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Polynomial Synthesis of Asynchronous Automata

Nicolas BAUDRU & Rémi MORIN

Laboratoire d’Informatique Fondamentale de Marseille
39 rue Frédéric Joliot-Curie, F-13453 Marseille cedex 13, France

Abstract. Zielonka’s theorem shows that each regular set of Mazurkiewicz traces
can be implemented as a system of synchronized processes with a distributed
control structure called asynchronous automaton. This paper gives a polynomial
algorithm for the synthesis of a non-deterministic asynchronous automaton from
a regular Mazurkiewicz trace language. This new construction is based on an
unfolding approach that improves the complexity of Zielonka’s and Pighizzini’s
techniques in terms of the number of states.
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Introduction

One of the major contributions in the theory of Mazurkiewicztraces [3] characterizes
regular languages by means of asynchronous automata [15] which are devices with a
distributed control structure. So far all known constructions of asynchronous automata
from regular trace languages are quite involved and yield anexponential explosion of
the number of states [9]. Furthermore conversions of non-deterministic asynchronous
automata into deterministic ones rely on Zielonka’s time-stamping function [6, 10] and
suffer from the same state-explosion problem. Interestingly heuristics to build small
deterministic asynchronous automata were proposed recently in [13].

Zielonka’s theorem and related techniques are fundamentaltools in concurrency
theory. For instance they are useful to compare the expressive power of classical models
of concurrency such as Petri nets, asynchronous systems, and concurrent automata [14,
7]. These methods have been adapted already to the construction of communicating
finite-state machines from regular sets of message sequencecharts [8]. More recently
the construction of asynchronous cellular automata [2] wasused to implement globally-
cooperative high-level message sequence charts [5]. All these constructions yield an
exponential explosion of the number of local states.

In this paper we give apolynomialconstruction of non-deterministic asynchronous
automata. Our algorithm starts from the specification of a regular trace language in
the form of a possibly non-deterministic automaton. The latter is unfolded inductively
on the alphabet into an automaton that enjoys several structural properties (Section 2).
Next the unfolding automaton is used as the common skeleton of all local processes
(Subsection 3.2). Our algorithm is designed specifically toensure that the number of
local states built is polynomial in the number of global states in the specification (Sub-
section 3.1). We show how this approach subsumes the complexity of Zielonka’s and
Pighizzini’s constructions (Subsection 1.3).
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1 Background and main result

In this paper we fix a finite alphabetΣ provided with a total order⊑. An automaton
over a subsetT ⊆ Σ is a structureA = (Q, ı, T,−→, F ) whereQ is a finite set of
states,ı ∈ Q is an initial state,−→⊆ Q× T ×Q is a set of transitions, andF ⊆ Q is a
subset of final states. We writeq

a
−→ q′ to denote(q, a, q′) ∈−→. Then the automaton

A is calleddeterministicif we haveq
a

−→ q′ ∧ q
a

−→ q′′ ⇒ q′ = q′′. For any word
u = a1...an ∈ Σ⋆, we writeq

u
−→ q′ if there are some statesq0, q1, ..., qn ∈ Q such

thatq = q0
a1−→ q1...qn−1

an−→ qn = q′. A stateq ∈ Q is reachableif ı
u

−→ q for some
u ∈ Σ⋆. The languageL(A) accepted by some automatonA consists of all words
u ∈ Σ⋆ such thatı

u
−→ q for someq ∈ F . A subset of wordsL ⊆ Σ⋆ is regular if it is

accepted by some automaton.

1.1 Mazurkiewicz traces

We fix anindependence relation‖ overΣ, that is, a binary relation‖ ⊆ Σ × Σ which
is irreflexive and symmetric. For any subset of actionsT ⊆ Σ, thedependence graph
of T is the undirected graph(V, E) whose set of vertices isV = T and whose edges
denote dependence, i.e.{a, b} ∈ E ⇔ a 6 ‖b.

The trace equivalence∼ associated with the independence alphabet(Σ, ‖) is the
least congruence overΣ⋆ such thatab ∼ ba for all pairs of independent actionsa‖b.
For a wordu ∈ Σ⋆, the trace [u] = {v ∈ Σ⋆ | v ∼ u} collects all words that are
equivalent tou. We extend this notation from words to sets of words in a natural way:
For allL ⊆ Σ⋆, we put[L] = {v ∈ Σ⋆ | ∃u ∈ L, v ∼ u}.

A trace languageis a subset of wordsL ⊆ Σ⋆ that is closed for trace equivalence:
u ∈ L ∧ v ∼ u ⇒ v ∈ L. Equivalently we require thatL = [L]. With no surprise a
trace languageL is calledregular if it is accepted by some automaton.

1.2 Asynchronous systems vs. asynchronous automata

Two classical automata-based models are known to correspond to regular trace lan-
guages. Let us first recall the basic notion of asynchronous systems [1].

DEFINITION 1.1. An automatonA = (Q, ı, Σ,−→, F ) over the alphabetΣ is called
anasynchronous systemover(Σ, ‖) if we have

ID: q1
a

−→ q2 ∧ q2
b

−→ q3 ∧ a‖b impliesq1
b

−→ q4 ∧ q4
a

−→ q3 for someq4 ∈ Q.

The Independent Diamond propertyID ensures that the languageL(A) of any asyn-
chronous system is closed for the commutation of independent adjacent actions. Thus
it is a regular trace language. Conversely it is easy to observe thatany regular trace
language is the language of some deterministic asynchronous system.

We recall now a more involved model of communicating processes known as asyn-
chronous automata [15]. A finite familyδ = (Σk)k∈K of subsets ofΣ is called adistri-
bution of(Σ, ‖) if we havea 6 ‖b ⇔ ∃k ∈ K, {a, b} ⊆ Σk for all actionsa, b ∈ Σ. Note
that each subsetΣk is a clique of the dependence graph(Σ, 6 ‖) and a distributionδ is
simply a clique covering of(Σ, 6 ‖). We fix an arbitrary distributionδ = (Σk)k∈K in the
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rest of this paper. We callprocessesthe elements ofK. ThelocationLoc(a) of an action
a ∈ Σ consists of all processesk ∈ K such thata ∈ Σk: Loc(a) = {k ∈ K | a ∈ Σk}.

DEFINITION 1.2. Anasynchronous automatonover the distribution(Σk)k∈K consists
of a family of finite sets of states(Qk)k∈K , a family of initial local states(ık)k∈K

with ık ∈ Qk, a subset of final global statesF ⊆
∏

k∈K Qk, and a transition relation
∂a ⊆

∏

k∈Loc(a) Qk ×
∏

k∈Loc(a) Qk for each actiona ∈ Σ.

The set ofglobal statesQ =
∏

k∈K Qk can be provided with a set of global transitions
−→ in such a way that an asynchronous automaton is viewed as a particular automaton.
Given an actiona ∈ Σ and two global statesq = (qk)k∈K andr = (rk)k∈K , we put

q
a

−→ r if ((qk)k∈Loc(a) , (rk)k∈Loc(a)) ∈ ∂a andqk = rk for all k ∈ K \ Loc(a).
The initial global stateı consists of the collection of initial local states:ı = (ık)k∈K .
Then theglobal automatonA = (Q, ı, Σ,−→, F ) satisfies PropertyID of Def. 1.1.
Thus it is an asynchronous system over(Σ, ‖) andL(A) is a regular trace language. An
asynchronous automaton isdeterministicif its global automaton is deterministic, i.e.
the local transition relations∂a are partial functions.

1.3 Main result and comparisons to related works

Although deterministic asynchronous automata appear as a restricted subclass of deter-
ministic asynchronous systems, Zielonka’s theorem asserts that any regular trace lan-
guage can be implemented in the form of a deterministic asynchronous automaton.

THEOREM 1.3. [15] For any regular trace languageL there exists a deterministic
asynchronous automaton whose global automatonA satisfiesL = L(A).

In [9] a complexity analysis of Zielonka’s construction is detailed. Let|Q| be the num-
ber of states of the minimal deterministic automaton that acceptsL and |K| be the
number of processes. Then the number of local states built byZielonka’s technique in
each processk ∈ K is |Qk| 6 2O(2|K|.|Q| log |Q|). The simplified construction by Cori
et al. in [2] also suffers from this exponential state-explosion [3].

Another construction proposed by Pighizzini [12] builds some non-deterministic
asynchronous automata from particular rational expressions that refine Ochmański’s
theorem [11]. This simpler approach proceeds inductively on the structure of the ra-
tional expression. Each step can easily be shown to be polynomial. In particular the
number of local states in each process is (at least)doubledby each restricted iteration.
Consequently in some cases the number of local states in eachprocess isexponentialin
the length of the rational expression.

In the present paper we give a new construction that ispolynomial in|Q| (Th. 3.1):
It produces|Qk| 6 O(|Q|d) local states for each process, whered = (2.|Σ|+ 2)|Σ|+1,
|Σ| is the size ofΣ, and|Q| is the number of states of some (possibly non-deterministic)
asynchronous system that acceptsL. Noteworthy the number of local states|Qk| ob-
tained by our approach is independent from the number of processes|K|.
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2 Unfolding algorithm

In the rest of the paper we fix some automatonA = (Q, ı, Σ,−→, F ) that is possibly
non-deterministic. The aim of this section is to associate with A a family of automata
called boxesand triangles which are defined inductively. The last box built by this
construction will be called theunfoldingof A (Def. 2.3).

Boxes and triangles are related toA by means of morphisms which are defined
as follows. LetA1 = (Q1, ı1, T,−→1, F1) and A2 = (Q2, ı2, T,−→2, F2) be two
automata over a subset of actionsT ⊆ Σ. A morphismσ : A1 → A2 from A1 to A2

is a mappingσ : Q1 → Q2 from Q1 to Q2 such thatσ(ı1) = ı2, σ(F1) ⊆ F2, and
q1

a
−→1 q′1 impliesσ(q1)

a
−→2 σ(q′1). In particular,L(A1) ⊆ L(A2).

Now boxes and triangles are associated with an initial statethat may not correspond
to the initial state ofA. They are associated also with a subset of actionsT ⊆ Σ. For
these reasons, for any stateq ∈ Q and any subset of actionsT ⊆ Σ, we letAT,q denote
the automaton(Q, q, T,−→T , F ) where−→T is the restriction of−→ to the transitions
labeled by actions inT : −→T =−→ ∩(Q × T × Q).

In this section we shall define the box2T,q for all statesq ∈ Q and all subsets of
actionsT ⊆ Σ. The box2T,q is a pair(BT,q, βT,q) whereBT,q is an automaton over
T andβT,q : BT,q → AT,q is a morphism. Similarly, we shall define the triangle△T,q

for all statesq and allnon-emptysubsets of transitionsT . The triangle△T,q is a pair
(TT,q , τT,q) whereTT,q is an automaton overT andτT,q : TT,q → AT,q is a morphism.

The height of a box2T,q or a triangle△T,q is the cardinality ofT . Boxes and
triangles are defined inductively. We first define the box2∅,q for all statesq ∈ Q. Then
triangles of heighth are built upon boxes of heightg < h and boxes of heighth are
built upon either triangles of heighth or boxes of heightg < h, whether the dependence
graph(T, 6 ‖) is connected or not.

The base case deals with the boxes of height 0. For all statesq ∈ Q, the box2∅,q

consists of the morphismβ∅,q : {q} → Q that mapsq to itself together with the au-
tomatonB∅,q = ({q}, q, ∅, ∅, F∅,q) whereF∅,q = {q} if q ∈ F andF∅,q = ∅ otherwise.
More generally a state of a box or a triangle is final if it is associated with a final state
of A.

2.1 Building triangles from boxes

Triangles are made of boxes of lower height. Boxes are inserted into a triangle induc-
tively on the height along a tree-like structure and severalcopies of the same box may
appear within a triangle. We want to keep track of this structure in order to prove proper-
ties of triangles (and boxes) inductively. This enables us also to allow for the distinction
of different copies of the same box within a triangle.

To do this, each state of a triangle is associated with arank k ∈ N such that
all states with the same rank come from the same copy of the same box. It is also
important to keep track of the height each state comes from, because boxes of a tri-
angle are included inductively on the height. For these reasons, a state of a triangle
△T◦,q◦ = (TT◦,q◦ , τT◦,q◦) is encoded as a quadruplev = (w, T, q, k) such thatw is a
state from the box2T,q with heighth = |T | andv is added to the triangle within the
k-th box inserted into the triangle. Moreover this box is a copy of 2T,q. In that case
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BUILD -TRIANGLE(T ◦, q◦)
1 (B, β)← BUILD -BOX(∅, q◦)
2 (T , τ )← MARK((B, β), ∅, q◦, 1)
3 k← 1
4 for h← 1 to |T ◦| − 1
5 do for v = (w, T, q, l) a state ofT with |T | = h− 1
6 do for q′ ∈ Q anda ∈ T ◦ \ T

7 do if βT,q(w)
a
−→ q′

8 then T ′ ← T ∪ {a} Here|T ′| = h < |T ◦|
9 (B, β)← BUILD -BOX(T ′, q′) Compute2T ′,q′

10 k ← k + 1
11 (B′, β′)← MARK((B, β), T ′, q′, k) Mark it with T ′, q′, k

12 INSERT((T , τ ), (B′, β′)) Insert it into(T , τ )
13 ADD((T , τ ), (v, a, (ı2,T ′,q′ , T

′, q′, k)))
14 return (T , τ )

N.B. Line 12,ı2,T ′,q′ denote the initial state of the box2T ′,q′ .

Alg. 1. Construction of a triangle

the statev maps toτT◦,q◦(v) = βT,q(w), that is, the insertion of boxes preserves the
correspondance to the states ofA. Moreover the morphismτT◦,q◦ of a triangle△T◦,q◦

is encoded in the data structure of its states.
The construction of the triangle△T◦,q◦ is detailed in Algorithm 1. It relies on four

procedures:
– BUILD -BOX(T, q) returns the box2T,q.
– MARK((B, β), T, q, k) returns a copy of(B, β) where each statew from B is re-

placed by the marked statev = (w, T, q, k).
– INSERT((T , τ), (B, β)) inserts(B, β) within (T , τ); the initial state of this disjoint

union of automata is the initial state of(T , τ).
– ADD((T , τ), (v, a, v′)) adds a new transitionv

a
−→ v′ to the automatonT ; it is

required thatv andv′ be states ofT .
The construction of the triangle△T◦,q◦ starts with building a copy of the base box

2∅,q◦ which gets rankk = 1 and whose marked initial state(ı2,∅,q◦ , ∅, q◦, 1) becomes
the initial state of△T◦,q◦ . Along the construction of this triangle,k counts the number
of boxes already inserted in the triangle. The insertion of boxes proceeds inductively on
the heighth (Line 4) as follows: For each statev = (w, T, q, l) with height|T | = h−1,
if a transitionβT,q(w)

a
−→ q′ in A carries an actiona ∈ T ◦ \T (Line 6) then a new box

2T ′,q′ of heighth is inserted withT ′ = T ∪ {a} (Line 12) and a transitionv
a

−→ v′

is added to the triangleTT◦,q◦ in construction (Line 13) wherev′ is the marked initial
state of the new box2T ′,q′ . We stress here thatτ(v)

a
−→ τ(v′) is a transition ofAT◦,q◦

becauseτ(v) = βT,q(w) andτ(v′) = βT ′,q′(ı2,T ′,q′) = q′. This observation will show
thatτ is a morphism. Another useful remark is the following.

LEMMA 2.1. If a word u ∈ Σ⋆ leads in the triangle△T◦,q◦ from its initial state
(ı2,∅,q◦ , ∅, q◦, 1) to some statev = (w, T, q, l) then each action ofT occurs inu.
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2.2 Building boxes from triangles

We distinguish two cases when we build the box2T,q whether the dependence graph
(T, 6 ‖) is connected or not. In case(T, 6 ‖) is a connected graph then the box2T,q col-
lects all triangles△T,q′ for all statesq′ ∈ Q. Each triangle is duplicated a fixed number
of times and copies of triangles are connected in some particular way. Similarly to tri-
angles, the states of a box are decorated with a rankk that distinguishes states from
different triangles and also states from different copies of the same triangle. We adopt
the same data structure as for triangles: A statev of a box is a quadruple(w, T, q, k)
wherew is a state of△T,q andk ∈ N. Whereas triangles of heighth are built upon boxes
of heightg < h, boxes2T,q are built upon triangles△T,q′ with the same set of transi-
tionsT — and consequently, with the same height. Similarly to the algorithm BUILD -
TRIANGLE, the algorithm that builds boxes uses an integer variablek that counts the
number of triangles already inserted in the box in construction.

In case the dependence graph(T, 6 ‖) is not connected, we letT1 denote the con-
nected component of(T, 6 ‖) that contains the least actiona ∈ T w.r.t. the total order⊑
overΣ and we putT2 = T \ T1. Then the box2T,q is built upon a copy of the box
2T2,q connected to copies of boxes2T1,q1

for some statesq1 ∈ Q.
The construction of the box2T◦,q◦ is detailed in Algorithm 5. It relies on ten pro-

cedures:
– BASE-BOX(q) returns the base box2∅,q.
– EMPTY-BOX returns a special new box calledempty box.
– MARK, INSERTand ADD are the procedures used for BUILD -TRIANGLE. If (B, β)

is this special empty box then INSERT((B, β), (T , τ)) replaces simply(B, β) by
(T , τ).

– M ISSING(T ◦, q, q′) returns the set of all pairs(w, a) wherew is a state that has
been inserted in the triangle△T◦,q within a box2T ′′,q′′ such that|T ′′| = |T ◦| − 1

and the actiona ∈ T ◦ \ T ′′ is such that there is a transitionτT◦,q(w)
a

−→ q′ in A

(Alg. 2). Due to the structure of triangles, if(w, a) is a missing transition then there
is no transitionw

a
−→△,T◦,q w′ with τT◦,q(w

′) = q′ in △T◦,q.
– M IN-RANK(T ◦, q, B, k) returns the minimal rank of a copy of a triangleTT◦,q

inserted inB wherek is the maximal rank of triangles inB (Alg. 3).
– MAX -OUT-DEGREE(T ◦) returns the number of copies of each triangle△T◦,q that

should compose the box2T◦,q◦ . It does not depend onq but it depends on the

M ISSING(T ◦, q, q′)
1 M ← ∅
2 (T , τ )← BUILD -TRIANGLE(T ◦, q)
3 for w ∈ Q△,T◦,q such thatw = (w′′, T ′′, q′′, k′′) and|T ′′| = |T ◦| − 1
4 do if τT◦,q(w)

a
−→ q′ with a ∈ T ◦ \ T ′′

5 then M ←M ∪ {(w, a)}
6 return (M)

N.B. The triangle△T◦,q = (T , τ ) computed at Line 2 consists of a set of
statesQ△,T◦,q and a transition relation−→△,T◦,q.

Alg. 2. Set of missing transitions from a triangle△T◦,q to some stateq′
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M IN-RANK(T ◦, q, B, k)
1 f ← k + 1
2 for v = (w, T ′, q′, l) in B

3 do if q′ = q and T ′ = T ◦

4 then if l < f

5 then f = l

6 return (f)

MAX -OUT-DEGREE(T ◦)
1 m← 0
2 for q, q′ ∈ Q

3 do n← |M ISSING(T ◦, q, q′)|
4 if n > m

5 then m← n

6 return (m)

Alg. 3. Minimal rank of△T◦,q in B Alg. 4. Minimal number of copies required

cardinality of all sets MISSING(T ◦, q, q′) with q, q′ ∈ Q (Alg. 4). The rôle of these
copies is detailed below.

– CLEAN(B, β) remove all unreachable states fromB.
– DECOMPOSITION(T ◦) returns the connected componentT of (T ◦, 6 ‖) that contains

the minimal action ofT ◦ w.r.t. the total order⊑.
The construction of the box2T◦,q◦ starts with solving the base case whereT ◦ = ∅

(Line 1). Assume now that the dependence graph(T ◦, 6 ‖) is connected (Line 4). Then
the box is initialized as the special empty box (Line 6). The numberm of copies of each
triangle△T◦,q is computed in Line 8 with the help of functions MAX -OUT-DEGREE

and MISSING. Next these copies are inserted and the first copy of△T◦,q◦ gets rankk =
1 (Lines 9 to 14). Consequently the initial state of the box2T◦,q◦ in construction is the
first copy of the initial stateı△,T◦,q◦ of the triangle△T◦,q◦ , that is:(ı△,T◦,q◦ , T ◦, q◦, 1).
Noteworthy copies of the same triangle have consecutive ranks.

In a second step transitions are added to connect these triangles to each other (Lines
15 to 25). Intuitively aa-transition ismissingfrom the statew = (w′′, T ′′, q′′, k′′) of
the triangle△T◦,q to the stateq′ of A if |T ◦\T ′′| = 1 — i.e. this state has been inserted
at the highest level in△T◦,q — and there exists inA a transitionτT◦,q(w)

a
−→ q′ with

a ∈ T ◦ \ T ′′ but no transitionw
a

−→ w′ with τT◦,q(w
′) = q′ in △T◦,q.

The rôle of MISSING is to compute the missing transitions w.r.t.q, q′, andT ◦. For
each such missing transition(w, a) we connect each copy ofw to the initial state of a
copy of△T◦,q′ . In this process we require two crucial properties:
P1: No added transition connects two states from the same copy of the same triangle:

(w, T ◦, q, l) should not be connected to(ı△,T◦,q, T
◦, q, l).

P2: At most one transition connects one copy of△T◦,q to one copy of△T◦,q′ : If we
add from a given copy of△T◦,q a transition(w1, T

◦, q, l)
a

−→ (ı△,T◦,q′ , T ◦, q′, l′)

and a transition(w2, T
◦, q, l)

b
−→ (ı△,T◦,q′ , T ◦, q′, l′) to the same copy of△T◦,q′

thenw1 = w2 anda = b.
The minimal number of copies required to fulfill these conditions is computed by

MAX -OUT-DEGREE. For a fixed missing transition(w, a) from a statew of the triangle
△T◦,q to a stateq′ of A, Lines 22 to 25 add a transition from thej-th copy ofw to thec-
th copy of the initial state of△T◦,q′ with the property thatj 6= c if q = q′ (ConditionP1

above). Moreover states from thej-th copy of△T◦,q are connected to distinct copies of
the initial state of△T◦,q′ (ConditionP2 above).

Note here that each new transition(v, a, v′) added to(B, β) at Line 25 is such
that β(v)

a
−→ β(v′) is a transition fromAT◦,q◦ becauseβ(v) = τT◦,q(w), β(v′) =
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τT◦,q′(ı△,T◦,q′) = q′, andτT◦,q(w)
a

−→ q′. Again, this observation will show thatβ is
a morphism. A crucial remark for boxes of connected alphabets is the following.

LEMMA 2.2. If a non-empty wordu leads from the initial state of a triangle△T◦,q

to the initial state of a triangle△T◦,q′ within the box2T◦,q◦ then each action ofT ◦

occurs inu.

For simplicity’s sake our algorithm uses the same number of copies for each trian-
gle. This approach yields in general unreachable states in useless copies. The latter are
removed by CLEAN at Line 26.

Assume now that(T ◦, 6 ‖) is not connected (Line 29). LetT1 be the connected com-
ponent ofT ◦ that contains the least action ofT ◦ w.r.t. the total order⊑ overΣ. We put
T2 = T ◦ \ T1. The construction of the box2T◦,q◦ starts with building a copy of the
box 2T2,q◦ . Next for each statew of 2T2,q◦ and each transitionβT2,q(w)

a
−→ q′ with

a ∈ T1, the algorithm inserts a (new) copy of the box2T1,q′ and adds a transition from
the copy ofw to the initial state of the copy of2T1,q′ . By recursive calls of BUILD -BOX

the box2T◦,q is built along a tree-like structure upon copies of boxes2T ′,q′ whereT ′

is a connected component ofT ◦.

2.3 Remarks

From a mathematical viewpoint, Algorithms 1 to 5 are meant todefine boxes2T,q

and triangles△T,q. Thus two instances of BUILD -TRIANGLE(T, q) produce the same
object. For this reason, we speak ofthe triangle△T,q. This is particularly important to
understand the interaction between BUILD -BOX and MISSING. In caseT is connected,
Algorithm BUILD -BOX proceeds in two steps. First several copies of each triangle△T,q

are collected and next some transitions are added from some states of copies of△T,q

to the initial state of copies of△T,q′ . These additional transitions are computed in a
separate function MISSING that depends on triangles. It is crucial that the triangles△T,q

used by the function MISSING be the same as the triangles△T,q inserted in BUILD -
BOX.

From a more computational viewpoint, Algorithms 1 to 5 can obviously be imple-
mented. To do this, we require that each triangle and each boxbe constructed only once.
An alternative to this requirement is to adapt the parameters of the function MISSING

and ensure that BUILD -BOX transfers its own triangle△T,q instead of the pair(T, q)
to that function so that the set of states computed by MISSING matches the set of states
used by BUILD -BOX. However it need not to transfert its own triangle△T,q to the func-
tion MAX -OUT-DEGREEbecause this function works on triangles up to isomorphisms.

In this section we have built a family of boxes and triangles from a fixed automaton
A. This construction leads us to the definition of the unfolding of A as follows.

DEFINITION 2.3. TheunfoldingAUnf of the automatonA = (Q, ı, Σ,−→, F ) is the
boxBΣ,ı; moreoverβUnf denote the mappingβΣ,ı from the states ofAUnf to Q.

In the next section we study some complexity, structural, and semantical properties of
this object. We assume thatA satisfies PropertyID of Definition 1.1 so that it accepts
a regular trace languageL. We explain how to build from the unfoldingAUnf a non-
deterministic asynchronous automaton that acceptsL(A).
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BUILD -BOX(T ◦, q◦)
1 if T ◦ = ∅
2 then This is the base case
3 return (BASE-BOX(q◦))
4 if T ◦ is connected (and non-empty)
5 then
6 (B, β)← EMPTY-BOX Initialise (B, β) to be
7 k← 0 the special empty box
8 m← MAX -OUT-DEGREE(T ◦) + 1
9 for q ∈ Q starting with q◦

10 do (T , τ )← BUILD -TRIANGLE(T ◦, q) Compute△T◦,q

11 for l ← 1 to m

12 do k← k + 1 Insertm copies
13 (T ′, τ ′)← MARK((T , τ ), T ◦, q, k) Marked withT ◦, q, k

14 INSERT((B, β), (T ′, τ ′))
15 for q, q′ ∈ Q

16 do M ← M ISSING(T ◦, q, q′) List of missing transitions
17 f ← M IN-RANK(T ◦, q, B, k) − 1 Minimal rank of△T◦,q

18 f ′ ← M IN-RANK(T ◦, q′, B, k)− 1 Minimal rank of△T◦,q′

19 for j ← 1 to m

20 do c← 0 We have|M |+ 1 6 m

21 for (w, a) ∈M

22 do c← c + 1 If q = q′ thenf = f ′

23 if f + j = f ′ + c

24 then c← c + 1 We havec 6 m

25 ADD((B, β), ((w, T ◦, q, f + j), a, (ı△,T◦,q′ , T
◦, q′, f ′ + c)))

26 CLEAN(B, β)
27 return (B, β)
28 if T ◦ is not connected (nor empty)
29 then
30 T1 ← DECOMPOSITION(T ◦)
31 T2 ← T ◦ \ T1

32 (B0, β0)← BUILD -BOX(T2, q
◦)

33 (B, β)← MARK((B0, β0), T2, q
◦, 1)

34 k← 1
35 for w ∈ Q2,T2,q◦ , q′ ∈ Q and a ∈ T1

36 do if β0(w)
a
−→ q′

37 then k ← k + 1 Insert a copy of2T1,q′

38 (B′, β′)← BUILD -BOX(T1, q
′)

39 (B′′, β′′)← MARK((B′, β′), T1, q
′, k)

40 INSERT((B, β), (B′′, β′′))
41 ADD((B, β), ((w, T2, q

◦, 1), a, (ı2,T1,q′ , T1, q
′, k)))

42 return (B, β)

N.B.
– In Line 25ı△,T◦,q′ denotes the initial state of△T◦,q′ .
– In Line 35Q2,T2,q◦ denotes the set of states of2T2,q◦ .
– In Line 41ı2,T1,q′ denotes the initial state of2T1 ,q′ .

Alg. 5. Construction of a box
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3 Properties of the unfolding algorithm

In this section we fix a regular trace languageL over the independence alphabet(Σ, ‖).
We assume that the possibly non-deterministic automatonA fulfills Property ID of
Def. 1.1 and satisfiesL(A) = L. First we sketch a complexity analysis of the num-
ber of states in the unfoldingAUnf . Next we show in Subsection 3.2 how to build from
AUnf an asynchronous automaton whose global automaton acceptsL(A).

3.1 Complexity analysis

For all naturalsn > 0 we denote byβn the maximal number of states in a boxBT,q

with |T | = n andq ∈ Q. Similarly for all naturalsn > 1 we denote byτn the maximal
number of states in a triangleTT,q with |T | = n andq ∈ Q. Noteworthyβ0 = 1 and
τ1 = 1. Moreoverτn is non-decreasing because the triangle△T ′,q is a subautomaton
of the triangle△T,q as soon asT ′ ⊆ T . In the following we assume2 6 n 6 |Σ|.

Consider some subsetT ⊆ Σ with |T | = n. Each triangleTT,q is built inductively
upon boxes of heighth 6 n − 1 (see Alg. 1). We distinguish two cases. First boxes of
heighth < n − 1 are inserted. Each of these boxes appears also in some triangle TT ′,q

with T ′ ⊂ T and|T ′| = n − 1. Each of these triangles is a subautomaton ofTT,q with
at mostτn−1 states. Moreover there are onlyn such triangles which give rise to at most
n.τn−1 states built along this first step. Second, boxes of heightn − 1 are inserted and
connected to states inserted at heightn − 2. Each of these states belongs to some box
2T ′,q′ with |T ′| = n − 2; it gives rise to at most2.|Q| boxes at heightn − 1 because
|T \ T ′| = 2: This yields at most2.|Q|.βn−1 new states. Altogether we get

τn 6 n.τn−1.(1 + 2.|Q|.βn−1) 6 |Σ|.τn−1.3.|Q|.βn−1 (1)

Consider now a connected subsetT ⊆ Σ with |T | = n − 1. Then each boxBT,q

is built upon trianglesTT,q′ of heightn − 1 (see Alg. 5). We can check that the value
m =MAX -OUT-DEGREE(T ) is at mostτn−1 + 1. Therefore the boxBT,q contains at
most2.τn−1 copies of each triangleTT,q′ . Henceβn−1 6 2.|Q|.τ2

n−1.
Consider now a non-connected subsetT ⊆ Σ with |T | = n − 1. Then each box

BT,q is built upon copies of boxesBT ′,q′ whereT ′ is a connected component of(T, 6 ‖).
These boxes are inserted inductively along recursive callsof BUILD -BOX and they are
connected in a tree-like structure. Each of these boxes contains at most2.|Q|.τ2

n−2 states
as explained above. From each state of these boxes at most(n − 2).|Q| new boxes are
connected. Thus each boxBT ′,q′ is connected to at mostc = |Σ|.2.|Q|2.τ2

n−2 boxes
in the tree-like structure. Consequently there are at most1 + c + c2 + c3 + ... + cn−2

boxes. It follows that

βn−1 6 cn−1.2.|Q|.τ2
n−2 6 2n.|Σ|n−1.|Q|2.n−1.τ2.n

n−2 (2)

Sinceτn−2 6 τn−1 we get in both casesβn−1 6 2|Σ|.|Σ||Σ|−1.|Q|2.|Σ|−1.(τn−1)
2.|Σ|.

We can now apply(1) and getτn 6 N.τd
n−1 whereN = 3.2|Σ|.|Σ||Σ|.|Q|2.|Σ| and

d = 2.|Σ| + 1. Sinceτ1 = 1, we getτn 6 Ndn−1

. We can apply(2) with n instead of
n − 1 and getβn 6 2.|Q|.N.(τn)2.(n+1) 6 2.|Q|.N.Ndn−1.(2n+2). Finally we have

β|Σ| 6 2.|Q|.
(

3.2|Σ|.|Σ||Σ|.|Q|2.|Σ|
)(2.|Σ|+2)|Σ|

∈ O
(

|Q|(2.|Σ|+2)|Σ|+1
)

(3)
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3.2 Construction of an asynchronous automaton

Finally we build from the unfoldingAUnf = (QUnf , ıUnf , Σ,−→Unf , FUnf) of A an

asynchronous automaton̂AUnf that acceptsL(A). We defineÂUnf as follows. First
we putQk = QUnf for each processk ∈ K. Next the initial state is the|K|-tuple
(ıUnf , ..., ıUnf). Moreover for each actiona, the pair((qk)k∈Loc(a) , (rk)k∈Loc(a)) be-
longs to the transition relation∂a if there exist two statesq, r ∈ QUnf and a transition
q

a
−→Unf r in the unfolding such that the two following conditions are satisfied:
– for all k ∈ Loc(a), qk

u
−→Unf q for some wordu ∈ (Σ \ Σk)⋆;

– for all k ∈ Loc(a), rk = r; in particular allrk are equal.
Finally, a global state(qk)k∈K is final if there exists a final stateq ∈ QUnf such that for

all k ∈ K there exists a pathqk
u

−→Unf q for some wordu ∈ (Σ \ Σk)⋆.

THEOREM 3.1. The asynchronous automaton̂AUnf satisfiesL(ÂUnf) = L(A). More-
over the number of local statesQk in each process is polynomial in|Q| where|Q| is the
number of states inA; more precisely|Qk| 6 O(|Q|d) whered = (2.|Σ| + 2)|Σ|+1.

3.3 Sketch of proof

By induction on the structure of the unfolding it is not difficult to check the following
first property (see Appendix A).

LEMMA 3.2. The mappingβUnf is a morphism from the unfoldingAUnf to A. More-
over for allu ∈ L(A) there existsv ∈ L(AUnf) such thatv ∼ u.

The proof of Theorem 3.1 relies on an intermediate asynchronous automatonAUnf

over some extended independence alphabet(Σ, ‖). We consider the alphabetΣ = Σ ∪
{(a, k) ∈ Σ×K | a 6∈ Σk} provided with the independence relation‖ such thata 6 ‖b iff
a 6 ‖b, a 6 ‖(b, k) iff a ∈ Σk, and(a, k)6 ‖(b, k′) iff k = k′ for all actionsa, b ∈ Σ and all
processesk, k′ ∈ K. For each processk ∈ K we putΣk = Σk∪{(a, k) | a ∈ Σ \Σk}.

It is easy to check that
(

Σk

)

k∈K
is a distribution of(Σ, ‖). NowAUnf shares witĥAUnf

its local statesQk and its initial state. A global state(qk)k∈K is final if there exists a final
stateq ∈ FUnf of the unfolding such thatqk = q for all k ∈ K. For each actiona ∈ Σ

its transition relation∂a is such that((qk)k∈Loc(a), (q
′
k)k∈Loc(a)) ∈ ∂a if there exists a

transitionq
a

−→Unf q′ such thatqk = q andq′k = q′ for all k ∈ Loc(a). Moreover for
each internal action(a, k) ∈ Σ \ Σ, we put(q, q′) ∈ ∂(a,k) if q

a
−→Unf q′.

We consider the projection morphismρ : Σ
⋆
→ Σ⋆ such thatρ(ε) = ε, ρ(u.a) =

ρ(u).a if a ∈ Σ, andρ(u.a) = ρ(u) if a ∈ Σ \ Σ. It is not difficult to prove that

L(AUnf) ⊆ ρ(L(AUnf)) andρ(L(AUnf)) = L(ÂUnf). These two basic properties do
not rely on the particular structure ofAUnf : They hold actually for any automaton.

On the contrary the proof of the next lemma is very technical and tedious and relies
on the particular construction of boxes and triangles (see Appendix B for some details).

LEMMA 3.3. For each box2T,q = (BT,q, βT,q) we haveρ(L(BT,q)) ⊆ [L(BT,q)].

We can now conclude. By Lemma 3.2 we have[L(AUnf)] = L(A). On the other hand

the two basic properties show that[L(AUnf)] ⊆ L(ÂUnf). Conversely Lemma 3.3

yieldsL(ÂUnf) = ρ(L(AUnf)) ⊆ [L(AUnf)]. ThereforeL(A) = L(ÂUnf).
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Conclusion and future work

We have presented a polynomial algorithm for the construction of non-deterministic
asynchronous automata from regular trace languages. We have shown that this new un-
folding method improves the complexity of known techniquesin terms of the number of
local and global states. Several variations of our approachlead to analogous complexity
results. We have selected here the simplest version to analyse. But it might not be the
more efficient in practice.

Interestingly this unfolding method can be adapted to the implementation of any
globally-cooperative compositional high-level message sequence charts as investigated
in [5]. At present we are developping more involved unfolding techniques in order to
construct deterministic safe asynchronous automata [13].We are also investigating a
possible extension of our unfolding technique to infinite traces [4].
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A Proof of Lemma 3.2

An immediate induction shows that for each box2T,q = (BT,q , βT,q) and each triangle
△T,q = (TT,q , τT,q), the mappingsβT,q andτT,q are morphisms fromBT,q to AT,q and
from TT,q to AT,q respectively. In particularL(AUnf) ⊆ L(A).

By induction on the size ofT we prove that for all pathsq
u

−→ q1 of AT,q there

exists an equivalent wordu′ ∼ u such thatı2,T,q
u′

−→ v is a path ofBT,q andβT,q(v) =
q1. This property is trivial for the empty setT = ∅ becauseA∅,q andB∅,q are reduced
to the stateq. We shall distinguish two cases whetherT is connected or not.

Assume first thatT is a connected set of actions. We proceed by induction on the
length ofu. The property holds for the empty word becauseβT,q(ı2,T,q) = q. Let

q
u

−→ q1
a

−→ q2 be a path ofAT,q. By induction there isu′ ∼ u such thatı2,T,q
u′

−→ v

is a path inBT,q andβT,q(v) = q1. Then, by construction, the statev = (w, T, q′, k)
comes from some triangle△T,q′ . Furthermorew comes from a box2T ′′,q′′ inserted in
△T,q′ : We havew = (w′′, T ′′, q′′, k′′). We distinguish several cases.
1. If a ∈ T \ T ′′ and |T \ T ′′| = 1. Then(w, a) belongs to MISSING(T, q′, q2).

Consequently Line25 of Alg. 5 shows thatv
a

−→ (ı△,T,q2
, T, q2, k

′) for some
integerk′ andβT,q(ı△,T,q2

, T, q2, k
′) = τT,q2

(ı△,T,q2
) = q2.

2. If a ∈ T \ T ′′ and|T \ T ′′| 6= 1. Then Line13 of Alg. 1 shows thatw
a

−→ w′ with
w′ = (ı2,T ′′∪{a},q2

, T ′′ ∪ {a}, q2, k
′) for some integerk′ is a transition ofTT,q′

andτT,q′ (w′) = q2. Consequentlyv
a

−→ (w′, T, q′, k) is a transition ofBT,q and
βT,q(w

′, T, q′, k) = q2 (see Line14 of Alg. 5).

3. If a ∈ T ′′. By construction the pathı2,T,q
u′

−→ v of BT,q consists of the sequence
of transitionsı2,T,q

u1−→ v1
u2−→ v such thatu1.u2 = u′, v1 = (w1, T, q′, k),

w1 = (ı2,T ′′,q′′ , T ′′, q′′, k′′) and all statesv2 reach along the pathv1
u2−→ v come

from the same box2T ′′,q′′ of the same triangle△T,q′ that is v2 is some tuple
((w2, T

′′, q′′, k′′), T, q′, k). Consequently each actionb that occurs inu2 belongs
to T ′′: It follows that q′′

u2−→ q1
a

−→ q2 is a path ofAT ′′,q′′ . By induction there

is an equivalent wordu′
2 ∼ u2.a such thatı2,T ′′,q′′

u′
2−→ w′ is a path ofBT ′′,q′′

andβT ′′,q′′(w′) = q2. Consequentlyv1
u′
2−→ ((w′, T ′′, q′′, k′′), T, q′, k) is a path of

BT,q andβT,q((w
′, T ′′, q′′, k′′), T, q′, k) = q2 (see Line12 of Alg. 1 and Line14

of Alg. 5).
Suppose now thatT is an unconnected set of actions. Letq

u
−→ q1 be a path of

AT,q, T1 be the connected component that contains the least action ofT andT2 =

T \ T1. If u|T1 = ε thenq
u

−→ q1 is also a path ofAT2,q. Consequently, by induction

there existsu′ ∼ u such thatı2,T2,q
u′

−→ w is a path ofBT2,q andβT2,q(w) = q1.

It follows by Line 33 of Alg. 5 that ı2,T,q
u′

−→ (w, T2, q, 1) is a path ofBT,q and
βT,q(w, T2, q, 1) = q1. If u|T1 = a.u1 andu|T2 = u2 thenq

u2−→ q2
a

−→ q3
u1−→ q1

is also a path ofAT,q becauseu2.a.u1 ∼ u andA satisfiesID. Moreoverq
u2−→ q2 is

a path ofAT2,q andq3
u1−→ q1 is a path ofAT1,q3

. Consequently, by induction, there

existsu′
2 ∼ u2 such thatı2,T2,q

u′
2−→ w2 is a path ofBT2,q andβT2,q(w2) = q2, and
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on other hand, there existsu′
1 ∼ u1 such thatı2,T1,q3

u′
1−→ w1 is a path ofBT1,q3

and

βT1,q3
(w1) = q1. Then Alg. 5 ensures thatı2,T,q

u′
2−→ (w2, T2, q, 1) is a path ofBT,q,

βT,q(w2, T2, q, 1) = q2 (Line 33), (ı2,T1,q3
, T1, q3, k)

u′
1−→ (w1, T1, q3, k) is a path

of BT,q for some integerk andβT,q(w1, T1, q3, k) = q1 (Line 40). Finally we have

(w2, T2, q, 1)
a

−→ (ı2,T1,q3
, T1, q3, k) (Line 35 and41). It follows that ı2,T,q

u′
2.a.u′

1−→
(w1, T1, q3, k) is a path ofBT,q, βT,q(w1, T1, q3, k) = q1 andu′

2.a.u′
1 ∼ u.

B Proof sketch of Lemma 3.3

The complete proof of Lemma 3.3 requires about 20 pages of tedious technical details.
In this appendix we present the two main ideas that lead the argument. We need first to
introduce some basic definitions and notations precisely.

Some basic definitions and notations.Let A be some automaton overΣ. A path of

lengthn ∈ N \ {0} is a sequence of transitions
(

qi
ai−→ q′i

)

i∈[1,n]
such thatq′i = qi+1

for all integers0 < i < n. For all wordsu ∈ Σ⋆ we writeq
u

−→ q′ to denote a path
(

qi
ai−→ q′i

)

i∈[1,n]
whereq1 = q, q′n = q′, andu = a1...an. Thenq is called the domain

of q
u

−→ q′ andq′ is called its codomain. A path of length 0 is simply a stateq of A. Its
domain and codomain are equal toq.

If s ands′ are two paths such that the codomain ofs is the domain ofs′ then the
products · s′ is defined in a natural way: If the length ofs is 0 thens · s′ = s′; if the
length ofs′ is 0 thens · s′ = s; otherwises · s′ is the concatenation ofs ands′.

Note that if s is a path of the lengthl > 0 then it is the product of two paths
s = s1 · s2 where the length ofs1 is 1 and the length ofs2 is l − 1. Moreover such a
product is unique. This remark allows us to define mappings for paths inductively on
the length.

Projections of global states and executions.Assume now thatA is (the global sys-
tem of) an asynchronous automaton over the distribution(Σk)k∈K . Then a path of
A is called anexecution. For convenience we shall consider the component automata
(Ak)k∈K defined as follows: For each processj ∈ K, Aj = (Qj , ıj , Σj,−→j , Qj)

whereqj
a

−→j q′j if there areq = (qk)k∈Loc(a) and q = (q′k)
k∈Loc(a) such that

(q, q′) ∈ ∂a. Note here thatj ∈ Loc(a) sincea ∈ Σj .
Now theprojections|k of an executions of A onto a processj ∈ K is a path ofAj

defined inductively as follows:
– s|j = qj if s is a path of length 0 that corresponds to the global state(qk)k∈K ;

– s|j = qj
a

−→ q′j · (s′|j) if s is the products = t · s′ wheret is a transition

(qk)k∈K
a

−→ (q′k)k∈K andj ∈ Loc(a).

– s|j = s′|j if s is the products = t · s′ wheret is a transitionq
a

−→ q′ and
j 6∈ Loc(a).
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Executions of extended asynchronous automata.In the paper we define theextended
asynchronous automatonAUnf of the unfolding automatonAUnf . This definition can
naturally be generalized to any automaton. LetA be an automaton andA the corre-
sponding extended asynchronous automaton. We say that an executions = q

u
−→ q′ of

A is archedif there are two statesv andv′ in A such that for allk ∈ K, q|k = v and
q′|k = v′. Noteworthy each execution that leads an extended asynchronous automaton
A from its global initial state to some global final state is arched.

We define now a functionγ that associates each action ofΣ to the corresponding
action ofΣ in a natural way: For all actions(a, k) ∈ Σ \ Σ, γ(a, k) = a and for all
actionsa ∈ Σ, γ(a) = a. As usual this map extends from actions to words and we
get γ : Σ

⋆
→ Σ⋆. We can also extend the mappingγ as a function from paths of

component automataAk to paths ofA as follows. For each sequences that is a path of
someAk, we defineγ(s) inductively on the length ofs by

– γ(s) = q if the length ofs is 0 ands = q.

– γ(s) = q
γ(a)
−→ q′ · γ(s′) if s is a products = t · s′ wheret is a transitionq

a
−→ q′.

Clearly if s is an execution ofA andk a process ofK thens|k is a path ofAk and
γ(s|k) is a path ofA.

Definitions associated to unfoldings.Let T be a non-empty subset ofΣ. We consider
the triangleTT,q = (Q△,T,q, ı△,T,q,−→△,T,q, F△,T,q). Let v be a state fromTT,q. By
construction ofTT,q, v is a quadruple(w, T ′, q′, k′) such thatw is a state from the box
2T ′,q′ andk′ ∈ N. We say that thebox locationof v is l2(v) = (T ′, q′, k′). We define
thesequence of boxesreached along a paths = q

u
−→ q′ in TT,q as follows:

– If the length ofs is 0 ands corresponds to stateq ∈ Q△,T,q thenL2(s) = l2(q).
– If s is a products = s′ · t wheret is the transitionq

a
−→ q′ then two cases appear:

• If l2(q) = l2(q′) thenL2(s) = L2(s′);
• If l2(q) 6= l2(q′) thenL2(s) = L2(s′).l2(q′)

Similarly we define the sequence of trianglesL△(s1) reached by a paths1 in a box
BT1,q1

whereT1 is a non-emptyconnectedset of actions and the sequence of boxes
L2(s2) reached by a paths2 in a boxBT2,q2

whereT2 is anunconnectedset of actions.

Two main properties of unfoldings.The following proposition states that all processes
behave similarly in an extended asynchronous automaton built from boxes or triangles.

PROPOSITIONB.1. LetBT1,q1
be a box withT1 a non-emptyconnectedset of actions,

BT2,q2
be a box withT2 an unconnectedset of actions, andTT3,q3

be a triangle with
T3 a non-empty set of actions. Lets1, s2 ands3 bearchedexecutions ofBT1,q1

, BT2,q2

andT T3,q3
respectively. Then:

1. ∀k, k′ ∈ Loc(T1), L△(γ(s1|k)) = L△(γ(s1|k′));
2. ∀k, k′ ∈ K, L2(γ(s2|k)) = L2(γ(s2|k′));
3. ∀k, k′ ∈ K, L2(γ(s3|k)) = L2(γ(s3|k′)).

Proof. Property 2 and Property 3 stem from the remark thatBT2,q2
andTT3,q3

are
made of boxes connected along a tree-like structure. The proof of Property 1 is more
subtle. Leta be an action ofT1 andk, k′ be two processes ofLoc(a). We proceed
by contradiction. LetT andT ′ be the first triangles that differ inL△(γ(s1|k)) and
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L△(γ(s1|k′)). Let c be the number ofa-transitions that occur ins1 just beforeγ(s1|k)
andγ(s1|k′) reachT andT ′. Sinces1 is arched,γ(s1|k) andγ(s1|k′) have to meet
eventually for the last state. Thereforeγ(s1|k) andγ(s1|k

′) have to leave trianglesT
andT ′ respectively. Consequently, there is a(c + 1)th a-transitionq

a
−→ q′ in s1.

Moreover, this transition is such thatq|k is a state fromT whereasq|k′ is a state from
T ′, that is:q|k 6= q|k′. This contradicts the definition of∂a.

PROPOSITIONB.2. Let BT,q be a box. Lets = q
u

−→ q′ be an arched execution of
BT,q with q|k = w andq′|k = w′ for all k ∈ K. Then there is a wordv ∈ Σ⋆ such
thatv ∼ ρ(u) andw

v
−→ w′ is a path ofBT,q.

Proof. We proceed by induction on the size ofT . The case whereT = ∅ is trivial
becauseB∅,q consists of a single stateq. Suppose that the property holds for all subsets
T ′ ⊂ T and all statesq′ ∈ Q. Assume first thatT is a connected set of actions. By
Proposition B.1, we know thatL△(γ(s|k)) = L△(γ(s|k′)) for all processesk, k′ ∈

Loc(T1). We claim first that we can find an other executions′ = q
u′

−→ q′ such that for
all processesk, k′ ∈ K, L△(γ(s′|k)) = L△(γ(s′|k′)) and moreoverρ(u) = ρ(u′). Let
L△(γ(s′|k)) = T1...Tn be the sequence of triangles visited byγ(s′|k). We can split the
executions′ into several smaller arched executionss1, . . . , sn such that each execution
si is located within triangleTi. Similarly each executionsi can be split into several
smaller arched executionss′1, ..., s

′
m such that each executions′j is located within a box

Bj inserted inTi. Then we can conclude by applying the inductive hypothesis on each
smaller box.

Assume finally thatT is an unconnected set of actions. By Proposition B.1, we know
that for all processesk, k′ ∈ K, L2(γ(s|k)) = L2(γ(s|k′)). Then we can conclude by
applying the inductive hypothesis on the smaller boxes visited bys.

Lemma 3.3 follows now immediately: We haveρ(L(BT,q)) ⊆ [L(BT,q)].


