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Intersection Graphs of Jordan Arcs

P. Ossona de Mendez and H. de Fraysseix

Abstract. A family of Jordan arcs, such that two arcs are nowhere tangent,
defines a hypergraph whose vertices are the arcs and whose edges are the
intersection points. We shall say that the hypergraph has a strong intersection

representation and, if each intersection point is interior to at most one arc, we
shall say that the hypergraph has a strong contact representation.

We first characterize those hypergraphs which have a strong contact rep-
resentation and deduce some sufficient conditions for a simple planar graph to
have a strong intersection representation.

Then, using the Four Color Theorem, we prove that a large class of simple
planar graphs have a strong intersection representation.

1. Introduction

A family of Jordan arcs, such that two arcs are nowhere tangent, defines a
hypergraph whose vertices are the arcs and whose edges are the intersection points.
We shall say that the hypergraph has a strong intersection representation and,
if each intersection point is interior to at most one arc, we shall say that the
hypergraph has a strong contact representation.

Such a family classically defines a string graph, which is a simple graph, whose
vertices are the arcs, two vertices being adjacent if the corresponding arcs intersect
at least once [3]. It is not known whether deciding whether a graph is a string
graph is algorithmically decidable [11]. However, all planar graphs are obviously
string graphs.

If two arcs may only intersect once, we shall say that the intersection graph has
an intersection representation. Deciding whether a given graph has an intersection
representation is known to belong to the NP-complete class [9], even if strong
restrictions are requested on the family of arcs [10]. It has been a challenge for
long to prove or disprove that all planar graphs have an intersection representation.
It is clear that a simple graph has an intersection representation if and only if it
has a strong intersection representation.

First, we shall introduce a general framework on strong contact representation.
Then, the introduction of a 4-coloration will lead to prove that a large class of

planar graphs have an intersection representation.
Most of the results proved here were first presented in [5] and [7].

This work was partially supported by the Esprit LTR Project no 20244-ALCOM IT.
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Figure 1. Locally one-sided contact
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Figure 2. A contact and an intersection representations of K4

General Framework

Arc intersection problems arise topological difficulties that vanish when arcs
are only in contact, as the arc-point incidence then defines a plane graph (i.e. a
planar graph together with an embedding).

A contact family F = (V ,P) of Jordan arcs is a finite family V of Jordan arcs
in the plane and a finite point set P on these arcs, such that two arcs share at most
one point (called contact point), and such that all the contact points belong to P
and are interior to at most one arc. Furthermore, at each point p interior to an
arc ν, the arc ν appears twice consecutively in a clockwise traversal around p (i.e.
we consider only locally one-sided contacts). This family defines a particular type
of intersection graph, called contact graph (which may be not planar) and also a
colored planar bipartite arc-point incidence graph Incid(F), whose vertex set is the
union of the arc set V (colored white) and the contact point set P (colored black),
and whose incidence is the inclusion relation of a point in an arc.

2. Graphs, Hypergraphs and Frames

2.1. Graphs. Given a graph G, we use the following notations:

• V (G) is the vertex set of G,
• E(G) is the edge set of G,
• N(x) is the neighbor set of the vertex x,
• N(A) =

⋃

x∈A N(x) is the neighbor set of a subset A of vertices,
• dG(x) is the degree of the vertex x,
• GA is the subgraph induced by the subset A of vertices,
• T (G) is the set of bounded triangular faces of G, if G is a plane graph

(i.e. a planar graph embedded in the plane).
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Figure 3. A strong contact and a strong intersection representa-
tions of K4
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Figure 4. A planar graph, which has a contact representation,
but no strong contact representation

Definition 2.1. A graph G has a strong contact representation if
there exists a contact family F such that the arc-point incidence of F is
the vertex-edge incidence of G

Remark 2.2. In a strong contact representation, the points represent
the edges and thus belong to exactly 2 arcs, unlike the contact points of
a contact representation which represent cliques.

2.2. Hypergraphs. A hypergraph is a pair H = (X, E), where X is a finite
set and E is a family (Ei, i ∈ I) of subsets of X , such that: Ei 6= ∅(∀i ∈ I) and
⋃

i∈I Ei = X . The elements of X and E are respectively the vertices and the edges
of the hypergraph. Two vertices x, y ∈ X are adjacent if they both belong to some
edge of H; two edges Ei, Ej are adjacent if their intersection is not empty. A vertex
x ∈ X is incident to an edge Ei ∈ E if x belongs to Ei (see [1]).

A hypergraph H is linear if any two edges have at most one common element:

∀i 6= j,
∣

∣Ei ∩ Ej

∣

∣ ≤ 1

The sub-hypergraph of H induced by a subset Y ⊆ X is the hypergraph HY =
(Y, EY ), where

EY = {Ei ∩ Y, Ei ∈ E ; Ei ∩ Y 6= ∅}

Definition 2.3. The equivalent edge number of H is the sum

µ(H) =
∑

i∈I

(

∣

∣Ei

∣

∣ − 1
)
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Figure 5. The incidence graph Incid(H) of a planar hypergraph
H and a strong contact representation of H

Definition 2.4. The incidence graph Incid(H) of H is the colored bipartite
graph on (X, E) defined by the vertex-edge incidence, a vertex being colored white
(resp. black) if it belongs to X (resp. E).

As a special case, if G is a graph, Incid(G) is the bicolored vertex-edge incidence
graph of G.

Definition 2.5. A hypergraph H is planar if Incid(H) is planar.

The definition of strong contact representation of graphs extends naturally to
hypergraphs:

Definition 2.6. A hypergraph H has a strong contact representation if there
exists a contact family F , whose arc-point incidence is the vertex-edge incidence of
H, so that arcs represents vertices and points represent edges (see Fig. 5).

2.3. Frames.

Definition 2.7. A frame is a pair Φ = (Γ, Π), where Γ is a plane graph and
Π = (F1, . . . , Fp) is a partition of the edge set E(Γ), such that each class is either
a bounded 2-connected face of Γ or a single edge.

A vertex x ∈ V (Γ) is incident to a class Fi ∈ Π if it is incident to at least one
edge in Fi.

A frame Φ defines a hypergraph HΦ = (V (Γ), E), where Ei is the set of the
vertices incident to the class Fi of Π. We shall say that Φ is a frame representation
of HΦ (see Fig. 6).

Proposition 2.1. A hypergraph H = (X, E) is planar if and only if it has a
frame representation.

Proof. The bijection between the embedded incidence graph of a planar hy-
pergraph and frame representations is shown on Fig. 7:

• From the incidence graph of a planar hypergraph H, each black vertex
(corresponding to some Ei) is split into a Ck (if its degree is k > 2), a
K2 (if its degree is 2), or a loop (if its degree is 1), which edges forms a
set Fi. Then, the black-white edges are contracted. The resulting graph
together with the partition (F1, . . . , Fm) is a frame representation of H.
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Figure 6. A frame representation of a planar hypergraph H and
the incidence graph of H (the edges of H are the dashed faces and
the thick line segments of the frame)
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Figure 7. Bijection between incidence graphs of planar hyper-
graphs and frames

.

• From a frame Φ = (Γ, Π), we add a vertex in each face in Π (including the
faces defined by a loop) and join it to the vertices of the face, we bisect
the non-loop edges that forms a single element class in Π and then delete
all the original edges of Γ that have not been bisected.

�

Remark 2.8. According to the definition of a linear hypergraph, the following
conditions are equivalent:

• H is a linear planar hypergraph,
• H is a hypergraph which has a C4-free frame representation,
• H is a planar hypergraph and all the frame representations of H are C4-

free.

3. Strong Contact Representation

3.1. Strong contact representation of graphs.

Theorem 3.1. A graph G has a strong contact representation if and only if it
is planar and satisfies:

(3.1) ∀A ⊆ V,
∣

∣E(GA)
∣

∣ ≤ 2
∣

∣A
∣

∣

Proof. Equation (3.1) is equivalent to the existence of a 2-orientation of G,
that is an orientation of G such that each vertex has at most 2 incoming edges.
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Figure 8. A contact representation induced by a 2-orientation

• A strong contact representation of a graph G induces a planar embedding
of G and a 2-orientation of it: an edge incident to a vertex v is oriented
from v if it corresponds to an internal point of the arc ν representing v;
edges corresponding to point which are internal to no arc are oriented
arbitrarly.

• Conversely, an embedding and a 2-orientation of G defines a strong contact
representation of G (see Fig. 8).

�

Remark 3.2. This theorem implies that outer-planar graphs and triangle free
planar graphs have a strong contact representation. Actually, bipartite planar
graphs have a strong contact representation using segments in two directions [2].

3.2. Strong contact representation of hypergraphs. We may now gen-
eralize this result to hypergraphs. That for, we need first to prove an orientation
lemma:

Lemma 3.3. The incidence graph Incid(H) of an hypergraph H has a 2-1 orien-
tation, that is an orientation such that each white (resp. black) vertex has at most
2 (resp. 1) incoming edges, if and only if it satisfies

(3.2) ∀A ⊆ X, µ(HA) ≤ 2
∣

∣A
∣

∣

Proof. By classical arguments, Incid(H) has a 2-1 orientation if and only if
it satisfies:

(3.3) ∀Y ⊆ X ∪ E ,
∣

∣E(Incid(H)Y )
∣

∣ ≤ 2
∣

∣Y ∩ X
∣

∣ +
∣

∣Y ∩ E
∣

∣

That is:

(3.4) ∀A ⊆ X, ∀E ′ ⊆ E ,
∣

∣E(Incid(H)A∪E′)
∣

∣ ≤ 2
∣

∣A
∣

∣ +
∣

∣E ′
∣

∣
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Figure 9. Representation of the 2-oriented planar hypergraph
from a 2-1 orientation of its incidence graph

It is obviously sufficient to consider pairs (A, E ′) where E ′ is the neighbor set N(A)
of A. Hence, (3.4) may be rewritten:

(3.5) ∀A ⊆ X,
∣

∣E(Incid(H)A∪N(A))
∣

∣ ≤ 2
∣

∣A
∣

∣ +
∣

∣N(A)
∣

∣

Finally,
∣

∣E(Incid(H)A∪N(A))
∣

∣ −
∣

∣N(A)
∣

∣ =
∑

E∈N(A)

dIncid(H)A∪N(A)
(E) −

∣

∣N(A)
∣

∣(3.6)

=
∑

E∈N(A)

(

∣

∣E ∩ A
∣

∣ − 1
)

(3.7)

= µ(HA)(3.8)

Hence, the graph Incid(H) has a 2-1 orientation if and only if (3.2) holds. �

Theorem 3.4. A hypergraph H has a strong contact representation if and only
if H is planar and satisfies

(3.9) ∀A ⊆ X, µ(HA) ≤ 2
∣

∣A
∣

∣

Proof. • A strong contact representation of a hypergraph H induces
a planar embedding and a 2-1 orientation of Incid(H): an edge {v, E}
is oriented from v to E if the point representing E is interior to the arc
representing v.

• Conversely, if H is a planar hypergraph, an embedding and a 2-1 orienta-
tion of Incid(H) defines a strong contact representation of H (see Fig. 9).

The theorem now follows from Lemma 3.3. �

3.3. Strong contact representation of frame-represented hypergraphs.

We introduce some definitions and notations related to triangulation:
Let H be a planar hypergraph and Φ = (Γ, Π) be a frame representation of H.

• Let C be a polygon, then Triang(C) is the set of the maximal outer-planar
graphs which may be obtained by triangulating the inside of C.

• Let E be an edge of H. Then Triang(E) = {E} if E as cardinality at
most two and Triang(E) = Triang(C) if C is the polygon of Γ induced by
the edges of the class of Π corresponding to the edge E of H.

• Triang(Φ) is the set of the plane multigraphs which may be obtained from
Γ by triangulating the faces belonging to Π.
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• For any plane graph G ∈ Triang(Φ), TΦ(G) denotes the union of the set
of all the triangular faces of G which are not faces of Γ and the set of all
the triangular faces of Γ which belong to Π.

For any induced plane subgraph H of a plane graph G ∈ Triang(Φ),
TΦ(H) is the set of all the triangular faces of H which belong to TΦ(G).
Notice that this set does not depend on the choice of G in Triang(Φ).

Lemma 3.5. H is a linear hypergraph if and only if all the graphs in Triang(Φ)
are simple.

Proof. • If H is not linear, there exists two edges E, E′ of H having
at least two vertices x and y in common. Hence, there exists a multigraph
in Triang(Φ) such that x an y are linked by an edge in Triang(E) and by
an edge induced in Triang(E′).

• If H is linear, two vertices may simultaneously belong to at most one edge
of H and hence are linked by at most one edge in a graph belonging to
Triang(Φ).

�

Lemma 3.6. Let C be a polygon. Then, for any subset W ⊆ V (C), we have:

(3.10) max
G∈Triang(C)

∣

∣E(GW )
∣

∣ −
∣

∣T (GW )
∣

∣ =

{

∣

∣W
∣

∣ − 1 if W 6= ∅

0 otherwise

Proof. The number
∣

∣T (GW )
∣

∣ of bounded triangular faces of GW is one less

than the number of faces of GW . Hence,
∣

∣E(GW )
∣

∣ −
∣

∣T (GW )
∣

∣ is equal to
∣

∣W
∣

∣ −
c(GW ), where c(GW ) is the number of connected components of GW . If W is
nonempty, this number is at most

∣

∣W
∣

∣ − 1, and this value is achieved by any
triangulation G of C, such that GW is connected. �

Lemma 3.7. Let Φ = (Γ, Π) be a frame representation of a hypergraph H. Let
W ⊆ V be a subset of the vertex set of Γ. Then,

(3.11) µ(HW ) = max
G∈Triang(Φ)

(

∣

∣E(GW )
∣

∣ −
∣

∣TΦ(GW )
∣

∣

)

Proof. Let Γi be the partial graph of Γ induced by (edges of) Fi ∈ Π. Let
Wi be the subset of W of the vertices incident to Fi. Any graph G ∈ Triang(Φ) is
uniquely defined by the list of the graphs G(i) ∈ Triang(Γi).

The number
∣

∣E(GW )
∣

∣ of edges of the subgraph of G induced by W is the sum

of the numbers
∣

∣E(G
(i)
Wi

)
∣

∣ of edges of the subgraphs of the G(i) induced by Wi.

Similarly, the number
∣

∣TΦ(GW )
∣

∣ is the sum of the numbers
∣

∣T (G
(i)
Wi

)
∣

∣ of trian-

gles of the subgraphs of the G(i) induced by Wi, as a triangle belongs to TΦ(GW )
if and only if its vertices belongs to the same Γi.

Hence,

µ(HW ) =
∑

i,Wi 6=∅

(

∣

∣Wi

∣

∣ − 1
)

(3.12)

=
∑

i

(

max
H∈Triang(Γi)

(

∣

∣E(HWi
)
∣

∣ −
∣

∣T (HWi
)
∣

∣

)

)

(3.13)

= max

{

∑

i

(

∣

∣E(G
(i)
Wi

)
∣

∣ −
∣

∣T (G
(i)
Wi

)
∣

∣

)

, ∀j, G(j) ∈ Triang(Γj)

}

(3.14)

= max
G∈Triang(Φ)

(

∣

∣E(GW )
∣

∣ −
∣

∣TΦ(GW )
∣

∣

)

(3.15)

�
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Figure 10. The local deformation of a contact point representing
a zig-zag graph

Theorem 3.8. Let Φ = (Γ, Π) be a frame representation of a plane linear
hypergraph H. Then, H has a strong contact representation if and only if the
following inequality holds:

(3.16) max
G∈Triang(Φ),W⊆V (Γ)

∣

∣E(GW )
∣

∣ −
∣

∣TΦ(GW )
∣

∣ − 2
∣

∣W
∣

∣ ≤ 0

Proof. This is a direct consequence of Theorem 3.4 and Lemma 3.7. �

4. Local Intersections

Let H be a maximal outer-planar graph and let F be a family of
∣

∣V (H)
∣

∣ arcs
which share a single contact point p.

The graph H is a local intersection graph if, for any vertex v of H , there exists
a local deformation of F at p which represents H , and such that

• the arc to which p is interior represents v,
• the circular order of the arcs is the same as the circular order of the

vertices they represent.

A zig-zag graph is a maximal outer-planar graph which interior edges defines a
path.

Lemma 4.1. A zig-zag graph is a local intersection graph.

Proof. The construction of a local deformation of a contact point into a zig-
zag graph is shown on Fig. 10. �

Remark 4.2. One can prove the reverse, that is: a maximal outer-planar graph
is a local intersection graph if and only if it is a zig-zag graph.

Let Z(Φ) denotes the set of all possible graphs obtained from Γ by triangulating
the faces in Π using paths, and let K(Φ) be the graph obtained from Γ by replacing
each face in Π by a clique.

Theorem 4.3. Let Φ = (Γ, Π) be a frame.
If the following condition holds:

(4.1) max
G∈Triang(Φ),W⊆V (Γ)

∣

∣E(GW )
∣

∣ −
∣

∣TΦ(GW )
∣

∣ − 2
∣

∣W
∣

∣ ≤ 0

then:
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Figure 11. A contact representation of K(Φ)

s s
s s

s s

s

s

������

�
�

�
�

�
�

PPPPPP

@
@

@
@

�
�
�
�

�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C

A
A
A
A
@

@
@

@
@

@�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

``````````

D
D
D
D
D
D
D
D
D
DDA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

���������

�
�
� @

@
@

@
@

@

A
A
A
A
A
A
A
A
A
A
A
A
AA

������

c
c

c
c

c
c

cc

Figure 12. A strong intersection representation of a graph G ∈ Z(Φ)

• K(Φ) has a contact representation,
• any graph in Z(Φ) has an intersection representation.

Proof. The conclusion follows from the previous lemma and Theorem 3.8. �

Corollary 4.3.1. Let Γ(V, E) be a plane graph and let I be an independent
(i.e. edge-disjoint) set of triangular faces (defining Π = I∪

{

{e}, e ∈ E \ (
⋃

T∈I T )
}

).
If the following condition holds:

(4.2) max
W⊆V

∣

∣E(ΓW )
∣

∣ −
∣

∣T (ΓW ) ∩ I
∣

∣ − 2
∣

∣W
∣

∣ ≤ 0

then Γ has a contact representation.
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Figure 13. The 4-colored plane graph G (the dashed triangles
are the members of T+(G)) and the associated frame

Representation of planar graphs

5. The Coloration Method

Let G be a 2-connected 4-colored plane graph. Let T+(G) be the set of all the
bounded triangular faces of G in which two consecutive colors appear clockwise.

First notice that a triangle belonging to T+(G) is adjacent to at most one other
triangle belonging to T+(G). More precisely, two bounded adjacent triangles both
belong to T+(G) if and only if the vertices of their union are colored (1, 2, 3, 4) in
clockwise order.

A frame Φ = (Γ, Π) is obtained from G and T+(G):

• The graph Γ is the graph obtained from G by erasing the edges belonging
to two triangles belonging to T+(G).

• The partition Π has the following classes:
– {e}, if the edge e belongs to no triangle in T+(G),
– T , if the triangle T belongs to T+(G) and no triangle adjacent to it

belongs to T+(G),
– (T1 ∪T2) \ (T1 ∩T2), if the triangles T1 and T2 are adjacent and both

belong to T+(G).

Lemma 5.1. If G has no induced C4 colored (1, 2, 3, 4) and no separating C3

with two consecutive colors appearing clockwise, then all the graphs in Triang(Φ)
have the same property

Proof. All the graphs in Triang(Φ) may be obtained from G by a sequence
of edge-switchings performed on edges not in E(Γ).

If such a switching creates a C3 separator with two consecutive colors appearing
clockwise (say v3, v1, v2, where the edge (v3, v1) comes from the switching of an edge
(x2, x4)), then the original graph has (v3, x4, v1, v2) as an induced C4.

Similarly a C3 separator with two consecutive colors appearing clockwise may
only occur if an induced C4 colored (1, 2, 3, 4) exists before the edge-switching. �

Lemma 5.2. For any G ∈ Triang(Φ), and for any induced subgraph H ⊆ G, we
have:

(5.1) T+(H) = TΦ(H)
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Proof. This is a direct consequence of the fact that there exists no C3 sepa-
rator with two consecutive colors appearing clockwise in G. �

Lemma 5.3. If G has no induced C4 colored (1, 2, 3, 4) in the clockwise order,
we have:

(5.2)
∣

∣E(G)
∣

∣ −
∣

∣T+(G)
∣

∣ − 2
∣

∣V (G)
∣

∣ ≤ −3

Proof. Let us prove the lemma by induction on the size sequence of the faces.
A graph is minimal if each face has length 3 and hence is a maximal planar

graph. Then, any triangle of G includes exactly one edge colored (1, 2) or (3, 4)
and such an edge belongs to two adjacent triangles. This matching shows that
T+(G) includes either the half of the triangles of G or the half the triangles of G

number minus 1 (depending on the coloration of the outer face which never belongs
to T +(G)). Hence:

∣

∣E(G)
∣

∣ −
∣

∣T+(G)
∣

∣ − 2
∣

∣V (G)
∣

∣ ≤
(

3
∣

∣V (G)
∣

∣ − 6
)

−
(1

2

(

2
∣

∣V (G)
∣

∣ − 4
)

+ 1
)

− 2
∣

∣V (G)
∣

∣

≤ −3

Otherwise, we shall construct a 4-colored 2-connected plane graph G′ with no face
of length 4 colored (1, 2, 3, 4) in the clockwise order that satisfies (together with the
associated subset T+(G′) of its face set):

(5.3)
∣

∣E(G′)
∣

∣ −
∣

∣T+(G′)
∣

∣ − 2
∣

∣V (G′)
∣

∣ ≥
∣

∣E(G)
∣

∣ −
∣

∣T+(G)
∣

∣ − 2
∣

∣V (G)
∣

∣

Let F be a non-triangular face of G of maximal size. We shall consider several
cases:

• There exists a color c, such that 4 vertices of F at least are not colored c.
Then G′ is obtained from G by adding a vertex x in F colored c,

which is linked to all the k ≥ 4 vertices of F , which are not colored c. We
get:

∣

∣V (G′)
∣

∣ =
∣

∣V (G)
∣

∣ + 1(5.4)
∣

∣E(G′)
∣

∣ =
∣

∣E(G)
∣

∣ + k(5.5)

∣

∣T+(G′)
∣

∣ ≤
∣

∣T (G)
∣

∣ +

⌊

2k

3

⌋

(5.6)

Thus,

∣

∣E(G′)
∣

∣ −
∣

∣T+(G′)
∣

∣ − 2
∣

∣V (G′)
∣

∣ ≥

⌈

k

3

⌉

− 2 +
∣

∣E(G)
∣

∣ −
∣

∣T+(G)
∣

∣ − 2
∣

∣V (G)
∣

∣

≥
∣

∣E(G)
∣

∣ −
∣

∣T+(G)
∣

∣ − 2
∣

∣V (G)
∣

∣

Remark that no face of length 4 colored (1, 2, 3, 4) in clockwise order may
be created that way.

• Otherwise, no color is present twice on F . If Vi(F ) denotes the set of the
i-colored vertices of F and l denotes the length of F , then:

4 ≤ l =
∣

∣

∣

⋃

i

Vi(F )
∣

∣

∣
=

1

3

∑

i

∣

∣

∣

⋃

j 6=i

Vj(F )
∣

∣

∣
≤ 4

Hence, F has length 4.
We triangulate F by adding an edge and, as F is not colored (1, 2, 3, 4)

in clockwise order, at most one additional triangle is added to T+(G′).
Hence,

(5.7)
∣

∣E(G′)
∣

∣ −
∣

∣T+(G′)
∣

∣ − 2
∣

∣V (G′)
∣

∣ ≥
∣

∣E(G)
∣

∣ −
∣

∣T+(G)
∣

∣ − 2
∣

∣V (G)
∣

∣

�
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Lemma 5.4. If G has no induced C4 colored (1, 2, 3, 4) in the clockwise order
and no separating C3 with two consecutive colors appearing clockwise, we have:

(5.8) max
W⊆V (G)

∣

∣E(GW )
∣

∣ −
∣

∣T+(GW )
∣

∣ − 2
∣

∣V (GW )
∣

∣ ≤ −3

Proof. Let us first prove that the inequality

(5.9)
∣

∣E(GW )
∣

∣ −
∣

∣T+(GW )
∣

∣ − 2
∣

∣V (GW )
∣

∣ ≤ −3

holds for any induced 2-connected subgraph H ⊆ G in place of GW .
Actually, let T+(H) be the set of all the bounded triangles of H in which

two consecutive colors appear clockwise. As G has no separating C3 with two
consecutive colors appearing clockwise, T+(H) = T (H)∩T+(G). Moreover, H has
no face of length 4 colored (1, 2, 3, 4) in clockwise order as it would be an induced
4-cycle of G.

Hence, by the preceding lemma, any 2-connected induced subgraph H of G

satisfies:

(5.10)
∣

∣E(H)
∣

∣ −
∣

∣T+(H)
∣

∣ − 2
∣

∣V (H)
∣

∣ ≤ −3

¿From this inequality, we deduce that the same holds for any induced subgraph H

of G (remark that the weaker inequality
∣

∣E(H)
∣

∣ −
∣

∣T+(H)
∣

∣ − 2
∣

∣V (H)
∣

∣ ≤ 0 could
not be extended to not 2-connected graphs). �

Theorem 5.5. Let G be a 4-colored 2-connected plane graph with no induced
4-cycle colored (1, 2, 3, 4) in the clockwise order and no separating C3 with two
consecutive colors appearing clockwise.

Then, G has an intersection representation.

Proof. ¿From the previous lemmas, we get

(5.11) max
G∈Triang(Φ),W⊆V (Γ)

∣

∣E(GW )
∣

∣ −
∣

∣TΦ(GW )
∣

∣ − 2
∣

∣W
∣

∣ ≤ −3

and, as G belongs to Z(Φ) = Triang(Φ), the results follows. �

Corollary 5.5.1. Let G be an internally 5-connected planar graph. Then, G

has an intersection representation.

Theorem 5.6. Let G be a 3-colored 2-connected plane graph with no separating
C3 having two consecutive colors appearing clockwise,

Then, G has a contact representation.

Proof. As previously, we get

(5.12) max
G∈Triang(Φ),W⊆V (Γ)

∣

∣E(GW )
∣

∣ −
∣

∣TΦ(GW )
∣

∣ − 2
∣

∣W
∣

∣ ≤ −3

and, as G is equal to K(Φ), the results follows. �

Corollary 5.6.1. Let G be a 4-connected 3-colorable planar graph. Then, G

has a contact representation.

6. Cut and Paste

By cutting C3-separated components and pasting back their representation we
obtain the following extension of Theorem 5.5:

Theorem 6.1. Let G be a 4-colored plane graph with no induced 4-cycle colored
(1, 2, 3, 4) in the clockwise order.

Then, G has an intersection representation.
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Figure 14. The existence of a strong intersection representation
for all simple planar graphs is equivalent to the existence of a strong
intersection representation for all planar multigraphs

7. Conclusion

Here we consider general graphs and hypergraphs (with possible loops and
multiple edges).

Definition 7.1. A hypergraph H (or a multigraph G) has a strong intersection
representation if there exists a family F of Jordan arcs, whose arc-point incidence is
the vertex-edge incidence of H (or G): arcs represents vertices and points represent
edges.

Problem 1. Has any planar simple graph an intersection representation?

Problem 2. Has any planar multigraph a strong intersection representation?

Proposition 7.1. The problems 1 and 2 are equivalent:
Any planar simple graph has an intersection representation if and only if any

planar multigraph has a strong intersection representation.

Proof. If any planar multigraph has a strong intersection representation, any
planar simple graph has indeed an intersection representation.

Conversely, if any planar simple graph has an intersection representation, any
planar simple graph has also a strong intersection representation obtained by a
trivial local deformation of the arcs at the intersection points. If a planar multigraph
G has multiple edges, we consider the planar simple graph G′ obtained from G by
replacing any edge set Ei linking two vertices x and y by:

• a single edge {x, y} if
∣

∣Ei

∣

∣ is odd,

• a bisected edge {x, z}, {z, y} if
∣

∣Ei

∣

∣ is even.

Then, a strong intersection representation of G′ induces a strong intersection rep-
resentation of G (see Fig. 14). �

Problem 3. Has any planar hypergraph a strong intersection representation?

Acknowledgment 1. The authors would like thank R. Šámal for his helpful
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