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Abstract

We propose an ICA contrast based on density estimation of the observed signal and its
marginal distributions through wavelets. The statistical risk of the wavelet contrast is
linked with approximation properties in Besov spaces. Follows a discussion on computa-
tional issues; in particular, we resort to dyadic rational approximations to compute wavelet
coefficients, instead of the usual histogram and filter scheme generally used in density esti-
mation. The implemented wavelet contrast has linear complexity in n; numerical simulations
give results as good as those of existing methods, if no better. The wavelet contrast also
admits explicit differentials; using a simple jackknife, we give filter aware and computation-
ally tractable formulations for the gradient and hessian of the contrast estimator.
Keywords: ICA, wavelets, Besov spaces, nonparametric density estimation

1. Introduction

In signal processing, blind source separation consists in the identification of analogical,
independent signals mixed by a black-box device. In psychometry, one has the notion of
structural latent variable whose mixed effects are only measurable through series of tests; an
example are the Big Five (components of personality) identified from factorial analysis by
researchers in the domain of personality evaluation (Roch, 1995). Other application fields
such as digital imaging, biomedicine, finance and econometrics also use models aiming
to recover hidden independent factors from observation. Independent component analysis
(ICA) is one such tool; it can be seen as an extension of principal component analysis, in that
it goes beyond a simple linear decorrelation only satisfactory for a normal distribution; or as
a complement, since its application is precisely pointless with the assumption of normality.

Articles on ICA are found in the research fields of signal processing, artificial neural net-
works, statistics and information theory. Comon (1994) defined the concept of independent
component analysis (ICA) as maximizing the degree of statistical independence among out-
puts using contrast functions approximated by the Edgeworth expansion of the Kullback-
Leibler divergence.

The model is usually stated as follows: let x be a random variable on R
d, d ≥ 2, one tries

to find couples (A, s), such that x = As, where A is a square invertible matrix and s a
latent random variable whose components are mutually independent. This is usually done
through some contrast function that cancels out if and only if the components of Wx are
independent, where W is a candidate for the inversion of A.



Maximum-likelihood methods and contrast functions based on mutual information or other
divergence measures between densities are commonly employed. Cardoso (1999) used
higher-order cumulant tensors, which led to the Jade algorithm, Bell and Snejowski (1990s)
published an approach based on the Infomax principle. Hyvarinen, Karhunen and Oja
(1997) presented the fast ICA algorithm.

In the semi-parametric case, where the latent variable density is left unspecified, Bach and
Jordan (2002) proposed a contrast function based on canonical correlations in a reproduc-
ing kernel hilbert space. Similarly, Gretton, Herbrich and Smola (2003) proposed kernel
covariance and kernel mutual information contrast functions.

The density model assumes that the observed random variable X has the density fA given
by,

fA(x) = |detA−1|f(A−1x)

= |detB|f1(b1x) . . . f
d(bdx),

where bℓ is the ℓth row of the matrix B = A−1; which results from a change of variable
if the latent density f is equal to the product of its marginal distributions f1 . . . fd. In
this regard, latent variable s = (s1, . . . , sd) having independent components means that the
variables sℓ ◦ πℓ are independent random variables defined on some product probability
space Ω =

∏

Ωℓ, with πℓ the canonical projections. So s can be defined as the compound of
the unrelated s1,. . . , sd sources.

Tsybakov and Samarov (2002) proposed a method of simultaneous estimation of the di-
rections bi, based on nonparametric estimates of matrix functionals using in particular the
gradient of fA.

In this paper, we propose a wavelet based ICA contrast. Wavelets are orthonormal bases of
L2 with remarkable approximation and statistical properties. As the usual sine in Fourier
analysis, wavelets split up a signal into frequency components, thus allowing a fine study
at different scales, all within the framework of a so-called multiresolution analysis. An
advantage of wavelets over the sine wave lies in the double localization property, both in
frequency and time domain, which makes them well-suited to approximate data with sharp
spikes.

The proposed contrast Cj compares the mixed density fA and its marginal distributions
through their projections on a multiresolution analysis at level j. It thus heavily relates
on the procedures of wavelet density estimation which are found in a series of articles
from Kerkyacharian and Picard (1992) and Donoho, Johnstone, Kerkyacharian and Picard
(1996), among others. See also the book from Härdle, Kerkyacharian, Picard and Tsy-
bakov (1998) for a self-contained presentation of wavelets linked with Sobolev and Besov
approximation theorems and statistical applications.

As will be shown, the wavelet contrast has the property to be zero only on a projected
density with independent components. The key parameter of the method lies in the choice
of a resolution j, so that minimizing the contrast at that resolution gives a satisfactory
approximate solution to the ICA problem.

Besov spaces are a general tool in describing smoothness properties of functions; they also
constitute the natural choice when dealing with projections on a multiresolution analysis.
We first show that a linear mixing operation is conservative as to Besov membership;
after what we are in position to derive a statistical risk that will hold for the entire ICA
minimization procedure.

2



Under its simplest form, the wavelet contrast is a linear function of the empirical measure
on the observation. We give the rule for the choice of the resolution level j that minimizes
the risk, assuming a known regularity for the latent signal.

The rest of the article is about computation. In particular, we resort to the moment
estimator of wavelet coefficients with approximation at dyadic rationals, instead of the
widely used histogram followed by smoothing, typical of density estimation. We have
implemented this way a fast wavelet contrast that meets the needs of the minimization
procedure in ICA.

Using a plain steepest descent algorithm with empirical gradient, the efficacy of the wavelet
contrast for demixing seems as good as existing algorithms, if not challenging.

We end by a differential calculus applied to the wavelet contrast, and give formulations
based on simple jackknifes for the gradient and hessian estimators. We show that these
formulations can be implemented in a tractable way and thus constitute a potential im-
provement in accuracy or convergence rate for the minimization stage.

2. Wavelet contrast, Besov membership

Let (Vj)j∈Z be a multiresolution analysis of L2(R), with Vj spanned by {ϕjk = 2j/2ϕ(2j . −
k), k ∈ Z} and Wj the complement of Vj in Vj+1. A function expandable on (ϕ, ψ) is written,

f(x) =
∑

k

αj0kϕjk(x) +

∞
∑

j=j0

∑

k

βjkψjk(x).

Define V d
j as the tensorial product of d copies of Vj. The increasing sequence (V d

j )j∈Z defines

a multiresolution analysis of L2(R
d) (Meyer, 1997):

for (i1 . . . , id) ∈ {0, 1}d and (i1 . . . , id) 6= (0 . . . , 0), define Ψ(x)i1...,id =
∏d

ℓ=1 ψ
(iℓ)(xℓ), with

ψ(0) = ϕ, ψ(1) = ψ, so that ψ appears at least once in the product Ψ(x) (we now on omit
i1 . . . , id in the notation for Ψ, and in (1), although it is present each time);

for (i1 . . . , id) = (0 . . . , 0), define Φ(x) =
∏d

ℓ=1 ϕ(xℓ);

for j ∈ Z, k ∈ Z
d, x ∈ R

d, let Ψjk(x) = 2
jd

2 Ψ(2jx− k) and Φjk(x) = 2
jd

2 Φ(2jx− k);

define W d
j as the orthogonal complement of V d

j in V d
j+1; it is an orthogonal sum of 2d − 1

spaces having the form U1j . . .⊗Udj, where U is a placeholder for V or W ; V or W are thus
placed using up all permutations, but with W represented at least once, so that a fraction of
the overall innovation brought by the finer resolution j+1 is always present in the tensorial
product.

A function expandable on the basis (Φ,Ψ) can be written,

f(x) =
∑

k

αj0kΦj0k(x) +

∞
∑

j=j0

∑

k

βjkΨ(x), (1)
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with implicit multidimensional notation for k.

In what follows, we assume that f is a density function with compact support, expandable
on a compactly supported tensorial wavelet basis Φ,Ψ ∈ L2(Rd).

We define f⋆ℓ to be the marginal distribution in dimension ℓ,

f⋆ℓ:xℓ 7→
∫

R
d−1

f(x1. . . , xd) dx1 . . . dxℓ−1dxℓ+1 . . . dxd,

and assume it is expandable on the basis ϕ, ψ ∈ L2(R), used to build Φ,Ψ.

The wavelet expansions up to order j, Pjf and P ℓ
j f

⋆ℓ, that is to say the projections of f
and f⋆ℓ on V d

j and Vj respectively can be written,

Pjf(x) =
∑

k∈Z
d

αjkΦjk(x) and P ℓ
j f

⋆ℓ(xℓ) =
∑

kℓ∈Z

αjkℓϕjkℓ (xℓ),

where αjkℓ =
∫

f⋆ℓ(xℓ)ϕjkℓ (xℓ) dxℓ and αjk = αjk1...,kd =
∫

f(x)Φjk(x) dx.

Proposition 2.1 (wavelet contrast)

Define the contrast function,

Cj(f) =
∑

k1...,kd

(αjk1...,kd − αjk1 . . . αjkd )2,

with αjkℓ =
∫

R
f⋆ℓ(xℓ)ϕjkℓ (xℓ) dxℓ and αjk1...,kd =

∫

Rd f(x)Φjk1 ,...,kd(x) dx.

Cj is equal to the square of the L2 norm of Pjf − P 1
j f

⋆1 . . . P d
j f

⋆d and,

f factorizable =⇒ Cj(f) = 0,

Cj(f) = 0 =⇒ Pjf =
d
∏

ℓ=1

P ℓ
j f

⋆ℓ.

Proof

As V d
j = Vj ⊗ . . . Vj, one has Pjf = (P d

j ◦ . . . P 1
j )f , and the same for any other permutation of

the order of projections.

As for the first assertion, with f = f1 . . . fd, one has f⋆ℓ = f ℓ, ℓ = 1, . . . d.

By linearity of projection operators, and seeing that the product f1 . . . f ℓ−1 f ℓ+1 . . . fd is a
multiplicative constant to P ℓ

j , one has Pjf = P 1
j f

1 . . . P d
j f

d.

Since the density f and the wavelet ϕ are compactly supported, there are finitely many k
needed for complete expansion of each P ℓ

j f
ℓ, and for all x ∈ R

d their product is written,

(

∑

k1

αjk1ϕjk1 (x1)

)

. . .

(

∑

kd

αjkdϕjkd (xd)

)

=
∑

k1...,kd

αjk1 . . . αjkd ϕjk1 (x1) . . . ϕjkd (xd).
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The finite set K(f) = {(k1. . . , kd) ∈ Z
d:αjk1...,kd 6= 0} needed to express Pjf is always a subset

of the one needed for P 1
j f

⋆1 . . . P d
j f

⋆d, the latter being the tensorial product of the canonical
projections of K(f); both indice sets are equal when f = f⋆1 . . . f⋆d.

Therefore one can write,

0 =
(

Pjf − P 1
j f

1 . . . P d
j f

d
)

=
∑

k1...,kd

(αjk1...,kd − αjk1 . . . αjkd )ϕjk1 . . . ϕjkd ,

which implies αjk1...,kd = αjk1 . . . αjkd , ∀(k1. . . , kd) ∈ Z
d, since the ϕjk1 . . . ϕjkd form an or-

thonormal system; this proves the first assertion.

For the second assertion, Cj = 0 means exactly that Pjf − P 1
j f

⋆1 . . . P d
j f

⋆d is equal to zero.

For the zero contrast to give any clue as to whether the non projected difference f−f⋆1 . . . f⋆d

is itself close to zero, a key parameter is the order of projection j. Under the notations of the
preceding proposition, when Cj(f) = 0, for any Lp norm one has ‖Pjf−P 1

j f
⋆1 . . . P d

j f
⋆d‖p = 0,

and so,
‖ f − f⋆1 . . . f⋆d ‖p ≤ ‖f − Pjf‖p + ‖P 1

j f
⋆1 . . . P d

j f
⋆d − f⋆1 . . . f⋆d‖p

= ‖f − Pjf‖p + ‖Pj(f
⋆1 . . . f⋆d) − f⋆1 . . . f⋆d‖p.

At least for p = 2, when j → +∞ and f , f⋆ℓ in L2, the two terms above are as small as
desired since

⋃

j V
d
j = L2(R

d).

For other values of p, we suppose that f belongs to the (inhomogeneous) Besov space
Bspq(R

d), i.e.

Jspq(f) = ‖α0.‖ℓp
+





∑

j≥0

[

2js2dj( 1
2
− 1

p )‖βj.‖ℓp

]q





1
q

<∞,

with s > 0, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and ϕ, ψ Cr, r > s, and d the dimension (Meyer, 1997).

With a r-regular wavelet ϕ, r > s, the very definition of Besov spaces implies for f that
(Meyer, 1997),

‖f − Pjf‖p = 2−js ǫj , {ǫj} ∈ ℓq(N
d)

Assuming that the product f⋆1 . . . f⋆d of marginal distributions also belong to another Besov
space with same p parameter, and using the Sobolev injection,

Bs′pq′ ⊂ Bspq for s′ ≥ s, q′ ≤ q,

we are through since both f and f⋆1 . . . f⋆d will belong to the enclosing Besov space Bs′′pq′′

with s′′ = min(s, s′) and q′′ = max(q, q′).

We are then left with the study of the Besov membership of a density f compared with the
membership of the product of its marginal distributions. In an ICA context, the function
f has the additional property to be of the type,

fA(x) = |detA−1| f(A−1x) = |detB| f1(b1x) . . . f
d(bdx),

with B = A−1, bℓ line ℓ of B, and f = f1 . . . fd.
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Proposition 2.2 (Besov membership of marginal distributions)

Let f be a density function belonging to Bspq(R
d).

Each of the marginal distributions of f belongs to Bspq(R).

proof

Let us first check the Lp membership of the marginal distribution. For p ≥ 1, by convexity
one has,

∫

R
d

|fA|p dx =

∫

R

∫

R
d−1

|fA|p dx⋆ℓdxℓ ≥
∫

R

∣

∣

∣

∣

∫

R
d−1

fA dx
⋆ℓ

∣

∣

∣

∣

p

dxℓ =

∫

R

|f⋆l
A |p dxℓ;

that is to say ‖f⋆l
A ‖p ≤ ‖fA‖p.

For the Besov membership, we resort to a norm on Bspq(R
d) defined through the modulus

of smoothness (Devore, Lorentz, 1993),

J ′′
spq(f) = ‖f‖p + ‖ωr(f, .)‖s,q,

where, for 1 ≤ p, q ≤ ∞ and r = [s] + 1,

‖ωr(f, .)‖s,q =

(
∫

R
d

[

ωr(f, t)p

|h|s
]q
dh

|h|

)1/q

0 < q <∞

= sup
t∈R

d>0

|t|−sωr(f, t)p q = ∞;

and where the rth modulus of smoothness is defined by ωr(f, t)p = sup0<h≤t ‖∆r
h(f, .)‖p, with

∆r
h(f, x) =

r
∑

k=0

Ck
r (−1)r−kf(x+ kh),

with implied multidimensional notation when f ∈ Lp(R
d).

With f⋆ℓ the marginal distribution ℓ of f , eℓ designating a vector of the canonical basis of
R

d, h ∈ R and x = (x1, . . . , xd),

τhf
⋆ℓ = f⋆ℓ(xℓ + h) =

∫

R
d−1

f(x+ heℓ) dx⋆ℓ;

so that by convexity,

‖τhf⋆ℓ − f⋆ℓ‖p
p =

∫
∣

∣

∣

∣

∫

R
d−1

f(x+ heℓ) − f(x)dx⋆ℓ

∣

∣

∣

∣

p

dxℓ

≤
∫

R
d

|f(x+ heℓ) − f(x)|p dx

= ‖τheℓf − f‖p
p.
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Since ∆r
h(f⋆ℓ) =

∑r
k=0 C

k
r (−1)r−k

∫

R
d−1 f(x+ kheℓ) dx⋆ℓ, one has in the same way,

‖∆r
h(f⋆ℓ, .)‖Lp(R) ≤ ‖∆r

heℓ(f, .)‖Lp(Rd).

So that for h = (h1, . . . , hd) and t = (t1, . . . , td),

ωr(f
⋆ℓ, tℓ)p = sup

0<hℓ≤tℓ

‖∆r
hℓ(f

⋆ℓ, .)‖Lp(R) ≤ sup
0<hℓ≤tℓ

‖∆r
hℓeℓ(f, .)‖Lp(Rd)

= ωr(f, te
ℓ)p ≤ sup

0<h≤t
‖∆r

h(f, .)‖Lp(Rd) = ωr(f, t)p.

Next, since |tℓ| = |teℓ|, one can write,

‖ωr(f
⋆ℓ, .)‖s,q ≤

[∫ [

ωr(f, t
ℓ)p

|teℓ|s
]q

dtℓ

|teℓ|

]

1
q

;

the right member is finite since it is the restricted semi-norm of f in the direction eℓ, which
cannot be greater than the unrestricted one.

Next, we check that the mixed density fA belongs to the same Besov space than the original
density f .

Proposition 2.3 (Besov membership of the mixed density)

Let f = f1 . . . fd and fA(x) = |detA−1|f(A−1x).

(a) Assume that f belongs to Lp(R
d), or that each f ℓ belongs to Lp(R), then fA and the product of

its marginal distributions
∏

f⋆ℓ
A also belong to Lp(R

d).

(b) f and fA have same γspq semi-norm up to a constant; that is to say, together with (a), they
belong to the same Bspq inhomogeneous Besov space.

proof

Another norm equivalent to Jspq using the modulus of continuity is defined by (Bergh and
Löstrom , 1976),

J ′
spq(f) = ‖f‖p +

∑

|m|≤[s]

γαpq(D
mf),

where [s] is the integer part of s, α = s − [s] is the fractional part, m is in multi-index
notation and,

γαpq(f) =

[∫

R
d

[‖f(x− h) − f(x)‖p

|h|α
]q
dh

|h|

]
1
q

γαp∞(f) = sup
h∈R

d⋆

‖f(x− h) − f(x)‖p

|h|α ;

For (a), with p ≥ 1, as in Prop. 2.2 above, one has ‖f⋆ℓ
A ‖p ≤ ‖fA‖p. Also,

‖fA‖p = |A|−p

∫

|f(A−1x)|p dx = |A|−p

∫

|f(x)|p |A| dx = |A|1−p ‖f‖p.
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And finally by Fubini theorem, ‖f‖Lp(Rd) = ‖f1‖Lp(R) . . . ‖fd‖Lp(R), so that f ∈ Lp(R
d) ⇐⇒

f ℓ ∈ Lp(R), ℓ = 1 . . . d .

For (b), we use the γαpq semi-norm.

With τhf = f(.− h) and a change of variable in the integral one has,

‖τhfA − fA‖p = |A|−1+ 1
p ‖τA−1hf − f‖p ;

next, using the fact that |A−1h| ≤ ‖A−1‖ |h|, i.e. |h|−α ≤ |A−1h|−α‖A−1‖α, one has,

‖τhfA − fA‖p

|h|α =
|A|−1+ 1

p ‖τA−1hf − f‖p

|h|α

≤ |A|−1+ 1
p ‖A−1‖α ‖τA−1hf − f‖p

|A−1h|α .

So that,

γαpq(fA) ≤ |A|−1+ 1
p ‖A−1‖α+ 1

q

[∫ [‖τA−1hf − f‖p

|A−1h|α
]q

dh

|A−1h|

]
1
q

= |A| 1p ‖A−1‖α+ 1
q

[∫ [‖τℓf − f‖p

|ℓ|α
]q
dℓ

|ℓ|

]
1
q

= |A| 1p ‖A−1‖α+ 1
q γαpq(f)

= λ
1
p
−α− 1

q

1 (λ2 . . . λd)
1
p γαpq(f),

with λ1, . . . , λd the eigenvalues of A in decreasing order.

About the s parameter, since dfA(h) = |A−1| df(A−1h) ◦A−1 one can see that the γαpq semi-
norms of the partial derivatives of fA are bounded the same way by the ones of f . So that
both functions have the same γspq semi-norm, up to a constant. Finally, f and fA belong
to the same Besov space.

3. Risk of the wavelet contrast estimator

Define the experiment En = (X⊗n, A⊗n, (X1, . . . , Xn), Pn
fA
, f ∈ V ), where X1, . . . , Xn is an iid

sample of X = AS, and Pn
fA

= PfA
. . .⊗PfA

is the joint distribution of (X1 . . . , Xn). Likewise,
define Pn

f as the joint distribution of (S1 . . . , Sn).

The coordinates αjk in the wavelet contrast are estimated as usual by,

α̂jk1...,kd =
1

n

n
∑

i=1

ϕjk1 (X1
i ) . . . ϕjkd(Xd

i ) and α̂jkℓ =
1

n

n
∑

i=1

ϕjkℓ (Xℓ
i ), ℓ = 1, . . . d.

And the linear wavelet contrast estimator is given by,

Ĉj(x1 . . . , xn) =
∑

k1...,kd

(α̂jk1...,kd − α̂jk1 . . . α̂jkd)2 =
∑

k∈Z
d

δ̂2jk,
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where we define δ̂jk as the difference α̂jk1...,kd − α̂jk1 . . . α̂jkd .

The sum in k is finite for a compactly supported wavelet and a compactly supported density.
Moreover we take the convention that the whole signal is contained in a cube [0, 1]⊗d after
possible rescaling. For the compactly supported Daubechies wavelets (Daubechies, 1992),
D2N,N = 1, 2, . . ., whose support is [0, 2N − 1], the maximum number of k intersecting with
an observation lying in the cube is (2j + 2N − 2)d.

Using a quadratic loss function, the risk associated to Ĉj in estimating Cj, R(Ĉj , fA), is
given by R(Ĉj , fA) = En

fA
(Ĉj −Cj)

2 = b2 +σ2 with b = En
fA
Ĉj −Cj and σ2 = En

fA
(Ĉj −En

fA
Ĉj)

2.

We are in fact specially interested by the risk relative to zero, En
fW A

Ĉ2
j , since we estimate a

contrast function Cj that should be zero after we applied to X = AS a transformation W ,
found by some procedure, and supposed to reverse the mixing by A.

In this part we come across terms of the form,

Vn =
1

nm

∑

i1,...,im

g1
jk(Xi1 ) . . . g

m
jk(Xim

),

with (X1 . . . , Xn) the independent identically distributed sample. This is the Von Mises
statistic associated with the kernel function h(x1, . . . , xm) = g1

jk(x1) . . . gm
jk(xm), symmetrized

if necessary by hs = 1
m!

∑

p h(x
1, . . . , xm), where

∑

p denotes summation over the m! permu-
tation of (1, . . . ,m).

The associated unbiased U -statistic,

Un = [Cm
n ]−1

∑

i1<...<im

g1
jk(Xi1) . . . g

m
jk(Xim

)

has expectation Eg1
jk(X) . . . Egm

jk(X).

We then use the following lemma which connects a V -statistic with its associated U -statistic
(Serfling, 1980),

Lemma 3.1 (U-V statistic connection )

if r is a positive integer, and E|h(Xi1 , . . . , Xim
)|r <∞ for all i1, . . . im ∈ {1, . . . n}, then

E|Un − Vn|r = O(n−r).

For our purpose, the kernel function will depend on j, that we need to pull out of the
O(n−r) term; from the proof of Serfling’s lemma we see that,

En
fA

|Un − Vn|r = n−mr En
fA

|nm(Un − Vn)|r

= n−mr En
fA

|(nm − Cm
n )(Un −Wn)|r

= n−mr(nm − Cm
n )r En

fA
|Un −Wn|r

≤ n−mr(nm − Cm
n )r

(

En
fA

|Un|r + En
fA

|Wn|r
)

≤ O(n−r)
(

En
fA

|Un|r + En
fA
|Wn|r

)

,
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with Wn the average of all terms h(Xi1 , . . . , Xim
) with at least one equality ia = ib, a 6= b, and

using the fact that nm(Un −Vn) = (nm −Cm
n )(Un −Wn), and the other fact that (nm −Cm

n ) =
O(nm−1) is positive.

The gjk that we are going to deal with, will be either Φ either ϕ ◦ πℓ, where πℓ designates
the canonical projection on component ℓ; assuming there are md Φ and m1 ϕ ◦ πℓ, with
md +m1 = m,

En
fA

|Un| ≤ [Cm
n ]−1

∑

i1<...<im

(

2
j

2 ‖ϕ‖∞
)dmd+m1

=
(

2
j

2 ‖ϕ‖∞
)dmd+m1

,

and by the same means, En
fA

|Wn| ≤
(

2
j

2 ‖ϕ‖∞
)dmd+m1

.

So that we can finally write,

E
1

nm

∑

i1,...,im

g1
jk(Xi1) . . . g

m
jk(Xim

) = Eg1
jk(X) . . . Egm

jk(X) + 2
j

2
(dmd+m1)O(n−1), (2)

with md +m1 = m, 0 ≤ md ≤ m, 0 ≤ m1 ≤ m.

Proposition 3.4 (Risk of Ĉj)

a) A convergence rate for the bias of Ĉj relative to zero is given by En
fA
Ĉj = Cj + 22jdO(1/n);

incidentally, the plain bias is then 22jdO(1/n).

b) A convergence rate for the variance of Ĉj is given by En
fA

(

Ĉj − En
fA
Ĉj

)2

= 24jdO(1/n).

c) The risk of Ĉj relative to zero is En
fA
Ĉ2

j = C2
j + 24jdO(1/n).

proof

As for the bias, one has,

δ̂2jk = (α̂jk − α̂jk1 . . . α̂jkd )2

= α̂2
jk − 2α̂jkα̂jk1 . . . α̂jkd + (α̂jk1 . . . α̂jkd )2.

For the first term, apply (2) to 1
n

∑

i1
Φ(Xi1)

1
n

∑

i2
Φ(Xi2), with g1 = g2 = Φ, md = m = 2 and

m1 = 0. So,

En
fA
α̂2

jk = En
fA

1

n2

∑

i1,i2

Φ(Xi1)Φ(Xi2)

= En
fA

Φ(X1)E
n
fA

Φ(X1) + 2jdO(
1

n
)

= α2
jk + 2jdO(

1

n
).

For the central term, apply (2) to 1
n

∑

i0
Φ(Xi0)

1
n

∑

i1
ϕ(X1

i1
) . . . 1

n

∑

id
ϕ(Xd

id
), with g0 = Φ and

gℓ = ϕ ◦ πℓ, ℓ = 1, . . . , d, md = 1, m1 = d, m = d+ 1.
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Therefore,

En
fA

[α̂jkα̂jk1 . . . α̂jkd ] = En
fA

[

1

n

∑

i0

Φ(Xi0)
1

n

∑

i1

ϕ(X1
i1) . . .

1

n

∑

id

ϕ(Xd
id

)

]

= En
fA

Φ(X1)E
n
fA
ϕ(X1

1 ) . . . En
fA
ϕ(Xd

1 ) + 2jdO(
1

n
)

= αjkαjk1 . . . αjkd + 2jdO(
1

n
).

For the last term, apply (2) to,

1

n

∑

i1

ϕ(X1
i1)

1

n

∑

id+1

ϕ(X1
id+1

) . . .
1

n

∑

id

ϕ(Xd
id

)
1

n

∑

i2d

ϕ(Xd
i2d

)

with gℓ = gℓ+d = ϕ ◦ πℓ, ℓ = 1, . . . , d; md = 0, m1 = m = 2d.

Finally, En
fA
δ̂2jk = δ2jk + 2jdO( 1

n ). So for the bias relative to zero,

En
fA

∑

k

δ̂2jk =
∑

k

(

δ2jk + 2jdO(
1

n
)
)

= Cj + 22jdO(1/n).

On the other hand for the variance term,

σ2 = En
fA

(

Ĉj − En
fA
Ĉj

)2

= En
fA

(

∑

k

δ̂2jk − En
fA

∑

k

δ̂2jk

)2

= En
fA

(

∑

k

[

δ̂2jk − En
fA
δ̂2jk

]

)2

=
∑

k,ℓ

En
fA

(

δ̂2jk − En
fA
δ̂2jk

)(

δ̂2jℓ − En
fA
δ̂2jℓ

)

=
∑

k,ℓ

En
fA
δ̂2jk δ̂

2
jℓ − En

fA
δ̂2jkE

n
fA
δ̂2jℓ,

with δ̂2jk δ̂
2
jℓ given by,

δ̂2jk δ̂
2
jℓ = (α̂jk − α̂jk1 . . . α̂jkd)2(α̂jℓ − α̂jℓ1 . . . α̂jℓd)2

= α̂2
jkα̂

2
jℓ − 2α̂2

jkα̂jℓα̂jℓ1 . . . α̂jℓd + α̂2
jkα̂

2
jl1 . . . α̂

2
jld − 2α̂jkα̂jk1 . . . α̂jkd α̂2

jℓ

+ 4α̂jkα̂jk1 . . . α̂jkd α̂jℓα̂jℓ1 . . . α̂jℓd − 2α̂jkα̂jk1 . . . α̂jkd α̂2
jl1 . . . α̂

2
jld

+ α̂2
jk1 . . . α̂2

jkd α̂
2
jℓ − 2α̂2

jk1 . . . α̂2
jkd α̂jℓα̂jℓ1 . . . α̂jℓd + α̂2

jk1 . . . α̂2
jkd α̂

2
jl1 . . . α̂

2
jld .

The decoupling equation (2) applies to all the terms of δ̂2jk δ̂
2
jℓ expansion. Moreover, each

time the numbers md and m1 are such that dmd +m1 is equal to 4d.

In sum, after re-factorization, one has En
fA
δ̂2jk δ̂

2
jℓ = δ2jkδ

2
jℓ + 22jdO( 1

n ); and also En
fA
δ̂2jk =

δ2jk + 2jdO( 1
n ). So the variance of Ĉj is in 24jdO(1/n).
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Finally the risk of Ĉj relative to zero is given by,

R(Ĉj , fA) = En
fA

(

Ĉj − En
fA
Ĉj

)2
+
(

En
fA
Ĉj

)2

= En
fA
Ĉ2

j

= En
fA

∑

k,ℓ

δ̂2jk δ̂
2
jℓ

=
∑

k,ℓ

(

δ2jkδ
2
jℓ + 22jdO(1/n)

)

= C2
j + 24jdO(1/n).

(3)

We now give a rule for choosing the resolution j that minimizes the risk of the estimator
Ĉj relative to zero. This rule, obtained as usual by balancing bias and variance, depends
on s, the unknown regularity of the density that is assumed to belong to some Besov space
Bspq.

Proposition 3.5 (resolution j minimizing the risk)

Assume that f belongs to Bspq(R
d) and Cj is based on a r-regular wavelet ϕ, r > s′.

The risk of Ĉj relative to zero is minimized by choosing j such that 2j ≈ n
1
4

1

s′+d , with s′ = s if p > 2
and s′ = s + d/2 − d/p if 1 ≤ p ≤ 2. The corresponding convergence rate under independence is

n
−s′

s′+d .

This choice ensures a risk of Ĉj relative to Cj in n
−s′

s′+d .

proof

It was seen that,

Cj(fA)
1
2 = ‖Pj(f

⋆1
A . . . f⋆d

A ) − PjfA‖2

≤ ‖fA − PjfA‖2 + ‖fA − f⋆1
A . . . f⋆d

A ‖2 + ‖Pj(f
⋆1
A . . . f⋆d

A ) − f⋆1
A . . . f⋆d

A ‖2;

in the same way we have,

‖fA − f⋆1
A . . . f⋆d

A ‖2 ≤ ‖fA − PjfA‖2 + ‖Pj(f
⋆1
A . . . f⋆d

A ) − f⋆1
A . . . f⋆d

A ‖2 + Cj(fA)
1
2 .

Let K⋆(A, f) = ‖fA − f⋆1
A . . . f⋆d

A ‖2; K⋆(A, f) is constant relatively to j and n just like Cj and
from the two inequations above one has,

|K⋆(A, f) − Cj(fA)
1
2 | ≤ ‖fA − PjfA‖2 + ‖Pj(f

⋆1
A . . . f⋆d

A ) − f⋆1
A . . . f⋆d

A ‖2

By Prop. 2.2 and 2.3 we know that fA and the product of its marginal distributions belong
to the same Bspq than the original f .

If 1 ≤ p ≤ 2, using the Sobolev embedding Bspq ⊂ Bs′p′q for p ≤ p′ and s′ = s + d/p′ − d/p,
one can see that fA belongs to Bs′2q with s′ = s+ d/2 − d/p, and so by definition,

‖fA − PjfA‖2 ≤ ǫj2
−j(s+d/2−d/p),
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with ǫj ∈ ℓq.

if p > 2, since we consider compactly supported densities, one can write,

‖fA − PjfA‖2 ≤ ‖fA − PjfA‖p ≤ ǫj2
−js.

Finally with s modified to s+ d/2 − d/p if p < 2, one has,

|K⋆(A, f) − Cj(fA)
1
2 | ≤ K2−js; (4)

with K a constant.

When A = I, under independence, K⋆(A, f) vanish and Cj(fA) is convergent to zero with j;
when A 6= I, K⋆(A, f) is strictly positive and Cj(fA) cannot reach zero.

Taking power 4 of (4) and using (3),

R(Ĉj , fA) +K⋆Q(Cj ,K
⋆) ≤ K2−4js + 24jdKn−1 ,

with K a placeholder for an unspecified constant, and Q(a, b) = −4a3 + 6a2b− 4ab2 + b3.

When A is far from I, the constant K⋆ is strictly positive and the risk relative to zero has
no useful upper bound. Although the risk relative to Cj is always in 24jdKn−1.

With A getting closer to I, K⋆ is brought down to zero and, the risk is then minimized
when, constants appart, we balance 2−4js with 24jdn−1, or 24j(d+s) with n.

This gives, 2j = O(n
1
4

1
s+d ), and a convergence rate of n

−s
s+d for the risk relative to zero under

independence and for the risk relative to Cj.

4. Computation of the estimator Ĉj

The estimator can be computed with any Daubechies wavelet, including Haar.

For a regular wavelet (D2N,N > 1), it is known how to compute the values ϕjk(x) (and any
derivative) at dyadic rationals, see for instance the book of Nguyen and Strang (1996); this
is the approach we used in this paper.

Alternately, using the usual filtering scheme, one can compute the Haar projection at high
j and use a discrete wavelet transform (DWT) by a D2N to synthetize the coefficients at
a lower, more desirable resolution before computing the contrast. This avoids the need to
precompute any value at dyadics, because the Haar projection is like a histogram, but adds
the time of the DWT.

While this second approach is almost exclusively used in density estimation, in the ICA
context it leads to either an inflation of computational resources, or a possibly inoperative
contrast at minimization stage. Indeed, for the Haar contrast to show any elasticity under
a small perturbation, j must be very high regardless of what would be required by the

13



signal regularity and the number of observations; whereas for a D4 and above, we just need
to set high the precision of dyadic rational approximation, which present no inconvenience
and can be viewed as a memory friendly refined binning inside the binning in j.

We now review some useful points for practical computation of the contrast estimator.

Direct evaluation of ϕjk(x) at floating point numbers

Consider x ∈ R, define xL = 2−L⌊2Lx⌋ as the closest dyadic at approximation level L, where
⌊.⌋ is the integer part or floor rounding.

To compute ϕjk(x), one can evaluate ϕ((2jx− k)L) or else ϕ(2jxL − k):

(2jx− k)L = 2−L⌊2L2jx− 2Lk⌋
= 2−L(⌊2L2jx⌋ − 2Lk)

= 2−L⌊2L+jx⌋ − k

= 2jx− 2−LF (2L+jx) − k,

where F (x) is the fractional part of x; in this case the error in x is less than 2−L in absolute
value. This is the approximation method we used. For the case ϕ(2jxL − k), the error in x
is less than 2j−L in absolute value and boils down to raising L.

When computing ϕ((2jx−k)L) = ϕ(2−L(⌊2L2jx⌋−2Lk)), the evaluation can only take 2L(2N−
1) different values; this is the needed size of an array designed to hold the precomputed
values.

Suppose tab is such an array sized 2L(2N − 1), and containing the values of the D2N at
dyadics {k + i2−L, i = 0, . . . , 2L − 1, k = 0, . . . 2N − 2} with ϕ(0) = ϕ(2N − 1) = 0, except for
Haar where ϕ(0) = 1.

Given an observation x there is exactly 2N − 1 functions ϕjk whose support contains x,
namely ϕjej

. . . ϕjej−2N+2, with ej = ⌊2jx⌋ the integer part of 2jx (if ej − 1, ...ej − 2N + 2
goes out of bound for the array containing the projection coordinates αjk, we use circular
shifting).

So one needs to compute for each x, 2
j
2ϕ(fj), . . . 2

j
2ϕ(fj +2N − 2), with fj the fractional part

of 2jx. If the index of ϕ(fj) in tab is i = ⌊2Lfj⌋, we can safely retrieve tab[i], . . . , tab[i +
(2N − 2)2L] provided the shift stays below tab’s upper bound (i.e. within the support of the
D2N), because ⌊2L(fj + k)⌋ = ⌊2Lfj⌋ + k2L.

Note that precomputed values at octave L+ 1 are those computed at octave L, interleaved
with new values.

Note also that when j + L has passed the machine floating point precision, (24 in single
precision, for IEEE 754 on 32 bit), all machine numbers smaller than 1 in absolute value
are covered and the evaluation ϕ((2jx− k)L) may give no new value.

In effect, with L + j ≥ p, the machine precision, ⌊2L+j+bx⌋ = 2b⌊2L+jx⌋ ∀x, and so if the
added b was added precision in L we have, with k ∈ {⌊2jx⌋ − k′, k′ = 0 . . . 2N − 2}

⌊2j+L+bx− 2L+bk⌋ = 2b⌊2j+Lx⌋ − 2L+bk

= 2b
(

⌊2j+Lx⌋ − 2L⌊2jx− k′⌋
)

, k′ = 0 . . . 2N − 2
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and the index will point to the exact same values in the 2b times larger table of precomputed
ϕ values;

or if b was added resolution in j, we have, with k ∈ {⌊2j+bx⌋ − k′, k′ = 0 . . . 2N − 2}

⌊2j+L+bx− 2Lk⌋ = ⌊2j+L+bx⌋ − 2Lk

= 2b⌊2j+Lx⌋ − 2L⌊2j+bx− k′⌋ k′ = 0 . . . 2N − 2

with no new value if b ≥ L.

Relocation by affine or linear transform

Relocate the observation so that it fits in a d-cube of volume 1; this does not change the
ICA problem.

Let Y = WX be a particular mixing of the observation at hand; with b = mini,j y
j
i and

a = maxi,j y
j
i − b, Ya = 1

a (Y − b) is entirely contained in the d-cube placed at zero; Y com-
ponents are independent if and only if Ya components are independent. So argmin

W
C(Y ) =

argmin
W

C(Ya).

Ya is not anymore whitened nor centered if Y was; if we need to keep a centered or whitened
observation we use the linear scaling,

Yc =
1

4

Ȳ

max
i=1,...n

‖ȳi‖
,

with Ȳ the centered (possibly whitened) version of Y ; Yc is centered and included in a cube
of volume 1, namely [− 1

2 ,
1
2 ]⊗d.

Next, if we restrict to orthogonal W and Y is whitened, the element (i, ℓ) of the transform
by W satisfies,

|(WYc)
ℓ
i |2 = | < tW ℓ, (Yc)i > |2 ≤ ‖(Yc)i‖ ≤ 1

4
,

with W ℓ the (normed) line vector ℓ of W , and (Yc)i the column vector i of Yc.

This way an initial relocation covers all the minimization process.

Whitening step

Let X be a d×n matrix with empirical dispersion Sn = 1
n−1X(In − 1

n1n
t1n) tX, with 1

n1n
t1n

an optional term needed for X centering; set,

X̃ = (n− 1)
−1

2 D
−1

2
tPX(In − 1

n
1n

t1n),

with D the diagonal matrix of the eigenvalues of Sn, and P the matrix ( v1 . . . vp ) of
associated eigenvectors, i.e. tPSnP = D. X̃ is the whitened version of X, after principal
component transformation.

Note that tX̃ is an element of Sn,d the Stiefel manifold of n × d matrices M such that
tMM = Id, which is equivalent to say that the empirical dispersion of X̃ is equal to 1

n−1Id.
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With X = AS, X tX = Id and S tS = Id implies that A is orthogonal; or also X tX = Id
and A orthogonal implies S tS = Id. Indeed, X tX = Id implies Id = AS tX, i.e. S tX is a
right inverse of A; it is also a left-inverse since A is supposed invertible, so we must have
S tXA = S t(AS)A = S tS tAA = Id; verified in particular if A is orthogonal and if tS ∈ Sn,d.

When X is centered, X̃ is a left-side transformation of X, so we have X̃ = NAS = ÃS, with
Ã orthogonal, seeing that 1

n−1Id = var(X̃) = Ãvar(S) tÃ = 1
n−1 Ã

tÃ.

Since A−1 = Ã−1N = tÃN , the inverse of A can be written as the product of an orthogonal
matrix tÃ and a matrix already known N ; so that it remains only to estimate the couple
(Ã, s), with the constraint Ã orthogonal.

If X is not centered, X̃ is not a left side transformation of X, so one cannot recover A
from Ã (1n

t1n does not in general commute with A). But centering X shifts to a new ICA
problem with A unchanged. EX = AES ⇒ X − EX = AS −AES = A(S − ES).

First simulations

In this section, we compare independent and mixed D2 to D8 contrasts on a uniform
whitened signal, in dimension 2 with 100000 observations, and in dimension 4 with 50000
observations. According to proposition 3.5, for s = +∞ the best choice is j = 0, to be
interpreted as the smallest of technically working j, i.e. satisfying 2j > 2N − 1, to ensure
that the wavelet support is contained in the observation support. For j = 0, there is only
one cell in the cube and the contrast is unable to detect any mixing effect: for Haar it is
identically zero, and for the others D2N, it is a constant (quasi for round-off errors) because
we use circular shifting if the wavelet support goes out of the observation support. At small
j such that 2 ≤ 2j ≤ 2N−1, D2N wavelets behave more or less like the Haar wavelet, except
they are more responsive to a small perturbation. We use the Amari distance as defined in
Amari (1996) rescaled from 0 to 100.

In this example, we have deliberately chosen an orthogonal matrix producing a small Amari
error (less than 1 on a scale from 0 to 100), pushing the contrast to its limits.

j D2 indep D2 mixed cpu

0 0.000E+00 0.000E+00 0.12

1 0.184E-06 0.102E-10 0.06

2 0.872E-04 0.199E-04 0.06

3 0.585E-03 0.294E-03 0.06

4 0.245E-02 0.285E-02 0.06

5* 0.926E-02 0.110E-01 0.07

6 0.395E-01 0.387E-01 0.07

7 0.162E+00 0.162E+00 0.07

8 0.651E+00 0.661E+00 0.08

9 0.262E+01 0.262E+01 0.12

10 0.105E+02 0.105E+02 0.23

11 0.419E+02 0.419E+02 0.69

12 0.168E+03 0.168E+03 2.48

j D4 indep D4 mixed cpu

0 0.250E+00 0.250E+00 0.21

1* 0.239E+00 0.522E+00 0.17

2 0.198E-04 0.209E-04 0.17

3 0.127E-03 0.159E-03 0.17

4 0.635E-03 0.714E-03 0.17

5 0.235E-02 0.282E-02 0.17

6 0.988E-02 0.105E-01 0.17

7 0.405E-01 0.419E-01 0.17

8 0.163E+00 0.165E+00 0.21

9 0.653E+00 0.653E+00 0.26

10 0.261E+01 0.262E+01 0.39

11 0.104E+02 0.105E+02 0.87

12 0.419E+02 0.420E+02 2.67

Table 1a. D2, D4 uniform, dim=2 , nobs=100000, L=10, half degree rotation (Amari error ≈ .8)
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j D6 indep D6 mixed cpu

0 0.304E+00 0.304E+00 0.37

1 0.304E+00 0.305E+00 0.37

2* 0.215E+00 0.666E+00 0.37

3 0.132E-03 0.188E-03 0.36

4 0.641E-03 0.717E-03 0.36

5 0.295E-02 0.335E-02 0.35

6 0.123E-01 0.126E-01 0.37

7 0.495E-01 0.518E-01 0.36

8 0.198E+00 0.200E+00 0.41

9 0.796E+00 0.791E+00 0.49

10 0.319E+01 0.319E+01 0.64

11 0.127E+02 0.128E+02 1.13

12 0.509E+02 0.511E+02 2.97

j D8 indep D8 mixed cpu

0 0.966E+00 0.966E+00 0.65

1 0.966E+00 0.197E+01 0.64

2* 0.914E+00 0.333E+01 0.65

3 0.446E-03 0.409E-03 0.64

4 0.220E-02 0.214E-02 0.64

5 0.932E-02 0.104E-01 0.63

6 0.388E-01 0.383E-01 0.63

7 0.157E+00 0.160E+00 0.64

8 0.628E+00 0.630E+00 0.71

9 0.253E+01 0.252E+01 0.84

10 0.101E+02 0.101E+02 1.03

11 0.405E+02 0.406E+02 1.53

12 0.162E+03 0.162E+03 3.37

Table 1b. D6, D8 uniform, dim=2 , nobs=100000, L=10, half degree rotation (Amari error ≈ .8)

Firstly, the Haar contrast is out of touch; at low resolution, the mixing passes unnoticed
because the observations stay in their original bins, and at high resolution, like for the
other wavelets, things become impossible because the ratio 2jd/n gets too big, and clearly
wanders from the optimal rule of Prop. 3.5.

Had we chosen a mixing with bigger Amari error, say 10, the Haar contrast would have
worked at many more resolutions (this can be checked using the program icalette1); still,
the Haar contrast is less likely to reach small Amari errors in a minimization procedure.

For wavelets D4 and above, the contrast is able to capture the mixing effect especially at
low resolution (best observed resolution marked) and up to j = 8. Also, the wavelet support
technical constraint is apparent between D4 and D6 or D8.

Finally we observe that the difference in computing time between Haar and a D8 is not
significative in small dimension; it gets important starting from dimension 4 (Table 2).
Note that the relatively longer cpu time for 2j < 2N − 1 is caused by the need to compute
a circular shift for practically all points instead of only at borders.

j D2 indep D2 mixed cpu

0 0.000E+00 0.000E+00 0.08

1 0.100E-03 0.155E-06 0.05

2 0.411E-02 0.221E-02 0.05

3 0.831E-01 0.684E-01 0.05

4 0.132E+01 0.129E+01 0.08

5 0.210E+02 0.210E+02 0.29

6 0.336E+03 0.335E+03 3.62

j D4 indep D4 mixed cpu

0 0.625E-01 0.625E-01 0.85

1 0.624E-01 0.304E+00 0.83

2 0.283E-03 0.331E-03 0.82

3 0.503E-02 0.453E-02 0.83

4 0.818E-01 0.824E-01 0.92

5 0.130E+01 0.133E+01 1.30

6 0.211E+02 0.211E+02 4.68

j D6 indep D6 mixed cpu

0 0.926E-01 0.926E-01 6.03

1 0.927E-01 0.929E-01 6.01

2 0.884E-01 0.825E+00 6.01

3 0.725E-02 0.744E-02 6.07

4 0.122E+00 0.117E+00 6.40

5 0.193E+01 0.195E+01 7.51

6 0.311E+02 0.311E+02 11.0

j D8 indep D8 mixed cpu

0 0.934E+00 0.934E+00 22.8

1 0.934E+00 0.364E+01 22.8

2 0.937E+00 0.111E+02 22.8

3 0.751E-01 0.751E-01 22.9

4 0.124E+01 0.117E+01 24.1

5 0.196E+02 0.196E+02 27.0

6 0.313E+03 0.313E+03 30.8

Table 2. uniform, dim=4 , nobs=50000, L=10, Amari error ≈ .5

Computations use double precision, but single precision works just as well. There is no
guard against inaccurate sums that occur about 10% of the time for D4 and above, because
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it does not prevent a minimum contrast from detecting independence. Dyadic approxima-
tion parameter L is set at octave 10, about three exact decimals, and shows enough. Cpu
times, in seconds, correspond to the total of the projection time on V d

j and on the d Vj ,
plus the wavelet contrast time; machine used for simulations is a G4 1,5Mhz, with 1Go
ram; programs are written in fortran and compiled with IBM xlf (program icalette1 to be
found in Appendix).

Contrast complexity

By complexity we mean the length of do-loops.

The projection on the tensorial space V d
j and the d margins for a Db(2N), based on n

observations, is in O(n(2N −1)d). This is O(n) for a Haar wavelet (2N=2) which correspond
to making a histogram. The projection is almost independent of j except for memory
allocation. Once the projection at level j is known, the contrast is computed in O(2jd).

On the other hand, the complexity to apply one discrete wavelet transform at level j is in
O(2jd(2N−1)d); so we see that the filtering approach consisting in taking the Haar projection
for a high j1 (typically 2j1d ≈ n

log n) and filter down to a lower j0, as a shortcut to direct D2N
moment approximation at level j0, is definitely a shortcut, except that the Haar wavelet
is intrinsically immune to small perturbations, which is a problem for empirical gradient
evaluation or the detection of a small departure from independence.

4.1 Dimension 2 example

In dimension 2, we are exempted from any further complication brought by a gradient
descent and minimization on the Stiefel manifold, and at the same time this particular
case is already illustrative of higher dimensions, at least concerning the needed resolution
j function of the density regularity.

After whitening, the inverse of A is an orthogonal matrix, whose membership can be re-
stricted to SO(2) because reflections are not relevant to ICA. So there is only one parameter
θ to find to achieve reverse mixing. Since permutations of axes are also void operations
in ICA, angles in the range 0 to π/2 are enough to find out the minimum W0 which, right
multiplied by N , will recover the ICA inverse of A. And A can be set to the identity matrix,
because what changes when A is not the identity, but any invertible matrix, is completely
contained in N .

Figures below show the wavelet contrast in W and the amari distance d(A,WN) (where
N is the matrix computed after whitening), in function of the angle of rotation of the
matrix W restricted to one period, [ 0, π/2 ]. The minimums are not necessarily at a zero
angle, because whitening leaves the signal in a random rotated position (to reproduce the
following results run the program icalette2).

We see that, provided the contrast curve has a minimum that coincides with Amari mini-
mum, any line search algorithm will find the angle to reverse the mixing effect. The only
remaining question at this stage is with what precision.

Note that D4 needs at least j = 2, D6 or D8 need at least j = 3, for the wavelets to
fully deploy inside the observation support; otherwise we use circular shifting, so that the
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computation is more or less equivalent to that of Haar. Haar contrast curves are usable if
performing a line-search with no gradient computation.

For an exponential signal, for D4 the minimum is localized, though loosely, at j = 4 (Fig.
1) and below, at j = 3 and 2 (not shown), and very well localized at j = 6 (Fig. 2) and 7
to 10 (not shown). For Haar, good localization also starts at j = 5, but with an annoying
local minimum (Fig. 3), disappearing at j = 8 and above (not shown).
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Fig.1. Exponential, D4, j=4, n=10000
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Fig.2. Exponential, D4, j=6, n=10000
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Fig.3. Exponential, D2, j=6, n=10000
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Fig.4. Student, D2, j=2, n=10000

For a Student, both Haar and D4 are very effective at j = 2 (Fig. 4, 5).

For a uniform, the minimum is accuratly localized from j = 3 to 6 (not shown), after that,
the contrast variation is more chaotic, although the minimum still shows (Fig. 6).

For a semi-circular density, the minimum is accuratly localized from j = 3 (Fig. 7) to 5
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(not shown).
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Fig.5. Student, D4, j=2, n=10000
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Fig.6. Uniform, D4, j=7, n=10000
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Fig.7. Semi-circular, D4, j=3, n=10000
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Fig.8. Pareto, D4, j=3, n=10000

Idem for a Pareto, at all resolutions from 3 to 9 (Fig. 8, j = 3 only shown).
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Fig.9. Cauchy, D4, j=7, n=10000
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Fig.10. Cauchy, D4, j=5, n=50000

Finally for a Cauchy distribution, with a D4, the minimum is accuratly localized without
interfering local minimums starting from j = 7 for 10000 observations (Fig. 9), and starting
from j = 5 for 50000 observations (Fig. 10), which matches the fact that this density has a
lower regularity than previous ones, and needs higher j.
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Through these examples, it looks like the theoretical rule is pessimistic in the sense that
with a ratio 24jd/n rather big, the ICA minimum is occasionaly well localized, even without
a necessarily well estimated density.

5. Contrast minimization

The natural way to minimize the ICA contrast as a function of a demixing matrix W , is
to whiten the signal and then perform a steepest descent algorithm given the constraint
tWW = Id, corresponding to W lying on the the Stiefel manifold S(d, d) = O(d). In the ICA
context, as in dimension 2, we can restrict to SO(d) ⊂ O(d).

Needed material for minimization on the Stiefel manifold can be found in the paper of Smith,
Edelman and Arias (1998). Another very close method uses the the Lie group structure of
SO(d) and the corresponding Lie algebra so(d) mapped together by the matrix logarithm
and exponential (Plumbley, 2004). For convenience we reproduce here the algorithm in
question, which is equivalent to a line search in the steepest descent direction in so(d):

start at O ∈ so(d), equivalent to I ∈ SO(d);

move about in so(d) from 0 to −η∇BJ , where η ∈ R
+ corresponds to the minimum in

direction ∇BJ found by a line search algorithm, where ∇BJ = ∇J tW−W t∇J is the gradient
of J in so(d), and where ∇J is the gradient of J in SO(d);

use the matrix exponential to map back into SO(d), giving R = exp(−η∇BJ);

calculate W ′ = RW ∈ SO(d) and iterate.

We reproduce below some typical runs (program icalette3), with a D4 and L = 10. Note
that on example 2, the contrast cannot be usefully minimized because of a wrong resolution.

d=3, j=3, n=30000 uniform

it contrast amari

0 0.127722 65.842

1 0.029765 15.784

2 0.002600 2.129

3 0.001939 0.288

4 - -

5 - -

d=3, j=5, n=30000 uniform

it contrast amari

0 0.321970 65.842

1 0.321948 65.845

2 0.321722 65.999

3 0.321721 65.999

4 - -

5 - -

d=3, j=3, n=10000 uniform

it contrast amari

0 0.092920 42.108

1 0.035336 14.428

2 0.007458 3.392

3 0.006345 1.684

4 0.006122 1.109

5 0.006008 0.675

d=4, j=2, n=10000 uniform

it contrast amari

0 0.025193 22.170

1 0.010792 9.808

2 0.003557 4.672

3 0.001272 1.167

4 0.001033 0.502

5 0.000999 0.778

d=3, j=4, n=30000 expone.

it contrast amari

0 8.609670 52.973

1 5.101633 48.744

2 0.778619 16.043

3 0.017585 3.691

4 0.008027 2.262

5 0.006306 1.542

d=3, j=3, n=10000 semici.

it contrast amari

0 0.041392 35.080

1 0.029563 22.189

2 0.007775 5.601

3 0.006055 3.058

4 0.005387 2.261

5 0.005355 1.541

Table 3. Minimization examples at various j, d and n with D4 and L=10

In our simulations, ∇J is computed by first differences; in doing so we cannot keep the
orthogonality of the perturbed W , and we actually compute a plain gradient in R

dd.
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Note that a Haar contrast empirical gradient is tricky to obtain because a small perturbation
in W will likely result in an unchanged histogram at small j, whereas, for contrasts D4 and
above, the response to perturbation is practically automatic and is anyway adjustable by
the dyadic approximation parameter L.

Below is the average of 100 runs in dimension 2 with 10000 observations, D4, j = 3 and
L = 10 for different densities; the start columns indicate Amari distance (on the scale 0 to
100) and the wavelet contrast on entry; it is the average number of iterations. Note that
for some densities after whitening we are already close to the minimum, but the contrast
still detects a departure from independence; the minimization routine exits on entry if the
contrast or the gradient are too small, and this practically always correspond to an Amari
distance less than 1 in our simulations.

density Amari start Amari end cont. start cont. end it.

uniform 53.193 0.612 0.509E-01 0.104E-02 1.7

exponential 32.374 0.583 0.616E-01 0.150E-03 1.4

Student 2.078 1.189 0.534E-04 0.188E-04 0.1

semi-circ 51.401 2.760 0.222E-01 0.165E-02 1.8

Pareto 4.123 0.934 0.716E-03 0.415E-05 0.3

triangular 46.033 7.333 0.412E-02 0.109E-02 1.6

normal 45.610 45.755 0.748E-03 0.408E-03 1.4

Cauchy 1.085 0.120 0.261E-04 0.596E-06 0.1

Table 4. Average results of 100 runs in dimension 2, j=3 with a D4 at L=10

These first results compare rather favourably with the performance of existing ICA algo-
rithms, as presented for instance in the paper of Bach and Jordan (2002). We have found
equivalent results in higher dimension, with suitable j and n adjustment.

5.1 Wavelet contrast differential and implementation issues

Recall the notation,

Cj(y1, . . . , yn) =
∑

k1...,kd

(

α̂jk1...,kd − α̂jk1 . . . α̂jkd

)2
=
∑

k1...,kd

δ̂2jk,

with α̂jkℓ = 1
n

∑

i ϕjkℓ (yℓ
i ) and α̂jk1...,kd = α̂jk = 1

n

∑

i Φjk(yi).

Proposition 5.6 (Cj differential in Y )

If the wavelet ϕ is a C1 function the differential of Cj is well defined and, when Y shaped d× n is

in row major order, dCj(Y ) ∈ L(Rnd; R) is given by the matrix,

dCj(Y ) = 2
∑

k

δ̂jk (D1
1 δ̂jk D1

2 δ̂jk . . . D1
nδ̂jk D2

1 δ̂jk . . . Dd
nδ̂jk ) ,

or, when Y ∈ R
nd is in column major order, by the matrix,

dCj(Y ) = 2
∑

k

δ̂jk (D1
1 δ̂jk D2

1 δ̂jk . . . Dd
1 δ̂jk D1

nδ̂jk . . . Dd
nδ̂jk ) ,
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with Dℓ
i δ̂jk the partial derivative in direction i, ℓ given by,

Dℓ
i δ̂jk = ϕ′

jkℓ
(yℓ

i )





1

n

∏

h 6=ℓ

ϕjkh
(yh

i ) − 1

nd

∏

h 6=ℓ

∑

j

ϕjkh
(yh

j )



 .

Incidentally, let D be the n×d matrix whose (i, j) element is 2
∑

k δ̂jkD
j
i δ̂jk, and H ∈ R

nd identified
with a d× n matrix, one has

dCj(Y )(H) = trace[HD]

proof

The Cj partial derivative in direction rℓ
i , 1 ≤ i ≤ n, 1 ≤ ℓ ≤ d, is given by Dℓ

iCj =
∑

k

2δ̂jkD
ℓ
i δ̂jk,

where,

Dℓ
i δ̂jk =Dℓ

i





1

n

∑

i

Φjk(yi) −
∏

h

1

n

∑

j

ϕjkh
(yh

j )





=Dℓ
i





1

n

∑

i

∏

h

ϕjkh
(yh

i ) −
∏

h

1

n

∑

j

ϕjkh
(yh

j )





=
1

n
ϕ′

jkℓ
(yℓ

i )
∏

h 6=ℓ

ϕjkh
(yh

i ) − 1

nd
ϕ′

jkℓ
(yℓ

i )
∏

h 6=ℓ

∑

j

ϕjkh
(yh

j )

=ϕ′
jkℓ

(yℓ
i )





1

n

∏

h 6=ℓ

ϕjkh
(yh

i ) − 1

nd

∏

h 6=ℓ

∑

j

ϕjkh
(yh

j )



 ,

(5)

since, in the different sums appearing in δ̂jk, the derivative in (i, ℓ) is zero if the observation
j is not equal to i or if the component h is not equal to ℓ.

Dℓ
i δ̂jk is continuous and so the differential exists.

Considered as a matrix, Y was shaped d× n by convention; as an element of R
nd we adopt

the row major order, i.e. the first n elements are the first line of the matrix, the n following,
the second line, etc. Thus dCj(Y ) ∈ L(Rnd; R) is given in the order,

dCj(Y ) = 2
∑

k

δ̂jk (D1
1 δ̂jk D1

2 δ̂jk . . . D1
nδ̂jk D2

1 δ̂jk . . . Dd
nδ̂jk ) .

So for H ∈ R
nd, and Dℓ

i δ̂jk shortened in Dℓ
i ,

dCj(Y )(H) = 2
∑

k

δ̂jk



(D1
1 . . . D

1
n)





h11
...
h1n



+ (D2
1 . . .D

2
n)





h21
...
h2n



+ . . .





which is exactly the sum of the diagonal elements of the matrix HD. For the column major
order, the gradient is reversed as announced and still equals the trace of HD when applied
to H.

The differential in W represents a weighted sum of the differential in Y as we see now.
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Proposition 5.7 (Cj differential in W )

Under the notation of Prop. 5.6, with Cj(W ) ≡ Cj(Wx1, . . . ,Wxn) and X = (x1 . . . xn ), the
d× n matrix arrangement of the observation {x1 . . . , xn}, the differential of Cj is well defined and,

Under the row major order, dCj(W ) ∈ L(Rdd; R) is given by,

dCj(W ) = 2
∑

k

δjk ( (D1
1 . . .D

1
n)tX (D2

1 . . . D
2
n)tX . . . (Dd

1 . . . D
d
n)tX ) ∈ L(Rdd; R)

with Dℓ
i , the abridged notation for Dj

i δ̂jk given in Prop. 5.6.

Under column major order,

dCj(W ) = 2
∑

i

Xi ⊗
∑

k

δ̂jkDi (6)

with Di = (D1
i , . . . , D

d
i ), Xi = (X1

i , . . . , X
d
i ) and ⊗ denoting the inlined kronecker product, i.e.

Xi ⊗Di = (X1
i D

1
i . . . X1

i D
d
i X2

i D
1
i . . . X2

i D
d
i . . . ) ∈ R

dd.

Incidentally, let D the matrix n × d whose (i, j) element is 2
∑

k δ̂jkD
j
i δ̂jk, and Z ∈ R

dd identified
with a d× d matrix in row major order, one has

dCj(W )(Z) = trace[ZXD]

proof

Consider the linear function T :W ∈ R
dd 7→ Wx = y ∈ R

np where yi = Wxi and xi ∈
{x1, . . . , xn}, the given sample; one has

d(Cj ◦ T )(W ) = dCj(y1, . . . , yn) ◦ dT (W ) = dCj(y1, . . . , yn) ◦ T

Let’s find the expression of dT (W ) ∈ L(Rdd ; R
nd).

(Wx)ij =
∑

k=1...,d Wikx
k
j , so d

dwrs
(Wx)ij = 0 if r 6= i and d

dwrs
(WX)rj = xs

j . Finally, when
adopting the row major order, dT (W ) has the form,

dT (W ) = dT =









tX
tX

. . .
tX









(7)

which boils down to say that for a d × d matrix F , dT (W )(F ) = FX in line with the fact
that T is linear and so dT (W ) ≡ T .

Under column major order, dT (W ) has the same form as above with rows and columns of
zero permuted with rows and columns of tX.

dCj(y
1
1 , y

1
2 , . . . , y

d
n) ∈ L(Rnd; R) was found in the preceding proposition to be,

dCj(y
1
1 , y

1
2 , . . . , y

d
n) = 2

∑

k

δ̂jk (D1
1 δ̂jk D1

2 δ̂jk . . . D1
nδ̂jk D2

1 δ̂jk . . . Dd
nδ̂jk )

24



Finally, with the abuse of notation (Cj ◦ T )(W ) = Cj(W ), the expression of the differential
d(Cj ◦ T )(W ) = dCj(y

1
1 , y

2
1, . . . , y

d
n) ◦ dT (W ) is the matrix,

dCj(W ) = 2
∑

k

δjk ( (D1
1 . . . D

1
n)tX (D2

1 . . . D
2
n)tX . . . (Dd

1 . . . D
d
n)tX ) ∈ L(Rdd; R)

And,

dCj(W )(Z) = 2
∑

k

δ̂jk



(D1
1 . . . D

1
n) tX





z11
...
z1d



+ (D2
1 . . .D

2
n) tX





z21
...
z2d



+ . . .





which is written also dCj(W )(Z) = trace[ZXD].

Next, dCj(W )(z) is also written,

dCj(W )(z) =

= 2
∑

k

δ̂jk



(
∑

i

D1
iX

1
i . . .

∑

i

D1
iX

d
i )





z11
...
z1d



+ (
∑

i

D2
iX

1
i . . .

∑

i

D2
iX

d
i )





z21
...
z2d



+ . . .





= 2
∑

k

δ̂jk



(
∑

i

D1
iX

1
i . . .

∑

i

Dd
iX

1
i )





z11
...
zd1



+ . . .+ (
∑

i

D1
iX

d
i . . .

∑

i

Dd
iX

d
i )





z1d
...
zdd









where z can now be considered under column major order.

This simplifies to,
dCj(W )(z) = 2

∑

k

δ̂jk

∑

i

(Xi ⊗Di) z

= 2
∑

i

Xi ⊗
∑

k

δ̂jkDi z

with notations given above.

Proposition 5.8 (Cj second derivatives)

Under the notations of the preceding propositions, and assuming the wavelet is C2,

Dℓ′

i′D
ℓ
iCj = 2

∑

k

Dℓ′

i′ δ̂jkD
ℓ
i δ̂jk + δ̂jkD

ℓ′

i′D
ℓ
i δ̂jk

For (i, ℓ) = (i′, ℓ′),

Dℓ
iD

ℓ
i δ̂jk = ϕ′′

jkℓ (y
ℓ
i )





1

n

∏

h 6=ℓ

ϕjkh
(yh

i ) − 1

nd

∏

h 6=ℓ

∑

j

ϕjkh
(yh

j )





= ϕ′′
jkℓ (y

ℓ
i )Q1(i, ℓ)

(8)
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For i 6= i′ and ℓ = ℓ′, Dℓ′

i′D
ℓ
i δ̂jk = 0.

For i = i′ and ℓ 6= ℓ′,

Dℓ′

i′D
ℓ
i δ̂jk = ϕ′

jkℓ (y
ℓ
i )ϕ

′
jkℓ′ (y

ℓ′

i )





1

n

∏

h 6=ℓ,h 6=ℓ′

ϕjkh(yh
i ) − 1

nd

∏

h 6=ℓ,h 6=ℓ′

∑

j

ϕjkh (yh
j )





= ϕ′
jkℓ (y

ℓ
i )ϕ

′
jkℓ′ (y

ℓ′

i )Q2(i, ℓ, ℓ
′)

(9)

For i 6= i′ and l 6= ℓ′,

Dℓ′

i′D
ℓ
i δ̂jk = ϕ′

jkℓ (y
ℓ
i )ϕ

′
jkℓ′ (y

ℓ′

i′ )



− 1

nd

∏

h 6=ℓ,h 6=ℓ′

∑

j

ϕjkh (yh
j )





= ϕ′
jkℓ (y

ℓ
i )ϕ

′
jkℓ′ (y

ℓ′

i′ )Q3(ℓ, ℓ
′)

(10)

proof

Nothing more than calculus. Note that Q3 and Q2 are symmetric in (ℓ, ℓ′).

Proposition 5.9 (Cj hessian in Y )

Under the assumption of the preceding proposition, and assuming the wavelet is C2, the hessian of
Cj is a nd× nd matrix given by,

∇2Cj(Y ) = 2
∑

k

(Dℓ
i δ̂jk)(iℓ)

t(Dℓ
i δ̂jk)(iℓ) + δ̂jk





B11 . . . B1d

. . .

Bd1 . . . Bdd





with, Bℓℓ diagonal whose term (ii) = ϕ′′
jkℓ (y

ℓ
i )Q1(i, ℓ) is given by (8);

and Bℓℓ′ symmetric whose terms (ii) = ϕ′
jkℓ (y

ℓ
i )ϕ

′
jkℓ′ (y

ℓ′

i )Q2(i, ℓ, ℓ
′) are given by (9), and whose

terms (ii′) = ϕ′
jkℓ (y

ℓ
i )ϕ

′
jkℓ′ (y

ℓ′

i′ )Q3(ℓ, ℓ
′) are given by (10); and with (Dℓ

i δ̂jk)(iℓ) the nd × 1 vector

given in (5).

The number of free terms of the matrix on the right is d2−d
2

n2+n
2 + nd = nd

4 (nd+ d− n+ 3).

With the notation Dℓ = t(Dℓ
1 . . . D

ℓ
n) ≡ t(Dℓ

1δ̂jk . . . D
ℓ
nδ̂jk), one has the other expression,

∇2Cj(Y ) = 2
∑

k





D1 tD1 . . . D1 tDd

. . .

Dd tD1 . . . Dd tDd



+ δ̂jk





B11 . . . B1d

. . .

Bd1 . . . Bdd



 (11)

proof
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This is the definition of the hessian matrix.

The number of free terms of the matrix on the right is at first sight (n2d2 − nd)/2 + nd =
(n2d2 + nd)/2, but since each of sub-diagonal blocks is also symmetric, the number of free
terms is in fact d2−d

2
n2+n

2 +nd = nd
4 (nd+ d−n+3) ; this is a diminution of nd

4 (nd− d+n− 1).

The left part of (11) is the Gauss-Newton matrix appearing in the second derivatives of any
least square type function, and sometimes used as a hessian approximate (see for instance
Lemarechal et al, 1997).

Proposition 5.10 (Cj hessian in W )

The hessian of Cj in W is given by,

∇2Cj(W ) = tdT∇2Cj(Y )dT

with T :W ∈ R
dd 7→Wx = y ∈ R

np.

The differential is given by d2Cj(W )(H1, H2) = d2Cj(Y )(H1X,H2X).

proof

With the abuse of notation d2Cj(W ) ≡ d2(Cj ◦ T )(W ),

d2(Cj ◦ T )(W )(H1, H2) = d
[

d(Cj ◦ T )(W )(H1)
]

(H2)

= d
[

[

dCj(Y ) ◦ dT (W )
]

(H1)
]

(H2)

= d
[

[

dCj(Y ) ◦ T
]

(H1)
]

(H2)

=
[

d2Cj(Y )(T (H1)) ◦ dT
]

(H2),

where dT is the matrix given in (7) and Y = WX.

After identification of L(Rdd;L(Rdd; R)) with L(Rdd,Rdd; R) this is also written as,

d2Cj(W )(H1, H2) = d2Cj(Y )(dT (H1), dT (H2)) = d2Cj(Y )(H1X,H2X).

So we have,

tH1∇2Cj(W )H2 = d2Cj(W )(H1, H2) = d2Cj(Y )(H1X,H2X) = tXtH1∇2Cj(WX) H2X

and by identification ∇2Cj(W ) = tdT∇2Cj(Y )dT .

Filter aware formulations for the gradient and the hessian

We now give a formulation of the gradient and the hessian that will be very helpful for
practical computations, and accomodate well to possible subsequent filtering operations.
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A Daubechies wavelet, D2N , satisfy the usual equation ϕ(t) =
√

2
∑

k ckϕ(2t − k) with
c0 . . . , c2N−1 the only non zero coefficients; we have as well ϕ′(t) = 2

√
2
∑

k ckϕ
′(2t− k).

With ϕjk(t) = 2j/2ϕ(2jt− k), we thus have the relation,

ϕjk(t) = 2
j

2ϕ(2jt− k)

= 2
j
2

√
2
∑

ℓ

cℓϕ(2(2jt− k) − ℓ)

=
∑

ℓ

cℓϕj+1,2k+ℓ(t) =
∑

ℓ

cℓ−2kϕj+1,ℓ(t)

(12)

which gives directly α̂jk = 1
n

∑

i ϕjk(Xi) =
∑

ℓ cℓ−2kα̂j+1,ℓ = (α̂j+1 ∗ c̄)2k, where c̄k = c−k, and
∗ designates convolution; this is the discrete wavelet transform algorithm (DWT) (Mallat,
2000).

This algorithm extends to the multidimensional αjk, and to δ̂jk = α̂jk − α̂jk1 . . . α̂jkd :

δ̂jk = α̂jk − α̂jk1 . . . α̂jkd

=
1

n

∑

i

ϕjk1 . . . ϕjk1 − 1

n

∑

i

ϕjk1 . . .
1

n

∑

i

ϕjkd

=
∑

ℓ1...,ℓd

cℓ1−2k1 . . . cℓd−2kd α̂j+1,ℓ −
∑

ℓ1

cℓ1−2k1 α̂j+1,ℓ1 . . .
∑

ℓd

cℓd−2kd α̂j+1,ℓd

=
∑

ℓ1...,ℓd

cℓ1−2k1 . . . cℓd−2kd(α̂j+1,ℓ − α̂j+1,ℓ1 . . . α̂j+1,ℓd)

=
∑

ℓ

cℓ−2k δ̂j+1,ℓ,

where the last line makes use of a condensed notation; and where we used the fact that
there exists no index on the ℓ margin that does not exist also on the dimension ℓ of the
cube.

Let us introduce the jackknife estimator α̂(i)
jk = 1

n−1

∑

j 6=i Φjk(Xj).

Proposition 5.11 (filter aware gradient formulation)

Dℓ
i δ̂jk is a function of Jackknife of the original α̂jk coefficients; the following relation holds,

Dℓ
i δ̂jk =

ϕ′
jkℓ

(Xℓ
i )

ϕjkℓ
(Xℓ

i )



δ̂jk − n− 1

n

[

α̂
(i)
jk − α̂

(i)

jkℓ

∏

h 6=ℓ

α̂jkh

]





It follows than the partial derivative of Dℓ
i δ̂jk is computable from the same elements than Dℓ

i δ̂j+1k

is computed, with one DWT filtering pass.

proof

The following relation holds,

1

n
Φjk(Xi) = α̂jk − n− 1

n
α̂

(i)
jk ,
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and starting from (5), the partial derivative can be expressed by,

Dℓ
i δ̂jk =

ϕ′
jkℓ

(Xℓ
i )

ϕjkℓ
(Xℓ

i )



α̂jk − n− 1

n
α̂

(i)
jk − (α̂jkℓ − n− 1

n
α̂

(i)

jkℓ)
∏

h 6=ℓ

α̂jkh





=
ϕ′

jkℓ
(Xℓ

i )

ϕjkℓ
(Xℓ

i )



δ̂jk − n− 1

n

[

α̂
(i)
jk − α̂

(i)

jkℓ

∏

h 6=ℓ

α̂jkh

]



 .

(13)

There is theoretically an indetermination when the denominator of
φ′

jkℓ (Xℓ
i )

φ
jkℓ (Xℓ

i
)

is equal to zero.

But in dyadic approximation, one always find points where the derivative is zero if the
value at the point is zero.

The transition to a jackknifed estimator is,

α̂
(i)
jk =

1

n− 1

[

nα̂jk − Φjk(Xi)
]

=
n

n− 1
α̂jk − 2jd/2

n− 1
Φ(2jXi − k),

with implicit extended multidimensional notation.

This affects only (2n − 1)d cells in the cube i.e. the power d of the number of integers
contained in the wavelet support (ϕ(2N − 1) = 0). So once the full projection on the cube
is known, transition to a Jackknife is a O((2N − 1)d) operation.

Also in (13), the product of margins differs from the non jackknife product of margins only
on a band with volume 2j(d−1)(2N − 1), and finally everything outside this band can be
ignored since the premultiplication by ϕ′/ϕ will produce zero, and from expression (6) the
whole computations ends up with a sum in k.

For the transition between jackknifes, one has, α̂(j)
jk = α̂

(i)
jk + 1

n−1 [ϕjk(Xi) − ϕjk(Xj)] which is
true for all j, by linearity of the convolution, and translates in the Haar case in

α̂
(j)
jk = α̂

(i)
jk +

2jd/2

n− 1

[

I(2jXi∈Ajk) − I(2jXj∈Ajk)

]

.

The hessian also possess a filter aware formulation, and besides, as compared to the gradient,
the only additional quantities to compute are the ϕ′′

jk, as we see next.

Proposition 5.12 (filter aware hessian formulation)

The matrices Bℓℓ composing the hessian can be written as a function of Jackknife of the original
αjk coefficients ; one has the relations,

Bℓℓ
(ii) =

ϕ′′
jkℓ

(Xℓ
i )

ϕjkℓ
(Xℓ

i )



δ̂jk − n− 1

n

[

α̂
(i)
jk − α̂

(i)

jkℓ

∏

h 6=ℓ

α̂jkh

]
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For matrices Bℓℓ′ , one has,

Bℓℓ′

(ii) =
ϕ′

jkℓ(y
ℓ
i )ϕ

′
jkℓ′ (y

ℓ′

i )

ϕjkℓ(yℓ
i )ϕjkℓ′ (yℓ′

i )






α̂jk − n− 1

n
α̂

(i)
jk − (α̂jkℓ − n− 1

n
α̂

(i)

jkℓ )(α̂jkℓ′ −
n− 1

n
α̂

(i)

jkℓ′
)
∏

h6=ℓ

h6=ℓ′

α̂jkh







with the bracket also written as,



δ̂jk − n− 1

n

[

α̂
(i)
jk + α̂

(i)

jkℓ′

∏

h 6=ℓ′

α̂jkh + α̂
(i)

jkℓ

∏

h 6=ℓ

α̂jkh − n− 1

n
α̂

(i)

jkℓ α̂
(i)

jkℓ′

∏

h 6=ℓ,h 6=ℓ′

α̂jkh

]





And,

Bℓℓ′

(ii′) = ϕ′
jkℓ (y

ℓ
i )ϕ

′
jkℓ′ (y

ℓ′

i′ )



− 1

n2

∏

h 6=ℓ,h 6=ℓ′

α̂jkh





proof

Use the jackknife substitution.
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