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Abstract. Zielonka'’s theorem shows that each regular set of Mazuikietraces
can be implemented as a system of synchronized processes wistributed
control structure called asynchronous automaton. Thigipaipes a polynomial
algorithm for the synthesis of a non-deterministic asyonbus automaton from
a regular Mazurkiewicz trace language. This new conswuaci$ based on an
unfolding approach that improves the complexity of Zielaskand Pighizzini's
techniques in terms of the number of states.
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Introduction

One of the major contributions in the theory of Mazurkiewliczces [3] characterizes
regular languages by means of asynchronous automata [1i6hale devices with a
distributed control structure. So far all known constrogs of asynchronous automata
from regular trace languages are quite involved and yieléxqonential explosion of
the number of states [9]. Furthermore conversions of ndardenistic asynchronous
automata into deterministic ones rely on Zielonka's tirtes¥gping function [6, 10] and
suffer from the same state-explosion problem. Intereltihguristics to build small
deterministic asynchronous automata were proposed tgdeifit 3].

Zielonka’'s theorem and related techniques are fundamésddd in concurrency
theory. For instance they are useful to compare the expeegsiver of classical models
of concurrency such as Petri nets, asynchronous systethspacurrent automata [14,
7]. These methods have been adapted already to the coimtraétcommunicating
finite-state machines from regular sets of message sequbads [8]. More recently
the construction of asynchronous cellular automata [2]wgasl to implement globally-
cooperative high-level message sequence charts [5]. Afiettconstructions yield an
exponential explosion of the number of local states.

In this paper we give polynomialconstruction of non-deterministic asynchronous
automata. Our algorithm starts from the specification ofgula trace language in
the form of a possibly non-deterministic automaton. Theetas unfolded inductively
on the alphabet into an automaton that enjoys several stalgiroperties (Section 2).
Next the unfolding automaton is used as the common skeldtafi mcal processes
(Subsection 3.2). Our algorithm is designed specificallgrisure that the number of
local states built is polynomial in the number of global etain the specification (Sub-
section 3.1). We show how this approach subsumes the coityptéxZielonka’s and
Pighizzini's constructions (Subsection 1.3).
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1 Background and main result

In this paper we fix a finite alphabet provided with a total ordeE. An automaton
over a subse” C X is a structured = (Q,+, T, —, F') where@ is afinite set of
states; € @ is aninitial state—C @ x T x @ is a set of transitions, anfl C Q) isa
subset of final states. We write— ¢’ to denote(q, a, ¢') €—. Then the automaton
A is calleddeterministicif we haveq - ¢’ A ¢ —— ¢ = ¢’ = ¢". For any word
u=aj..a, € X*, we writeq — ¢’ if there are some states, ¢, ..., ¢, € Q such
thatg = go —> q1...qn—1 — g, = ¢'. A stateq € Q is reachablef + — ¢ for some
u € X*. The languagd.(A) accepted by some automatghconsists of all words
u € X* such that — ¢ for someg € F. A subset of wordd, C X* is regularif it is
accepted by some automaton.

1.1 Mazurkiewicz traces

We fix anindependence relatiofiover >, that is, a binary relatioff C X' x X which
is irreflexive and symmetric. For any subset of actiGhs )7, thedependence graph
of T'is the undirected grapfV, F') whose set of vertices i = T and whose edges
denote dependence, ifer, b} € E < alfb.

Thetrace equivalence- associated with the independence alphdbet||) is the
least congruence over* such thatb ~ ba for all pairs of independent actiond|b.
For a wordu € X*, thetrace [u] = {v € X* | v ~ u} collects all words that are
equivalent tou. We extend this notation from words to sets of words in a rehtuay:
ForallL C X*,we put[L] = {ve X*|Ju e L,v ~ u}.

A trace languages a subset of wordé C X* that is closed for trace equivalence:
u € LAv~u= v € L. Equivalently we require that = [L]. With no surprise a
trace languagé is calledregularif it is accepted by some automaton.

1.2 Asynchronous systems vs. asynchronous automata

Two classical automata-based models are known to corrdsjporegular trace lan-
guages. Let us first recall the basic notion of asynchrongstems [1].

DEFINITION 1.1. An automatod = (Q,:, X, —, F') over the alphabet’ is called
anasynchronous systeaver (X, ||) if we have

ID: g1 - go A gz —2 gz A a||b impliesq; L A gy % g5 for somegy € Q.

The Independent Diamond propety ensures that the languadéA) of any asyn-
chronous system is closed for the commutation of indepdrafjacent actions. Thus
it is a regular trace language. Conversely it is easy to e@kst#ratany regular trace
language is the language of some deterministic asynchoagstem.

We recall now a more involved model of communicating proesssown as asyn-
chronous automata [15]. A finite famity= (%), ;- of subsets o is called adistri-
bution of (X, ||) if we havea )b < 3k € K, {a,b} C X}, for all actionsa, b € X. Note
that each subse¥;, is a clique of the dependence graphi, )f) and a distributior is
simply a clique covering ofY, Jf). We fix an arbitrary distributiod = (X}), . x in the
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rest of this paper. We cghrocessethe elements af. ThelocationLoc(a) of an action
a € X consists of all processése K such that € Xy: Loc(a) = {k € K |a € X} }.

DEFINITION 1.2. Anasynchronous automatower the distributior( ), . .- consists
of a family of finite sets of state€)y), ., a family of initial local stateg(z), .
with 2, € @, a subset of final global statds C erK Q, and a transition relation
9a € [reroc(a) @k X Ireroc(a) @k for each actiom € 2.

The set oflobal states) = [, ., @« can be provided with a set of global transitions
— in such a way that an asynchronous automaton is viewed asieuta@rautomaton.
Given an actiom: € X and two global stateg = (qx),cx andr = (rx),cx,» We put

q - rif ((@r) keroc(a) » (Tk)keLoc(a)) € Oa @Ndgy, = 1y forall k € K\ Loc(a).
The initial global state consists of the collection of initial local states= (), -
Then theglobal automatond = (Q,:, X, —, F') satisfies PropertyD of Def. 1.1.
Thus itis an asynchronous system o{¢Er, ||) andL(A) is a regular trace language. An
asynchronous automaton deterministicif its global automaton is deterministic, i.e.
the local transition relations, are partial functions.

1.3 Main result and comparisons to related works

Although deterministic asynchronous automata appearestaated subclass of deter-
ministic asynchronous systems, Zielonka’s theorem as#eait any regular trace lan-
guage can be implemented in the form of a deterministic dsypmous automaton.

THEOREM1.3. [15] For any regular trace languagd. there exists a deterministic
asynchronous automaton whose global automataatisfiesL = L(A).

In [9] a complexity analysis of Zielonka'’s construction istdiled. Let Q| be the num-
ber of states of the minimal deterministic automaton thaeptsZ and|K| be the
number of processes. Then the number of local states bullidgdgnka’s technique in
each process € K is |Q,| < 202" 1QIg QD) The simplified construction by Cori
et al. in [2] also suffers from this exponential state-espia [3].

Another construction proposed by Pighizzini [12] buildsr&non-deterministic
asynchronous automata from particular rational exprassibat refine Ochmanski's
theorem [11]. This simpler approach proceeds inductivelyhe structure of the ra-
tional expression. Each step can easily be shown to be poliaholn particular the
number of local states in each process is (at ledstpledby each restricted iteration.
Consequently in some cases the number of local states irpeacess ixponentialn
the length of the rational expression.

In the present paper we give a new construction thabignomial in|Q| (Th. 3.1):

It producegQx| < O(|Q|?) local states for each process, whére (2.| 5| + 2)1*1+1,

| 2| is the size of”, and|Q| is the number of states of some (possibly non-determipistic
asynchronous system that acceptdNoteworthy the number of local stat&3;| ob-
tained by our approach is independent from the number ofgssBs K |.
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2 Unfolding algorithm

In the rest of the paper we fix some automaton= (Q,:, X', —, F') that is possibly
non-deterministic. The aim of this section is to associata W a family of automata
called boxesand triangleswhich are defined inductively. The last box built by this
construction will be called thenfoldingof A (Def. 2.3).

Boxes and triangles are related foby means of morphisms which are defined
as follows. LetA; = (Q1,11,T,—1,F1) and Az = (Q2,12, T, —2, F>) be two
automata over a subset of actidisC Y. A morphismo : A; — Ay from A, to Ao
is a mapping : Q1 — Q2 from @, to Q2 such thatr(¢1) = 22, o(F1) C Fs, and
1 —1 ¢ implieso(q1) =2 o(q}). In particular,L(A;) C L(As).

Now boxes and triangles are associated with an initial shatiemay not correspond
to the initial state ofA. They are associated also with a subset of actibris Y. For
these reasons, for any state () and any subset of actioisC X, we letAr , denote
the automatol@Q, ¢, T, — 1, F') where—r is the restriction of— to the transitions
labeled by actions ifi: —7=— N(Q x T x Q).

In this section we shall define the bax- , for all statesy € @ and all subsets of
actionsT’ C X. The boxOr 4 is a pair(Br,q, Or,) WhereBr 4 is an automaton over
T andfrq : Br,q — Ar4is a morphism. Similarly, we shall define the triandle- ,
for all statesy and allnon-emptysubsets of transitiori&. The triangleAr , is a pair
(77,4, 71,q) WhereZr 4 is an automaton ovér andrr, : 77,y — At 4 iS a morphism.

The heightof a boxOr 4, or a triangleAr 4 is the cardinality of/’. Boxes and
triangles are defined inductively. We first define the by, for all statesy € Q). Then
triangles of height are built upon boxes of heighgt < h and boxes of height are
built upon either triangles of heightor boxes of heighy < h, whether the dependence
graph(T, }f) is connected or not.

The base case deals with the boxes of height 0. For all sjateg), the boxOy ,
consists of the morphisifiy , : {¢} — @ that maps; to itself together with the au-
tomatonBy , = ({¢},¢,0,0, F} ,) whereF , = {¢} if ¢ € F andF} , = 0 otherwise.
More generally a state of a box or a triangle is final if it isasated with a final state
of A.

2.1 Building triangles from boxes

Triangles are made of boxes of lower height. Boxes are iedento a triangle induc-
tively on the height along a tree-like structure and sevewples of the same box may
appear within a triangle. We want to keep track of this strtesin order to prove proper-
ties of triangles (and boxes) inductively. This enabledlsis t allow for the distinction
of different copies of the same box within a triangle.

To do this, each state of a triangle is associated witark £ € N such that
all states with the same rank come from the same copy of the &mx. It is also
important to keep track of the height each state comes frawalse boxes of a tri-
angle are included inductively on the height. For thesearssa state of a triangle
Ao go = (Tro g0, Tro o) IS €Ncoded as a quadruple= (w, T, ¢, k) such thatw is a
state from the box1r , with heighth = |T'| andv is added to the triangle within the
k-th box inserted into the triangle. Moreover this box is aycopOr 4. In that case



Polynomial Synthesis of Asynchronous Automata 5

BUILD-TRIANGLE(T®, ¢°)
1 (B,B) « BuiLb-Box(, ¢°)
2 (T,7) «— MARK((B,),0,q°,1)
3 k1
4 forh—1to|T°| -1
5 doforv=(w,T,q,l) astateof7 with |T|=h—1
6 dofor¢ e Qanda € T°\ T
7 do if Br,q(w) - ¢’
8
9

thenT’ — T U {a} Here|T'| = h < |T°|
(B, 3) < BuiLD-BOX(T",q’) ComputeTy
10 k—k+1
11 (B',8") «— MARK((B, 3),T',q', k) Mark itwith T”, ¢, k
12 INSERT((7,7), (B',8)) Insert it into(7, )
13 ADD((T, 1), (v,a, (ta,1r,¢, T, 4", k)))

14 return (7,7)

N.B. Line 12,25 7+ . denote the initial state of the baX,+ .

Alg. 1. Construction of a triangle

the statev maps torro o (v) = Brq(w), thatis, the insertion of boxes preserves the
correspondance to the statestafMoreover the morphismyr. 4o of a triangleAro 40
is encoded in the data structure of its states.

The construction of the triangl&a 7. 4. is detailed in Algorithm 1. It relies on four

procedures:
— BUILD-BOX(T, g) returns the boxdr .
— MARK((B,/),T,q, k) returns a copy ofB, ) where each state from B is re-

placed by the marked state= (w, T, ¢, k).

— INSERT((7, 1), (B, 8)) inserts(B, §) within (7, 7); the initial state of this disjoint

union of automata is the initial state ¢, 7).

— AbD((7,7), (v,a,v")) adds a new transition —*- v’ to the automatorf’; it is

required thab andv’ be states of .

The construction of the triangl&r. .. starts with building a copy of the base box
0,4 Which gets rank = 1 and whose marked initial state; ¢ .-, 0, ¢°, 1) becomes
the initial state ofA7. 4. Along the construction of this triangl&,counts the number
of boxes already inserted in the triangle. The insertionos proceeds inductively on
the height: (Line 4) as follows: For each state= (w, T, ¢, 1) with height|T'| = h — 1,
if a transitionfz,, (w) — ¢’ in A carries an action € 7°\ T (Line 6) then a new box
07 o of heighth is inserted withT” = T'U {a} (Line 12) and a transition —~ v’
is added to the trianglér. 4o in construction (Line 13) where’ is the marked initial
state of the new boX7 .. We stress here thatv) — 7(v') is a transition ofA 1o 4
because (v) = Br ¢(w) andr(v') = Br ¢ (2o,17,4) = ¢'. This observation will show
thatr is a morphism. Another useful remark is the following.

LEMMA 2.1. If a word w € X* leads in the triangleAr. 4o from its initial state
(103,0,4°,9,¢°, 1) to some state = (w, T, ¢, 1) then each action of” occurs inu.
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2.2 Building boxes from triangles

We distinguish two cases when we build the Box , whether the dependence graph
(T, I is connected or not. In cagé’, )f) is a connected graph then the biox , col-
lects all triangles\r - for all states;” € Q. Each triangle is duplicated a fixed number
of times and copies of triangles are connected in some p&tiwvay. Similarly to tri-
angles, the states of a box are decorated with a katilat distinguishes states from
different triangles and also states from different copiethe same triangle. We adopt
the same data structure as for triangles: A staté a box is a quadrupléw, T, ¢, k)
wherew is a state oA 7 , andk € N. Whereas triangles of heightare built upon boxes
of heightg < h, boxesOr , are built upon trianglea\r ,» with the same set of transi-
tionsT — and consequently, with the same height. Similarly to tly@@thm BuILD -
TRIANGLE, the algorithm that builds boxes uses an integer varialileat counts the
number of triangles already inserted in the box in consimact

In case the dependence grafh Jf) is not connected, we léf; denote the con-
nected component ¢f", }f) that contains the least actianc T" w.r.t. the total orde
over X and we putly> = T\ T;. Then the boxOr , is built upon a copy of the box
Or,.q cOnnected to copies of boxes:, 4, for some stateg; € Q.

The construction of the boX7- 4. is detailed in Algorithm 5. It relies on ten pro-
cedures:

— BASE-BOX(q) returns the base bdxy ,.

— EmMPTY-BOX returns a special new box callethpty box

— MARK, INSERTand ADD are the procedures used fooBD-TRIANGLE. If (B, 3)
is this special empty box them$eRrT((B, ), (7, 7)) replaces simplyB, 3) by

T,7).

- I(\/I|ss)|NG(T°, q,q") returns the set of all pairguv, a) wherew is a state that has
been inserted in the triangle - , within a boxO7 .~ such that7T”| = |T°| — 1
and the actiom € 7° \ 7" is such that there is a transitiof. ,(w) — ¢’ in A
(Alg. 2). Due to the structure of triangles iy, a) is a missing transition then there
is no transitions —= A 7o 4 w' With 770 4(w') = ¢' In Ao 4.

— MIN-RANK (T, ¢, B, k) returns the minimal rank of a copy of a triandle. ,
inserted inB wherek is the maximal rank of triangles iB (Alg. 3).

— MAx-OuT-DEGREET") returns the number of copies of each trianglg. , that
should compose the bdXz- 4. It does not depend o but it depends on the

MissING(T®, q,q")
M~
(T,7) < BUILD-TRIANGLE(T?, q)
for w € Qa 10,4 such thatw = (w”, 7", ¢", k") and|T"| = |T°| — 1
do if 7o 4(w) -2 ¢’ witha € T°\ T”
then M — M U {(w,a)}
return (M)

oA WNE

N.B. The triangleA7- , = (7, 7) computed at Line 2 consists of a set of
statesl) a, 10,4 and a transition relatior— A 7o 4.

Alg. 2. Set of missing transitions from a triangler- , to some state’
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MIN-RANK (T, q, B, k) MAX-OuT-DEGREKT®)
1 f—k+1 1 m«20
2 forv=(w,T',q¢,1)inB 2 forq,qd €Q
3 doif¢g =¢qand T’/ =T"° 3 don « [MISSING(T?, q,q')|
4 thenifl < f 4 if n>m
5 then f =1 5 thenm «—n
6 return (f) 6 return (m)
Alg. 3. Minimal rank of Aro 4 inB | Alg. 4. Minimal number of copies required

cardinality of all sets NSSING(T°, ¢, ¢’) with ¢, ¢’ € Q (Alg. 4). The role of these
copies is detailed below.

— CLEAN(B, B) remove all unreachable states fr@n

— DecomPOSITIONT?) returns the connected compon@&maf (7°°, }f) that contains
the minimal action of® w.r.t. the total ordeE_.

The construction of the boX7- 4o starts with solving the base case whéfe= ()
(Line 1). Assume now that the dependence gr@ph Jf) is connected (Line 4). Then
the box is initialized as the special empty box (Line 6). Thenberm of copies of each
triangle Aro , is computed in Line 8 with the help of functionsAM -OuT-DEGREE
and MissING. Next these copies are inserted and the first coptpf ;. gets rankc =
1 (Lines 9 to 14). Consequently the initial state of the B 4o in construction is the
first copy of the initial Statea 1o 4o of the triangleA 7o 40, thatis:(2a 1o g0, T°, ¢°, 1).
Noteworthy copies of the same triangle have consecutivksran

In a second step transitions are added to connect thesgl&sao each other (Lines
15 to 25). Intuitively aa-transition ismissingfrom the statev = (w”, 7", ¢", k") of
the triangleA - 4 to the statg’ of A if [7°\T”| = 1 —i.e. this state has been inserted
at the highest level i\ , — and there exists il a transitionrro (w) -5 ¢’ with
a € T°\ T" but no transitionv — w' with 7. ,(w') = ¢" in Ao 4.

The role of MSSING is to compute the missing transitions w.q.tq’, andT°. For
each such missing transitidiw, a) we connect each copy af to the initial state of a
copy of Ape .. In this process we require two crucial properties:

P.: No added transition connects two states from the same dojye @ame triangle:
(w,T°,¢g,1) should not be connected tox 70 4, 7°, q,1).

P>: At most one transition connects one copy/®f- 4 to one copy ofAr. . If we
add from a given copy of\r. , atransition(ws, 7°, q,1) — (1a 10,4, T°, ¢, 1')
and a transitiorfws, 7°, ¢, 1) LI (tare.q,T°, 4, 1") to the same copy ahro o
thenw; = wy anda = b.

The minimal number of copies required to fulfill these coiwis is computed by
MAX-OuT-DEGREE For a fixed missing transitiofw, a) from a statew of the triangle
Ao 410 a statey’ of A, Lines 22 to 25 add a transition from thieh copy ofw to thec-
th copy of the initial state of\r- . with the property thaj # cif ¢ = ¢’ (ConditionP;
above). Moreover states from tli¢h copy ofA7- , are connected to distinct copies of
the initial state ofA 7. ,» (ConditionP, above).

Note here that each new transition, a,v’) added to(B, 5) at Line 25 is such
that 8(v) —% B(v') is a transition fromAre 4 becaused(v) = 770 4(w), B(v') =
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710 o (1A 10 o) = ¢, @A77 (W) — ¢'. Again, this observation will show thakis
a morphism. A crucial remark for boxes of connected alphaisehe following.

LEMMA 2.2. If a non-empty word: leads from the initial state of a trianglé\zo ,
to the initial state of a triangleA 7o o within the boxOz. 4 then each action of ©
occurs inu.

For simplicity’s sake our algorithm uses the same numbebpfes for each trian-
gle. This approach yields in general unreachable statesdless copies. The latter are
removed by CEAN at Line 26.

Assume now thafT™, J}) is not connected (Line 29). L& be the connected com-
ponent ofl™ that contains the least action’6f w.r.t. the total ordeE- over X'. We put
Ty, = T° \ Ti. The construction of the boX 7o 4 starts with building a copy of the
box O, 4. Next for each state of Or, ;. and each transitiofiz, ,(w) — ¢’ with
a € T, the algorithm inserts a (new) copy of the biox, , and adds a transition from
the copy ofw to the initial state of the copy @fr, , . By recursive calls of BILD-Box
the boxOr- 4 is built along a tree-like structure upon copies of boXgs ,, whereT”
is a connected componentBf.

2.3 Remarks

From a mathematical viewpoint, Algorithms 1 to 5 are meandéfine boxesir ,
and triangles\r ;. Thus two instances of BLD-TRIANGLE(T, ¢) produce the same
object. For this reason, we speaktbétriangleAr ,. This is particularly important to
understand the interaction betweeunlBd -Box and MISSING. In cas€el” is connected,
Algorithm BuIlLD -Box proceeds in two steps. First several copies of each triahglg

are collected and next some transitions are added from states ©f copies oA,

to the initial state of copies of\r ... These additional transitions are computed in a
separate function MsiNGthat depends on triangles. Itis crucial that the triangles,
used by the function MsSING be the same as the trianglésr , inserted in BJILD-
Box.

From a more computational viewpoint, Algorithms 1 to 5 camiobsly be imple-
mented. To do this, we require that each triangle and eaché&ornstructed only once.
An alternative to this requirement is to adapt the parameitthe function MSSING
and ensure that BLD-Box transfers its own trianglé\r , instead of the pai(T’, q)
to that function so that the set of states computed bg9WNG matches the set of states
used by BJILD-Box. However it need not to transfert its own triangle- , to the func-
tion MAX-OuT-DEGREEbecause this function works on triangles up to isomorphisms

In this section we have built a family of boxes and triangtest a fixed automaton
A. This construction leads us to the definition of the unfaddafi.A as follows.

DEFINITION 2.3. Theunfolding Ay, of the automatod = (Q, ¢, X, —, F) is the
boxB 5 ,; moreoverfuys denote the mappings , from the states ofly,s to Q.

In the next section we study some complexity, structurad, semantical properties of
this object. We assume that satisfies PropertiD of Definition 1.1 so that it accepts
a regular trace language We explain how to build from the unfoldingy,: a non-
deterministic asynchronous automaton that accEpts).
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BuiLD-Box(T°, ¢°)

1 ifT°=40
2  then This is the base case
3 return (BASE-BOX(q°))
4 if T° is connected (and non-empty)
5 then
6 (B, B) — EMPTY-BOX Initialise (B, 3) to be
7 k<0 the special empty box
8 m «— MAX-OUT-DEGREET") + 1
9 for g € Q starting with ¢°
10 do (7,7) < BUILD-TRIANGLE(T, q) ComputeAro 4
11 forl < 1tom
12 dok—k+1 Insertm copies
13 (T',7") « MARK((T,7),T°,q,k) Marked withT°, q, k
14 INSERT((B, 3), (T', 7))
15 for q,q' € Q
16 do M «— MISSING(T?, q,q") List of missing transitions
17 f — MIN-RANK(T°,q,B,k) — 1 Minimal rank of Ao 4
18 f'— MIN-RANK(T®,q’, B, k) — 1 Minimal rank of Azo
19 for j «— 1tom
20 doc«—0 We havel M| +1<m
21 for (w,a) € M
22 doc—c+1 If g =q' thenf = f’
23 iff+ij=f+c
24 thenc —c+1 We havec < m
25 ADD((:Bv /6)7 ((U}, TO7 q, f + .7)7 a, (ZA,TO,q’v TO7 ql7 fl + C)))
26 CLEAN(B, )
27 return (B, 3)
28 if T is not connected (nor empty)
29  then
30 T1 — DECOMPOSITIONT®)
31 TQ — TO \ Tl
32 (Bo, o) — BuILD-BOX(T3,¢°)
33 (B,ﬂ) — MARK((Bo,ﬂo),TQ,qO,l)
34 k«—1
35 forw € Qomy,ee ,¢ €Q anda € Ty
36 do if Bo(w) - ¢’
37 thenk — k+1 Insert a copy ofdr, ./
38 (B',3") «+ BuiLD-Box(T1,¢")
39 (B”,B") «— MARK((B’,38),T1,q', k)
40 INSERT((B, 3), (B”,8"))
41 ADD((B, B), ((w,T2,4°,1),a, (1,14, 11,4, K)))
42 return (B, 3)

N.B.

— InLine 25v4 1o o denotes the initial state @k ro 4.
— In Line 35Qqo,1,,40 denotes the set of statesf, 4.
— InLine 41+ 1, , denotes the initial state fr, .

Alg. 5. Construction of a box
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3 Properties of the unfolding algorithm

In this section we fix a regular trace langudgever the independence alphab&t ||).

We assume that the possibly non-deterministic automatdulfills Property ID of
Def. 1.1 and satisfied(A) = L. First we sketch a complexity analysis of the num-
ber of states in the unfoldingy,s. Next we show in Subsection 3.2 how to build from
Aunt @n asynchronous automaton whose global automaton adcéeps

3.1 Complexity analysis

For all naturals: > 0 we denote by3,, the maximal number of states in a bx- ,
with |T'| = n andq € Q. Similarly for all naturals: > 1 we denote by, the maximal
number of states in a trianglgr , with |T'| = n andg € Q. Noteworthy5, = 1 and
71 = 1. Moreoverr, is non-decreasing because the triangle , is a subautomaton
of the triangleAr , as soon ag” C T In the following we assum2 < n < |X|.
Consider some subsgtC X with |T'| = n. Each triangleZr , is built inductively
upon boxes of height < n — 1 (see Alg. 1). We distinguish two cases. First boxes of
heighth < n — 1 are inserted. Each of these boxes appears also in somdériang,
with 77 C T and|T”| = n — 1. Each of these triangles is a subautomatofef with
at mostr,,_; states. Moreover there are onlysuch triangles which give rise to at most
n.m,—1 States built along this first step. Second, boxes of heightl are inserted and
connected to states inserted at height 2. Each of these states belongs to some box
Orv ¢ With |T7| = n — 2; it gives rise to at mosk.|Q)| boxes at height — 1 because
|7\ T'| = 2: This yields at mos?.|Q|.5,—1 new states. Altogether we get

Tn g n.’]—nfl.(l + 2|Q|6ﬂ*1) g |E|.Tn,1.3.|Q|.ﬂn,1 (1)

Consider now a connected sub%etC X with |T'| = n — 1. Then each bo8,
is built upon trianglesgr o of heightn — 1 (see Alg. 5). We can check that the value
m =MAX-OuT-DEGREKT) is at mostr,,_; + 1. Therefore the bo8r , contains at
most2.7,,_; copies of each triangl@r .. Hences,,_1 < 2.|Q|.72_;.

Consider now a non-connected subifeC X' with |7 = n — 1. Then each box
B4 is built upon copies of boxeB ,» whereT” is a connected component(@, ).
These boxes are inserted inductively along recursive oalBuILD -Box and they are
connected in a tree-like structure. Each of these boxesirmat mos?.|Q|.72_, states
as explained above. From each state of these boxes at'mes?).|@Q| new boxes are
connected. Thus each b . is connected to at most= |¥|.2.|Q|*>.72_, boxes
in the tree-like structure. Consequently there are at rhast + ¢ + ¢® + ... + ¢ 2
boxes. It follows that

Bn_1 < c"L2QL 2, < 2| X|m QP A, (2
Sincer,_» < 7,,_1 we getin both case$, _; < 2% |Z|1¥1=1 Q> 1*1= . (1,1 ).
We can now apply1) and getr,, < N.7¢_, whereN = 3.2!*1.|3|I*1|Q|*>!*! and
d =2.|%|+ 1. Sincer; = 1, we getr,, < N¥" . We can apply2) with n instead of
n—1and get3, <2.|Q[.N.(1,)>"+) < 2.|Q|.N.N9""-2n+2)_Finally we have

B3]
(2.1Z1+2) co (|Q|(2.|2\+2)\2\+1) (3)

ﬁ|2\ < 2.Q)|. (3'2‘2|'|2|‘2|-|Q|2"E|)
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3.2 Construction of an asynchronous automaton

Finally we build from the unfold|ng4Unf = (QUnt, tUnt, X, —Unt, Fune) of A an
asynchronous automato%nf that acceptd.(A). We deflneAUnf as follows. First
we put@r = Qunr for each procesé € K. Next the initial state is théK|-tuple
(2Unt, ---, e ). Moreover for each action, the pair((qr)keroc(a) » (7% ) keroc(a)) PE-
longs to the transition relatiofy, if there exist two stateg, r € Quyr and a transition
g —Sune 7 in the unfolding such that the two following conditions asgisfied:

— forall k € Loc(a), g, ——unr g for some wordu € (X\ Zj)*;

— forall k € Loc(a), r, = r; in particular allr;, are equal.
Finally, a global statéqk)keK is final if there exists a final statg € Qunr such that for

all k € K there exists a patly, —unt ¢ for some wordu € (X\ X)*.

THEOREM 3.1. The asynchronous automatﬂ/m;; satisfiesL(m) = L(A). More-
over the number of local statég; in each process is polynomial [| where|Q)| is the
number of states irl; more preciselyQx| < O(|Q|%) whered = (2.|2| + 2)!¥1+1,

3.3 Sketch of proof

By induction on the structure of the unfolding it is not ditflcto check the following
first property (see Appendix A).

LEMMA 3.2. The mappingiuy,s is @ morphism from the unfoldingy,¢ to A. More-
over for allu € L(A) there exist® € L(Ayn¢) such that ~ w.

The proof of Theorem 3.1 relies on an intermediate asyndusautomatorly,¢
over some extended independence alph@bel). We consider the > alphabgt = X' U
{(a,k) € ¥ x K | a ¢ X} provided with the independence relatipsuch that fb iff
allb, alf(b, k) iff a € X, and(a, k) f(b, k') iff &k = £’ for all actionsa,b € X and all
processes, k' € K. For each procedse K we putyy, = X, U{(a, k) |a € E\Ek}
Itis easyto checkthe(tEk) is a distribution of X, ||) Now Ayys shares W|th4Unf

its local states), and its |n|t|al state. A global stat@x ), i is final if there exists a final
stateq € Fyys Of the unfolding such thaf, = ¢ for all £ € K. For each action € X
its transition relatiord,, is such that (qx ) keroc(a)s (¢); ) keLoc(a)) € Oa if there exists a
transitiong —un¢ ¢’ such that, = g andg), = ¢’ for all k € Loc(a). Moreover for
each internal actiofu, k) € X'\ X, we put(q, ¢') € 0(a.r) if ¢ ——unr ¢'.

We consider the projection morphism ¥ — X* such thap(e) = ¢, p(u.a) =
p(u).a if a € ¥, andp(u.a) = p(u) if a € ¥\ X. It is not difficult to prove that
L(Aunt) € p(L(Aunt)) andp(L(Avnt)) = L(Avnt). These two basic properties do
not rely on the particular structure d@fy,;: They hold actually for any automaton.

On the contrary the proof of the next lemma is very technindltedious and relies
on the particular construction of boxes and triangles (ggefidix B for some details).

LEMMA 3.3. For each boxdr , = (Brq, Br.q) We havep(L(Br,4)) C [L(Br)].

We can now conclude. By Lemma 3.2 we hgl@Auy,s)] = L(A). On the other hand
the two basic properties show thidt(Auns)] C L(A/U;). Conversely Lemma 3.3
yields L (Aunt) = p(L(Avnt)) C [L(Aune)]. ThereforeL(A) = L(Aun).
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Conclusion and future work

We have presented a polynomial algorithm for the consuatif non-deterministic

asynchronous automata from regular trace languages. Véeshawn that this new un-
folding method improves the complexity of known technigimeterms of the number of

local and global states. Several variations of our apprteathto analogous complexity
results. We have selected here the simplest version to smaBut it might not be the

more efficient in practice.

Interestingly this unfolding method can be adapted to thglémentation of any
globally-cooperative compositional high-level messagpuence charts as investigated
in [5]. At present we are developping more involved unfotfiachniques in order to
construct deterministic safe asynchronous automata [A8]are also investigating a
possible extension of our unfolding technique to infinieects [4].
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A Proof of Lemma 3.2

An immediate induction shows that for each box , = (Br 4, 87,4) and each triangle
A7 = (17,4, T1,9), the mappingsr , andrr , are morphisms fror8r , to Ar , and
from 7 4 to Ar , respectively. In particulak (Ayne) C L(A).

By induction on the size o’ we prove that for all pathg — ¢; of Ar, there

exists an equivalentword ~ w such thatg 74 ' visa path ofBr , andfr 4(v) =
¢q1- This property is trivial for the empty s@t = () becaused , andB, , are reduced
to the state;. We shall distinguish two cases whetféis connected or not.

Assume first thaf” is a connected set of actions. We proceed by induction on the
length ofu. The property holds for the empty word because, (1o, 7,,) = ¢. Let
q — q1 — g2 be a path ofdr,. By induction there is/ ~ u such thatg oy
is a path inBr , andfr,4(v) = ¢1. Then, by construction, the state= (w, T, ¢, k)
comes from some triangl&r . Furthermorev comes from a boxi7 .~ inserted in
A g We havew = (w”,T",¢", k"). We distinguish several cases.

1. Ifa e T\T"and|T'\ T”| = 1. Then(w,a) belongs to MSSING(T, ¢, g2).
Consequently Line5 of Alg. 5 shows thaty — (14 7.4,, T, g2, k') for some
integerk’ andBr o (1A 1,45, T, g2, k') = Tr.g, (0A T,90) = G2

2. Ifa € T\T” and|T'\ T”| # 1. Then Linel3 of Alg. 1 shows thatv — w’ with
w' = (10,770{a}.q> T U {a}, g2, k') for some integek’ is a transition of7r
andrr . (w') = go. Consequently - (w', T, ¢, k) is a transition ofBr , and
Brq(w',T, ¢, k) = g2 (See Linel4 of Alg. 5).

3. If a € T". By construction the path 7 4 sy of Br,4 consists of the sequence
of transitionsig 7, — v1 — v such thatu;.us = v/, vy = (w1,T,q,k),
wy = (1,740, T",q", k") and all states, reach along the pathy —2 v come
from the same boXJr~ . of the same triangle\r , that is v, is some tuple
((we, T",q", k"), T,q, k). Consequently each actidnthat occurs inus belongs
to 7": It follows that¢” -2 ¢, —— ¢ is a path ofAr~ 4. By induction there

is an equivalent wordy, ~ us.a such thatg 7 v —> w' is a path of By 4
’

andfr» g (w'") = g2. Consequently; N (W', T",q", k"), T, ¢, k) is a path of

Br,q andfrq (v, T",¢", k"), T,q', k) = ¢q- (see Linel2 of Alg. 1 and Linel4

of Alg. 5).

Suppose now thaf is an unconnected set of actions. lget— ¢; be a path of
Ar,qg, T1 be the connected component that contains the least acti@hasfd 7, =

T\ Ty. If u|Ty = e theng % ¢, is also a path ofir, ,. Consequently, by induction
there exist/’ ~ w such thatg 1, , — w is a path ofBr, , and 8z, ,(w) = qi.

It follows by Line 33 of Alg. 5 thatis 74 N (w,T»,q,1) is a path ofBr, and
Brq(w, T, q,1) = ¢1. If u|Th = a.u; andu|T> = us theng Lo S S g
is also a path ofi7,, becauseis.a.u; ~ u andA satisfiesD. Moreoverg —2 ¢ is
a path ofAr, , andgs —~ ¢, is a path ofAr, ,,. Consequently, by induction, there

’

existsul, ~ uy such thatg 7, , — wy is a path ofBr, , and Sz, 4(w2) = ¢, and
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on other hand, there exist$ ~ u; such thatg 1, 4, — wy is a path ofBr, ,, and
Br, ¢s(w1) = ¢1. Then Alg. 5 ensures thag 74 =2, (ws, Ty, q,1) is a path ofBr g,

Br.g(ws, T, q,1) = qo (Line 33), (101,55 115 g3, k) —= (w1, Ty, qs, k) is a path
of By, for some integek and fr q(wi,Th,q3,k) = ¢ (Line 40). Finally we have

’ ’
Uy 0. U7

(w2, T2, q,1) —= (10,7y.45, T, q3, k) (Line 35 and41). It follows thatig 7,
(wl, Tl, qs, k) is a path OfBTﬂ, ﬁTﬂ(wl, Tl, qs3, k/’) =q1 andu’Q.a.u’l ~ U.

B Proof sketch of Lemma 3.3

The complete proof of Lemma 3.3 requires about 20 pages mitsdechnical details.
In this appendix we present the two main ideas that lead thenaent. We need first to
introduce some basic definitions and notations precisely.

Some basic definitions and notationiset A be some automaton over. A path of
lengthn € N\ {0} is a sequence of transitior(qi N qg) such thay, = g;41

i€[1,n]

for all integers) < i < n. For all wordsu € X* we writeq — ¢’ to denote a path
(qi LN qzl-) [ whereq; = q,q,, = ¢’, andu = a; ...a,,. Theng is called the domain
i€[1

:n]

of ¢ =% ¢’ and(’ is called its codomain. A path of length 0 is simply a siatd A. Its
domain and codomain are equakto

If s ands’ are two paths such that the codomainsa$ the domain of’ then the
products - s’ is defined in a natural way: If the length efs 0 thens - s’ = &'; if the
length ofs’ is 0 thens - s’ = s; otherwises - s is the concatenation gfands’.

Note that if s is a path of the length > 0 then it is the product of two paths
s = s1 - so Where the length of; is 1 and the length of, is i — 1. Moreover such a
product is unique. This remark allows us to define mappingp#&bhs inductively on
the length.

Projections of global states and executiorsssume now thatl is (the global sys-
tem of) an asynchronous automaton over the distributibp), . . Then a path of
A is called anexecution For convenience we shall consider the component automata
(Ar)zc i defined as follows: For each process K, A; = (Qj,15, X, —;,Q;)
whereq; ——; ¢} if there areq = (ak)yeroc() @Nde = (4h)keroe) SUCH that
(¢,¢') € 0,. Note here thaj € Loc(a) sincea € X;.
Now theprojections|k of an executiors of A onto a procesg € K is a path ofA ;
defined inductively as follows:
— s|j = g, iIf sis a path of length 0 that corresponds to the global $@ath.c x;
-slj = ¢ = q; - (s'|j) if s is the products = ¢ - s" wheret is a transition
(ak)rex — (q})kex andj € Loc(a).
— s|j = s'|j if s is the products = ¢ - s’ wheret is a transitiong — ¢’ and
j & Loc(a).
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Executions of extended asynchronous automatahe paper we define thextended
asynchronous automatofiy,¢ of the unfolding automatorly,s. This definition can
naturally be generalized to any automaton. lebe an automaton and the corre-
sponding extended asynchronous automaton. We say thaeant®ns = ¢ — ¢’ of
A is archedif there are two states andv’ in A such that for alk € K, g|k = v and
¢'|k = v'. Noteworthy each execution that leads an extended asymehs@automaton
A from its global initial state to some global final state isherd.

We define now a functiony that associates each action5fto the corresponding
action of X in a natural way: For all actiong, k) € X'\ X, v(a, k) = a and for all
actionsa € X, v(a) = a. As usual this map extends from actions to words and we
get~ : ¥" — X*. We can also extend the mappingas a function from paths of
component automaté,, to paths ofA as follows. For each sequengéhat is a path of
someAy, we definey(s) inductively on the length of by

— 7(s) = ¢ ifthe length ofs is 0 ands = q.

—y(s)=¢q 2(a) q' - ~(s') if sis a product = t - s’ wheret is a transition; — ¢'.

Clearly if s is an execution ol andk a process of{ thens|k is a path ofA,, and
~(s]k) is a path ofA.

Definitions associated to unfoldingket 7' be a non-empty subset of. We consider
the triangle77,, = (QA 1,g:1A,1,, — A, 1.9, FA,1,4). Letv be a state from¥r 4. By
construction offr ,, v is a quadrupléw, T”, ¢, k') such thatw is a state from the box
Oz, andk’ € N. We say that théox locationof v is I” (v) = (17, ¢/, k). We define
thesequence of boxesached along a path= ¢ — ¢’ in 77, as follows:
— If the length ofs is 0 ands corresponds to statec Qa 1, thenL®(s) = ("(q).
— If sis a product = s’ - t wheret is the transition; — ¢’ then two cases appear:
o If I7(q) =19(¢') thenLP (s) = L7 (s');
o If 17(q) #1%(¢’) thenLP(s) = LP(s").17(¢)
Similarly we define the sequence of trianglgs (s, ) reached by a pathy in a box
Br .. WhereT; is a non-empticonnectedset of actions and the sequence of boxes
L7 (s2) reached by a patk, in a boxBr, 4, whereT, is anunconnectedet of actions.

Two main properties of unfoldings'he following proposition states that all processes
behave similarly in an extended asynchronous automatdirftmm boxes or triangles.

PROPOSITIONB.1. LetBr, 4, be a box withl; a non-emptyonnectedet of actions,
Br,.q, be a box withT; an unconnectedet of actions, andr, ,, be a triangle with
T3 a non-empty set of actions. Let, s» ands; bearchedexecutions 0Bz, 4., B, 4,
and7 r, o, respectively. Then:

1. Vk, k' € Loc(T1), L® (y(s1]k)) = L2 (y(s1]k"));

2. Vk, k' € K,LP(y(s2]k)) = L (y(s2|k"));

3. Vk, k' € K,L"(y(s3]k)) = L7 (y(s3|k")).

Proof. Property 2 and Property 3 stem from the remark tBat ,, and 77, 4, are
made of boxes connected along a tree-like structure. Thef pfdProperty 1 is more
subtle. Leta be an action ofl; andk, k' be two processes dfoc(a). We proceed
by contradiction. LetZ and 7" be the first triangles that differ if® (y(s1|k)) and
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L2 (y(s1|k")). Let c be the number af-transitions that occur is; just beforey(s;|k)
and~(s1|k’") reachT and7’. Sinces; is arched;y(s1|k) and~(s1|k’) have to meet
eventually for the last state. Therefoyés; |k) and~(s1]|k’) have to leave triangle®
and 7’ respectively. Consequently, there i@+ 1) a-transitiong — ¢’ in s;.
Moreover, this transition is such th@t is a state fron¥7 whereag)|k’ is a state from
T', thatis:q|k # q|k’. This contradicts the definition @f, . [

PROPOSITIONB.2. Let By, be a box. Lets = ¢ — ¢’ be an arched execution of
Br,q With g|k = w and¢’'|k = v’ for all k € K. Then there is a word € X* such

thatv ~ p(u) andw — w' is a path ofBr,.

Proof. We proceed by induction on the size Bf The case wher& = () is trivial
becausé , consists of a single state Suppose that the property holds for all subsets
T’ c T and all stateg’ € . Assume first thaf” is a connected set of actions. By
Proposition B.1, we know thdt” (y(s|k)) = L= (y(s|k’)) for all processeg, k' €

Loc(T}). We claim first that we can find an other executiér= ¢ —— ¢’ such that for
all processes, k' € K,L*(y(s'|k)) = L2 (v(s'|k')) and moreovep(u) = p(u'). Let
LA (y(s'|k)) = T1...T,, be the sequence of triangles visitedy’| k). We can split the
executions’ into several smaller arched executiens. . ., s,, such that each execution
s; is located within triangleZ;. Similarly each execution; can be split into several
smaller arched executions, ..., s;,, such that each executishis located within a box
B; inserted inZ;. Then we can conclude by applying the inductive hypotheasisach
smaller box.

Assume finally thaf" is an unconnected set of actions. By Proposition B.1, we know
that for all processek, k' € K, L (v(s|k)) = L (y(s|k’)). Then we can conclude by
applying the inductive hypothesis on the smaller boxesaddby s. ]

Lemma 3.3 follows now immediately: We hawéL(Br,,)) C [L(Br,)]-



