
HAL Id: hal-00005623
https://hal.science/hal-00005623

Submitted on 19 Aug 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Left-First Search Algorithm for Planar Graphs.
Hubert de Fraysseix, Patrice Ossona de Mendez, Janos Pach

To cite this version:
Hubert de Fraysseix, Patrice Ossona de Mendez, Janos Pach. A Left-First Search Algorithm for Planar
Graphs.. Discrete and Computational Geometry, 1995, 13, pp.459-468. �hal-00005623�

https://hal.science/hal-00005623
https://hal.archives-ouvertes.fr

cc
sd

-0
00

05
62

3,
 v

er
si

on
 1

 -
 1

9
A

ug
 2

00
5

A Left-First Search Algorithm for Planar Graphs

H. de Fraysseix,1 P. O. de Mendez1 and J. Pach2

Abstract. Let G be a bipartite planar graph with n vertices. We give a simple O(n) time

algorithm to assign vertical and horizontal segments to the vertices of G so that (i) no

two segments have an interior point in common, (ii) two segments touch each other if and

only if the corresponding vertices are adjacent. Our method is based on a new linear time

algorithm for constructing a bipolar orientation of a 2-connected planar graph.

1. Introduction.

Throughout this paper we consider only finite graphs G without loops, but we allow

multiple edges. If G has no multiple edges then it is called a simple graph. A graph is

2-connected if it cannot be disconnected by the removal of a vertex.

Let ~G be a directed graph obtained by orienting the edges of G. A vertex of ~G is said

to be a source (sink) if its in-degree (out-degree) is 0. ~G is acyclic if it contains no oriented

cycle. For any partition of the vertex set V (~G) = V1 ∪ V2, the family of edges between V1

and V2 is said to form a cocycle (or an oriented cut) if all of them are oriented towards V2.

The following concept was introduced by Lempel, Even and Cederbaum [LEC] to design

an efficient planarity testing algorithm. It plays a crucial role in many problems about

graph drawings, motion planning, visibility and incidence relations between geometric

objects, etc. ([FPP], [FRU], [OW], [P], [Ri], [R], [RT], [T], [Ta], [TT1], [TT2]).

Definition 1.1. Given an edge ~e = ~st of ~G, we say that the orientation of ~G is ~e-bipolar

(or defines an st-ordering) if

(a) ~G is acyclic,

(b) s and t are the unique source and sink of ~G, respectively.

We shall also use another equivalent form of this definition (which can easily be extended

to matroids).

Lemma 1.2. Given an edge ~e of ~G, the orientation of ~G is ~e-bipolar if and only if

(a) ′ every edge of ~G belongs to a cocycle,

(b) ′ every cocycle of ~G contains ~e.

Proof. Obviously, (a)′ implies (a). Conversely, if ~G is acyclic and ~e′ = ~s′t′ is any edge,

then let V2 be the set of all vertices that can be reached from t′ by a directed path, and

1Centre de Mathématiques Sociales, EHESS, 54 Boulevard Raspail, 75006, Paris, France. Supported

by ALCOM.
2Dept. Comp. Sci., City College, CUNY and Courant Intitute, NYU. Supported by NSF grant CCR-

91-22103, OTKA-4269, and ALCOM.

1

2

let V1 = V (~G) − V2. Then all edges between V1 and V2, including ~e′, are oriented towards

V2, thus (a)′ holds.

To show that (b) implies (b)′ for any acyclic digraph ~G, it is enough to observe that, if

a partition V (~G) = V1 ∪ V2 defines a cocycle, then V1 and V2 must contain a source and

a sink, respectively. Thus, s ∈ V1, t ∈ V2 and ~e = ~st belongs to this cocycle. Conversely,

if an acyclic digraph satisfies (b)′ with ~e = ~st then, for any source x (and sink y), the

collection of edges incident to x (y) forms a cocycle. Consequently, ~e is incident to both x

and y. Hence, x = s, y = t and (b) holds. �

Corollary 1.3. If ~G has an ~e-bipolar orientation, then it has no two cocycles such that

one contains the other.

Proof. Let E and E′ be two cocycles of ~G defined by the partitions V1 ∪ V2 and V ′

1 ∪ V ′

2 ,

respectively, where s ∈ V1 ∩ V ′

1 and t ∈ V2 ∩ V ′

2 . Suppose without loss of generality that

W1 = V ′

1 ∩ V2 6= ∅. If E ⊆ E′, then W1 and W2 = V (G) −W1 define a cocycle which does

not contain ~e = ~st, contradicting condition (b)′ in Lemma 1.2. �

If ~G has an ~e-bipolar orientation, then its underlying graph G (obtained by disregarding

the orientation of the edges) is obviously 2-connected. Indeed, if G fell into two components

G1 and G2 by the removal of a vertex x, then, by the acyclicity of ~G, both parts of ~G

induced by V (G1)∪{x} and V (G2)∪{x} would contain a source and a sink, contradicting

condition (b) of Definition 1.1.

On the other hand, it is easy to see that, given any 2-connected graph G and any edge

e = st, there exists an ~e-bipolar orientation of the edges of G with ~e = ~st. Moreover, Even

and Tarjan [ET] devised a linear time algorithm to find such an orientation, which has

been subsequently simplified by Ebert [E] and Tarjan [Ta].

In section 2 of this paper we propose a simple greedy algorithm based on Whithney’s

theorem [W] to find bipolar orientations of 2-connected plane graphs.

A plane graph is a planar graph embedded in the plane (or in the sphere) so that its edges

are represented by simple non-crossing Jordan arcs. If a plane graph G is 2-connected,

then its dual graph G∗ can be defined as follows. Put a vertex of G∗ in each face of G and,

if two faces meet along an edge f , then connect the corresponding two vertices by an arc

f∗ crossing f . (It is well known and easy to see that this construction can be carried out

so that we obtain a plane graph G∗. By the 2-connectedness of G, G∗ has no loops, but

it may have multiple edges.) Any orientation of G induces a dual orientation of G∗ in a

natural way: we obtain the orientation of f∗ from that of f by a clockwise turn.

Theorem 1.4. Let ~G be an ~e-bipolar orientation of a 2-connected plane graph, and let
~G ∗ denote its dual graph with the dual orientation. Then the directed graph ~G ∗

−
obtained

3

from ~G ∗ by reversing the orientation of ~e ∗ is ~e ∗

−
-bipolar oriented, where ~e ∗

−
and ~e ∗ are

opposite orientations of the same edge.

Proof. We are going to show that ~G ∗

−
satisfies conditions (a)′ and (b) of 1.2 and 1.1,

respectively.

Let ~G− denote the digraph obtained from ~G by changing the orientation of ~e = ~st to

~e− = ~ts. Any edge of ~G can be extended to a directed path in ~G connecting s to t. Thus,

any edge ~f ∈ E(~G−) belongs to a (simple) cycle of ~G− passing through ~e−. The edges of
~G ∗

−
crossing this cycle form a cocycle containing ~f∗ (and ~e ∗

−
), which proves (a)′.

Suppose, for contradiction, that ~G ∗

−
does not satisfy (b). Let s∗ and t∗ denote the

endpoints of ~e ∗

−
(~e ∗

−
= ~s∗t∗), and assume without loss of generality that ~G ∗

−
has a source

x different from s∗. Clearly, x 6= t∗. Those edges of ~G− which cross an edge incident to

x form a cycle. Since this cycle does not use the arc e, this would also be a cycle in ~G, a

contradiction. �

As any graph which has a bipolar orientation is 2-connected and vice versa, Theorem 1.4

immediately implies that the dual of a 2-connected plane graph is also 2-connected.

In section 3 we shall apply the above concepts and results to obtain the following

theorem.

Theorem 1.5. There exists a linear time algorithm which assigns vertical and horizontal

segments to the vertices of any bipartite plane graph G so that

(i) no two segments have an interior point in common,

(ii) two segments touch each other if and only if the corresponding vertices are adjacent in

G.

Note that, if the black and white vertices of a bipartite (2-colored) graph G can be

represented by vertical and horizontal segments, respectively, satisfying conditions (i) and

(ii), then G is necessarily planar.

We say that a graph G has a segment representation, if its vertices can be represented by

segments in the plane so that two segments cross each other if and only if the corresponding

vertices are adjacent. It is not known whether every planar graph can be represented in

such a way. However, Theorem 1.5 implies that every bipartite planar graph has a segment

representation (which has been known before, see e.g. [HNZ]).

Definition 1.6. A bipartite plane graph is called a quadrilateralization, if it contains

no multiple edges and each of its faces has four edges.

It is easy to see that every quadrilateralization is 2-connected.

4

Given a bipartite plane graph, in linear time we can remove all multiple edges (by lex-

icographically bucket-sorting all edges with respect to their endpoints). Then we can use

any naive linear time algorithm to extend the remaining graph to a quadrilateralization,

by adding edges and vertices. Thus, it is sufficient to prove Theorem 1.5 for quadrilater-

alizations.

Definition 1.7. [R] Let H be a connected plane graph. Triangulate every face f of H

from one of its interior points xf (by connecting xf to the vertices of f), and delete all

edges belonging to H. The resulting graph A(H) is called the angle graph of H.

Remark 1.8. Let H be a connected plane graph. Then A(H) is a quadrilateralization

if and only if H is 2-connected. �

On the other hand, every quadrilateralization can be obtained as the angle graph of

some 2-connected plane graph.

Lemma 1.9. Let G be a quadrilateralization, whose vertices are colored with black and

white. For every face f of G, connect its two black (white) vertices by an edge within f .

The graph Gb (Gw) formed by these edges is called the graph of black (white) diagonals of

G. Then,

A(Gb) = A(Gw) = G . �

Corollary 1.10. Gb and Gw are 2-connected plane graphs, dual to each other.

Proof. Immediately follows from Remark 1.8. �

2. Greedy algorithms for bipolar orientation

Let G be any 2-connected graph with n vertices and m edges. For any edge st of G,

G has a Whitney decomposition into handles, i.e., there is a nested sequence of subgraphs

G0 = {st} ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gk = G such that Gi+1 can be obtained from Gi by the

addition of a simple path Pi+1 which has only its endpoints in common with Gi.

We present a simple and easily implementable O(m) time algorithm, which maintains

a total ordering of the vertices of Gi such that every Pj (j ≤ i) forms a monotone chain.

Directing every edge of G towards its larger endpoint in the final ordering, we obtain

an st-ordering (bipolar orientation) of G. In fact, our algorithm will also maintain the

orientation of the edges of Gi compatible with the ordering of its vertices.

Suppose that we have already found a sequence of subgraphs Gj (j ≤ i) with the above

properties, and that the vertices of Gi are totally ordered by a linked list called “LINK”.

Assume further that all edges of Gi are oriented towards their higher endpoints in this

order, and every Pj (j ≤ i) forms an oriented path. A vertex x ∈ V (Gi) is said to be

5

saturated, if all edges of G incident to x belong to Gi. Step i (i ≥ 0) of our algorithm

consists of three parts.

(1) Find the first unsaturated vertex x ∈ V (Gi) on the list LINK.

(2) Find a simple path Pi+1 in G − Gi connecting x to some other vertex y ∈ V (Gi)

such that no internal point of Pi+1 belongs to V (Gi). Orient the edges of Pi+1 from x

towards y.

(3) Insert the internal vertices of Pi+1 in the list LINK between x and LINK[x], i.e.,

immediately after x.

If we cannot execute (1), i.e., all vertices of Gi are saturated, then Gi = G and our

algorithm ends. Otherwise, let x′ be any neighbor of x such that the edge xx′ does not

belong to Gi. If x′ ∈ V (Gi), then x′ is also unsaturated, so x precedes x′ on the list LINK.

In this case, Pi+1 consists of the single edge xx′ oriented from x to x′, and (3) is void. If

x′ 6∈ V (Gi), then it follows from the 2-connectedness of G that it can be connected to some

y ∈ V (Gi), y 6= x by a simple path in G−Gi. Obviously, x precedes y on the list LINK, so

in this case we can execute (2) and (3) without adding any edge oriented backwards with

respect to the revised LINK list, and we can pass to the next step.

Note that in the last part of Step i, when we revise the LINK list, we do not add any

elements below x. Since all elements preceding x have already been saturated in Gi, when

we come to part (1) of Step i + 1, we do not have to check any member of LINK before x.

To execute part (2) of Step i, we can use depth-first search on G−Gi, starting at x and

stopping when we hit the first vertex y ∈ V (Gi). We put every edge e of the tree visited

during the search in a (last-in, first-out) stack, and remove e if we have to “backtrack”

along it. At the end of the search, the edges remaining in our stack will form a simple path

Pi+1 ⊆ G − Gi meeting the requirements. However, unless we are lucky, this procedure

may take Ω(|E(Gi)|) time, and summing over all 0 ≤ i ≤ k, the total running time of our

algorithm can be as large as Ω(km).

To achieve O(m) running time, we have to restrict the depth-first search at Step i,

taking into account the searching routes traversed in the previous steps. Whenever we

have to backtrack along an edge from z1 to z2, we label z1 with the edge ~z1z2, i.e., we set

b(z1) = ~z1z2. This label will stay on z1 during the rest of the algorithm. If our depth-first

search in Step i will lead us to a labeled vertex z, then we shall continue our search along

the edge b(z). Otherwise, we can explore any unused edge incident to z.

One can easily show by induction that

(a) every vertex of G gets labeled only at most once;

(b) at the beginning of Step i, those edges of G−Gi which occur (with some orientation)

6

as a label, form a number of trees rooted in V (Gi) and oriented towards their roots.

In fact, when our depth-first search in Step i discovers a vertex belonging to any of these

trees, then we must follow it down to its root, where the search stops.

Let e be an edge which is visited by our algorithm for the first time in Step i. (Note

that e can be visited twice in Step i, from both of its endpoints.) Then e becomes oriented

either in Step i, or when it is visited the next time. Thus, every edge is visited at most

three times, and the total running time of the algorithm is O(m). �

2.2. The planar case. If G is a plane graph, then the above algorithm can be essentially

simplified. Suppose that, for every vertex v, we are given the clockwise circular order of

edges incident to v. We are going to follow the same scheme as in the general case, except

that to execute part (2) of Step i now we do not have to use depth-first search.

Whenever we orient a new edge f towards one of its endpoints z, then we set IN[z]=f .

Furthermore, let IN[s]=st.

Assume that we have already finished part (1) of Step i, i.e., we have found the first

unsaturated vertex x ∈ V (Gi) on the list LINK. Starting from x0 = x, we shall construct

the path Pi+1 = x0x1x2 . . . , as follows. For every j ≥ 0, let xjxj+1 be the first unoriented

edge incident to xj , which follows IN[xj] in the clockwise order. Orient xjxj+1 from xj

towards xj+1. If xj+1 ∈ V (Gi), then it is the last point of Pi+1, and part (2) of Step i has

been completed.

To prove that this construction is correct, it is enough to check that xj+1 6= xh for

any h ≤ j. But this is true, otherwise xhxh+1 · · ·xj+1 would bound a face of G, and

xjxj+1 = xhxj would precede xhxh+1 in the cyclic order of edges around xh, contradicting

the choice of xh+1.

It remains to show that our algorithm can be implemented in linear time. To this end,

whenever we orient an edge ~zz′, then we introduce a pointer NEXT[z] pointing to the edge

that follows immediately after zz′ in the clockwise order of edges incident to z.

Let x = x0 ∈ V (Gi) be the first unsaturated vertex on the list LINK at the beginning

of Step i of the algorithm. According to the above rule, next we have to find the first

unoriented edge x0x1 which comes after IN[x0] in the clockwise order of edges incident to

x0. However, this can be accomplished in constant time, because x0x1 =NEXT[x0].

To prove this, it is enough to show that the edges oriented towards x0 at the beginning

of Step i form a single block in the clockwise order of edges incident to x0, whose last

element is the edge along which x0 has been visited for the first time. Indeed, if an edge

of this block were missing (unoriented), then its other endpoint would precede x0 on the

list LINK, contradicting our assumption that x0 is the first unsaturated vertex.

7

Note that the same algorithm can be used to find a Whitney decomposition (and a

bipolar orientation) of any cellular graph.

Definition 2.3. A graph G embedded in a simple closed surface Σ ⊆ RI 3 is called

cellular, if it divides Σ into connected components so that each of them is topologically

equivalent to a disk.

3. Bipartite plane graphs.

In this section we are going to prove Theorem 1.5. As we have pointed out in the

Introduction, we can assume that G is a quadrilateralization (cf. Definition 1.6), whose

vertices are colored with black and white. Let Gb and Gw be the graph of black diagonals

and the graph of white diagonals of G, respectively (cf. Lemma 1.9). Furthermore, let

sb, sw, tb, tw denote the vertices of the outer face of G, listed in clockwise order (sb, tb ∈

V (Gb); sw, tw ∈ V (Gw)).

By Corollary 1.10, Gb is 2-connected, so we can use the algorithm described in 2.2 to

find an sbtb-ordering (bipolar orientation) of Gb. That is, in linear time we can number

the black vertices b1 = sb, b2, b3, . . . , bp = tb so that, orienting every edge of Gb towards

its endpoint of larger index, we obtain an ~sbtb-bipolar orientation ~Gb.

~Gb induces a dual orientation ~Gw on Gw. By Theorem 1.4, reversing the orientation of

the edge ~twsw ∈ ~Gw, we obtain an ~swtw-bipolar orientation ~G−

w . Using topological sorting,

one can easily find a numbering of the white vertices w1 = sw, w2, w3, . . . , wq = tw such

that every edge of ~G−

w is oriented towards its endpoint of larger index (p + q = |V (G)|).

For any black point bi (1 ≤ i ≤ p), let Vi be a vertical segment in the plane, whose

endpoinst are (i, minbiwj∈G j) and (i, maxbiwj∈G j). Similarly, to any white vertex wj

(1 ≤ j ≤ q), we assign a horizontal segment Hj, whose endpoints are (minbiwj∈G i, j)

and (maxbiwj∈G i, j). We claim that this collection of segments meets the requirements of

Theorem 1.5.

It is clear by the definition that all segments are contained in the rectangle enclosed

by V1, H1, Vp, Hq, and that each of these four segments is in contact with exactly those

segments which correspond to its neighbors.

Let us fix now a black point bk, 1 < k < p, and let B1 = {bi | i < k}, B2 = {bi | i > k}.

Clearly, the edges connecting B1 to B2 ∪ {bk} form a cocycle E1 in ~Gb, and the edges

connecting B1 ∪ {bk} to B2 form another cocycle E2. Since all cocycles of ~Gb are minimal

(by Corollary 1.3), the edges of ~Gw intersecting some element of E1 (E2) form a (minimal)

oriented cycle C1 (C2) passing through ~twsw. Deleting the edge ~twsw from C1 and C2, we

obtain two simple oriented paths P1 and P2, respectively, connecting sw to tw in ~G−

w . It

is easy to see that bk is the only black vertex enclosed by P1 and P2. Indeed, if there were

8

another vertex bi (i < k, say) with this property, then all vertices along an oriented path

connecting b1 = sb to bi in ~Gb would belong to B1, hence this path could intersect neither

P1 nor P2, contradiction. On the other hand, since P1 and P2 are not identical, they must

enclose at least one black vertex.

Thus, starting from sw, P1 and P2 are identical up to a point s′w. Then they split up,

and meet again at some point t′w, from which they run together to their common endpoint

tw. Let P ′

1 and P ′

2 denote the parts of P1 and P2, respectively, connecting s′w to t′w. Since

all edges of ~Gb intersecting some edge of P ′

1 (P ′

2) must end (start) at bk, we obtain that all

vertices of P ′

1 ∪P ′

2 are adjacent to bk in G. Moreover, bk does not have any other neighbor

not belonging to P ′

1 ∪ P ′

2.

Let W1 (W2) denote the set of white points, all of whose black neighbors are in B1

(B2). If a white point w does not belong to W1 ∪ W2, then it must be a vertex of P1 or

P2. Indeed, if w 6∈ W1 ∪ W2 then it has two consecutive neighbors b and b′ such that, say,

b ∈ B1 and b′ 6∈ B1. But then ~bb′ belongs to the cocycle E1 in ~Gb, so the edge of ~Gw

crossing ~bb′ belongs to P1, and one of its endpoints is w.

Let wj (1 < j < q) be a white vertex, and let Hj be the corresponding horizontal

segment.

Case 1: bkwj 6∈ G.

Then wj ∈ W1 ∪ W2 or wj is an internal vertex of P1 ∩ P2.

If wj belongs to (say) W1, then maxbiwj∈G i < k. So Hj is to the left of Vk, and

Hj ∩ Vk = ∅.

Suppose next that wj belongs to (say) the portion of P1 ∩P2 lying strictly betweeen sw

and s′w. Then j is smaller than the index of any white neighbor of bk, because all of these

neighbors belong to P ′

1 ∪P ′

2 and can be reached from wj by an oriented path in ~G−

w (along

P1 or P2). Thus, Hj is below Vk, and Hj ∩ Vk = ∅.

Case 2: bkwj ∈ G.

Then wj belongs to P ′

1 ∪ P ′

2.

If wj = sw (or tw), then wj has the smallest (largest) index among all white neighbors

of bk, so the lower (upper) endpoint of Vk lies on Hj. Moreover, Vk has to touch Hj at

one of its interior points, because wj must be adjacent to at least one black vertex whose

index is smaller than k and to another one whose index is larger than k.

Suppose next that wj is an internal point of (say) P ′

1. Then the right endpoint of Hj is

an interior point of Vk.

This shows that the vertical and horizontal segments assigned to the vertices of G

satisfy the conditions of Theorem 1.5. We have also proved that the only pairs of segments

that share an endpoint are {V1, H1}, {H1, Vp}, {Vp, Hq} and {Hq, V1}. Consequently, the

9

segments Vi and Hj (1 ≤ i ≤ p, 1 ≤ j ≤ q) determine a tiling of the rectangle bounded by

V1, H1, Vp, Hq with smaller rectangles.

References

[DLR] G. DiBattista, W. P. Liu and I. Rival: Bipartite graphs, drawings and planarity, Infor-

mation Processing Letters 36 (1990), 317-322.

[E] J.Ebert: st-ordering of the vertices of biconnected graphs, Computing 30 (1983), 19–33.

[ET] S. Even and R. E. Tarjan: Computing an st-numbering, Theoret. Comput. Sci. 2 (1976)

339–344.

[EET] G. Ehrlich, S. Even and R. E. Tarjan: Intersection graphs of curves on the plane, J.

Combinat. Theory Ser B 21 (1976), 8-20.

[FPP] H. de Fraysseix, J. Pach and R. Pollack: How to draw a planar graph on a grid, Com-

binatorica 10 (1990) 41–51.

[FRU] S. Földes, I. Rival and J. Urrutia: Light sources, obstructions and spherical orders,

Discrete Mathematics 102 (1992), 13-23.

[HNZ] I.B.-A. Hartman,I. Newman and R. Ziv: On grid intersection graphs, Discrete Math. 87

(1991) 41–52.

[LEC] A. Lempel, S. Even and I. Cederbaum: An algorithm for planarity testing of graphs,

in: Theory of Graphs (Intl. Symp., Rome, July 1966, P. Rosenstiehl, ed.), Gordon and

Breach, New York, 1967, 215–232.

[OW] R. H. J. M. Otten and J. G. van Wijk: Graph representations in interactive layout

design, Proc. IEEE Intl. Symp. on Circuits and Systems, 1978, 914–918.

[P] C. R. Platt: Planar lattices and planar graphs, J. Combinat. Theory Ser B, 21 (1976),

30-39.

[Ri] I. Rival: Graphical data structures for ordered sets, in: Algorithms and Order (I. Rival,

ed.), NATO ASI Series C, Vol. 255, Kluwer Academic Publishers, 1989.

[R] P. Rosenstiehl: Embedding in the plane with orientation constraints: The angle graph,

Ann. N.Y. Acad. Sci., 340–346.

[RT] P. Rosentiehl and R. E. Tarjan: Rectilinear planar layouts and bipolar orientations of

planar graphs, Discrete Comput. Geom. 1 (1986) 343–353.

[T] R. Tamassia: A dynamic data structure for planar graph embedding, in: Automata, Lan-

guages and Programming (T. Lepistö and A. Salomaa, eds.), Lecture Notes in Computer

Science 317 (1988) 576–590.

[Ta] R. E. Tarjan: Two streamlined depth-first search algorithms, Fund. Inform. 9 (1986)

85–94.

[TT1] R. Tamassia and I. G. Tollis: A unified approach to visibility representations of planar

graphs, Discrete Comput. Geom. 1 (1986) 321–241.

10

[TT2] R. Tamassia and I. G. Tollis: Centipede graphs and visibility on a cylinder, in: Graph-

Theoretic Concepts in Computer Science (G. Tinhofer and G. Schmidt, eds.), Lecture

Notes in Computer Science 246 (1987) 252–263.

[W] H. Whitney: On the classification of graphs, Amer. J. Math. 55 (1933), 236–244.

