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Abstract 

A microemulsion of decane droplets stabilized by a non-ionic surfactant film is progressively 

charged by substitution of a non-ionic surfactant molecule by a cationic surfactant. We check 

that the microemulsion droplets remain identical within the explored range of volume fraction 

(0.02 to 0.18) and of the number of charge per droplets (0 to 40) . We probe the dynamics of 

these microemulsions by dynamic light scattering. Despite the similar structure of the 

uncharged and charged microemulsions the dynamics are very different . In the neutral 

microemulsion the fluctuations of polarization relax, as is well known, via the collective 

diffusion of the droplets. In the charged microemulsions, two modes of relaxation are 

observed. The fast one is ascribed classically to the collective diffusion of the charged 

droplets coupled to the diffusion of the counterions. The slow one has, to our knowledge, not 

been observed previously neither in similar microemulsions nor in charged spherical colloids. 

We show that the slow mode is also diffusive and suggest that its possible origine is the 

relaxation of local charge fluctuations via local exchange of droplets bearing different number 

of charges . The diffusion coefficient associated with this mode is then the self diffusion 

coefficient of the droplets. 
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Introduction 

Dynamic light scatttering (DLS) explores the relaxation of the fluctuations of polarization 

from which light scattering originates. For suspensions of particles in a solvent (colloidal 

dispersions, macromolecules or polymers in solution , microemulsions etc...) these 

fluctuations are essentially due to the fluctuations of concentration. The DLS spectra is a 

single exponential for dilute dispersions of one species of particles1,2 reflecting a single 

relaxation mode ( Brownian motion of the particules) . However in many different 

experimental situations the DLS spectra is more complicated. For polydisperse suspensions , 

the spectra is found to be the sum of two exponentials described theoretically 3,4,5 in terms of 

the collective and self diffusions respectively . These two modes have been oberved in 

concentrated colloidal dispersions6,7, in charged dispersions 8,9 and in water-in-oil droplet 

microemulsions 5,10. In bicontinuous microemulsions two relaxation modes have been 

reported11 which have a different origin related to the local fluctuations of the topology of the 

bicontinuous network. In linear polyelectrolytes two modes are again observed 12-14, the 

origin of the slow mode is still controversial. Recently two relaxation modes have been 

observed in the dynamics of a globular protein and the authors claim the second mode to be 

due to diffusion of well-ordered clusters of the globular proteins15 . And in viscoelastic fluids 

complex DLS spectra are observed with two or three relaxation modes see ref 16 and 

references therein. One of this mode is directly related to the transient elasticity of the system. 

This list is not exhaustive, it illustrates the variety of systems where DLS spectra display two 

or more relaxation modes the origin of which depends strongly on the type of system studied.  
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In the present paper, we consider the case of weakly charged colloids. Oil in water 

microemulsion droplets stabilized by a non-ionic surfactant film can be charged by addition 

of minute quantities of an ionic surfactant without modifying the size and shape of the 

droplets. They so provide model systems of weakly charged colloid, the charge of which is 

easily varied and controlled. Such charged microemulsions have been studied previously by 

Gradzielski and Hoffman 17 and by Evilevitch et al18 but these authors report on only one 

relaxation mode in the DLS spectra of these microemulsions. Another convenient realization 

of a weakly charged colloid is a solution of globular proteins the charge of which is monitored 

by the pH. Such a system was studied by Retailleau et al 19 who also observe only one 

relaxation mode in the DLS spectra. 

Here, we investigate the DLS pattern of weakly charged oil in water microemulsion 

droplets. Using small angle neutron scattering, we first check that the size and shape of the 

droplets remain constant upon changing their charge by addition of small amounts of an ionic 

surfactant . Then we present the DLS spectra which clearly exhibit two relaxation modes. We 

then discuss two possible mechanisms at the origin of the two modes. The mechanism first 

considered by Pusey et al in the early eighties involves the size polydispersity of  the droplets. 

To our knowledge, the second mechanism has never been considered to date: it rather relies 

on the charge polydispersity of the droplets. A simplified toy model based on a bidispersed 

distribution of charges in otherwise identical particles is presented to illustrate the probable 

relevance of this second mechanism. 
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Experimental Section 

Materials 

The neutral surfactants are TX100 and TX35 from Fluka used as received. The ionic 

surfactant: Cetyl pyridinium chloride (CPCl) from Fluka is purified by successive 

recristallization in water and in acetone. Decane from Fluka is used as received. 

Samples 

The microemulsions20 are thermodynamically stable dispersions in water of oil droplets 

surrounded by a surfactant film: O/W microemulsions. The spontaneous radius of curvature 

of the surfactant film is adjusted by varying the relative proportion of the surfactant and 

cosurfactant. All samples are prepared by weight in triply distillated water or deuterated water 

(for the SANS measurements). In the neutral microemulsion, the amphiphilic film is 

composed of TX100 (surfactant) and TX35 (co-surfactant) ; the weight ratio of TX35 to 

TX100 is 0.48 ; decane is added  so that the sample is close to the emulsification failure limit 

that is the limit of oil solubilization, the weight ratio  of decane to surfactant is 0.7. It is now 

well establish that, under these conditions, the droplets of microemulsion have a radius 

corresponding to the optimum curvature of the surfactant film and a narrow size distribution 

which remain constant over a broad range of concentration 20-22 . We showed previously  that 

it was also the case for this particular microemulsion 23. In the charged microemulsions a 

small part (up to 3% in weight) of ionic surfactants are added to the non-ionic surfactants, that 

corresponds to a number of 0 to 40 ionic polar heads among ~1600 TX neutral polar heads per 

droplet.  

We checked, as described below, that the size of the microemulsion droplets is not modify 

by this addition. The samples are characterized by the volume fraction of droplets Φ and by  

the mean number of charges per droplet  p  ;  p  can be calculated from the composition of the 
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samples and the mean volume of the droplets deduced from the SANS data (see below) . The 

parameters to calculate   and   Φ p  are given in Table 1 .  

Table 1 The components of the microemulsion. 

Component  (abbreviation used in the text) Molar Mass 
(dalton) 

Density (g/cm3) 

 Total HC(a) polar part HC(a) 
H2O 18 - 1 - 

 [H3C-(C-(CH3)2-CH2-C-(CH3)2)ϕ ](O-CH2-CH2)3 -OH     (TX35) 338 189 1.2 0.86 

[H3C-(C-(CH3)2-CH2-C-(CH3)2)ϕ](O-CH2-CH2)9.5-OH     (TX100) 624 189 1.2 0.86 

[H3C-(CH2)15 ] -C5H5N+ Cl- 
    (CPCl) 339.5 225 1.656 0.83 

[H3C-(CH2)8 CH3]                  (decane) 142 142 - 0.75 

(a) HC= Hydrophobic part of the molecule in brackets in the formula on the left 

Small Angle Neutron Scattering : SANS Measurements 

The intensity scattered by a dispersion of  spherical colloids with a distribution of size can 

be written 24: 

    I (q) = I0(q)S M (q)   and   I0(q) = Φvm
−1 < A2 >  (1) 

With q (Å-1) the scattering vector, Φ the volume fraction,  and  vm   < A2 > respectively the 

volume and the scattered amplitude squared of the colloids averaged over the size 

distribution.     , the measurable structure factor , reflects the interactions between the 

colloids, it is 1 at large q's or for very dilute samples where interactions can be neglected.  

S M (q)

The best simulation is obtained for spherical droplets of outer radius      but with three 

successive scattering length densities corresponding roughly to an inner sphere of decane, a 

corona containing the aliphatic chains of surfactant and an outer corona containing the polar 

heads = short PEO chains . The scattering length density profile is sketched in figure 1 . The 

averaged squared amplitude is calculated from the amplitude for spherical concentric shells

R3

25 

and with a Schulz-Zimm distribution for the size of the droplets26
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Figure 1 : Scattering length density profile. 

The best fit is for R1 = 6.6 nm , R2 = 7.2 nm 

and R3 = Rm = 8.1 nm with a standard 

deviation = 1.5 nm ( the two corona retain 

constant width) .  

        
 

The experiments  have been performed at LLB-Saclay  on the spectrometer PACE where 

the range of scattering vectors covered is 0.006 Å-1 < q < 0.16 Å-1 . The temperature is T= 

22°C. The scattering data are treated according to standard procedures. They are put on an 

absolute scale by using water as standard. We thus obtain intensities in absolute units (cm-1) 

with an accuracy better than 10%. To simulate correctly the experimental spectra, the model 

spectra are convoluted with the instrumental response function taking into account the actual 

distribution of the neutrons wavelength and the angular definition 27 . In Figure 2, the SANS 

spectra for samples with Φ = 0.038 are shown. The repulsive interactions between droplets 

increase with increasing charge as evidenced in figure 2A , these interactions will be 

examined in a forthcoming paper. The form factor oscillations -damped by the size 

distribution- are amplified in the      representation in figure 2B . These oscillations are 

identical for all the samples for q > 0.04 (when ) and they are reasonably well 

reproduced with     

q4 × I (q)

  S
M (q) ≈ 1

I0(q)  calculated as indicated above . The microemulsion is well represented 

by a suspension of spheres (    Rm = 8.1± 0.2 nm ,   ΔR = 1.5 nm  ,  )   vm = (2.5± 0.3) ×10−18cm3
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with a small size polydispersity (
    
p =

ΔR
Rm

= 0.18) and we checked, that the microemulsion 

droplets remain identical at least for  0.02 < Φ < 0.18 and 0 < p < 40. 

 

Figure 2 SANS Spectra for the microemulsions with Φ = 0.038 . The line corresponds to 

I0(q) computed for spherical droplets with the scattering length density profile shown in fig1 

with an outer mean radius     Rm = R3 = 8.1 nm  and a standard deviation ΔR = 1.5 nm. 

Triangles:   p  =0; circles:   p  =5.5; squares :  p  =11; diamonds:  p =16.5; inverse triangles: 

  p =22. Fig.2A: I(q) as a function of q illustrates the increasing repulsive interaction brought 

by the charges on the droplets. Fig 2B the Porod representation  as a function of q 

emphasizes the form factor oscillations which are identical in the high q range: the drops are 

unchanged in the charged microemulsion. 

  q
4 I (q)
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Dynamic light scattering - DLS 

The thermally activated dynamics of microemulsions can be probed by DLS1,2. The 

measurements are performed on a standard setup (AMTEC Goniometer with a BI9400 

Brookhaven correlator), the light source is an argon ion laser (λ=514.5 nm). The homodyne 

intensity autocorrelation function is measured at different q values, ranging from 3 106 to 3 

107 m-1 (
    
q =

4πn
λ

sin θ
2

  with n the refractive index of the solvent and θ the scattering angle ). 

The normalized autocorrelation function of the scattered intensity writes: 

    

g2(q,t ) =
I (q,t ) I (q,0)

I (q,0)
2

  (2) 

and if the scattered field obeys Gaussian statistics , this measured autocorrelation function 

can be expressed as a function of the first-order electric field correlation function through the 

Siegert relationship: 
  
g2 (q,t ) −1= c g1

E (q,t )
2
 , where c (0<c<1) is the experimental 

coherence factor. In our samples, the scattering originates from the fluctuations of the droplet 

concentration and      the autocorrelation function of the concentration 

fluctuations. In a suspension of microemulsion droplets in the low concentration regime we 

expect these fluctuations of concentration will relax through simple brownian diffusion and , 

assuming a monodisperse suspension , we simply write :  

g1
E (q,t ) ∝ g1 (q,t )

  
    
g1(q, t ) = exp −

t
τ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   with τ−1 = Dcoll q2     

where    is the usual collective translational diffusion coefficient .  Dcoll

 So that 
    
g2 (q, t ) −1 = cexp −

2 × t
τ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   (3) 
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In this case the relaxation mode is diffusive as indicated by the q-2 -dependence of τ . This 

is indeed what is observed in the neutral microemulsions as illustrated in figure 3A, the small 

departure from a monoexponential behavior at large times is to trace back to the moderate size 

polydispersity of the droplets. The well-known cumulants expansion 4,28 -strictly valid for a 

non interacting suspension- can be used to account for the polydipersity of the microemulsion 

(cf fig 3A). 

    

Ln(g1(q, t ) = b − Γ t +
var
2

(Γ t )2 + ...

with  Γ = τ −1 = Γ G(Γ) dΓ∫  and var =
Γ − Γ ( )2 G(Γ) dΓ∫

Γ 2

where G(Γ) is the distribution of ′ Γ s

 (4) 

 

Figure 3 : The normalized 

autocorrelation function measured at 

 θ = 90° for a neutral microemulsion (A) 

and a charged microemulsion   p = 40. (B) 

The volume fraction Φ =0.17. The points 

are experimental data; the dotted lines 

are fits of the data to a single exponential 

(eq 3). The line in A is a fit to eq 4 with 

  Γ =1.8 ± 0.01 μs−1   ��� var = 0.09 . 

The line in B is a fit to eq (5) with 

  

α f = 0.8 ,  τ f = 20 ± 2μs and

 αs = 0.2 ,  τ s =180 ± 20μs 
. 

The situation is different when the microemulsion droplets are charged. As can be seen in 

figure 3B the autocorrelation function is no longer quasi-monoexponential and it is well fitted 

to the sum of two single exponentials: 

        
    
g2 (q,t ) −1= c Af exp −

t
τ f

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
+ As exp −

t
τ s

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2

 (5) 
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Two relaxation modes are present, each one characterized by its relative contribution and its 

decay time : 
    
α i =

Ai
Af + As

 and τi  i = f (fast)or s(slow).  This was found to be the case for all 

the charged microemulsions as is further illustrated in figure 4 for samples with a constant 

charge   p =20 and an increasing volume fraction.  

 

 

 

 

Figure 4 : Evolution with the volume 

fraction of droplets of the normalized 

autocorrelation function measured at an 

angle of 90° for samples with a 

constant number of charges   p  = 20. 

The lines are fits of the data to eq.(5) 

and the dotted lines are fits of the data 

to a single exponential. Each set is 

shifted by a factor of 10 for clarity. 

Circles: Φ���squares: Φ���; 

diamonds Φ�35; triangles : Φ�17. 

The two relaxation modes are diffusif:  as illustrated in figure 5 . The slopes of 

the straigth lines are the diffusion coefficients  associated to the two relaxation 

modes . 

  τ i
−1 = Di q2

  Df  and Ds
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Figure 5 :The two modes are diffusion 

modes:   1 τ = D q2 :  illustration for the 

sample Φ���,  p =20 . From the slopes 

of the straight lines we obtain the 

diffusion coefficients 

 and   Df = (6.5 ± 0.5) ×10−11m2 × s−1

  Ds = (1.9 ± 0.2) ×10−11m2 × s−1 

Furthermore the relative amplitudes of the two modes are q-independent within 

experimental errors as shown in figure 6 . 

 

 

 

Figure 6 : The relative amplitudes of the 

two modes do not depend on the wave 

vector q. Illustration for the sample 

Φ���,  p =20 . 

 
These features are found for the different sets of samples. We will now summarize the 

results. We already stressed that both modes of relaxation are diffusive , they are 

characterized by a diffusion coefficient. The diffusion coefficient varies  with the volume 

fraction and with the number of charges per droplet in a different fashion for both modes. 

This is illustrated in figures 7 and 8 . The salient features are: 
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i/ The 'unique' diffusion coefficient for the neutral microemulsion increases weakly with Φ, 

a behavior generally observe for the collective diffusion coefficient of dilute microemulsions 

where the droplets interact via an overall repulsive potential (a Van der Waals attractive 

potential plus a hard sphere repulsive potential) 29. From   D 0 = 2.58 ×10−11 m2 × s−1 we can 

extract the apparent hydrodynamic radius 2   Rapp = 95� of the droplets using the Stokes-

Einstein relationship: 
  
D 0 = ν0 kbT =

kbT
6π η Rapp

    with  the Boltzmann constant, T the 

temperature, 

 kb

  ν0  the mobility at infinite dilution and η the viscosity of the solvent (here 

water) . The value obtained for    = 9.5 nm and the normalized variance of the distribution 

of diffusion coefficients equal to a few percent, compare well to the values calculated for 

droplets with a mean geometrical radius of 8.1 nm and a standard deviation of 1.5 nm  

Rapp

8. 

 

Figure 7 The diffusion coefficients for the 

two modes as a function of the volume 

fraction of droplets. The closed symbols are 

for the fast mode, the dotted lines are guide 

for the eyes. The open symbols are for the 

slow mode the line through all the data for 

the slow mode is a fit to a straight line. 

Circles  p =40; squares   p =20, diamonds 

 p =10. For comparison the diffusion 

coefficients for the single mode in the 

neutral microemulsion is shown : open 

triangles and the straight line is a fit to the 

data. See text for further discussion.  

ii/ the diffusion coefficient   Ds  associated with the slow mode does not depend, within 

experimental errors, on the mean number of charges per droplet  p  so that a straight line can 
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be drawn through all the points . This line extrapolates to the value  at    . However, as 

can be seen in figure 7 ,   

  D0 Φ = 0

Ds  decreases with increasing Φ.  

 

 

Figure 8 The diffusion coefficients for the 

two modes as a function of the number of 

charges per droplet. The closed symbols 

are for the fast mode, the open symbols 

are for the slow mode.The dotted lines are 

guide for the eyes . Circles   ; 

squares: 

Φ = 0.17

 Φ = 0.086 ; diamonds :    

;  triangles 

Φ = 0.035

 Φ = 0.017 . 

 

iii/ The diffusion coefficients    associated with the fast mode do not depend on  except 

possibly at the highest   

Df Φ

p  and  but in contrast with the diffusion coefficients of the slow 

mode they depend heavily on the number of charges. In figure 8 it can be seen that the 

extrapolation value for the fast mode at zero volume fraction and zero charge is also . 

However the way the diffusion coefficients for both modes extrapolate to      is very 

contrasted. 

Φ

  D0

D0

iv/ A last observation is worth stressing namely that, as can be seen in figure 9, the relative 

amplitudes of the two modes remain pratically constant within experimental errors for all 

samples. The slow mode contributes roughly to one fifth of the overall relaxation.  
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Figure 9 Relative amplitudes of the two modes.  A: as a function of volume fraction of 

droplets Circles   p =40; squares   p =20, diamonds  p =10.and B as a function of the number of 

charge per droplet. Circles   ; squares: Φ = 0.17  Φ = 0.086 ; diamonds :    ; triangles 

.The closed symbols are for the fast mode , the open symbols are for the slow 

mode. The dotted lines are guides for the eyes. 

Φ = 0.035

  Φ = 0.017

 

Discussion. 

We stressed in the introduction that in the microemulsion as in other colloidal suspensions , 

the fluctuations of polarization which are the cause of light scattering essentially originate 

from the fluctuations of concentration of the colloids . In the present sample this is also the 

case , what is then the physical origin of the different behaviors between the neutral 

microemulsion which shows, as usual, one diffusive mode and the weakly charged 

microemulsions which clearly show two modes ? Two possible origins can be proposed . One 

is the size polydispersity of the microemulsion which leads to a distribution of the scattering 

power of the droplets , it exists in the neutral and charged microemulsion . The other is the 

possibility that in the charged microemulsions, where on the average each droplet carry  p  

charges, this number can fluctuate from droplet to droplet with a distribution at thermal 
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equilibrium . In both cases , the microemulsion droplets are no longer identical so that 

detection of self diffusion is, in principle, possible . We discuss each one in turn below .  

In a colloidal suspension the size polydispersity induces a a distribution of the scattering 

power of the particles which are thus no longer indiscernable . As described in the pioneering 

work of Pusey et al3,4 more than twenty years ago, the autocorrelation function      splits 

in two terms one corresponding to the collective diffusion and one to the self diffusion of the 

colloidal particles . The collective diffusion relaxes a large scale fluctuation of the local 

number density of the colloids regardless of the local scattering power . The collective 

diffusion coefficient can be written : 

g1(q, t )

  
Dcoll =

ν kbT
S(0) fc

= ν dΠ
dN

 with S(0) the structure factor in 

the limit q=0, ν  the mobility,  the osmotic pressure and N the number density of particles . 

In this step the colloids readjust their distance but remain in their initial spatial arrangement 

(each particle keeping the same nearest neighbours) . Once the number density has relaxed to 

the homogeneous average value, residual scattering may still persist arising from the local 

fluctuations of the relative proportion of  the big (higher scattering power) versus small (lower 

scattering power) particles . Such residual contribution to the fluctuation of scattering length 

density can only relax through the self diffusion of individual colloids and the self diffusion 

coefficient writes :   

Π

Dself = ν kbT  . It must be stressed however that the two diffusion 

coefficients are close to one another as long as the interactions between the colloids are small 

(they become equal for non interacting colloids) . The two modes are thus detected only in 

situations where the interactions are large enough so that the two diffusion coefficients 

become significantly different . This provides a first plausible interpretation of our results : 

 i/ in the neutral microemulsion the interactions are weak : the two modes cannot be 

distinguished . ( In neutral colloidal supsensions indeed the two modes are observed only for 

fairly large volume fractions for which interactions are strong 5-7,10 .) 
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ii/ in the charged microemulsion the interactions are large as illustrated in figure 2A . The 

two diffusion coefficients become different (  increases and  decreases) and 

furthermore the amplitude of the collective mode ( α S(0)) is suppressed by the interactions so 

that the two modes can be readily observed . Two modes have indeed been observed in 

charged colloidal systems 

 Dcoll  Dself

8,9,30,31 . 

Although this mechanism based on the size (and therefore the scattering power) 

polydispersity certainly contributes to our observation, we presume that a second mechanism 

rather based on the charge polydispersity may well bring a significant contribution.. It could 

lie in the main difference between the two situations namely that in the charged 

microemulsions, where on the average each droplet carry  p  charges, this number can 

fluctuate from droplet to droplet with a distribution at thermal equilibrium. The repulsions 

between droplets depend strongly on the number of charges they bear: droplets of higher 

charge are indeed more repulsive.Thus, here again, we must not consider only one fluctuating 

degree of freedom (namely the local number density of droplets) but we must also consider 

the local mean density of charges . Considering the relaxation of a large scale concentration 

fluctuation, we then distinguish two steps. In the first step, the droplets move collectively in 

order to equilibrate their electro-osmotic repulsions : regions where the initial electro-osmotic 

repulsion is higher swell at the expense of those where the repulsion is lower. This step 

involves only rearranging the distance between neighbouring droplets and does not imply any 

change in the topology of the spatial distribution of the droplets (the neighbours of any given 

droplet are the same at the end of this step: simple local swelling) . Moreover, the force, 

driving the droplets motion, is the electro-osmotic force. In the present experimental situation, 

this fast step relaxes about 80% of the fluctuation and it merges into the unique diffusion 

mode at zero charge . Thus we conclude that this first step is driven by the collective diffusion 

of the droplets at quenched number of charges per droplet surrounded by their counterions . 
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We identify the diffusion coefficient arising from the fast mode to the collective diffusion 

coefficient of the microemulsion.  

At the end of this step however, there remains an unreleased contribution to the droplets 

concentration fluctuations associated with the fluctuations of the mean charge per droplet: 

regions where the charge per droplet is higher being indeed less concentrated. Thus, to 

achieve complete equilibrium, we must also ensure that the local mean density  of charge has 

everywhere reached the average equilibrium value . One possibility to equilibrate the charge 

density relies on the spontaneous thermally activated exchange of ionic surfactants from 

droplet to droplet . However, we know from previous investigations (rheometry)16,32 on 

similar droplet dispersions linked together by telechelic polymers that the residence time of 

the stickers of comparable aliphatic chain length in the droplets is of the order of a few     10 . 

This is much longer than the relaxation of the intensity–intensity correlation function. 

−2 s

So we conclude that the number of charges on each droplet remains frozen during the time 

of the experiment so the mechanism which dominates the equilibration of the charge density 

fluctuations is the relative diffusions of high versus low charge droplets. In this picture, the 

slow mode simply corresponds to the self diffusion of droplets and the associated diffusion 

coefficient is the self-diffusion coefficient . 

Assuming this description of the two relaxation modes , we can now examine if the 

experimental results sustain it .     Ds = Dself , then  Ds = ν kBT   ν  is the mobility which 

depends on the hydrodynamics of the microemulsion ,  Ds  depends  on Φ  but not on   p  , this 

implies that the charges have no or little influence on the mobility  of the droplets  and  Ds  

extrapolates to      at zero volume fraction as it should.  On the other hand      is 

determined by the osmotic compressibility and the mobility of the droplets . Therefore we 

expect it to depend strongly on the charge per droplet (fig 8 ) . On the other hand (fig.7), at a 

given 

D0 Df = Dcoll 

  p  it does not depend (or weakly) on Φ, in the range explored, probably because of 
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subtle compensation between the osmotic compressibility and the mobility of the droplets . 

Anyway we do not observe, as expected in the dilute regime,,   Df = Dcoll = D0 . This can be 

understood if we recall that the electrostatic potentiel of interaction is long-ranged 

(unscreened coulombic potential) so that the dilute regime (in the sense that the interactions 

between droplets become negligible) is much lower than the lowest limit studied (  ) 

and extrapolation to zero volume fraction at a finite 

Φ = 0.017

 p  cannot be achieved properly . 

However,  extrapolates to      at zero volume fraction and zero charge as it should. We 

find no contradiction between our description and the evolution of the two diffusion 

coefficients.  

  Df D0

To illustrate our general description , let us consider the very simple model described in the 

next section. 

A simple model for the diffusion of charged particles 

Although the charge distribution of the droplets is indeed spread, we consider for simplicity 

two populations of particles only which differ by their number of charges per particles      and 

. Their respective concentrations (in molar fractions) are noted  and . All particles 

are otherwise identical (same size, shape and scattering length). We assume further that the 

free energy  density (in molecular units ) of the dispersion comprises two terms: 

p1

2p 1X 2X

f

    f = h( p1X1 + p2 X2 ) + kbT ( X1 loge X1 + X2 loge X2 )  (6) 

The first term    is the enthalpic contribution arising from the repulsion between the 

particles due to their charges. Its functional form is , but at the scale of the inverse wave 

vector investigated experimentally (large scale compared to the average distance between the 

droplets), we can reasonably admit that it is a function of the local charge density of the 

dispersion only. The second term is indeed the usual contribution of the entropy of dilution of 

h
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populations 1 and 2 respectively. Expanding  in terms of  small concentration fluctuations f

1Xδ  and     δX2 from the average values   X 1 and   X 2: 

    

f = f0 + linear terms in the δX i
′s +

1
2

p1
2 A +

kbT
X 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ δX1

2 +
1
2

p2
2 A +

kbT
X 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ δX2

2

+ p1 p2 A δX1δX2 + higher order terms
 (7) 

where   A  stands for the second derivative of the enthalpic repulsion with respect to the local 

charge density: 

 
    
A =

∂2h

∂( p1 X1 + p2 X2 )2
 

Of course only the quadratic terms in (eq.7) are relevant for the diffusion of the particles. 

For the sake of simplicity again, we further assume that the hydrodynamic interactions 

between the two populations can be neglected. This is a strong approximation, but we believe 

it not to be too dramatic at sufficient dilution. In this limit, we can therefore use the 

generalized Fick’s law for the fluxes and write the conservation of the particles: 

      

G 
j i = −ν Xi

G 
∇ .μi and ∂X i

∂t
+

G 
∇ .

G 
j i = 0  (8) 

where ν  is the mobility of the particles (identical for both populations) and iμ  are the 

chemical potentials of each population: ii Xf ∂∂=μ . In absence of hydrodynamic 

interactions, the only effect of one population onto the motion of the other arises from the 

term coupling the two concentrations in the free energy density (eq 7):  

Combining eqs(7) and (8) in the conventional way and switching to the recipocal space, we 

obtain the kinetic equations for the two kinds of particles: 

    

∂δXq1
∂t

= δ ′ X q1 = −ν q2 X 1 A p1
2 +

kbT
X 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ δXq1 + A p1 p2 δXq2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (9a) 

    

∂δX2
∂t

= δ ′ X q2 = −ν q2 X 2 × A p1 p2 δXq1 + A p2
2 +

kbT
X 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ δXq2

⎡ 

⎣ 
⎢ 

⎤

⎦
⎥ (9b) 
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where  is the wave vector. Solving these coupled kinetic equations we easily get two very 

simple expressions for the characteristic relaxation times (see appendix 1 for the details): 

q

    
τ f

−1 = ν q2 kbT [1+
A

kbT
( p1

2 X 1 + p2
2 X 2)] (10a) 

    τ s
−1 = ν q2 kbT  (10b) 

where the indices  and stand for slow and fast respectively. As expected, both modes 

are diffusive. The fast mode explicitly depends on both the temperature and the enthalpic 

contribution arising from the repulsions between charges. Whereas the slow mode is totally 

independent of the enthalpic terms. This is precisely what we expected from the discussion in 

the previous section: the fast mode is the collective diffusion mode whereas the slow mode 

only depends on the temperature and can be identified with the self diffusion mode. 

s f

Of course this model is by far oversimplified. However, it captures most of the salient 

features of the real situation. As quoted in the previous section, an essential point in the real 

situation is that highly charged droplets are more repulsive than the others. This aspect is well 

taken into account by the choice we did for the enthalpic contribution  taken as a function of 

the overall local density of charges; at constant total particle concentration ( ), regions 

richer in highly charged particles bring an extra positive contribution to the free energy. 

Following these views, we expect the self diffusion mode to disappear when the difference 

between the charges of the two populations vanishes. To check this point, we proceed one 

step further with the model and calculate the relative amplitudes of the two modes (we apply 

the equipartition theorem to the eigen combinations of  

 h

21 XX +

1Xδ  and 2Xδ  which are not 

energetically coupled in (7)). The tedious complete calculations are summarized in appendix 

1. Unfortunately, the general expressions are prohibitively complicated. Nevertheless (see eq-  

A-9), the amplitudes of the two modes are q-independent consistently with the experimental 

results. Moreover, the amplitude of the slow diffusive mode is proportional to      (see ( p1 − p2 )
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eq-A-9) and decreases to zero when the difference in the number of charges per droplet in the 

two populations vanishes. 

By chance, the expressions for the amplitudes simplify considerably if we consider the case 

where both populations have the same concentrations:   X 1 = X 2 = X / 2. This simplified case 

is relevant for the true situation where we expect the fluctuations of the number of charges per 

droplet above and below the average to be essentially symmetrical. Writing 

    p1 = p + dp       p2 = p − dp ,     δX q = δX q1 + δX q2  and  Ak = A kb T , we finally get for the 

autocorrelation function of the concentration fluctuations: 

    

δX (q, t )δX (q,0) =  X 

2 × ( p2 + dp2 )
×  

              

2 p2

AX ( p2 + dp2 ) +1⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

exp(−q2 kbT ν AX ( p2 + dp2 ) +1⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ t )

         + 2dp2          exp(−q2 kbT ν t )

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 
⎪ 
⎬ 
⎪ 

⎪ 
⎭ ⎪ 

 (11) 

Interestingly, according to eq.11 the amplitude of the slow mode remains finite when A 

diminishes and equals zero. However , of course, (see eqs. 10 , 11) the characteristic times of 

the two modes become identical in this limit so that the two modes can no longer be 

distinguished. This general evolution could be checked, for example, by tuning the 

electrostatic interaction and thus A by adding increasing amounts of salt. 

In figure 8 , the relative amplitudes of the modes are found almost independent on  and Φ  p  

. This feature does not come out from eq 11 ( when   X 1 = X 2 = X / 2). However we must keep 

in mind that we have not specified the functional dependence of the enthalpic term. From the 

expansion in eq 7 , A is an unknown function of   p1X 1,  p2 X 2  and in this context it is 

impossible to discuss this feature further. 
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Conclusion 

We report here on a second relaxation mode which to our knowledge has not mentioned in 

the earlier study of similar weakly charged microemulsions. In the paper of Gradzielski and 

Hoffmann17 which dates back to 1994 it was experimentally impracticable to ascertain such a 

second relaxation mode . However the correlation functions in figure 13 of their paper display 

-with an increasing number of charges- the same trend as the one observed here and  

illustrated in figure 2. Evilevitch et al in their recent paper 18 pursue a different goal in their 

study of a weakly charged O/W microemulsion and displayed no correlation functions: they 

explore the influence of the electrostatic interaction introduced by the charges between 

microemulsion droplets on the properties measured in different  experiments and compare it 

to theoretical predictions. They analyze the results of DLS in terms of the collective diffusion 

of the charged droplets. 

To determine the origin of the two modes we considered successively two possibilities. The 

one put forth by Pusey et al 3,4  and by Weissman 33 where the self diffusion in charged 

colloidal suspensions is revealed , in DLS , by the polydispersity in size . And the one we 

proposed here where the self diffusion is revealed by the "polydispersity in the number of 

charge per droplet" . In the two descriptions , the fast relaxation mode is indeed identified 

with the collective diffusion of the droplets and we find a dependency of D on   p  and Φ 

which closely parallels the one observed in18 and the slow mode is identified with the self-

diffusion of the droplets . The basic mechanism in the two descriptions is however different , 

in the first case size polydispersity induces difference in the scattering power of the droplets 

while in the second case polydispersity in charge induces different interactions between 

otherwise supposedly identical droplets . At this point no experimental evidence allows us to 

discard one or the other description , furthermore a mixture of both mechanisms may well be 

at work in most situations of charged and moderately polydisperse colloids .  
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Appendix 1: Derivation of the characteristic times and relative amplitudes of the two 

relaxation modes. 

The two charged species have respectively  charges  , average concentrations   p1, p2

    c1X  and c2 X  with  and fluctuations of concentration       c1 + c2 = 1 δX1(t ),δX2(t ) 

.Concentrations  are in molar fraction. The overall concentration fluctuation, in reciprocal 

space, is     δX q (t ) = δX1q (t ) + δX2q (t ) . Our objective is to calculate the autocorrelation 

function of the concentration fluctuations :     
  
C(q, t ) = δX q (t ) δX q (0)( )   (A-1) 

    δX1q (t ) and δX2q (t )  are the solutions of the coupled equations (eqs 9 ). They are solved  

using matrix methods: 

      

B =
B11 = c1 ( p1

2 Ak ) +
1

c1 X 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ B12 = c1 p1 p2 Ak

B21 = c2 p1 p2 Ak B22 = c2 ( p2
2 Ak ) + 1

c2 X 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

  (A-2) 

where 

    

A = kbT × Ak =
∂2h

∂ pX p( )2
 as explained in the text. And eqs 9 write: 

Appell et al 2005   24 



      δ ′ X q (t ) = S B •δXq (t ) with S = −ν q2 kbT X  ,    δXq (t ) = (δX q1(t ),δX q2(t )) and 

      δ ′ X q (t ) = (δ ′ X q1(t ),δ ′ X q2(t )), the derivative of    δXq (t )  with respect to time. It can be rewritten 

, in tems of the diagonalized matrix   , and the eigenvectors L    δXdq (t )  :  

      δXdq (t ) = S Λ •δXdq (t )   (A-3) 

The two eigenvalues of    are:        B
  
Λ11 = Ak (c1 p1

2 + c2 p2
2 ) +

1
X 

         Λ22 =
1
X 

 

And the solutions of (A-3)  write:       δXqd (t ) = exp(S Λ t ) •δXqd (0)   (A-4) 

where,       δXqd (t ) = P−1 •  δXq (t ) with  defined by :    P   Λ = P−1 •B•P  (A-4) can be written 

as:            δXq (t ) = P •exp(S Λ t )•δXqd (0) (A-5) 

In eq A-5        are the initial fluctuations , to calculate the autocorrelation function (eq 

A-1) we must perform an average over all possible thermal fluctuations and  

δ
G
X q (0)

      
δXq (0)

2
 are 

deduced from the equipartition theorem using the expression of the free energy variations due 

to the fluctuations.  The variation of free energy upon fluctuations of the local concentrations 

of both species given by eq 7 is a quadratic form . We define the matrix :  E

      

E =
E11 = ( p1

2 Ak ) +
1

c1X 
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ E12 = p1 p2 Ak

E21 = E12 = p1 p2 Ak E22 = ( p2
2 Ak ) +

1
c2 X 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

  dF  then writes:       
   
dF =

kT
2

tδX•E•δX =
kT
2

tδXE •Γ •δXE   (A-6) 

      δX = (δX1,δX2 ). The diagonal matrix Γ  is deduced, by standard procedures from    , the 

eigenvalues are   

E

γ1,  γ2 and the normalized eigenvectors are    δXE = (δX E1,δX E2 ) . 

    δX = Q •δXE with  defined by     .   Eq A-5 becomes :  Q   Γ = Q−1 • E • Q

      δXq (t ) = P•exp S Λ t( )•P−1 •Q •δXEq (0)   (A-7) 
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After calculating the matrix     , we can develop eq A-7 and we obtain : P , P−1 and Q

    

δX (q, t ) = δX1(q,t ) + δX2(q, t ) =
1

(c1 p1
2 + c2 p2

2 ) E12
2 + Δ2

×

              
exp(S Λ11 t )[ ](c1 p1 + c2 p2 ) (δX1qE (0) a1+ δX2qE (0) b1)

+ exp(S × Λ22 × t )[ ]( p1 − p2 ) (δX1qE (0) a2 + δX2qE (0) b2)

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭  

 (A-8) 

⎪

with      

    

α =
1
2

(E11 + E22 )           β =
1
2

(E22 − E11)    

δ = β2 + E12
2 γ1 = α + δ      γ2 = α −δ      

Δ = (γ1 − E11) = −(γ2 − E22 ) = β + δ
a1 = ( p1E12 + p2Δ)    b1 = ( p2E12 − p1Δ)        
a2 = (c1 p1Δ − c2 p2E12 )     b2 = (c1 p1E12 + c2 p2Δ)

 

From eq A-8 , rearranging terms, averaging and rejecting the cross product     δXq1E ×δXq2E 

which  vanish upon averaging as the two fluctuations are statistically  independent we obtain: 

    

δX (q,t )δX (q,0) =
1

(c1 p1
2 + c2 p2

2 ) E12
2 + Δ2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

exp(−τ f
−1 t )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ (c1 p1 + c2 p2 ) δX1qE

2 a1 (K1 a1 + K2 a2) + δX2qE
2 b1 (K1 b1 + K2 b2 )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

+ exp(−τ s
−1 t )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ ( p1 − p2 )  δX1qE

2 a2 ( K1 a1 + K2 a2 ) + δX2qE
2 b2 (K1 b1 + K2 b2 )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

with K1 = (c1 p1 + c2 p2 )  and K2 = ( p1 − p2 )

(A-9) 

The values of 
    

δX1qE
2  and δX2qE

2  in the above formula are derived from the 

equipartition theorem applied to the two independent q-modes, in eq A-6: 

    
δX1qE

2 = γ1
−1 and δX2qE

2 = γ2
−1 

The relaxation times of the two modes are given by (eq 10): 

 

    

τ f
−1 = −S Λ11 = ν q2 kbT X Ak (c1 p1

2 + c2 p2
2 ) +

1
X 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟         

 τ s
−1 = −S Λ22 = ν q2 kbT
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Eq A-9 simplifies to eq 11 when when the two populations have equal concentration:    c1 = c2  
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