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Abstract

There exists a bijection between one stack sortable permutations –permutations which avoid
the pattern 231– and planar trees. We define an edit distance between permutations which is
coherent with the standard edit distance between trees. This one-to-one correspondence yields
a polynomial algorithm for the subpermutation problem for (231) avoiding permutations.

Moreover, we obtain the generating function of the edit distance between ordered trees and
some special ones. For the general case we show that the mean edit distance between a planar
tree and all other planar trees is at least n/ln(n).

Some results can be extended to labeled trees considering colored Dyck paths or equivalently
colored one stack sortable permutations.

1 Introduction

The edit distance between two trees is the minimal number of edit operations to transform one
tree into the other. The edit operations are deletion (edge contraction), insertion of an edge and
relabeling of a vertex.

The main problem is to find efficient algorithms to compute this distance between ordered labeled
trees. Many algorithms have been proposed [1, 2]. The basic idea of all these dynamic algorithms
arises from the paper of Zhang and Shasha [1]. Further improvements have been made [2].

Comparing the structure of molecules and finding the preserved ones during a genetic mutation
can be seen as an edit distance problem. The application field of this problem is not restricted
to biology: in computer vision, objects are represented by their skeletons -which are trees-, and in
computer science, edit distance is used to compare structural similarities between XML documents
[3].

But no combinatorial interpretation has been made of the edit distance between trees. In this
article, we introduce one-stack sortable permutations [4, 5]. These one-stack sortable permutations
are (231) pattern-avoiding permutations and we show that they are in one-to-one correspondence
with ordered trees.

Moreover the edit operations can be easily described in terms of one-stack sortable permutations.
This leads to a purely combinatorial explanation of the edit distance.

Some polynomial algorithms are known to compute the edit distance between trees [1]. By our
correspondence, we show that computing the greatest common pattern between two (231)-avoiding
permutations is also polynomial whereas it is NP-complete for general permutations [6].

2 Definitions

2.1 One-stack sortable permutations

We describe in this section an encoding for planar trees. We number the edges of the tree by a
postfix traversal and then read the permutation by a prefix traversal. The obtained permutations
are called one stack sortable permutations [4, 5]. An alternate definition is the following:
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Definition 1. Let n ∈ N, a one-stack sortable permutation on {1 . . . n} is a permutation σ such
that σ = InJ where I and J are one-stack sortable permutations on {1 . . . p} and {p + 1 . . . n − 1}
respectively. Notice that I or J could be empty.

Note that in the sequel, permutations are seen as words.

Theorem 1. One-stack sortable permutations are in one-to-one correspondence with rooted ordered
trees.

Proof. Given a tree T with n edges, number the edges by a postfix Depth First Search Traversal
(DFS). Read it again by a prefix DFS. It is clear that the obtained permutation is of the form InJ .
Moreover I corresponds to the encoding by a postfix DFS of the left subtree as shown in Figure 1.
The same goes for J but its numbers are shifted.

Conversely, take a one-stack sortable permutation σ = InJ .

• If σ = k then the corresponding tree is a single edge.

• If σ = InJ then the corresponding tree Tσ is the tree obtained by taking an edge e = (xy)
(corresponding to n) where x is the root of Tσ. Since I and J are also one-stack sortable
permutations, we can recursively build the corresponding trees TI and TJ . Put them at each
end of the edge e, ie TI is hanging on x such e is the rightmost edge of x, and TJ on y.

This construction is unique.

x

y

TJ

TI

n

Figure 1: Coding a tree with a one-stack sortable permutation.

If σ is a one-stack sortable permutation, let T (σ) denote the tree associated to σ. Conversely,
if T is a tree, its associated one-stack sortable permutation is denoted by Θ(T ). Moreover, in the
sequel, σk will either denote the k-th letter of the word σ or the corresponding edge in T (σ).

Definition 2. A subsequence of a permutation σ = σ1 . . . σn is a word σ′ = σi1 . . . σik
where

i1, . . . , ik is an increasing sequence of elements of {1, . . . , n}.
Let Φ be the bijective mapping of {σi1 , σi2 , . . . , σik

} on {1, . . . , k} preserving the order on σil
.

The normalized subsequence (pattern) σ̂′ is equal to Φ(σ′).

Remark 1. The one-stack sortable permutations are the permutations avoiding the normalized
subsequence (pattern) 231 [7].

2.2 Edit distance

We briefly recall the definition of the edit distance between trees. Given two trees, the edit distance
is the minimal number of operations necessary to transform one into the other. The operations are:

• Deletion : This is the contraction of an edge; two vertices are merged. Only one label is kept.
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• Insertion : This is the converse operation of deletion.

Deletion

Insertion

Figure 2: Insertion and Deletion operations on a tree.

A cost can be given to each operation. In this article we take 1 for every cost.

3 Distance on one-stack sortable permutations

Since one-stack sortable permutations are in one-to-one correspondence with planar trees, we define
similar edit operations between one-stack sortable permutations and show that these definitions
match with edit distance between trees. Moreover, we give a combinatorial interpretation of the
distance.

A factor of a permutation σ = σ1σ2 . . . σn is a factor of the word σ1σ2 . . . σn i.e.a word of the
form σkσk+1 . . . σk+l.

A factor f is compact if it is a permutation of an interval of N.
A factor f of σ is complete if no non-empty factor g of σ verifies both:

1. fg is compact where fg is the concatenation of the words f and g;

2. the greatest element of fg is equal to the greatest element of f .

Take for example the one-stack sortable permutation σ = (1524376). The complete factors of σ
are {1},{15243},{1524376},{5243},{524376},{2},{243},{43},{3},{76},{6}.

1 5

2 4

3

7

6

(1524376)

Figure 3: Tree associated to σ = (1524376).

A subtree T ′ of T is a tree such that T \ T ′ is connected.

Lemma 1. Each compact factor of σ are in one-to-one correspondance with:

• to a subtree

• to a internal path P in T = T (σ) where each internal vertex of P is of degre 2 in T and P
does not end at a leaf (P can be an internal edge).
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Proof. First let prove that the subset of edges correpsonding to a compact factor is connected.
Let σ′ be a compact factor of σ = Θ(T ). Let Eσ′ be the set of edges corresponding to σ′ in T .

Suppose that Eσ′ is not connected. Let E1 and E2 be two connected components. Let v be the first
common ancestor of E1 and E2. Let P1 (resp. P2) be the path starting from v and ending at the
first vertex of E1 (resp. E2). Note that we can choose E1 and E2 such that edges of P1 and P2 are
not in Eσ′ . Suppose that P1 is at the left of P2 (See Figure 3). In the prefix DFS of T , edges of

E1 E2

P1

P2

v

Figure 4: Compact factors are connected components.

P2 are visited between those of E1 and E2. Thus they should appear in σ′, hence P2 = ∅. Thus
v ∈ E2 so that P1 links E2 and E1. In the postfix DFS, the edges of P1 have labels greater than
those of E1 and less than E2. If P2 6= ∅, it implies that σ′ is not compact. Thus Eσ′ is connected.

Fk
F1 F2

P ′

k

P ′

1

P ′

2

Eσ′

Figure 5: Subtree of T induced by Eσ′ .

Consider the subtree T ′ of T induced by Eσ′ . It consists of Eσ′ plus all vertices of T that have
an ancestor in Eσ′ as shown in Figure 5.

Eσ′ can be decomposed into edge-disjoint paths Pi thanks to the prefix DFS (See Figure 5). Fi

is the subtree pending on Pi which can be empty.
The prefix DFS of T ′ (which is a factor of σ) gives the associated permutation Θ(P ′

1)Θ(F1)Θ(P ′
2)

Θ(F2) . . .Θ(P ′
k)Θ(Fk). So σ′ = Θ(P ′

1)Θ(F1)Θ(P ′
2)Θ(F2) . . . Θ(P ′

k), hence Fi = ∅, ∀i < k.

• Suppose Fk 6= ∅. If k > 1, then the edges of Fk are visited after at least one edge of P ′
1, and

before the edges of P ′
k in the postfix DFS. Since σ′ is compact, it implies k = 1.

• If Fk = ∅, Eσ′ is a subtree.

The converse is straightforward.

Proposition 1. The set of complete factors of σ corresponds to the set of subtrees of the associated
tree.

Proof. Let T ′ be a subtree of T and σ = Θ(T ). The edges of T ′ are visited consecutively by the
postfix (resp. prefix) DFS of T . Thus the sequence of edges of T ′ is a compact factor σkσk+1 . . . σk+l

of σ. σk+l+1 is an edge which is visited after all edges of T ′ by the prefix DFS. Thus it is the first time
this edge is visited by the traversal. Hence, its label is greater than those of T ′. Thus σkσk+1 . . . σk+l

is complete.
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1 5

2 4

3

7

6 (1524376)

1 6

2 5

4

3

8

7

(16254387)

(Λ → (43))

1 6

2 4

3

5

8

7

(16243587)

(Λ
r→ (43))

1 6

2 3 5

4

8

7

(16235487)

(Λ
l→ (43))

Figure 6: Insertion operations for f = (43).

Conversely, let σ′ be a complete factor. As σ′ is compact, by Lemma 1, it corresponds either to
a subtree or to an internal path P with a subtree F hanging on P . Θ(P )Θ(F ) = σ′Θ(F ) is also a
compact factor of σ and it has the same maximum as σ′ which contradicts the completeness of σ′.

Remark 2. Let σ be a one-stack sortable permutation and σk = (p(vk)vk) an edge where p(vk)
denote the parent of vk. Let σ′ be the shortest complete factor of σ such that σ′ = σkσk+1 . . . σk+l

where σi = (p(vi)vi). By previous proposition T (σ′) is a subtree of T (σ). The children of vk are the
vertices vk+i such that i ≤ l and σk > σk+i > σk+1, σk+2, . . . , σk+i−1.

Let σ = σ1 . . . σk be a word of {1 . . . n} and a be a letter of {1 . . . n}. We denote by [σ]a the
word σ′

1 . . . σ′
k where

σ′
i =

{

σi if σi < a

σi + 1 otherwise

Definition 3. We define two operations on permutations which map the standard definition on trees
([1]):

1. Deletion : Let 1 ≤ k ≤ n. The deletion (σk → Λ) is the removal of σk in a permutation σ and
the renormalization on Sn−1 of the result. We will either talk about the deletion of the edge
σk or the deletion of the vertex v such that σk is the edge p(v)v.

2. Insertion (see Figure 6) : (Λ → ∅) corresponds to the transformation of the permutation
σ = ∅ into σ′ = (1). If σ 6= ∅, let f be a complete factor of σ. Then, σ = ufv with u, v
factors of σ.

(a) (Λ → f): The resulting permutation is σ′ = [u]aaf [v]a, a = max{f}+1. This corresponds
to the insertion of an inner vertex with T (f) as subtree.

(b) (Λ
r→ f) : The resulting permutation is σ′ = [u]afa[v]a, a = max{f} + 1. This corre-

sponds to the insertion of a leaf as the right sibling of T (f).

(c) (Λ
l→ f) : The resulting permutation is σ′ = [u]aa[f ]a[v]a, a = min{f}. This corresponds

to the insertion of a leaf as the left sibling of T (f).

We study now these operations on the permutation σ = (1524376).
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f (Λ → f) (Λ
r→ f) (Λ

l→ f)

1 5

2 4

3

7

6

(1)

2

1

6

3 5

4

8

7

(21635487)

1 2 6

3 5

4

8

7

(12635487)

1 2 6

3 5

4

8

7

(12635487)

1 5

2 4

3

7

6

(15243)

6

1 5

2 4

3

8

7

(61524387)

1 5

2 4

3

6 8

7

(15243687)

1 2 6

3 5

4

8

7

(12635487)

1 5

2 4

3

7

6

(1524376)

8

1 5

2 4

3

7

6

(81524376)

1 5

2 4

3

7

6

8

(15243768)

1 2 6

3 5

4

8

7

(12635487)

1 5

2 4

3

7

6

(5243)

1 6

5

2 4

3

8

7

(16524387)

1 5

2 4

3

6 8

7

(15243687)

1 2 6

3 5

4

8

7

(12635487)

1 5

2 4

3

7

6

(524376)

1 8

5

2 4

3

7

6

(18524376)

1 5

2 4

3

7

6

8

(15243768)

1 2 6

3 5

4

8

7

(12635487)

1 5

2 4

3

7

6

(2)

1 6

3

2

5

4

8

7

(16325487)

1 6

2 3 5

4

8

7

(16235487)

1 6

2 3 5

4

8

7

(16235487)

1 5

2 4

3

7

6

(243)

1 6

5

2 4

3

8

7

(16524387)

1 6

2 4

3

5

8

7

(16243587)

1 6

2 3 5

4

8

7

(16235487)

1 5

2 4

3

7

6

(43)

1 6

2 5

4

3

8

7

(16254387)

1 6

2 4

3

5

8

7

(16243587)

1 6

2 3 5

4

8

7

(16235487)

1 5

2 4

3

7

6

(3)

1 6

2 5

4

3

8

7

(16254387)

1 6

2 5

3 4

8

7

(16253487)

1 6

2 5

3 4

8

7

(16253487)

1 5

2 4

3

7

6

(76)

1 5

2 4

3

8

7

6

(15243876)

1 5

2 4

3

7

6

8

(15243768)

1 5

2 4

3

6 8

7

(15243687)

1 5

2 4

3

7

6

(6)

1 5

2 4

3

8

7

6

(15243876)

1 5

2 4

3

8

6 7

(15243867)

1 5

2 4

3

8

6 7

(15243867)

Figure 7: Insertion in permutation σ = 1524376.

6



The array of Figure 7 gives all the permutations that can be obtained with a single insertion in
σ.

We prove now that the operations (deletion and insertion) defined on one-stack sortable permu-
tations are in fact internal operators for one-stack sortable permutations. Moreover, these operators
define an edit distance between permutations coherent with the usual edit distance between trees.

Lemma 2. The Deletion/Insertion algorithm yields a one-stack sortable permutation.

Proof. • Deletion : The proof is straightforward considering the one-to-one correspondence with
trees and one-stack sortable permutations. Consider a tree labeled by a depth first traversal.
Deleting the edge i from this tree changes all labels greater than i by subtracting 1.

• Insertion : Let σ be a one-stack sortable permutation and f be a complete factor of σ = ufv.
By Proposition 1, f corresponds to a subtree of T (σ).

1. (Λ → f): Let T = T (σ) and (e1, e2, . . . , en) be the edges of T ordered by a prefix DFS
of the tree. Note that σ = αT (e1)αT (e2) . . . αT (en) where α(i) is the label of the edge i
in T .

Let T ′ be the tree obtained by the insertion of an internal vertex v (a = (p(v)v)) at the
root vertex of the subtree T (f). Moreover T (f) is a subtree hanging on v. Let σ′′ =
Θ(T ′). A prefix traversal of T ′ orders the edges of T ′ as follows: (e1, e2, . . . , el, a, el+1, . . . , en).

Since σ′′ is obtained by a prefix traversal, σ′′ = u′af ′v′. Since the edges of f appear
before a in the postfix DFS, f ′ = f . The edge a in a postfix DFS appears just after f .
Thus its label is max{f}+ 1. All the edges visited after f in T (and so after a in T ′) by
the postfix DFS have their labels increased by 1. Thus σ′′ = [u]aaf [v]a = σ′.

2. (Λ
l→ f), (Λ

r→ f) : The same arguments as for (Λ → f) hold.

Proposition 2. Insertion and deletion are inverse operations.

Proof. There are two different kinds of deletions in a tree T .

1. Deletion of an inner vertex v. Consider the subtree T ′ of T hanging on v. It corresponds to
a complete factor f in σ = Θ(T ). This contraction corresponds to the inverse operation of
(Λ → f).

2. Deletion of a leaf. There are three different cases:

• Deletion of a vertex with no sibling. This is the same as deleting the parent of this vertex
which is an inner vertex except if the tree is reduced to a single edge.

• Otherwise, this vertex has either:

– A left sibling v′. Consider the subtree hanging at v′ (including p(v′)v′). It corre-

sponds to the factor f . The inverse operation is (Λ
r→ f)

– A right sibling v′. Consider the subtree hanging at v′ (including p(v′)v′). It corre-

sponds to the factor f . The inverse operation is (Λ
l→ f)

Definition 4. The distance between two one-stack sortable permutations σ1 and σ2 is the minimal
number of operations -deletion or insertion - to transform σ1 into σ2.

For example let σ1 = 31264587 and σ2 = 1524376. We want to transform σ1 into σ2.
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• 31264587
(1→Λ)−−−−→ 2153476

• 2153476
(1→Λ)−−−−→ 142365

• 142365
(Λ→3)−−−−→ 1524376

3

1 2

6

4 5

8

7

(31264587)

1 4

2 3

6

5

(142365)

2

1

5

3 4

7

6

(2153476)

1 5

2 4

3

7

6

(1524376)

Theorem 2. The edit distance between ordered trees is the distance between the associated one-stack
sortable permutations.

Proof. This is a consequence of Proposition 2.

Theorem 3. The edit distance between one-stack sortable permutations σ1 and σ2 is equal to

|σ1| + |σ2| − 2|u|

where u is a largest normalized subsequence (pattern) of σ1 and σ2.

Proof. The edit distance d(σ1, σ2) between σ1 and σ2 is given by the minimal number of insertions
and deletions. If t1 is an insertion and t2 is a deletion then there exist a deletion t′1 and an insertion
t′2 such that t1t2(σ) = t′1t

′
2(σ). Note that t′1 and t′2 depend on the one-stack sortable permutation

σ.
Considering the sequence of edit operations, there exists a sequence made of deletions then

insertions that transforms σ1 into σ2. We denote this sequence by D1 . . . DlO1 . . .Ok, l + k =
d(σ1, σ2).

Consider the one-stack sortable permutation σ′ = D1 . . . Dl(σ1). Take u = σ′. u is a normalized
subsequence of σ1 because deleting an edge from a one-stack sortable permutation yields a normal-
ized subsequence of the original one-stack sortable permutation. u is also a normalized subsequence
of σ2 because inserting an edge in a one-stack sortable permutation s yields a one-stack sortable
permutation s′ and s is a normalized subsequence of s′.

Conversely, take u as a maximal normalized subsequence of σ1 and σ2. It is straightforward to
find |σ1| − |u| operations of deletions such that those deletions transform σ1 into u. The same goes
for σ2 and u.

Corollary 1. Finding the greatest common pattern between two one-stack sortable permutations is
polynomial.

In [6], they proved that finding the greatest common pattern between two permutations is NP-
complete. We prove here that the problem becomes polynomial when restricting to one-stack sortable
permutations, ie (132) or (231)-avoiding permutations. In fact, the algorithm of Zhang and Shasha
[1] on trees solves the problem on one-stack sortable permutations because the algorithm outputs
not only the distance but also the greatest common subtree.

4 Lower bounds on average edit distance

In this section we study the average edit distance between a given planar tree T with n vertices and
all other planar trees with n vertices. We show that this average distance is lower bounded by n

ln(n) .

Lemma 3. Let T be a planar tree with n vertices. There are at most n − 1 different deletions and
3n3 insertions allowed in T .

8



Proof. The number of deletions is upper bounded by the number of edges i.e.n − 1.
The number of insertions is bounded by 3 times the number of subtrees (or complete factor of

the corresponding permutation). The number of subtrees of T rooted at vertex v is bounded by
d(v)2 where d(v) denotes the degree of vertex v. Thus the total number of subtrees is bounded by
∑

v d(v)2.

Theorem 4. Let T0 be a tree with n vertices. The proportion of planar trees with n vertices at
distance at most O(n/ln(n)) tends to 0.

The average distance between T0 and the set of planar trees is lower bounded by n/ln(n).

Proof. Let T0 be a planar tree. Let Ak = {T ∈ Tn, dist(T0, T ) ≤ 2k}. Note that A0 = {T0}. A tree
Tk ∈ Ak is obtained from T0 by l ≤ k deletions then l insertions. Thus |Ak| < (n − 1)k(n3)k < n4k.
But the number of planar trees Cn ≡ 4n

n
√

πn
. So that the proportion of planar trees at distance at

most O(n/ln(n)) tends to 0.
Hence the average distance is lower bounded by n/ln(n).

5 Generating functions

Using the combinatorial interpretation of the distance, we compute the generating functions of
the edit distance between planar trees with n edges and some special ones as shown in Figure 8.
Moreover, we deduce the average distances from the generating functions.

1 2 3 4 5

(12345)

5

4

3

2

1

(54321)

Figure 8: Some canonical trees.

5.1 Generating function of the edit distance between one-stack sortable

permutations and Id = 1 2 . . . n

We denote by S1(t, q) the generating function of one-stack sortable permutations where t counts the
size of the permutation and q the edit distance between one-stack sortable permutations and Id.
This is the distance between a tree and the trivial one which is made of n edges and of height 1.

Tree interpretation of the largest increasing subsequence

Proposition 3. The length of a largest increasing subsequence of a one-stack sortable permutation
is the number of leaves of the associated tree.

Proof. Let T be a planar rooted tree and σ the associated one-stack sortable permutation. We call
a leaf-edge an edge incident to a leaf.

1. The subsequence of σ made of the leaf-edges is increasing because the order in which the
leaf-edges are visited by a prefix traversal is the same than by a postfix traversal.

9



2. Suppose that we take an increasing subsequence σ′ of σ. This subsequence is in one-to-one
correspondence with some edges in the tree. Suppose that there is an internal one γ = (p(ν)ν).
Then, by the postordering of the edges, each edge (p(v)v) such that ν = p(v) has a smaller
label and appears in σ after the edge γ. Thus, none of these edges are in σ′. Moreover, there
is at least one leaf edge belonging to the subtree Tγ hanging on ν. Replace edge γ by a leaf of
Tγ . The prefix traversal ensures that the obtained subsequence is an increasing one.

Proposition 4. The number of rooted planar trees with n edges and k leaves is equal to the number
of rooted planar trees with n edges and n + 1 − k leaves.

Proof. This is a direct consequence of the symmetry of the Narayana numbers 1
n

(

n
k

)(

n
k−1

)

which
count the number of planar trees with n edges and k leaves.

Generating function We now compute the generating function I(t, p) of one-stack sortable per-
mutations of size t and largest increasing subsequence of size p.

• [I(t, p)]0 = 1

• [I(t, p)]1 = p

• [I(t, p)]2 = (p + p2)

[I(t, p)]n = p[I(t, p)]n−1 +

n−2
∑

i=0

[I(t, p)]i[I(t, p)]n−1−i (1)

This formula comes from the decomposition of a one-stack sortable permutation σ into InJ with
n ≥ 1. The largest increasing subsequence of σ is the union of the largest one of I and the largest
one of J unless J is empty - in this case, the largest subsequence is the largest one for In -.

From this formula we deduce:

I(t, p) = 1 + (p − 1)tI(t, p) + tI2(t, p) (2)

• 1 comes from the case n = 0 in the equation (1).

• ptI(t, p) comes from p[I(t, p)]n−1 .

It follows from equation (2):

I(t, p) =
1 + (1 − p)t −

√

(p − 1)2t2 − 2(p + 1)t + 1

2t
(3)

Let S̃1(t, q) be the generating function of the difference between the lengths of the one-stack sortable
permutation and the largest increasing subsequence in it.

• [S̃1(t, q)]0 = −1

• [S̃1(t, q)]1 = 0

• [S̃1(t, q)]2 = q

Lemma 4.

I(t, p) = 1 + p + pS̃1(t, p) (4)

10



Proof.

I(t, p) =
∑

τ≥1

τ
∑

α=1

[I(t, p)]τ,αtτpα + 1

=
∑

τ≥1

τ
∑

β=1

[I(t, p)]τ,τ+1−βtτpτ+1−β + 1

=
∑

τ≥1

τ
∑

β=0

[I(t, p)]τ,τ+1−βtτpτ+1−β + 1

= 1 + p(S̃1(t, p) + 1)

The end of the proof is straightforward using Proposition 4.

Theorem 5.

S1(t, q) = S̃1(t, q
2)

=
1 + (q2 − 1)t −

√

(q2 − 1)2t2 − 2(q2 + 1)t + 1

2tq2

5.1.1 Average distance

Theorem 6. The average edit distance between rooted planar trees with n edges and Id is n − 1.

Proof. 1. The average distance δ can be obtained from the generating function S1(t, q) in the
following way:

• F (t) = ∂S1(t,q)
∂q

∣

∣

∣

q=1

• δ = [F (t)]n
C(n) where C(n) is the n-th Catalan number.

This easy computation yields δ = n − 1 but a direct combinatorial interpretation proves this
result in a more comprehensive way.

2. This is a direct consequence of Propositions 3 and 4. Another proof can be found in [8, 9]. In
[9] the result is more general. Thus we provide here a simpler proof for this special case.

5.2 Generating function of the edit distance between one-stack sortable

permutations and n(n − 1) . . . 1

This is the distance between a tree and the trivial one which is made of n edges and is of height n.
It is equivalent to finding the largest decreasing subsequence in the one-stack sortable permutation.

We compute the generating function D(x, y, z) of trees with respect to the number of edges x,
the height of the tree y and the number of leaves z at maximal depth.

Proposition 5.

D(x, y, z) = yD(x, y,
1

1 − xz
) − yD(x, y, 1) +

xyz

1 − xz
(5)

Proof.

[D(x, y, z)]i,j,k =

i−j+1
∑

l=1

(

l + k − 1

k

)

[D(x, y, z)]i−k,j−1,l if j > 1

[D(x, y, z)]i,1,k = δi,k

11



The coefficient [D(x, y, z)]i,j,k is equal to the number of ways to add k leaves at depth j to any tree

with i − k edges, depth j − 1 and l leaves at depth j − 1.
(

l+k−1
k

)

is the number of ways to add k
leaves to l leaves at depth j.

D(x, y, z) =
∑

i≥1

∑

j≥1

∑

k≥1

di,j,kxiyjzk

=
∑

i≥1

∑

j≥2

∑

k≥1

∑

l≥1

(

k + l − 1

k

)

di−k,j−1,lx
iyjzk + y

∑

i≥1

(xz)i

=
∑

i≥1

∑

j≥2

∑

k≥1

∑

l≥1

(−1)k

(−l

k

)

di−k,j−1,lx
iyjzk + y

∑

i≥1

(xz)i

=
∑

i≥1

∑

j≥2

∑

k≥1

∑

l≥1

(−1)k

(−l

k

)

di,j−1,lx
iyj(xz)k + y

∑

i≥1

(xz)i

Using

(x + a)−n =
∞
∑

k=0

(−n

k

)

xka−n−k

D(x, y, z) =
∑

i≥1

∑

j≥2

∑

l≥1

((1 − zx)−l − 1)di,j−1,lx
iyj + y

∑

i≥1

(xz)i

= yD(x, y,
1

1 − xz
) − yD(x, y, 1) +

xyz

1 − xz

Let S2(x, y) be the generating function with respect to the length n of the one-stack sortable
permutation and the edit distance between this one-stack sortable permutation and n(n − 1)(n −
2) . . . 1. Then, S2(x, y) = D(xy2, 1

y2 , 1).

In [10, 11], they give a solution for D(x, y, 1) in terms of a continued fraction.

D(x, y, 1) =
∑

Dk(y)xk, Dk(y) =
1

k







1 −
y

1 −
y

1 − . . .

This yields the solution for S2.

S2(x, y) =
∑

y2kDk(
1

y2
)xk

The first terms of S2 are given by:

S2(x, y) = x + x2y2 + x2 + x3y4 + 3 x3y2 + x3 + x4y6 + 7 x4y4 + 5 x4y2 + x4
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1

(1)

x

2

1

(21)

x2 1 2

(12)

x2y2

3

2

1

(321)

x3

3

1 2

(312)

1 3

2

(132)

2

1

3

(213)

3x3y2 1 2 3

(123)

x3y4

Average edit distance In [10], they determine analytically the average height of a planar tree
with n edges which is

√
πn − 1

2 . Thus, the average edit distance is 2(n −√
πn + 1

2 ) ≡ 2n.

6 Conclusion

In section 2.2, we define the edit operations to be insertion and deletion. Indeed we omitted a third
one, the relabeling operation. Instead of working with unlabeled trees, we study trees whose vertices
are labeled and the relabeling operation consists in changing the label of a vertex.

The general case where the trees are labeled and the different edit operations have different
costs can be obtained in a similar way. Define a decorated one-stack sortable permutation as a
one-stack sortable permutation where each number is indexed by a letter; 1e5a2a4b3d7b6c represents
the following tree:

b

c

a

ba

d

e

The operations on decorated one-stack sortable permutations are almost the same as before and
the relabeling operation consists in changing one letter. ci, cd, cr are respectively the insert, delete
and relabeling unitary costs. There exists only a difference for the insertion of a new free edge. In
the unlabeled case, we did not take into account the insertion of a leaf with no sibling. Thus we
define a fourth insertion operation as:

• (Λ
1→ i) where i is a complete factor of size 1 of the permutation σ = uiv. σ′ = [u]a[i]aa[v]a

where a = i.

Let σ1 and σ2 be two decorated one-stack sortable permutations with the same underlying
permutation. The label distance d(σ1, σ2) is equal to the string distance between both labeled
words.
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Let T1 and T2 be two decorated one-stack sortable permutations. We denote by a subpermutation
σ of T1 and T2 a normalized subpermutation without label. ΣT1

is the set of all sub-decorated one-
stack sortable permutations of T1 which underlying permutation is σ.

The relabeling distance between T1 and T2 with respect to σ is:

dσ(T1, T2) = min{crd(α, β), ∀α ∈ ΣT1
, β ∈ ΣT2

}

The distance between these two decorated one-stack sortable permutations T1 and T2 is given
by min{ci(|T1| − |σ|) + cd(|T2| − |σ|) + dσ(T1, T2), σ normalized subpermutation of T1, T2}
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