φ(x, z, θ, τ, y) = φ1(x, y, θ) + φ2(y, z, τ) we see that the previous statement
means that the differentials d(∂θΦ), d(∂τΦ) and d(∂yΦ) are linearly independent
at (x0, z0, θ0, τ0, y0).
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