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Chaotic Filtering of Moving Atoms in Pulsed Optical Lattices by Control
of Dynamical Localization
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We propose a mechanism for a velocity-selective device which would allow packets of cold atoms
traveling in one direction through a pulsed optical lattice to pass undisturbed, while dispersing atoms
traveling in the opposite direction. The mechanism is generic and straightforward: for a simple
quantum kicked rotor pulsed with unequal periods, the quantum suppression of momentum diffusion
(dynamical localization) yields momentum localization lengths L which are no longer isotropic, as in
the standard case, but vary smoothly and controllably with initial momentum.
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There is much current interest in the development of
new techniques to manipulate cold atoms. Recent work in
atom optics has resulted in new devices termed ‘“‘atom
chips” [1,2] where cold atoms may be trapped and guided
by fields above a solid substrate. Within such an atom
chip, techniques to split, transport, and otherwise control
the traffic of atoms can play an important role.

In addition, cold atoms in pulsed or driven optical
lattices have become a paradigm in the field of quantum
chaos: experiments on sodium and cesium atoms [3]
provided a textbook demonstration of dynamical local-
ization (DL) [4,5], the quantum suppression of classical
chaotic diffusion. The corresponding classical motion is
fully chaotic for sufficiently strong driving. The energy of
the system grows diffusively with each consecutive pulse
or “kick”: in the absence of phase-space barriers, which
are present only in the regular regime, the average energy
(p?) of the particles is unbounded and this diffusive
increase in energy continues indefinitely. It is character-
ized by a diffusion rate Dy, i.e., <p2) = Dyt. However, in
the quantum case this process is suppressed on the time
scale of the so-called “break time” t* ~ Dy/h* [6].

The series of ground-breaking experiments in [3] was
followed by other experiments with optical lattices prob-
ing a wide range of quantum chaos phenomena including
dynamical tunneling [7], the effect of quantum loss of
coherence on dynamical localization [8], and quantum
accelerator modes [9].

Here we show that a straightforward modification of
the quantum chaos experiments can form the basis for a
device to control the traffic of cold atoms moving along a
channel in, say, an atom chip by selecting a specified
velocity. In these experiments the atoms experience a
periodically pulsed or driven standing wave of light. By
pulsing the usual sinusoidal lattice with slightly different
periods we show that the diffusion rate is not only mo-
mentum dependent, i.e., D = D(p), but takes a particular
smooth and controllable form. We investigated the quan-
tum dynamics and found that they are associated with a
corresponding local break time #*(p) ~ D(p)/h>. Since
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these break times vary by ~2 orders of magnitude, this
represents a strong effect. By simply varying the pulsing
periods, we can specify a value of p, so that for particles
moving in one direction D" (p) ~ 0, which means they
absorb little energy, while particles moving in the oppo-
site direction experience an enhanced diffusion rate
D~ (—p) > D,y. While in the classical case, this effect
is confined to a very narrow parameter range and small ¢,
we show here that for the equivalent quantum system, this
“filtering effect” is, in fact, controlled by the dynamical
localization and remains effective over a wide and ex-
perimentally accessible parameter range. The ratio of
energy absorbed by particles moving in opposite direc-
tions classically is ~D*(p)/D~ (p) for short times and
~1 for longer t; in the quantum case, due to dynami-
cal localization, the corresponding ratio is [D*(p)/
D™ (p)J? ~ const for all ¢ > r*. We stress that selecting
the required filter parameters involves no knowledge of
the details of the underlying classical trajectories so is a
quite generic procedure. While the study of this novel
regime of controllable localization in a modified stan-
dard map is quite general, we focus on the most favor-
able parameters for a cold-atom experiment since this
represents a real application of a fundamental physics
phenomenon.

In the dynamical localization experiment of [3,7,8],
the dynamics is approximately given by the delta-
kicked rotor Hamiltonian: H =25 — Kcosx} (¢t —
nT) where K is the kick strength. The classical dynam-
ics is obtained by iterating the well-known “standard
map”: x;+1 = x; + p;T; pi+1 = p; + Ksinx;;;. In the
standard map, we can take T = 1, without loss of general-
ity, but for the proposed system we use a repeating cycle
of unequally spaced kicks. For simplicity, we take a
length-2 cycle, with the spacing between kicks alternat-
ing between T and 7,. The Hamiltonian is now given by

00 2 M
H=%2+ V) > > 5<z—nTm+i_ZlTi> (1)

n=0M=1
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with T, = T| + T,. This means that the first kick after
t = 0isatt = Ty, the second kick at t = T| + T, the next
one at t = T} + (T} + T;), and so on. We will consider
only a small deviation from equally spaced kicks, which
can be defined with the small parameter b, T = 1 + b,
T, =1 — b. If required, the spatial symmetry can be
broken by adding to the sine potential a linear term which
alternates in sign: V(x) = —[K cosx + Ax(—1)/], where j
is the kick number. This Hamiltonian leads to the map,

X =Xy T pi-1(1 +b),
pi = pi-1 T Ksinx; + A,
Xit1 = x; + pi(1 = D),
Pi+1 = pi T Ksinx;y; — A.

This classical map was investigated previously [10] in the
regular regime, where the diffusion in p is bounded by
regular tori, for rational b there is a long-ranged period-
icity in the dynamics, and pairs of tori are distributed
asymmetrically around {p) = 0, leading to classical dis-
tributions with (p) # 0 and resulting in a type of mixed-
phase space ratchet. Here we investigate this map in the
chaotic regime for unbounded diffusion: in the expres-
sions below, whether b is rational or not is immaterial. We
have also investigated the equivalent quantum behavior.
Since the Hamiltonian involves only delta kicks, we
consider the usual time evolution operator in a matrix
representation using a plane-wave basis. We find that
while single kicks couple different quasimomenta, the
combined time evolution operator for two kicks does
not. Hence it is most convenient to iterate the two-kick
time-evolution operator. In the usual plane-wave basis
|n) = 5-exp(inx), this takes the form of a matrix U?2)
with elements:

. I K
AUl = ¢ TP =D aalr g, <_>
< | | > : [—jtka I

K
x Jj,n,kL,(ﬁ ) @)

where ¢ is a quasimomentum, ka = int(q — A), and ga =
q — A — ka. We solve for the quantum time evolution by
simply iterating repeatedly (2) = Uy(t = 0). In Fig. 1
we demonstrate the effect on two quantum wave packets
by iterating Eq. (2) over 50 pairs of kicks for two dif-
ferent sets of parameters chosen to correspond to experi-
mentally accessible values. We show that the device
functions as a sort of Maxwell demon: while packets
moving to the right pass the pulsed lattice relatively
unperturbed, those moving to the left are strongly dis-
persed. Below we analyze this effect.

For the standard map, at the lowest level of approxi-
mation, the classical momenta at consecutive kicks are
uncorrelated and evolve in time as a “‘random walk.” It
is characterized by linear energy growth and a diffusion
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FIG. 1. Demonstration of the filtering effect: the figure com-
pares the effect of 50 pairs of pulses on two quantum wave
packets moving in opposite directions. Initial wave packets are
shown with a thin line, while the final wave packets are shown
with a bold line. Parameters: (a) for kick strength K = 2.0, 7 =
0.25, and (b) for K = 3.2, i = 1.0. The values of A and b are, in
both cases, 77/2 and 0.01, respectively. The initial wave packets
are centered around * p,, with 4bp, = 7. The initial widths of
the wave packets are similar to the standard experimental
values. The figure shows that while the right-moving wave
packet is only slightly perturbed, the left-moving one is
strongly dispersed.

rate Dy, ie., (p?>) = Dyt where D, = K*/2. However,
correlations between sequences of consecutive kicks
give important corrections to the diffusion coefficient.
The two-kick correlation, for example, originates from
correlations between adjacent kicks but one,
(V'(x;,)V'(x,_,)), and gives a correction —K?>J,(K) to the
diffusion coefficient. The diffusion coefficient, includ-
ing the first corrections, is Dy = K*[1/2 — J,(K) —
(J;(K))? + ...] [11,12]. These corrections have even been
measured experimentally with cold cesium atoms in
pulsed optical lattices [13].

For the Hamiltonian in Eq. (1), the correlations take a
modified form. The corrections they induce are now
momentum dependent: for an ensemble of particles with
initial momentum p,, the average energy spread at time ¢
is given by

((p = po)?) = K2ty = [ J/(K(1 + b))* + J(K(1 = b))}
- K*®(1C(Q2, pg) + ..., 3)

where

253003-2



VOLUME 91, NUMBER 25

PHYSICAL REVIEW LETTERS

week ending
19 DECEMBER 2003

C(2, po) = Jo(2bK) cos[2pyb — A(1 — b)]
X [L(K(1 + b)) + J,(K(1 — b))]
and

1 — Jy(2bK)" 2

o) = 1 — JoQbK)?

Higher order correlations (four-kick, etc.) involve more
Bessel functions, and induce corrections that may be-
come significant over part of the parameter range, but
Eq. (3) has the main features. The first correction in
Eq. (3) is due to three-kick correlations, and is very
similar to the J;(K)? correction for the standard map.
The C(2, p) term is the modified version of the two-kick
correlation term which for the standard map took the
form —K?2J,(K). This term has several important proper-
ties. First, it is p dependent with a single, simple
cos[2pb — (1 — b)A] form. Particles with different mo-
menta will absorb energy at different rates. Note that this
is also the case for the A = 0 case: the role of linear
potential is simply to specify the symmetry of this cor-
rection term, not its magnitude. Second, it has a non-
trivial time dependence, given by the function ®(z). We
are interested in the regime of small b, where K <K 1
(see below). One has then J,(2bK) = 1 — (bK)?. For t <
1/(bK)*, ®(r) has a linear behavior (~¢/2), and the
C(2, p) term appears as a correction to the diffusion
coefficient, as in the standard map. However, for larger
t, ®(¢) saturates to the value 1/(2 (»K)?), and the two-kick
correlation does not modify the energy growth anymore.
We note that another system with momentum dependent
diffusion has been investigated [14]: an asymmetric
double-well lattice was found to yield asymmetric dif-
fusion about p = 0. However, for that system, D(p) has
no particular symmetry over a larger scale in p and had
complex oscillations with respect to p, from classical
correlations yielding a many term Fourier series. Hence,
they are not suitable for the velocity selector we propose
here since one cannot control the form, the position, or
the depth of the maxima and minima of D(p). Here, we
can simply by adjusting the small parameter b. We note
that if b becomes large a one-kick correlation term can
substantially modify the results.

All the expressions simplify considerably if we con-
sider that b ~ 0.01 is a small deviation from period-one
pulses, so bA, bK < 1. For times t < 1/(bK)?, we can
write

((p = po)*) = K*t[5— J1(K)* = Jr(K) cos(2pob — A)]

“)

Hence we have a local diffusion coefficient of the form
D(p) = Dy — C(2, p), where Dy =~ K°[1/2 — J,(K)?].

Figure 2 shows a comparison of this formula to nu-

merical results: the average energy spread after 20 kicks

is plotted as a function of K, for an ensemble of 400 000
particles with a narrow initial momentum distribution
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around p, = 7/(4b), with b = 0.005 and A = 7/2. For
these values, one has cos(2pob — A) = 1. For clarity, we
have removed the p-independent contribution D,. We see
that the numerical results agree very well with the for-
mula (4), showing the J,(K) oscillations. For the larger
values of K shown on the figure, the effect of the function
®(r) begins to be noticeable, and formula (4) overesti-
mates the result. The full analytic formula (3) is
also shown, with an excellent agreement over the whole
range of K.

Figures 3(a) and 3(b), shows the average energy spread
as a function of the initial momentum p,, for two differ-
ent sets of parameters. In each case both the classical and
the quantum results are shown. For both quantal and
classical diffusion, we obtain, as expected from Eq. (4),
a cosine behavior in pg, with a period 7r/b. In 3(a), the
number of kicks has been chosen to obtain the same
maximum energy spreading for the quantum and the
classical results; this shows clearly that the quantum
minimum of the energy spreading is much lower than
the classical one. Note that while the classical result is
transient (the classical energy increases without bound)
the quantum energy is at the asymptotic value.

We can now fully understand the results in Fig. 1: the
“unperturbed” wave packets correspond to p, = 7/(4b),
a minimum of the cos(2pyb — A) function with D ~ 0
and r* ~ 1. The dispersed wave packets correspond to the
maximum at p, = —/(4b) where D ~ K? and here t* ~
100. We note that the effect is strong over a broad band of
momenta around the minima and maxima at py, = * 7/
(4b). The break time, which gives the time needed by the
quantum system to localize, is proportional to the diffu-
sion coefficient, so that near a maximum of the diffusion
coefficient, the quantum system takes longer to localize.
In contrast, near a minimum, the quantum system not
only absorbs energy rather slowly, it also localizes more
quickly and the quantum wave packet absorbs energy for
a shorter time. Since #*(p,) ~ D(p,)/h*, while the ratio of

numerical results
- full analytic formula (3)

2000 | ——— simple analytical formula (4)
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FIG. 2. Average energy spread as a function of K, for an
ensemble of 400 000 particles with a narrow initial momentum
distribution around py = 7/(4b), with b = 0.005 and A =
7/2. The Dyt term has been removed (see text). The numerical
results are compared to the simple formula (4), valid for t <
1/(bK)?, and to the full analytical formula (3).
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FIG. 3. (a),(b) Average energy spread as a function of initial
momentum, in the classical case (dotted curve) and the quan-
tum case (full curve). The parameters are the following:
(a) K = 3.2, h = 1, 60 kicks for the classical curve, 200 kicks
for the quantum curve; (b) K = 1.7, i = 0.25, 100 kicks for the
classical curve, 100 kicks for the quantum curve. In both cases,
A= m/2 and b = 0.01. In (a), the number of kicks in the
classical case has been chosen to obtain the same maximum
value for the energy spread as in the quantum case. The results
show clearly that the diffusion coefficient oscillates as a
function of p, with period 7/b, and that the minimum of the
diffusion coefficient is lowered in the quantum case compared
to the classical one. (c) Average energy spread as a function of
kick number, for two wave packets: one initially centered
around p, = 7/(4b) (the two lower curves), the other initially
centered around p, = —7/(4b) (the two upper curves). The
classical results are shown as dotted curves, while the quantum
results are shown as full curves. One can see that the quantum
wave packet with slow energy spread localizes extremely
quickly, while the other wave packet takes a much longer
time to localize. Parameters: K = 3.2, b =0.01, A = 7/2,
and /i = 1 in the quantum case.

the maximum and minimum classical diffusion coeffi-
cient (or energy spread) is of the order of D, /D _, for the
quantum system we obtain ratios for the energy spread of
the order of (D, /D_)?. In Fig. 3(a) (K = 3.2), for ex-
ample, the ratio D, /D _ is roughly of the order of 3, while
the ratio of the quantum energy spreads is roughly 9. This
enhancement due to dynamical localization is further
illustrated in Fig. 3(c), where the energy of the two
wave packets [one initially centered around pgy =
7/(4b) (minimum), the other around p, = —m/(4b)
(maximum)] is plotted as a function of the kick number,
for the classical and the quantum cases, for K = 3.2. One
sees that the quantum wave packet with the slowest en-
ergy spread localizes very quickly (a few kicks are
enough), while the other wave packet takes a much longer
time to localize. We note that A = 0 produces similar
results, with the exception that minima are shifted to
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po = 0 and integer multiples of 7/b, while maxima
occur at integer multiples of 77/(2b). Wave packets started
between these points localize with asymmetric momen-
tum distributions.

In summary, the filtering device results from a combi-
nation of two physical processes. The first process is a
momentum-dependent diffusion coefficient of a particu-
lar simple form which enables one to select the velocities
of interest by adjusting the magnitude of b. The second
process is dynamical localization, which enhances the
classical effect by localizing quickly (slowly) the quan-
tum wave packet which absorbs energy slowly (fast).

T. M. thanks Thomas Dittrich, Sergej Flach, and Holger
Schanz for helpful discussions. M. 1. acknowledges the
EPSRC for financial support. The work was supported
by EPSRC Grant No. GR/N19519.

Note added—Since submission of this Letter, a proof-
of-principle version of the system we proposed here has
been implemented experimentally by Jones et al. [15] for
A =0 and b =~ 0.1 but otherwise with the parameters of
our Figs. 1 and 3. An effective filter would, however,
require smaller values of » =~ 0.01 which have not yet
been attempted.

*Present address: Centre de Physique Theorique, Campus
de Luminy, Case 907, 13288 Marseille Cedex 9, France.
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