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We observe the suppression of the 1D transport of an interacting elongated Bose-Einstein conden-
sate in a random potential with a standard deviation small compared to the typical energy per atom,
dominated by the interaction energy. Numerical solutions of the Gross-Pitaevskii equation repro-
duce well our observations. We propose a scenario for disorder-induced trapping of the condensate

in agreement with our observations.

PACS numbers: 03.75.Fi,03.75.-b,05.30.Jp

Atomic Bose-Einstein condensates (BEC) placed in an
optical potential constitute a remarkable system in which
one can revisit standard problems of condensed matter
physics, e.g. superfluidity and quantum vortices, the su-
perfluid to Mott insulator transition, or Josephson arrays
[m] Another important topic in condensed matter physics
is the transport properties in disordered materials. This
is a difficult problem and it has led to the introduction
of intriguing and non-intuitive concepts, e.g. Anderson
localization B, ], percolation dynamics [[f] and Bose [f]
and spin [ﬂ] glasses. These issues have relevance to nor-
mal metallic conduction, superconductivity and super-
fluid flow in low temperature quantum liquids. It has a
counterpart in wave physics, e.g. in optics and acoustics,
with special interest in coherent diffusion in inhomoge-
neous media [E] The main difficulty in understanding
quantum transport arises from the subtle interplay of in-
terference, scattering onto the potential landscape, and
(whenever present) interparticle interactions.

Transport properties of BECs in periodic optical lat-
tices have been widely investigated, showing lattice-
induced reduction of mobility [E, E, E] and self-trapping
[@] Within the context of random potentials, most of
the recent theoretical efforts have considered disordered
or quasi-disordered optical lattices where a large variety
of phenomena have been discussed such as the Bose-glass
phase transition [, localization [@, @], and the forma-
tion of Fermi-glass, quantum percolating and spin-glass
phases in Fermi-Bose mixtures . Effects of disorder
on BECs have also been addressed in connection to su-
perfluid flows in liquid helium in porous media ] In
particular, the depletions of the condensate and of the
superfluid fractions have been calculated in [E], and sig-
nificant shift and damping of sound waves have been pre-
dicted in [[7. Apart from the (undesired) fragmentation
effect of a rough potential on trapped cold atoms and
BEC’s on atom chips [@], there are few experiments on

BECs in random potentials [Lg].

In this Letter we report on the strong reduction of mo-
bility of atoms in an elongated Bose-Einstein condensate
in a random potential [2]]. Starting from a quasi-1D
BEC in a 3D elongated harmonic trap, we turn off the
axial trapping potential while maintaining strong trans-
verse confinement, and we monitor both (i) the axial ex-
pansion driven by the repulsive interactions 1] and (ii)
the motion of the center of mass of the condensate. When
the BEC is subjected to a 1D random potential created
by a laser speckle, the axial expansion is strongly inhib-
ited and the condensate eventually stops expanding (see
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Figure 1: Time evolution of the axial rms size L of the BEC,
for various amplitudes oy of the random potential, all smaller
than the chemical potential p [y = ov/p < 1: y=0 (o), 0.2
(e) and 0.7 (A)]. The axial trapping frequency is initially
w. /27 = 6.7 Hz and is relaxed during the first 30 ms of the
expansion time (grey band). Each point corresponds to an
average over three measurements; error bars represent one
standard deviation. Inset: Motion of the center of mass of
the BEC during the axial expansion for the same values of
oy . Both sets of data show a strong suppression of transport
of the BEC in the presence of disorder.



Fig. El) The final rms size decreases as the standard de-
viation oy of the random potential increases. The same
effect has been observed for various realizations of the
random potential. We also observe that the center of
mass motion provoked by a longitudinal magnetic ‘kick’
at the time of release is strongly damped and is stopped
in about the same time (see Fig.[]). These observations
are not made in a regime of tight binding, i.e. we observe
this localization effect [B]] for amplitudes of the random
potential small compared to the chemical potential. One
may wonder whether our observations can be interpreted
in terms of Anderson localization [ﬂ] In fact, in our sit-
uation, the interaction energy plays a crucial role, and
the healing length is smaller than the typical distance
between the speckle grains. This implies a different sce-
nario, which we discuss in this Letter.

We generate an elongated 8’Rb BEC in an iron-
core electromagnet Ioffe-Pritchard trap [@, E] with os-
cillation frequencies, w, /27 = 660(4) Hz radially and
w,/2r = 6.70(7) Hz axially. BECs of typically 3.5 x
10° atoms are obtained, with Thomas-Fermi half-length
Lrr = 150 um and radius Rtp = 1.5 um, and chemical
potential 1/2mh ~ 5kHz [BY). The random potential is
turned on at the end of the evaporation ramp and we wait
a further 200ms in the presence of the rf field to ensure
that the BEC is in equilibrium in the combined harmonic
plus random potential at the end of the sequence.
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Figure 2: Optical setup used to create the random speckle
potential. The long axis of the condensate is oriented along
the z direction.

To create the random potential, a P < 150 mW blue
detuned laser beam with optical wavelength A ~ 780 nm
is shone onto the atoms, perpendicular to the long axis of
the BEC, through a scattering plate (Fig. f]). Positioning
the scattering plate as shown in Fig. P projects a speckle
pattern [@] on the magnetic trap. The scattered beam
diverges to an rms radius of 1.83mm at the BEC.

A speckle pattern is defined by [Rf] (i) a random in-
tensity I(r) with exponential statistical distribution for
which the standard deviation equals the average inten-
sity oy = (I) and (ii) an intensity correlation length Az,
defined as the 'half-width’ of the autocorrelation function

d):

Az =122 \/D, (1)

where D is the beam diameter at the scattering plate
and [ is the focal length of the lens. We observe the
intensity distribution of our speckle pattern on a CCD
camera placed at the same distance as the atoms. Tak-
ing images with different beam diameters D, we deter-
mine the autocorrelation function to obtain the grain size
Az. Taking into account the modulation transfer func-
tion (MTF) 7 of the camera, we find that the measured
grain size follows Eq. ([]). For our setup (I = 140(5) mm
and D = 25.4(1)mm), we find that Az = 5.2(2) pm.
This is an order of magnitude greater than the healing
length ¢ = (87na)~'/2 = 0.11 pm of the trapped conden-
sate. Since Rtrp < Az < Ltp, the optical potential is
effectively 1D, with the trapped condensate spread over
about 45 — 50 wells in the longitudinal direction. We
characterize the amplitude of the random potential oy
with respect to the chemical potential u by [@]

ov 2T2%20;1 1T%20; [15aN\ " 2/°
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with T=(w.w? )3 and Gno=(h/m®)'/?, m the atomic
mass, N the condensate atom number, Is = 16.56 W /m?
the saturation intensity, I'/27m = 6.01 MHz the linewidth,
and a = 5.31nm the scattering length. The laser de-
tuning 0 we use varies between 0.15nm and 0.39 nm.
The factor 2/3 accounts for the transition strength for
m-polarized light. Taking into account our calibration
uncertainty, we estimate v within +20%.

To study the coherent transport of the condensate
wavefunction in the random potential, we open the
magnetic trap in the axial direction while keeping the
transverse confinement and the random potential un-
changed. After lowering the current in the axial exci-
tation coils, the axial trapping frequency w, /27 is sig-
nificantly smaller than 1 Hz [@] The trap is opened in
30 ms, in order to minimize trap loss and heating. Once
the current in the axial coils has reached its final value
we have a condensate of N ~ 2.5 x 10° — 3 x 10° atoms
in the magnetic guide.

Our measurements of the axial expansion are shown
in Fig. EI After a total expansion time ¢t = 7 (which in-
cludes the 30 ms opening time), we turn off all remaining
fields (including the random potential) and wait a further
15ms of free fall before imaging the atoms by absorption.
During this time-of-flight, the axial rms size of the con-
densate does not increase more than 5%. From profiles
of the absorption images we evaluate the axial rms size L
of the expanding condensate. In Fig. EI, we plot L versus
the axial expansion time 7. In the absence of the ran-
dom potential (7 = 0), we observe that the rms size of the
atomic cloud grows linearly with vgys ~ 2.47(3) mms™!
in agreement with the scaling theory [@] In the pres-
ence of the random potential, the expansion dynamics
changes dramatically. For a sufficiently high amplitude,
the expansion of the cloud is significantly reduced and the



condensate eventually stops expanding. In addition, we
observe the damping of longitudinal motion of the center
of mass of the cloud (see inset of Fig.[]). This motion is
triggered by an axial magnetic ‘kick’ during the opening
of the trap.

These results show a transition from non-inhibited to
inhibited transport as the amplitude of the speckle inten-
sity is increased. We studied this phenomenon in further
detail by measuring the rms size of the condensate after
a fixed axial expansion time (w,7 = 4.84) for different
amplitudes oy of the random potential. The results are
shown in Fig.E. We see that above a value v = 0.15, the
rms size decreases with oy .
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Figure 3: Rms size L of the condensate versus « after an axial
expansion time w,7 = 4.84. The points ¢ correspond to the
curves of Fig. [Ll.

From the absorption images, we also evaluate the den-
sity in the magnetic guide, after correcting for radial ex-
pansion during the time-of-flight. We observe that the
density at the center of the BEC does not drop by more
than a factor of 2 for v > 0.2. Therefore, we conclude
that the interaction energy dominates at the centre of the
condensate trapped by disorder, a point we shall discuss
below.

To understand the suppression of expansion of the
BEC in the random potential, we have performed nu-
merical calculations of the BEC dynamics in the mean-
field Gross-Pitaevskii approach. We consider a BEC
trapped in a cylindrically-symmetric 3D-harmonic trap
with frequencies w,; and w, in the radial and axial direc-
tions respectively. Assuming tight confinement in the
radial directions (hw, > hw,,p, kgT), the dynamics
is reduced to one-dimension. In addition, the BEC is
subjected to a static random potential V(z) which cor-
responds to a numerically-generated speckle field [@]
V(z) = oyv(z) where v(z) is a normalized speckle pat-
tern with (v)? = (v?)/2 = 1. We consider parameters
close to the experimental situation described above. In
particular, the healing length (£ ~ 8 x 10~*L1r) and the
speckle correlation length (Az ~ 0.049Lrg) are much
smaller than the size of the BEC.

We first compute the static 1D BEC wavefunction in
the combined (harmonic plus random) trap. Because
¢ < Az, the density profile simply follows the modula-
tions of the combined trap in the Thomas-Fermi regime
[¥(2)|? = [u—mw?2?/2 —V(2)]/g1p in the region where
> mw?z?/2+V(z) and [¢(2)]? = 0 elsewhere. Here, m
is the atomic mass and g1p = 2haw  the 1D interaction
parameter. At time ¢ = 0, we suddenly switch off the har-
monic confinement in the axial direction while keeping
unchanged the interaction parameter gip and the ran-
dom potential and we compute the time-evolution of the
BEC. The results for the axial rms size L of the BEC are
plotted in Fig. Ea for various amplitudes of the random
potential oy = yu. In the absence of disorder, the evo-
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Figure 4: a) Time evolution of the rms size L of the BEC
in the random potential V' for various values of the speckle
amplitude oy = yu and comparison to the theoretical predic-
tion in the absence of random potential (black dotted line).
b-¢) Density profiles of the BEC trapped by disorder at two
different times w,t = 10 and w.t = 20 respectively.

lution of the BEC corresponds to self-similar expansion
with parameter b(t) ~ v/2w,t [B4]. For small amplitudes
of disorder (y < 0.1), the BEC grows by about one or-
der of magnitude for w,t = 10. For larger amplitudes
of disorder (y 2 0.15), after initial expansion, the BEC
stops expanding [@] This is consistent with the exper-
imental findings. This strong suppression of expansion
corresponds to disorder-induced trapping of the BEC.

We now describe a scenario for disorder-induced trap-
ping of the BEC when released from the harmonic trap.
For small enough random potential, the initial stage of
expansion can be described using the scaling theory [@]
According to this theory, the fast atoms populate the
wings of the expanding BEC whereas the slow atoms are
close to the center. It is thus tempting to distinguish two
regions of the BEC: (i) the central part where the inter-
action energy dominates the kinetic energy and trapping
is due to the competition between interactions and disor-
der, and (ii) the wings where the kinetic energy exceeds
the interactions and trapping is rather due to the com-
petition between the kinetic energy and disorder.

In the center, the average density and thus the effective
chemical potential iz slowly decrease during the expan-



sion stage. As the interaction energy is much larger than
the kinetic energy, the local density adiabatically follows
the instantaneous value of 77 in the Thomas-Fermi regime
|¥(2)|? = [ — V(2)]/g1p in the region where 1 > V(2)
and [¢(2)]? = 0 elsewhere. This evolution stops with
fragmentation, ¢.e. when the BEC meets two peaks of
the random potential with amplitudes larger than . Us-
ing the statistical properties of the random potential [@,
we can estimate the probability of such large peaks and
we conclude that this happens when the central density
ng reaches the value

oy 047LTF)
ng~125— |In{ ——— | . 3
’ <91D) < Az ®)

This formula is in good agreement with our numerical
and experimental findings [B(].

Due to the small density, the situation is completely
different in the wings which are populated by almost
free particles interacting with the disordered potential.
The BEC wavefunction thus undergoes disorder-induced
multiple reflections and transmissions and is ultimately
blocked by a large peak of the speckle potential. There-
fore, the BEC is not in the Thomas-Fermi regime and
the local density is not stationary. Due to the conserva-
tion of the energy, the kinetic energy per particle € is of
the order of the typical energy in the initial condensate
(e ~ p) so that the typical wavelength of the fluctuations
in the wings is of the order of the healing length in the
initial condensate Ay, ~ & = h/\/2mpu.

This scenario of disorder-induced trapping is accu-
rately supported by our numerical integration of the
Gross-Pitaevskii equation. In particular, the density pro-
files plotted in Fig. E show the static Thomas-Fermi
shape in the center and time-dependent fluctuations in
the wings with typical wavelength Ay, ~ & [

In conclusion, we have experimentally investigated
transport properties of an interacting BEC in a random
potential. Controlling the strength of disorder, we have
observed the transition from free expansion to absence
of diffusion as disorder increases. We have presented
numerical simulations that reproduce well the observed
suppression of expansion and we have discussed a the-
oretical model that describes the scenario for disorder-
induced trapping. In the future, it would be interesting
to further investigate this highly controllable system, for
example by changing the correlation length of disorder or
employing Bragg spectroscopy to probe the momentum
spectrum of the BEC [RJ).
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In elongated traps, quantum phase fluctuations may be
important for large enough temperatures [R4]. However,
here, we estimate the temperature to be 150 nK [@ and
therefore the phase coherence length [E] is Ly ~ Lrr,
implying that the BEC is almost fully coherent.

From the variations of the dipole curvature with the
current, we estimate the upper bound of w./27 to be

[34
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~ 400 mHz, which is compatible with the linear expan-
sion observed in the absence of disorder (see Fig. [L)).
Our findings are in excellent agreement with the analytic
solution of the scaling equations of [R],

Vo) (b(t) — 1) + In[\/b(t) + /b(t) — 1] = V2w,t.

It should be noted that for v 2 0.25, the fluctuations of
Az are due to small still evolving contributions in the
wings of the BEC wavefunction while the core of the
wavefunction is localized (see below).



