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ABSTRACT
We study velocity moments of elliptical galaxies in the Coma cluster using Jeans equations.
The dark matter distribution in the cluster is modelled by a generalized formula based upon
the results of cosmological N-body simulations. Its inner slope (cuspy or flat), concentration
and mass within the virial radius are kept as free parameters, as well as the velocity anisotropy,
assumed independent of position. We show that the study of line-of-sight velocity dispersion
alone does not allow us to constrain the parameters. By a joint analysis of the observed
profiles of velocity dispersion and kurtosis, we are able to break the degeneracy between the
mass distribution and velocity anisotropy. We determine the dark matter distribution at radial
distances larger than 3 per cent of the virial radius and we find that the galaxy orbits are close
to isotropic. Due to limited resolution, different inner slopes are found to be consistent with
the data and we observe a strong degeneracy between the inner slope α and concentration c;
the best-fitting profiles have the two parameters related with c = 19−9.6α. Our best-fitting
Navarro–Frenk–White profile has concentration c = 9, which is 50 per cent higher than standard
values found in cosmological simulations for objects of similar mass. The total mass within the
virial radius of 2.9h−1

70 Mpc is 1.4 × 1015h−1
70 M� (with 30 per cent accuracy), 85 per cent of

which is dark. At this distance from the cluster centre, the mass-to-light ratio in the blue band
is 351h70 solar units. The total mass within the virial radius leads to estimates of the density
parameter of the Universe, assuming that clusters trace the mass-to-light ratio and baryonic
fraction of the Universe, with �0 = 0.29 ± 0.1.

Key words: methods: analytical – galaxies: clusters: individual: Coma – galaxies: kinematics
and dynamics – dark matter.

1 I N T RO D U C T I O N

The Coma cluster of galaxies (Abell 1656) is one of the most ex-
tensively studied in our neighbourhood (see, for example, Biviano
1998, and references therein). Starting with the seminal paper of
Kent & Gunn (1982) significant effort went into dynamical mod-
elling of the cluster. In the early studies based on about 300 galaxy
velocities, only velocity dispersion was modelled and it was most
often assumed that the mass follows light and that the galaxies are
on isotropic orbits. Merritt (1987) has shown that, if a larger variety
of models is allowed, there is a strong degeneracy between the dark
matter distribution and velocity anisotropy and many models can be
shown to be consistent with the data. Without any prior knowledge
of the mass distribution, even considering higher velocity moments
would probably not be of much help.

�E-mail: lokas@camk.edu.pl (ELL); gam@iap.fr (GAM)

Recently, due to theoretical progress mainly by the means of
N-body simulations, our knowledge on possible dark matter dis-
tributions within gravitationally bound objects has improved sig-
nificantly. There seems to be general agreement at least as to the
behaviour of dark matter density profiles at large radial distances
(� ∝ r−3). Whether the inner dark matter density profile is � ∝ r−1

(as in the so-called universal profile advocated by Navarro, Frenk &
White 1997) or � ∝ r−3/2 (as preferred by Moore et al. 1998; see also
Fukushige & Makino 1997) or is flat (as suggested by the observed
rotation curves of dwarf and low surface brightness galaxies, e.g.
McGaugh & de Blok 1998) is still a matter of debate; a recent analy-
sis by Jimenez, Verde & Oh (2003) of high-resolution rotation curves
of spiral galaxies shows that 2/3 of the sample can be accounted
by Navarro–Frenk–White (NFW) profiles, but 2/3 also with a flat
core. We therefore consider a generalized profile with different inner
slopes and also allow for different dark matter concentrations. We
constrain this variety of dark matter density profiles by modelling
velocity moments of galaxies. In addition to constraints from the
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line-of-sight velocity dispersion profile, we incorporate constraints
from the fourth velocity moment, the kurtosis.

The NFW profile has been found to be consistent with the total
mass distribution inferred from the galaxy data combined from many
clusters in the Canadian Network for Observational Cosmology 1
(CNOC1; van der Marel et al. 2000) and ESO Nearby Abell Cluster
Survey (ENACS; Biviano et al. 2003). Although van der Marel et al.
(2000) considered higher velocity moments, they did not apply them
rigorously to further constrain the mass distribution. Studies based
upon X-rays, assuming that the hot X-ray emitting gas is in hydro-
static equilibrium in a spherical potential, usually lead to NFW-like
cuspy centres (McLaughlin 1999; Tamura et al. 2000; Sato et al.
2000). The studies based on gravitational lensing focus on the inner
shape of the density profile. The slopes agree with the NFW pre-
diction in some studies (e.g. Broadhurst et al. 2000) while one team
finds a preference for a flat core (Tyson, Kochanski & dell’Antonio
1998; see also Williams, Navarro & Bartelmann 1999). Note that the
Coma cluster is too close for its mass profile to be probed through
gravitational lensing.

The amount of galaxy velocity as well as brightness and morpho-
logical type measurements for the members of Coma has increased
over the last two decades, making it possible to analyse separately
the samples of elliptical and spiral galaxies. While ellipticals appear
to be in dynamical equilibrium justifying the application of Jeans
formalism to study their velocity moments, most of the spirals are
probably infalling on to the cluster. The modelling of the infall of
spirals will be presented in the follow-up study.

The paper is organized as follows. In Section 2 we describe our
data. In Section 3 we present our assumptions concerning the matter
content of the cluster, i.e. the distributions of galaxies, gas and dark
matter. In Section 4 we outline our formalism for modelling the
velocity moments of elliptical galaxies based on Jeans equations. In
Section 5 we present its application to constrain the parameters of
our model, in particular the distribution of dark matter in the cluster.
A discussion follows in Section 6.

2 T H E DATA

We have searched the NASA/IPAC Extragalactic Data Base (NED)
for galaxies within 300 arcmin of RA = 12h59m35.s7, Dec. =
+27◦57′33′′ (J2000), i.e. the position of the elliptical galaxy
NGC 4874, well established as the centre of the Coma cluster (Kent
& Gunn 1982). The galaxies were required to have velocities be-
tween 3000 and 11 000 km s−1 (given the velocity dispersions we
will find below, this velocity range extends to �4σ ). For the calcula-
tion of the velocity moments and the subsequent study of kinematics,
we remove from the list galaxy pairs and known members of pairs
(as given by the NED), as we wish to probe the global cluster poten-
tial but not its local enhancements. We then obtain a sample of 1068
galaxies shown in the upper panel of Fig. 1 as points in the plane of
velocity versus distance from the centre of the cluster. To determine
the membership of galaxies in the cluster we proceed in a similar
fashion as Kent & Gunn (1982). As can be seen from Fig. 1, the
members of the cluster are well separated from the foreground and
background galaxies in velocity space. We have therefore selected
the probable members of Coma as lying within the two curves shown
in Fig. 1, symmetric with respect to v = 7000 km s−1, the value close
to the mean velocity of the cluster. This procedure leaves us with
967 galaxies. For the determination of the luminosity distribution,
we keep the members of galaxy pairs and remove a few galaxies
for which no magnitude estimate is available (they may contribute

Figure 1. Upper panel: 1068 galaxies selected from the NED data base
within 300 arcmin from NGC 4874 with heliocentric velocities between
3000 and 11 000 km s−1. Middle panel: 355 E-S0 galaxies, members of
Coma. Lower panel: 163 spiral galaxies, members of Coma. The curves
indicate envelopes of the cluster.

to the calculation of velocity moments however). We then proceed
with the membership determination as before.

It is generally believed that only early-type (E-S0) galaxies can
be considered in dynamical equilibrium within a cluster in opposi-
tion to spirals which are believed to be infalling (e.g. Tully & Shaya
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1984; Huchra 1985). We therefore construct separate samples of
E-S0 and spiral galaxies. The morphological type of the galaxies
has been determined by consulting the NED, SIMBAD and LEDA
data bases. Among the 967 galaxies belonging to Coma and selected
for the analysis of the velocity moments, we find 355 E-S0s, 163
spirals and 449 other galaxies for which the morphological clas-
sification is unknown or uncertain. As already noticed by Kent &
Gunn (1982), the cluster shows a clear morphological segregation.
The distributions of E-S0s and spirals in the R–v plane are shown in
the middle and lower panel of Fig. 1. Comparison of the two plots
reveals that while E-S0s cluster and dominate in the central parts
of Coma and are not numerous at radial distances larger than 80 ar-
cmin, spirals are more uniformly distributed and underrepresented
in the central region. Similar subsamples are constructed for the
analysis of the luminosity distribution. Note that iterating on the
mean velocity and establishing new symmetric envelopes for
the cluster in the observed phase space has virtually no effect on
the cluster membership. We note a possible group of galaxies at R
< 10 arcmin and v < 4000 km s−1 that might have been missed, but
contributes little to the central internal kinematics.

3 T H E M AT T E R C O N T E N T O F T H E C L U S T E R

3.1 The mass in stars

The mass contributed by the stars in galaxies is estimated as fol-
lows. Ideally, we would like to determine the surface luminosity
distribution separately for different morphological types of galaxies,
as transforming luminosity into mass requires mass-to-light ratios,
which are known to vary with morphological type. However, as we
do not know the morphological type for roughly half the galaxies
in our sample, we would have to assume for these galaxies some
mean value of the mass-to-light ratio. Combining then the fits for
the three classes of galaxies, E-S0s, spirals and those of unknown
type, would produce large uncertainties, as the luminosity distribu-
tion for spirals turns out to be quite noisy. Therefore, in determining
the total stellar mass distribution, we fit the luminosity distribution
for all galaxies and then translate it to the mass distribution using a
mean mass-to-light ratio.

Magnitudes are transformed into luminosities assuming that all
galaxies are at the same distance associated with the mean velocity
of the Coma cluster. Adopting a heliocentric velocity of Coma of
6925 km s−1 (Struble & Rood 1999), and correcting for the velocity
of the Sun with respect to the Local Group and for the Local Group
infall on to Virgo, we obtain for Coma a Hubble flow velocity of
7093 km s−1, which, for a Hubble constant of H 0 =70 km s−1 Mpc−1

(assumed throughout this paper) gives a distance of 101.3 Mpc and
a distance modulus of 35.03 (neglecting the peculiar velocity of the
Coma cluster).

As mentioned in the previous section, our sample of galaxies for
the luminosity analysis is different from that used for the calculation
of velocity moments, as we no longer exclude the members of pairs.
Now, we have 985 galaxies that belong to Coma, among which
are 366 E-S0s and 167 spirals. The surface luminosity profile of
all galaxies is then determined by placing 60 galaxies per radial
bin. The resulting distribution is shown as filled symbols in Fig. 2.
The open symbols in the figure show a similar result for just E-S0
galaxies but this time with 30 galaxies per radial bin. This second
distribution will be needed in the modelling of the velocity moments
as the distribution of our tracer population.

The data shown in Fig. 2 do not indicate any presence of a core
in the surface luminosity distributions, hence we fit them with pro-

Figure 2. The surface luminosity distribution data together with the best-
fitting projected NFW profiles for all 985 galaxies (filled symbols and solid
line) and the 366 known E-S0s among them (open symbols and dashed line).

jections of cuspy profiles. For both samples, of all galaxies as well
as early-type ones, the distributions have a changing slope, so we
fit them with a projection of the NFW profile (Bartelmann 1996;
see also Section 2.5 of L� okas & Mamon 2001). The fit is done by
χ 2 minimization taking all points with equal weights (although we
do not know the errors of the magnitude measurements, we expect
them to be similar for galaxies in each bin). The three-dimensional
(3D) luminosity density will then be

l(r ) = l�
(r/rS)(1 + r/rS)2

(1)

where the normalization constant l� and the scale radius rS are the
two fitting parameters. For the sample of all galaxies we obtain
l� = 9.05 × 107 L� arcmin−3 and rS = 14.4 arcmin. For the E-S0s
we have l� = 3.55 × 108 L� arcmin−3 and rS = 7.05 arcmin so this
distribution turns out to be more concentrated and therefore steeper.
It might be interesting to note that the number density distribution
of the galaxies in our sample is less steep in the centre than the
luminosity density distribution and can be approximated by a pro-
file with a core. The steeper distribution of luminosity is probably
mainly due to the presence of bright ellipticals in the centre of the
cluster (see Fig. 1).

Integrating the luminosity distribution (1) and multiplying by the
appropriate mass-to-light ratio in the blue band, ϒ , we obtain the
mass distribution associated with the stars in galaxies

MG(r ) = 4π l�ϒr 3
S

(
ln

r + rS

rS
− r

r + rS

)
. (2)

We adopt the mass-to-light ratio in blue band for E-S0s of ϒE =
8 M�/L� and for spirals ϒS = 3 M�/L�. For the mass distri-
bution of all galaxies we take the weighted mean of ϒ . Because,
for galaxies with known morphological type, the E-S0s and spirals
appear in the proportions of 2.2:1, then assuming that the same pro-
portion holds for the whole population, the mean mass-to-light ratio
amounts to ϒG = (2.2ϒE + ϒS)/3.2 = 6.43 M�/L�.

3.2 The gas distribution

To approximate the contribution of the gas to the mass in the cluster
we make use of the X-ray surface brightness distribution which can
be well approximated by the following formula
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S(r ) = S0

[
1 +

(
r

rc

)2
]−3b+1/2

. (3)

Briel, Henry & Böhringer (1992) analysed the ROSAT observations
of Coma out to 100 arcmin in the energy band of 0.5–2.4 keV and
obtained the following best-fitting parameters: S0 = 4.6 × 10−13 erg
cm−2 s−1 arcmin−2, b = 0.75 and the core radius r c = 10.5 arcmin.
Assuming that the radiation is produced by bremsstrahlung, this
distribution is obtained by projecting the 3D emissivity integrated
over the energy band and assuming that the gas is approximately
isothermal. As the emissivity is proportional to the square of the
number density of electrons in the gas n, we obtain

n(r ) = n0

[
1 +

(
r

rc

)2
]−3b/2

, (4)

where the central electron density (with h = 0.7) is n0 = 3.42 ×
10−3 cm−3 (Briel et al. 1992; Henry & Henriksen 1986). Integrating
equation (4) and multiplying by the mass per electron we obtain the
mass distribution associated with the gas

Mg(r ) = 4

3
πn0(me + γ mp)r 3

2 F1

(
3

2
,

3b

2
;

5

2
; −r 2

r 2
c

)
, (5)

where 2 F1 is the hypergeometric function and γ mp with γ = 1.136
is the mean mass of the positively charged ion in the gas per unit
charge (mp being the proton mass), assuming the gas has the pri-
mordial composition with helium abundance of Y He = 0.23–0.24.

Equation (3) for the surface brightness is the same as that appear-
ing in the so-called β-model (we have replaced β by b to avoid con-
fusion with the anisotropy parameter of the next section); however,
we do not accept all the assumptions of the model here concerning,
for example, the relation between the gas and galaxy distributions.
The only assumption going into the derivation of the gas mass distri-
bution in equation (5), besides spherical symmetry, is that the gas is
isothermal, which is justified by recent observations of Coma with
XMM-Newton by Arnaud et al. (2001), who find very little temper-
ature variation, at least in the central region of radius 20 arcmin.

3.3 Dark matter

We study different possible density distributions of dark matter de-
scribed by the following general formula

ρ(r ) = ρchar

(r/rs)α(1 + r/rs)3−α
, (6)

where ρchar is a constant characteristic density, and r s is the scale
radius of the dark matter (in general different from that of the lumi-
nous distribution, rS). The profiles differ by the inner slope r−α but
have a common outer limiting behaviour of r−3. We will consider
α values limited by 0 � α � 3/2, which covers a wide range of
possible inner profiles: from very steep to core-like. The cuspy pro-
files of α > 0 are motivated by the results of cosmological N-body
simulations. The profile with α = 1 corresponds to the so-called uni-
versal profile proposed by NFW as a fit to the profiles of simulated
haloes, while the profile with α = 3/2 is identical to that following
from higher-resolution simulations of Moore et al. (1998). The core
profile with α = 0 is favoured by some observations of galaxies and
clusters and is very similar (but not identical) to the profile proposed
by Burkert (1995).

The scale radius r s introduced in equation (6) marks the distance
from the centre of the object where the profile has a slope equal to the
average of the inner and outer slope: r−(3+α)/2. The other parameter

that controls the shape of the profile is the concentration

c = rv

rs
, (7)

where r v is the virial radius, i.e. the distance from the centre of the
halo within which the mean density is �c times the present critical
density, ρcrit,0. Although in most cosmological N-body simulations
�c = 200 is assumed and kept constant, the value, following from
the spherical collapse model, depends on the underlying cosmology,
e.g. �c ≈ 178 is valid for the Einstein–de Sitter model, while, for the
currently most popular � cold dark matter (CDM) model with �M =
0.3 and �� = 0.7, we have �c ≈ 102 (Eke, Cole & Frenk 1996;
L� okas & Hoffman 2001). We will keep �c = 102 in the following.

The concentration of simulated dark matter haloes has been ob-
served to depend on the virial mass. Jing & Suto (2000) tested the
relation c(Mv) for the masses of the order of normal galaxies and
clusters in the case of density profiles with α = 1 and α = 3/2 and
found concentrations slowly decreasing with mass (thus confirming
the original observation of NFW) and lower for α = 3/2 than for
α = 1. The only study using the value of �c appropriate for a given
cosmological model is that of Bullock et al. (2001) who found the
profiles of presently forming haloes to be well fitted by the NFW for-
mula with concentrations depending on mass in the �CDM model
with the above parameters approximately as

c(Mv) = 5.95

(
Mv

1015h−1 M�

)−0.122

. (8)

In the following, we will treat the concentration as a free parameter
using this relation to guide us as to the order of magnitude of c.

We normalize the density profile (6) so that the mass within r v is
equal to the so-called virial mass

Mv = 4

3
πr 3

v �cρcrit,0. (9)

The characteristic density of equation (6) then becomes

ρchar = (3 − α)�cρcrit,0cα

3Fα(c)
, (10)

where Fα(c) is given by the hypergeometric function

Fα(x) = 2 F1(3 − α, 3 − α; 4 − α; −x)

=




3

x3

[
ln(1+x) − x

2

(2 + 3x)

(1+x)2

]
(α = 0)

5

x5/2

[
sinh−1 √

x −
√

x

3

3 + 4x

(1 + x)3/2

]
(α = 1/2)

2

x2

[
ln(1 + x) − x

1 + x

]
(α = 1)

3

x3/2

[
sinh−1 √

x −
√

x

1 + x

]
(α = 3/2).

(11)

The dark mass distribution following from equations (6), (9) and
(10) is

MD(s) = Mvs3−α Fα(cs)

Fα(c)
, (12)

where we introduced s = r/r v.

4 M O D E L L I N G O F T H E V E L O C I T Y
M O M E N T S

The purpose of this work is to constrain the distribution of dark
matter in the Coma cluster by studying the velocity moments of the
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population of elliptical galaxies in the cluster which we believe to
be in equilibrium (thus neglecting radial streaming motions). We
defer to a later paper the kinematical study of spiral galaxies in the
context of infall. We will also assume that the system is spherically
symmetric and that there are no net streaming motions (e.g. no
rotation) so that the odd velocity moments vanish.

At second order, the two distinct moments are v2
r and v2

θ = v2
φ ,

which we will denote hereafter by σ 2
r and σ 2

θ , respectively. They can
be calculated from the lowest-order Jeans equation (e.g. Binney &
Mamon 1982)

d

dr

(
νσ 2

r

) + 2β

r
νσ 2

r = −ν
d�

dr
, (13)

where ν is the 3D density distribution of the tracer population and �

is the gravitational potential. We will solve equation (13) assuming
the anisotropy parameter

β = 1 − σ 2
θ (r )

σ 2
r (r )

(14)

to be constant with −∞ < β � 1. This model covers all interesting
possibilities from radial orbits (β = 1) to isotropy (β = 0) and
circular orbits (β → −∞).

The solution of the lowest-order Jeans equation with the boundary
condition σ r → 0 at r → ∞ for β = const is

νσ 2
r (β = const) = r−2β

∫ ∞

r

r 2βν
d�

dr
dr. (15)

However, the measurable quantity is the line-of-sight velocity dis-
persion obtained from the 3D velocity dispersion by integrating
along the line of sight (Binney & Mamon 1982)

σ 2
los(R) = 2

I (R)

∫ ∞

R

(
1 − β

R2

r 2

)
νσ 2

r r√
r 2 − R2

dr, (16)

where I (R) is the surface distribution of the tracer and R is the
projected radius. Introducing equation (15) into equation (16) and
inverting the order of integration, we obtain

σ 2
los(R) = 2G

I (R)

∫ ∞

R

dxν(x)M(x)x2β−2

×
∫ x

R

dy

(
1 − β

R2

y2

)
y−2β+1√
y2 − R2

,
(17)

where M(x) is the mass distribution and we used new variables x and
y instead of r to avoid confusion. The calculation of σ los can then
be reduced to one-dimensional numerical integration of a formula
involving special functions for arbitrary β = const.

It has been established that by studying σ los(R) alone we can-
not uniquely determine the properties of a stellar system. In fact,
systems with different densities and velocity anisotropies can pro-
duce identical σ los(R) profiles (see, for example, Merrifield & Kent
1990; Merritt 1987). It is therefore interesting to consider higher-
order moments of the velocity distribution. For the fourth-order mo-
ments, the three distinct components v4

r , v
4
θ = v4

φ and v2
r v

2
θ = v2

r v
2
φ

are related by two higher-order Jeans equations (Merrifield & Kent
1990).

In order to solve these equations we need additional informa-
tion about the distribution function. We will restrict ourselves here
to functions which can be constructed from the energy-dependent
distribution function by multiplying it by a function of angular mo-
mentum f (E , L) = f 0(E)L−2β with β = const. The solution of the
Jeans equation for the fourth-order moment (see L� okas 2002)

d

dr

(
νv4

r

) + 2β

r
νv4

r + 3νσ 2
r

d�

dr
= 0, (18)

is

νv4
r (β = const) = 3r−2β

∫ ∞

r

r 2βνσ 2
r (r )

d�

dr
dr. (19)

By projection, we obtain the line-of-sight fourth moment

v4
los(R) = 2

I (R)

∫ ∞

R

νv4
r r√

r 2 − R2
g(r, R, β) dr, (20)

where

g(r, R, β) = 1 − 2β
R2

r 2
+ β(1 + β)

2

R4

r 4
. (21)

Introducing equations (15) and (19) into (20) and inverting the
order of integration, we obtain

v4
los(R) = 6G2

I (R)

∫ ∞

R

r−2β+1

√
r 2 − R2

g(r, R, β) dr

×
∫ ∞

r

ν(q)M(q)

q2−2β
dq

∫ q

r

M(p)

p2
dp (22)

and the calculation of v4
los(R) can be reduced to a (rather long) double

integral. A useful way to express the fourth projected moment is to
scale it with σ 4

los in order to obtain the projected kurtosis

κlos(R) = v4
los(R)

σ 4
los(R)

, (23)

whose value is 3 for a Gaussian distribution.

5 R E S U LT S

We use our sample of galaxy velocities to calculate the velocity mo-
ments of the E-S0 galaxies. The 355 available E-S0 galaxies were
divided into bins of 39 objects. Fig. 3 shows the line-of-sight veloc-
ity dispersion (upper panel) and kurtosis (lower panel) together with
their sampling errors calculated using estimators based on Monte
Carlo simulations (see Appendix A). We find the sampling distri-
bution of σ los to be close to normal. In the case of kurtosis, shown
in the lower panel of Fig. 3 the values are actually calculated and
their errors propagated from the quantity (log κ los)1/10 which we
find to be normally distributed (see Appendix A). Normal sampling
distributions of the estimators of both moments and very weak cor-
relations between them justify the use of standard fitting procedures
of these quantities based on χ 2 minimization.

Our purpose here is to reproduce the observed velocity moments
using models described by equations (16) and (22), with the mass
distribution given by the sum of the three contributions (2), (5) and
(12) discussed in Section 3:

M(r ) = MG + Mg + MD. (24)

The density profile ν(r) of the tracer population of early-type galax-
ies is given by equation (1) and the surface brightness I(R) by its
projection. While studying velocity dispersion is useful to con-
strain the mass, the kurtosis is mostly sensitive to the velocity
anisotropy.

To give a feeling of its behaviour, we show in Fig. 3 the predictions
of equation (22) (and the corresponding ones of equation 16) for the
three cases of radial (β = 1), isotropic (β = 0) and circular (β =
−∞) orbits assuming dark matter distribution given by an NFW
profile (equation 6 with α = 1) for the virial mass Mv = 1015 M�
and with concentration c = 6 (as suggested by formula 8 for the
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406 E. L. L� okas and G. A. Mamon

Figure 3. The line-of-sight velocity dispersion (upper panel) and the di-
mensionless line-of-sight kurtosis parameter (lower panel) of E-S0 galaxies.
The curves represent models with stars, hot gas and dark matter with NFW
distribution of mass Mv = 1015 M� and concentration c = 6.

mass of this order). We see that for radial orbits the kurtosis profile
is convex as opposed to the concave shapes in the case of isotropic
and circular orbits. Because our data seem to prefer a concave shape,
we can expect isotropic or tangential orbits to fit the data best.

We begin by fitting the line-of-sight velocity dispersion profile
shown in the upper panel of Fig. 3. We consider different values of
α = 0, 1/2, 1, 3/2, and, for each of them, we determine the best-
fitting anisotropy parameter β and dark virial mass Mv as a function
of concentration c. The best-fitting values of Mv obtained are of the
order of 1015 M�, which corresponds to dark halo virial radius
r v = 88 arcmin or 2.6 Mpc. The virialized region is supposed to lie
within this radius, so in the following analysis we discard the two
outer radial bins.

Fig. 4 shows the results of fitting just the inner seven data points
in the upper panel of Fig. 3 for α = 0, 1/2, 1 and 3/2. The best-
fitting dark virial mass Mv (upper panel) and the velocity anisotropy
parameter for early-type galaxies β (middle panel) are shown as
a function of concentration. The lower panel of Fig. 4 shows the
goodness of fit χ2 (we do not use χ2/N , with N the number of
degrees of freedom, because it is not obvious how many parameters
can be estimated with this procedure). As can be seen in Fig. 4,
the biggest Mv obtained is 1.5 × 1015 M� which gives r v = 100
arcmin or 2.9 Mpc. The data points are now all within this region and

Figure 4. Results of fitting line-of-sight velocity dispersion data. The best-
fitting parameters Mv and β are shown in the two upper panels as a function
of concentration for different α. The lower panel gives the goodness of
fit χ2.

therefore there is no need for further adjustments in the number of
data points analysed. The lowest panel of Fig. 4 proves that neither
c nor α can be constrained from the analysis of velocity dispersion
alone; χ 2 flattens for large c and reaches similar values for all α for
a wide range of c.

As discussed in Appendix A, the sampling distributions of σ los

and (log κ los)1/10 are independent, hence we can use the same χ 2
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Figure 5. Cuts through the 1σ , 2σ and 3σ probability contours in the pa-
rameter space obtained from fitting σ los and (log κ los)1/10. Circles (and
half-circles) indicate the best-fitting parameters. The mass is in units
of 1015 M�.

minimization scheme to find joint constraints following from fitting
both quantities. Using the total of 14 data points at R <80 arcmin, we
jointly fit our four parameters, Mv, β, α and c. Contrary to the case
when only velocity dispersion was studied, the minimization proce-
dure now converges. The minimum is found at Mv = 1.2 × 1015 M�
(corresponding to dark matter virial radius r v = 92 arcmin =
2.7 Mpc), β = −0.13, α = 0 and c = 19 with χ 2/N = 6.1/10.
For a better visualization of the constraints obtained for our four
parameters, we plot in Fig. 5 the cuts through the four-dimensional
confidence region in all six possible planes with probability con-
tours corresponding to 1σ (68 per cent), 2σ (95 per cent) and 3σ

(99.7 per cent), i.e. �χ 2 = χ2 − χ2
min = 4.72, 9.70, 16.3, where

χ2
min = 6.1.
Although the cuts do not tell everything about the confidence

region, Fig. 5 can be used to draw a number of interesting conclu-
sions. The most striking is the behaviour of the confidence region in
the c–α plane shown in the upper-right corner. Its shape shows that
there is a strong degeneracy between the two parameters and indeed
almost equally good fits can be obtained for the values of the inner
slope other than α = 0. The best-fitting values of the remaining pa-
rameters (together with the corresponding χ2 value) when different
α are assumed are listed in Table 1. The results confirm that indeed
α = 0 gives the best fit, but other inner slopes cannot be excluded.

Table 1. Best-fitting parameters from joint analysis of
σ los and κ los of E-S0 galaxies. Mv is in units of 1015 M�.

α Mv β c χ2

0 1.2 −0.13 19 6.1
1/2 1.2 −0.14 14 6.2
1 1.2 −0.16 9.4 6.4
3/2 1.2 −0.21 4.9 6.9

Figure 6. The best-fitting line-of-sight velocity dispersion (upper panel)
and kurtosis (lower panel) profiles of E-S0 galaxies. The parameters of the
models are listed in Table 1. The data are the same as in Fig. 3, except that
only the seven inner data points are shown in each panel.

The steeper the inner slope (the higher the value of α), however,
the lower is the concentration required to provide good fits to the
moments.

The velocity moments obtained with the sets of parameters listed
in Table 1 are shown in Fig. 6 together with the data; they overlap
almost exactly. The dark matter profiles following from equation (6)
with the parameters from Table 1 are plotted in the upper panel of
Fig. 7. In the lower panel we also show the logarithmic slopes of
the profiles. In both panels our best-fitting profiles are compared to
the ‘standard’ NFW profile with concentration c = 6 (as suggested
by formula 8 for the mass of the order of 1015 M�). As can be seen
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408 E. L. L� okas and G. A. Mamon

Figure 7. The best-fitting dark matter profiles with different inner slopes
(upper panel) and their effective slopes (lower panel) as a function of radial
distance (in units of the virial radius). The thick solid line in each panel
shows the same quantities for the standard NFW profile with c = 6.

in the upper panel, all our profiles overlap in a wide range of radial
distances 0.03r v < r < r v, and are steeper beyond 0.05 r v (see the
lower panel) than the standard NFW model deduced from cosmo-
logical N-body simulations. Indeed, our best-fitting NFW profile
has concentration c = 9.4, higher by 50 per cent than the standard
NFW profile for which c = 6 according to equation (8).

The remaining parameters Mv and β are better constrained. The
three panels on the left in Fig. 5 show the probability contours for
Mv in the planes with the other three parameters. We find the best
estimate for the dark mass to be Mv = (1.2 ± 0.4) × 1015 M� (1σ

error bars). The anisotropy parameter β is very close to isotropic, the
best-fitting value β = −0.13 gives σ θ = 1.06 σ r , i.e. the best-fitting
orbits of early-type galaxies are very weakly tangential, although
fully consistent with isotropy, while radial orbits are excluded at the
2σ level.

The upper panel of Fig. 8 compares the mass distributions in
stars, gas and dark matter with the total mass distribution for our
best-fitting model with α = 0. At the dark matter virial radius
r v = 2.7 Mpc, the total mass is 1.4 × 1015 M�. The mass in galax-
ies is only 2 per cent of the total mass, the mass in gas is 13 per
cent of the total (the galaxies thus represent less than one-seventh of
the baryonic mass), and the dark matter contributes the remaining

Figure 8. Upper panel: the mass distributions for the best-fitting model
(α = 0). Lower panel: the mass-to-light ratios for the best-fitting models
with different α. The dark matter virial radii are rv = 2.7 Mpc for all
models shown.

85 per cent of the total mass. Therefore, the virial radius for the total
mass is 0.85−1/3 = 1.06 times that of the dark matter, i.e. 97 arcmin
or 2.9 Mpc.

The cumulative mass-to-light ratio, i.e. the ratio of the total mass
distribution to the luminosity distribution in galaxies, is

M/LB = M(r )

LG(r )
, (25)

where M(r) is given by equation (24) with equations (2), (5) and
(12), while LG(r ) = MG(r )/ϒ . In the lower panel of Fig. 8 we show
M/LB for our best-fitting models for different α, with parameters
from Table 1. The models differ towards the centre and only for
α = 1 does the distribution tend to a constant value in this limit, as
we have used the NFW profile to fit the luminosity distribution of
galaxies in Section 2. At radial distances larger than 0.3 Mpc, the
cumulative mass-to-light ratio decreases slowly to reach M/LB ≈
351 M�/L� at the total mass virial radius 2.9 Mpc.

6 D I S C U S S I O N

We studied the velocity moments of early-type galaxies in the Coma
cluster and used them to constrain the distribution of dark matter
and velocity anisotropy. Our analysis differs from previous analyses
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of optical data (e.g. The & White 1986; Merritt 1987; den Hartog
& Katgert 1996; Carlberg et al. 1997; van der Marel et al. 2000;
Biviano et al. 2003; Biviano & Girardi 2003), in that:

(i) we have, for a single cluster, a larger sample of galaxies,
which, given their early morphological type, should be in dynamical
equilibrium in the cluster potential;

(ii) we remove pairs from the computation of the velocity mo-
ments;

(iii) we include kurtosis in the analysis;
(iv) we model dark matter distribution using a generalized for-

mula inspired by the results of cosmological N-body simulations;
(v) we include hot gas in our analysis.

In comparison to studies based upon stacking of many clusters,
our analysis of the Coma cluster benefits from not having to intro-
duce errors in any stacking procedure, and from a cleaner removal
of interlopers. On the other hand, the analyses of stacked clusters
have the advantage of averaging out particular inhomogeneities of
individual clusters such as Coma, expected in hierarchical scenarios
of structure formation. Indeed, the Coma cluster is known to have
irregular structure both in projected space (Fitchett & Webster 1987;
Mellier et al. 1988; Briel et al. 1992) and velocity space (Colless &
Dunn 1996; Biviano et al. 1996). In particular, the cluster has two
central dominant (cD) galaxies, NGC 4874 and 4889, of which the
first one is the central galaxy of the main cluster and the second
probably belonged to a subcluster which has recently merged with
the main cluster (e.g. Colless & Dunn 1996). There are other sub-
groups, such as that associated with NGC 4839 at around 40 arcmin
from NGC 4874, close enough to the cluster centre to contribute to
our analysis.

The question whether the E-S0 sample is relaxed and how the
existing substructure may affect our results can only be fully ad-
dressed by cosmological N-body simulations including galaxy for-
mation, where all 3D information would be available. Although
such an analysis has not yet been performed, the effect of the in-
complete virialization of structures of dark matter particles seen in
cosmological simulations on the estimates of the mass of a single
cluster through the Jeans equation has been addressed by Tormen,
Bouchet & White (1997). They have shown (see the bottom row
of their figure 17) that, even for significantly perturbed haloes, the
mass M(r) at distances larger than 2 per cent of the virial radius
inferred by the proper Jeans analysis is within 30 per cent (rms) of
the true mass and departs from it by less than 20 per cent (rms) for
average or relaxed haloes. As the dark matter distribution is known
to possess more substructure than is observed in the galaxy distri-
bution (cosmological simulations predict many more Milky Way
satellites than are observed; see, for example, Moore et al. 1999)
and because structures cease to grow sooner in flat universes with
a cosmological constant, in comparison with analogous structures
growing within the Einstein–de Sitter model (assumed in the simu-
lations by Tormen et al.), they are more regular today (see Thomas et
al. 1998) than shown in the first three columns of the bottom row of
figure 17 in Tormen et al. We therefore believe that the discrepancy
between our derived mass and the true cluster mass due to substruc-
ture and departures from equilibrium is significantly smaller than
the uncertainty due to sampling errors of the velocity moments.

Our results for the dark and total mass of the cluster are consistent
with previous estimates. Using a combination of X-ray and optical
data, Hughes (1989) found for his preferred model a total mass
within 3.6h−1

70 Mpc (where we used the notation H 0 = 70h70 km s−1

Mpc−1) to be (1.3 ± 0.2) × 1015h−1
70 M�, but a much wider range

of masses if more general mass distributions were allowed. Using

ROSAT observations of Coma and assuming hydrostatic equilibrium
of the gas, Briel et al. (1992) derived a mass within the same radial
distance to be (1.3 ± 0.4) × 1015h−1

70 M�. Also, by analysing the
infall patterns around Coma, Geller, Diaferio & Kurtz (1999) find
a mass of (1.7 ± 0.4) × 1015h−1

70 M� within the same distance to
the cluster centre as above. Extrapolating our results to this radial
distance, we find an enclosed mass of (1.6 ± 0.5) × 1015h−1

70 M�,
in good agreement with these three earlier estimates.

We find a strong degeneracy between the inner slope and the
concentration of the dark matter profile, with many combinations
of the two reproducing our velocity profiles almost equally well. In
the range of inner slopes 0 � α � 3/2 we find that the best-fitting
models have the two parameters related almost linearly as c = 19 −
9.6α with very little variation in the remaining fitting parameters,
Mv and β. The particular shape of the degeneracy between c and α

is due to the specific properties of the family of dark matter profiles
used in this analysis, coupled with our lack of velocity data at radii
smaller than the scale radius (r s) of the dark matter. Using smaller
radial bins would allow us to probe smaller radial distances, but at
the expense of larger sampling errors in the velocity moments. As
is clear from Fig. 7, the best-fitting dark matter profiles obtained
for different inner slopes are almost the same for a wide range of
distances (larger than 3 per cent of the virial radius) and this can
only be achieved with the combination of the parameters as given
in Table 1. Note that our best fit to the data for the flat dark matter
density profile might mean that the data may be even better fitted
with the unphysical model where the dark matter density profile
rises with radius in the cluster centre, i.e. α < 0 in equation (6).

Our best-fitting NFW profile (α = 1) has a concentration c =
9.4 (in agreement with the above formula), 50 per cent higher than
c = 6 found in N-body simulations. It should be kept in mind,
however, that the concentration parameters in the simulations are
subject to substantial scatter and that the formula (8) (giving c =
6) at masses of the order of 1015 M� is actually an extrapolation
of results obtained for lower mass haloes (see Bullock et al. 2001).
However, the ‘standard’ NFW model with c = 6 is still within our
1σ confidence region in Fig. 5.

In comparison, fits of the NFW profile to X-ray data of clusters,
assumed isothermal, by Ettori & Fabian (1999), rescaled by Wu &
Xue (2000), as well as by Sato et al. (2000), both yield c � 4 for the
mass that we find for Coma within the virial radius (the latter after
correction from �c = 200 to �c = 102), which is only within our
2σ confidence region. It may be that the assumption of isothermal
hot gas causes a lower concentration parameter.

In an analysis similar in spirit to ours, Biviano et al. (2003) report
c = 4 ± 2 for their stacked ensemble of 59 ENACS clusters, fitted to a
NFW model for the total mass density. Similarly, Biviano & Girardi
(2003) show that NFW models with c = 5.5 are consistent with
a stacked ensemble of 43 2dF Galaxy Redshift Survey (2dFGRS)
clusters. Moreover, the ENACS and 2dFGRS clusters analysed in
both studies are on average less massive (i.e. with lower velocity
dispersions) than Coma, and given that cosmological simulations
find a decreasing c for increasing mass, the discrepancy with our
result is even stronger.

The difference of these four studies with our result may be ex-
plained by the fact that the authors mentioned above fit the total mass
density profile to the NFW form, whereas our fit was performed for
the distribution of the dark component only. If the gas is distributed
similarly in the X-ray, ENACS and 2dFGRS clusters as in Coma,
i.e. it has a flat inner core, and the gas on average contributes a
substantial part of the total mass, fitting the total mass distribution
may result in flatter profiles than the dark haloes really have. The
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discrepancy may be also caused by the exclusion of cD galaxies by
Biviano et al. (2003), although we feel that removing one or two
galaxies from our central bin of 39 galaxies will not affect our re-
sults. Alternatively, their mass model (obtained with the assumption
of isotropic orbits) may not be coherent with the kurtosis profile of
their stacked cluster.

Our best-fitting models have orbits that are very close to isotropic,
as is expected, in the central regions, where the two-body relaxation
time for the galaxy system is considerably smaller than the age of the
Universe, and also because cosmological simulations indicate that
dark matter particles typically have isotropic orbits in the centres
of clusters (Thomas et al. 1998; Huss, Jain & Steinmetz 1999). In
other words, we find no significant anisotropy bias for the galaxies
relative to the expectations of isotropy for the dark matter. Note that,
if we force isotropic orbits for the galaxies, we then obtain similar
constraints for the inner slope, concentration parameter and mass of
the dark matter component within the virial radius as those shown
in Fig. 5.

We might wish to better reproduce the kurtosis profile. It is clear
from Fig. 6 that, while the velocity dispersion profile is well re-
produced, there is room for improvement for the kurtosis profile.
However, as discussed in Section 4, the kurtosis is mainly sensitive
to the velocity anisotropy, which was modelled here by a single con-
stant parameter. Besides, the curves shown in Fig. 6 are the results
of joint fitting of both moments and do not aim at reproducing the
kurtosis alone. In spite of this, the inclusion of the kurtosis in our
analysis allowed us to constrain the velocity anisotropy and other
parameters of the model.

From our best estimate of the mass distribution, the baryons
(galaxies and gas) contribute 15 per cent of the total mass at the
dark matter virial radius r v = 2.7 Mpc (see Fig. 8). If we assume
that the cluster content is representative of the Universe as a whole,
we can use this baryon fraction to estimate the density parame-
ter �0 (see, for example, White et al. 1993). Taking the baryonic
density parameter at its currently best value from nucleosynthesis
�b = 0.04 (with h = 0.7) we obtain �0 = 0.26 ± 0.09 where the
error comes from our 30 per cent uncertainty in the dark virial mass
value, 20 per cent uncertainty in the gas mass (as estimated by White
et al. 1993) and 10 per cent error in the �b value (Burles, Nollett &
Turner 2001).

Similarly, we may assume that clusters are good tracers, within
their virial radius, of the ratio of mass to blue luminosity. Given
that the closure mass-to-light ratio (critical density over luminosity
density) in the blue band is roughly 1100 h70 to 10 per cent accu-
racy, consistent with the recent estimates of luminosity density from
the 2dFGRS (Norberg et al. 2002) and Sloan Digital Sky Survey
(Blanton et al. 2001) (after correction to the blue band), our mass-
to-light ratio within the virial radius of 351h70 with 30 per cent
accuracy yields �0 = 0.32 ± 0.1.

Combining these two estimates of the density parameter, we arrive
at �0 = 0.29 ± 0.1 in excellent agreement with other determina-
tions, for example the recent value obtained from the Wilkinson
Microwave Anisotropy Probe (WMAP) cosmic microwave back-
ground experiment (Spergel et al. 2003).
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Briel U. G., Henry J. P., Böhringer H., 1992, A&A, 259, L31
Broadhurst T., Huang X., Frye B., Ellis R., 2000, ApJ, 534, L15
Bullock J. S., Kolatt T. S., Sigad Y., Somerville R. S., Kravtsov A. V., Klypin

A. A., Primack J. R., Dekel A., 2001, MNRAS, 321, 559
Burkert A., 1995, ApJ, 447, L25
Burles S., Nollett K. M., Turner M. S., 2001, ApJ, 552, L1
Carlberg R. G. et al., 1997, ApJ, 485, L13
Colless M., Dunn A. M., 1996, ApJ, 458, 435
den Hartog R., Katgert P., 1996, MNRAS, 279, 349
Eke V. R., Cole S., Frenk C. S., 1996, MNRAS, 282, 263
Ettori S., Fabian A. C., 1999, MNRAS, 305, 834
Fitchett M., Webster R., 1987, ApJ, 317, 653
Fukushige T., Makino J., 1997, ApJ, 477, L9
Geller M. J., Diaferio A., Kurtz M. J., 1999, ApJ, 517, L23
Henry J. P., Henriksen M. J., 1986, ApJ, 301, 689
Huchra J. P., 1985, in Richter O. G., Binggeli B., eds, Proc. ESO Workshop

on the Virgo Cluster of Galaxies. ESO, Munich, p. 181
Hughes J. P., 1989, ApJ, 337, 21
Huss A., Jain B., Steinmetz M., 1999, MNRAS, 308, 1011
Jimenez R., Verde L., Oh S. P., 2003, MNRAS, 339, 243
Jing Y. P., Suto Y., 2000, ApJ, 529, L69
Kent S. M., Gunn J. E., 1982, 87, 945
L� okas E. L., 2002, MNRAS, 333, 697
L� okas E. L., Hoffman Y., 2001, in Spooner N. J. C., Kudryavtsev V., eds,

Proc. 3rd International Workshop, The Identification of Dark Matter.
World Scientific, Singapore, p. 121

L� okas E. L., Mamon G. A., 2001, MNRAS, 321, 155
Magorrian J., Ballantyne D., 2001, MNRAS, 322, 702
McGaugh S. S., de Blok W. J. G., 1998, ApJ, 499, 41
McLaughlin D. E., 1999, ApJ, 512, L9
Mellier Y., Mathez G., Mazure A., Chauvineau B., Proust D., 1988, A&A,

199, 67
Merrifield M. R., Kent S. M., 1990, AJ, 99, 1548
Merritt D., 1987, ApJ, 313, 121
Moore B., Governato F., Quinn T., Stadel J., Lake G., 1998, ApJ, 499, L5
Moore B., Ghigna S., Governato F., Lake G., Quinn T., Stadel J., Tozzi P.,

1999, ApJ, 524, L19
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Norberg P. et al., 2002, MNRAS, 336, 907
Sato S., Akimoto F., Furuzawa A., Tawara Y., Watanabe M., Kumai Y., 2000,

ApJ, 537, L73
Spergel D. N. et al., 2003, ApJ, submitted (astro-ph/0302209)
Struble M. F., Rood H. J., 1999, ApJS, 125, 35

C© 2003 RAS, MNRAS 343, 401–412

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/343/2/401/1038976 by guest on 16 D
ecem

ber 2020



Dark matter distribution in the Coma cluster 411

Stuart A., Ord K., 1994, Kendall’s Advanced Theory of Statistics, Vol. I:
Distribution Theory. Oxford Univ. Press, New York, ch. 10

Tamura T., Makishima K., Fukazawa Y., Ikebe Y., Xu H., 2000, ApJ, 535,
602

The L. S., White S. D. M., 1986, AJ, 92, 1248
Thomas P. A. et al., 1998, MNRAS, 296, 1061
Tormen G., Bouchet F. R., White S. D. M., 1997, MNRAS, 286, 865
Tully R. B., Shaya E. J., 1984, ApJ, 281, 31
Tyson J. A., Kochanski G. P., dell’Antonio I. P., 1998, ApJ, 498, L107
van der Marel R. P., Magorrian J., Carlberg R. G., Yee H. K. C., Ellingson

E., 2000, AJ, 119, 2038
White S. D. M., Navarro J. F., Evrard A. E., Frenk C. S., 1993, Nat, 366, 429
Williams L. L. R., Navarro J. F., Bartelmann M., 1999, ApJ, 527, 535
Wu X.-P., Xue Y.-J., 2000, ApJ, 529, L5

A P P E N D I X A : T H E S A M P L I N G
D I S T R I BU T I O N S

The validity of modelling presented in this paper rests on proper
estimation of the velocity moments and their errors from observa-
tions. If their sampling distributions tend to normality, the statistics
obtained from a sample (e.g. moments) can be characterized by an
expectation value and a ‘standard’ error (Stuart & Ord 1994). For
simplest statistics, such as the second central moment, these can be
calculated exactly from the population moments assuming the pop-
ulation properties. As we are interested here also in quantities whose
standard errors are not easily calculated analytically, we resort to
Monte Carlo methods.

The most natural estimators of the variance and kurtosis from a
sample of n line-of-sight velocity measurements vi are

S2 = 1

n

n∑
i=1

(vi − v)2 (A1)

and

K =
1
n

∑n
i=1(vi − v)4

(S2)2
(A2)

where

v = 1

n

n∑
i=1

vi (A3)

is the mean of galaxy velocities in the sample.
To investigate the distribution of these estimators for our binning

of galaxies, i.e. when n = 39, we ran Monte Carlo simulations by se-
lectingN = 104 times n = 39 numbers from a Gaussian distribution
with zero mean and dispersion of unity. As velocity distributions of
gravitationally bound objects in general do not dramatically depart
from a Gaussian, this is a sufficient approximation for constructing
unbiased estimators of moments.

For each of theN samples we compute the statistic θ�
j , namely S2

or K according to prescriptions given by equations (A1) and (A2).
The Monte Carlo estimate of our statistic is then the mean of all
values obtained

θ� = 1

N

N∑
j=1

θ�
j (A4)

and its variance is

var(θ�) = 1

N − 1

N∑
j=1

(
θ�

j − θ�
)2

. (A5)

We find that the best estimates obtained in this way are biased,
especially for kurtosis (it is interesting to note that the value of

kurtosis is underestimated by a few per cent even for much larger
samples with n of the order of a few hundred). In addition, while
the sampling distribution of velocity dispersion is Gaussian to a
very good approximation, that for kurtosis is strongly skewed. Us-
ing this knowledge we construct unbiased and Gaussian-distributed
estimators of line-of-sight velocity dispersion s and kurtosis-like
variable k

s =
(

n

n − 1
S2

)1/2

(A6)

k =
[

log

(
3

2.75
K

)]1/10

. (A7)

The factor n − 1 in equation (A6) is the well-known correction
for bias when estimating the sample variance, valid independently
of the underlying distribution. In equation (A7) the factor 3/2.75
corrects for the bias in the kurtosis estimate, i.e. unbiased estimate
of kurtosis is K ′ = 3K/2.75, while the rather complicated function
of K ′ assures that the sampling distribution of k is approximately
Gaussian. Examples of sampling distributions of s and k from our
Monte Carlo simulation are shown in Fig. A1. We find that the
standard errors in the case of s are of the order of 11 per cent (in
agreement with an analytical result derivable with the assumption
of Gaussian velocity distribution) while in the case of k they are
approximately 2 per cent.

The measured values of σ los and κ los calculated from our velocity
data using equations (A6)–(A7) and (A1)–(A2) are shown in Fig. 3.
The 1σ error bars for the velocity dispersion are 0.11s. The val-
ues of kurtosis are K ′ = 3K/2.75 with approximate 1σ error bars
propagated from the 2 per cent error in k.

0.88 0.9 0.92 0.94 0.96 0.98

k

0.6 0.8 1 1.2 1.4

s

Figure A1. Example of sampling distributions of s and k obtained from
a Monte Carlo simulation of sampling from a Gaussian parent distribution
with n = 39 and N = 104.
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Figure A2. The joint distribution of s and k obtained from a Monte Carlo
simulation of sampling from a Gaussian parent distribution with n = 39 and
N = 104.

It is also important to check whether the sampling distributions
of the two statistics are independent. In general, the covariance be-
tween, for example, even moments derived from the same sample
does not vanish, even for Gaussian distributions (Stuart & Ord 1994).
However, the lowest-order term is expected to decrease with the size
of the sample n. To check whether n = 39 in our case is indeed
large enough to assure independence of s and k, we construct the

joint sampling distribution of the two statistics. Fig. A2 presents the
joint distribution in the form of N points with coordinates given by
(s, k) pairs calculated from each sample. As indicated by the figure
the variables are very weakly correlated, and we find the correlation
coefficient of |�| � 0.02.

To check the behaviour of s and k for velocity distributions de-
parting from Gaussianity, we repeated the Monte Carlo simulation,
again sampling n = 39 numbers from a Gaussian distribution, but
modifying each sample by removing the six most inner points and
adding three uniformly distributed in the range (1σ , 2σ ) and three
in the range (−2σ , −1σ ). Such distributions have unbiased kurtosis
estimates of the order of K ′ = 2.2, close to the lowest value obtained
from our data (and most strongly departing from the Gaussian value
of 3). We find that estimators s and k are again Gaussian-distributed
to a very good approximation and very weakly correlated with
|�| � 0.07. The sampling distributions of s and k as well as the
joint distribution look very similar to the purely Gaussian case. The
correlation coefficient can increase significantly only in the pres-
ence of additional outliers (more numerous than predicted by the
Gaussian distribution) in the range (2σ , 3σ ) and (−3σ , −2σ ). We
have checked that the number of galaxies with velocities in this
range is 1 or 2 in each bin, in excellent agreement with the Gaussian
prediction.

We can therefore assume that, to a good approximation, all our
data points measuring velocity dispersion and kurtosis are indepen-
dent, which justifies the use of standard χ2 minimization to fit the
models to the data.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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