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Spinon confinement around a vacancy in frustrated quantum antiferromagnets
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The confinement of a spinon liberated by doping frustrated quantum two-dimensional Heisenberg
antiferromagnets with a non-magnetic impurity is investigated. For a static impurity, an intermedi-
ate behaviour between complete deconfinement (kagome) and strong confinement (checkerboard) is
identified, with a spinon confinement length significantly larger than the short magnetic correlation
length of the host and a reduced Z factor (J1−J2−J3 model on the square lattice). This translates
into an extended spinon-holon boundstate for mobile vacancies, allowing one to relate features of the
hole spectral function measured by ARPES to features accessible in real space by NMR experiments
on impurity-doped systems.

PACS numbers: 75.10.-b, 75.10.Jm, 75.40.Mg

The search for exotic spin liquids (SL) has been enor-
mously amplified after the discovery of the high critical
temperature (high-TC) cuprate superconductors. Indeed,
Anderson suggested that the Resonating Valence Bond
(RVB) state is the relevant insulating parent state that
would become immediately superconducting under hole
doping [1]. Such a RVB state is characterized by short
range magnetic correlations and no continuous (spin) or
discrete (lattice) broken symmetry. Another major char-
acteristic of this SL phase is the deconfinement [2] of the
S=1/2 excitations (spinons) in contrast to ordered mag-
nets which have S = 1 spin waves. Upon doping, some
scenarii predict a 2D Luttinger liquid [3], i.e. a state
which exhibits spin-charge separation, a feature generic
of one-dimensional correlated conductors.

Magnetic frustration is believed to be one of the ma-
jor ingredient that could drive a two-dimensional (2D)
quantum antiferromagnet (AF) into exotic non-magnetic
phases. The Valence Bond Solid (VBS), an alternative
class of magnetically disordered phases which break lat-
tice symmetry, seems to be a strong candidate in frus-
trated quantum magnets as suggested by robust field the-
oretical arguments [4]. Indeed, early numerical computa-
tions of the frustrated quantum AF on the square lattice
with diagonal bonds have revealed increased dimer corre-
lations, possibly long-range, for large frustration [5, 6, 7].
Moreover, strong evidence for a VBS (plaquette rather
than columnar) exists also in the 2D checkerboard lat-
tice [8] (with diagonal bonds only on half of the plaque-
ttes). On the contrary, the 2D Kagomé lattice [9] shows
no sign of ordering and no gap in the singlet spectrum,
the signature of a form of SL phase [10, 11].

Investigation of hole doping in frustrated magnets [12]
has revealed stricking differences between VBS and SL
phases. Viewing these phases as (liquid or solid) fluc-
tuating singlet backgrounds, removing an electron at a
given site or, as in Angular Resolved Photoemission Spec-
troscopy (ARPES) experiments, in a Bloch state of given

(a) (b)

FIG. 1: (Color on-line) Schematic picture of a vacancy (or
doped hole) in a frustrated magnet. The segments stand for
singlet bonds and the arrow represents the spinon liberated in
the process. (a) Holon-spinon BS in a columnar VBS bound
by a “string” potential (dotted line). (b) Deconfined holon
and spinon in an (hypothetical) SL host.

momentum naturally breaks a spin dimer and liberates
a spinon, i.e. a S=1/2 polarisation in the vicinity of
the empty site (holon). The single hole spectral function
shows a sharp peak (resp. a broad feature) character-
istic of a holon-spinon boundstate (resp. holon-spinon
scattering states) in the checkerboard VBS phase (resp.
Kagomé SL phase). Interestingly enough, such a prop-
erty does not depend crucially on whether the holon mass
is finite (e.g. ARPES injected hole) or ”infinite” (e.g.
static impurity introduced by chemistry). The simple
physical pictures behind these two typical behaviors are
depicted in Fig. 1(a) and (b) for a confining columnar
dimer phase and a SL phase respectively.

In this Letter we study the problem of a single vacancy
(named ”impurity” or ”hole”) introduced in the 2D spin-
1/2 AF J1-J2-J3 Heisenberg model on the square lattice
at zero temperature defined by

H =
∑

〈ij〉

JijSi · Sj (1)

where the Jij exchange parameters are limited to first
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(J1), second (J2) and third (J3) N.N. AF couplings.
The classical phase diagram of this model [13, 14, 15] is
very rich (see Fig. 2) showing four ordered states – Néel,
collinear (q = (π, 0)) and two helicoidal – separated by
continuous or discontinuous boundaries.

The effects of quantum fluctuations on this classical
phase diagram is still an open question. For the pure
J1 − J2 model and J2/J1

<∼ 0.4, the classical (π, π)
Néel behavior is essentially conserved [5, 16]. On the
other hand, for J2/J1

>∼ 0.6 an order by disorder mech-
anism [17] selects two collinear states at q = (π, 0)
and (0, π). In the parameter range where frustration
is largest, 0.4 <∼ J2/J1

<∼ 0.6, many approaches (in-
cluding spin-wave theory [16], exact diagonalizations [5],
series-expansion [18] and large-N expansions [2]) have
now firmly established that quantum fluctuations desta-
bilize the classical ordered ground state and lead to a
magnetically disordered singlet ground state. However,
its precise nature is still controversial : a columnar va-
lence bond solid with both translational and rotational
broken symmetries [4], a plaquette state with no bro-
ken rotational symmetry [6] or even a spin-liquid with
no broken symmetry [19] have been proposed.

Similar questions apply to the J3 6= 0 case. First of all,
as remarked by Ferrer [15], the end point of the classical
critical line (J2+2J3)/J1 = 1/2 on the J3 axis is substan-
tially shifted to larger values of J3 when quantum fluc-
tuations are switched on. But even for the pure J1 − J3

model, in the region of large frustration J3/J2 ∼ 0.5,
a non-classical and still controversial phase appears be-
tween the Néel (π, π) and the spiral (q, q) phases : VBS
columnar state [20], spin-liquid [21] or a succession of a
VBS and Z2 spin-liquid phases [22].

In the large frustration regime (J3 +J2)/J1 ∼ 0.4−0.6
of the phase diagram further insights on the nature of the
singlet ground state can be obtained using a truncated
(non-orthogonal) short range resonating valence bond set
of states as a basis for diagonalization of the hamiltonian.
Both the ground state energy and wave function provided
by this method [23, 24] can be directly compared with ex-
act diagonalizations for small clusters. Moreover, it gives
access to substantially larger bidimensionnal clusters and
is able to describe both VBS and spin-liquid states. It
appears [25] that in the vicinity of (J3 +J2)/J1 ∼ 0.5, (i)
a very good description of the ground state can be ob-
tained in terms of nearest neighbor dimer coverings of the
square lattice, (ii) the scaling analysis of the dimer sus-
ceptibility computed up to 50 sites shows a non-vanishing
signal at the thermodynamic limit, increasing as J3/J2

increases, strongly suggesting a VBS order [7]. There-
fore, a confinement of a spinon near a vacancy is also
expected in this model.

In the following, a static vacancy introduced at a given
site O of the lattice is simply modelled by setting to zero
all the couplings Jij involving site O and the computa-
tions are performed by Lanczos ED of a cluster of 32 sites
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FIG. 2: (Color on-line) Classical phase diagram for the J1-
J2-J3 model. Second order (discontinuous) transitions are
indicated by dashed (solid) lines. The shaded (blue online)
region shows the approximate location of the minimum of the
spectral weight Z in the quantum version. The area where
Z < 0.84 on a 32-site cluster is delimited by dashed lines and
red dots.

(i.e.
√

32 ×
√

32) which respects all point group symme-
tries of the infinite lattice. Such an impurity acts, theo-
retically, as a local probe of the host. It can be viewed al-
ternatively as a localized holon (S = 0 and charge Q = e)
so that the form of the surrounding spin density is ex-
pected to provide valuable insights on spin-charge con-
finement or deconfinement.

The single impurity Green function G(ω) =
〈

Ψbare|(ω−H)−1|Ψbare

〉

is computed by (i) constructing

the (normalized) ”bare” initial state |Ψbare

〉

= 2cO,σ|Ψ0

〉

from the host GS |Ψ0

〉

by removing an electron of spin
σ and (ii) using a standard Lanczos continued-fraction
technique. Most of the ω-integrated spectral weight (nor-
malized to 1) of ImG(ω) is in fact contained in the lowest
energy pole of weight Z = |

〈

Ψgs|Ψbare

〉

|2 where |Ψgs

〉

is
the (normalized) GS of the system with one vacancy at
site O. Results shown in Fig. 3(a,b) show however that
Z is significantly suppressed in the region where a mag-
netically disordered state is expected. We show in Fig. 2
the region corresponding to a weight between 0.79 and
0.84 on the 32-site cluster.

We believe that the reduction of Z signals a tendancy
of the spinon to move away from the original site next to
the vacancy to an average distance ξconf > 1. Additional
evidences in favor of this scenario are obtained from a
careful inspection of the average local spin density

〈

Sz
i

〉

around the vacancy in both the ”bare” wavefunction and
the true GS. Results are provided in Fig. 4(a,b) for pa-
rameters corresponding to the two typical A and B points
of the phase diagram of Fig. 2. Note that, in fact,

〈
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in |Ψbare

〉

gives the initial spin-spin correlation
〈
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FIG. 3: (Color on-line) Static hole (vacancy) spectral weight
vs AF exchange parameters. (a) vs J2/J1 for J3 = 0 and
vs J3/J1 (for J2 = 0) as indicated on plot. (b) Along three
different lines (J2 + J3)/J1 = cst in the 2D (J2/J1,J3/J1)
parameter space. A and B refer to the points in the phase
diagram of Fig. 2.

(apart from a 2 × (−1)σ trivial multiplicative factor) in
the host GS. It is instructive to see that points A and
B are characterized by very short magnetic correlation
lengths, typically ξAF ≃ 2 and 1 for A and B, respec-
tively. It is important to notice that a large staggered
component, i.e. of wavevector (π, π), is always accom-
panying the uniform polarization. Moreover, no sign of
incommensurability is seen in the oscillations of Fig. 4
although a spiral phase of incommensurate wavevector
is expected at the classical level. Interestingly,

〈

Sz
i

〉

in

the ”relaxed” state, i.e. |Ψgs

〉

state, shows important
changes: (i) In contrast to the case of the unfrustrated
Heisenberg antiferromagnet (J3 = J2 = 0) [26], the spin
density decreases on the four nearest neighbor sites of the
vacancy and (ii) a clear maximum, both in the uniform
and staggered components, appears at a typical distance
ξconf significantly larger than ξAF, typically ξconf ∼ 3
lattice spacing from the vacancy. Unfortunately, larger
systems would be needed to estimate more quantitatively
the confinement length. However, our computation giv-
ing a lower bound of ξconf clearly proves that the long-
range VBS order leads to a moderate confinement of the
spinon so that a non-trivial spin structure can be seen
in the vicinity of a vacancy. Similar data are shown in
Fig. 4(c) and (d) for the Heisenberg model on the checker-
board and the Kagomé lattices respectively. Clearly, the
results for the checkerboard lattice show some qualitative
similarities with the J1−J2−J3 model on the square lat-
tice although with pronounced quantitative differences:
(i) the spin-spin correlations on the checkerboard lat-
tice is incommensurate and very short-ranged and (ii)
the spinon is almost entierely confined on the N.N. site
of the vacancy. In contrast, on the Kagome lattice, the
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FIG. 4: (Color on-line) Spin polarization in the vicinity of
the vacancy (summed up on equivalent sites and normalized

to 1/2) for both the ”bare” vacancy state cO,↓|Ψ0

〉

and the
single vacancy GS as indicated on plots. J1-J2-J3 model
with J2/J1 = 0.3 and J3/J1 = 0.2 (a) and J2/J1 = 0.1 and
J3/J1 = 0.4 (b) corresponding to points A (Z ≃ 0.8283) and
B (Z ≃ 0.7998) in the phase diagram of Fig. 2. (c) same for
the checkerboard lattice (32 site cluster) apart from a multi-
plicative factor of 2. (d) same for the Kagomé lattice (30 site
cluster).

spin-1/2 delocalizes on the whole lattice, a clear signature
of deconfinement.

The previous findings could have important implica-
tions on the interpretation of the Nuclear Magnetic Res-
onance (NMR) experiments on doped 2D quantum anfi-
ferromagnets. Indeed, the substitution of a S=1/2 atom
by a non-magnetic one (e.g. Zn2+ for Cu2+) which acts
as a vacant site can be exactly described by our previous
model. Moreover, the local spin densities

〈

Sz
i

〉

on the
magnetic sites around a vacancy (spinless atom) can be
directly accessed by NMR. It is important to notice that
these densities correspond to those of the ”relaxed” state
i.e. |Ψgs

〉

. It should be stressed then that, if the spin-
spin correlations are short range, NMR probes the spinon
”wavefunction” and not the host spin correlations. The
later could be quite different, in particular when a clear
separation of length scales occurs, i.e. ξconf > ξAF. Note
that newly developped spin-polarized Scaning Tunneling
Microscopy (SP-STM) techniques might allow to probe
such atomic-scale spin structure [27] around a vacancy
on a surface.

Lastly, we briefly examine the case of a mobile hole.
This typically mimics the case of an ARPES experiment
in a Mott insulator where a single photo-induced hole is
created or the case of a small chemical doping by non-
magnetic atoms. The hole motion described as in a t–J
model is characterized by a hole hopping amplitude t. For
the unfrustrated t–J model, the hole dynamics has been
successfully analysed in term of holon-spinon bound-
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FIG. 5: (Color on-line) (a) Mobile hole spectral spectral
function vs ω for J1/t = 0.4 and hole momentum k = (π, 0).
Data for several values of J3/J1 are shown. (b) Four lowest
energy poles of A(k, ω) vs the ratio J3/J1. The GS energy of
the undoped AF sets the energy reference. J1/t = 0.4 (J3/t =
0.4) for J3 ≤ J1 (J3 > J1). Areas of dots are proportionnal
to spectral weights.

state [28] with a reduced quasiparticle weight. Typi-
cal spectral functions are shown in Fig. 5(a,b) for in-
creasing frustration (we assume here J2 = 0 and vary
J3) and a fixed ratio of J1/t. For maximum frustration
0.5 ≤ J3/J1 ≤ 0.8, the weight of the quasiparticle peak
(at the bottom of the spectrum) is redistributed on sev-
eral poles. Such a striking feature is consistent with a
weakening of the binding between the two constituents
of the hole or, somewhat equivalently, with a spatially
extended holon-spinon boundstate. This scenario agrees
with the previous real space picture discussed above for
the case of a vacant site. Such a behavior bears also some
similarity with the case of the t-J model on the checker-
board lattice showing a strongly reduced (but finite) sin-
gle hole QP weight [12]. In contrast, on the Kagomé lat-
tice the hole spectral function was found to be completely
incoherent, the evidence for spin-charge separation [12].

To conclude, the confinement of a spinon liberated by
introducing a vacant site (or a mobile hole) has been
studied in various frustrated Heisenberg AF. In the non-
magnetic phase of the J1−J2−J3 model, an intermediate
behavior between a strong confinement (as in the checker-
board Heisenberg model) and a complete deconfinement
(as in the Heisenberg model on the Kagomé lattice) is
observed, suggesting the existence of a new length scale
related to the confinement of the S = 1/2 object . An in-
teresting connection between this real-space picture and
features in the hole spectral function is established. Sim-
ilarly, observations in ARPES experiments on frustrated
Mott insulators and in NMR or SP-STM on lightly sub-
stituted systems could be correlated.
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